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Abstract. Modeling based on the golden angle has provided valuable insight into how
densely packed phyllotaxis structures and organizational patterns arise. The classic example
is the phyllotactic model based on the golden angle for organization of florets on a sunflower.
Previous studies of geometric pattern generation show that structure organization and cover-
ing is highly sensitive to the angle of intersection of pairs of phyllotactic spirals (parastichies).
In biology, these patterns arise in a meristem of the primordium and the golden angle of
parastichy pairs produces an optimal packing density. Consequently, packing efficiencies and
organization of coverings of a geometric capitulum can be modeled and its properties analyzed
according to angle of rotation which produces a spiral pattern. To begin to understand how
other phyllotaxis patterns might arise, different geometric patterns were generated based on
the generalized golden p-sections, which are linked to the Fibonacci p-numbers. Generation of
various geometric structures shows that different efficiencies of covering and regular organiza-
tional patterns occur across different golden p-proportions. Conclusion: studying geometric
capitulum patterns based on golden p-ratios begins to show how geometric tissue patterns
might occur in biology.
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1. INTRODUCTION

Multicellular life evolved on earth about 600 million years ago [1], but how multicellular
organisms develop and maintain organization of their tissues is still a mystery. Pattern recog-
nition in phyllotaxis research coupled with mathematical modeling has provided important
insight into mechanisms that help explain tissue organization [2, 3]. Geometric patterns ob-
served in histologic structures of plants and animals are often described by the Fibonacci
numbers. Indeed, Fibonacci numbers often appear in number of flower petals, spirals on a
sunflower or nautilus shell, starfish, and fractions that appear in phyllotaxis [4, 5, 6, 7]. While
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the regularity of these patterns in biology can be described by the Fibonacci numbers, the
processes that generate these structures are still being elucidated. This raises the question:
What biologic rules and mathematical laws that control the growth and renewal of tissues in
multi-cellular organisms give rise to these patterns of Fibonacci numbers? To begin to un-
derstand how these patterns arise, we have been studying different patterns that might arise
based on Fibonacci p-numbers [8, 9].

In one study, we created a cell division model for tissue organization based on the biology of
tissue renewal [10]. This model builds upon the cell maturation concept posed in the Spears
and Bicknell-Johnson model for asymmetric cell division [11, 12]. Based on the process of
asymmetric cell division, model output simulated the dynamic growth of cell populations and
generation of hierarchical patterns found in tissues. Importantly, our model [10] generated
complex dynamic patterns in which organization of cells in tissues remained constant despite
continuous cell division occurring within the tissue structure. Thus, by modeling the spatial
and temporal asymmetries of cell division, we discovered that simple rules can explain how
tissue organization is maintained during tissue renewal in biology. In another study [13], we
studied geometric branching patterns based on Fibonacci p-sequences that revealed how the
regularity in branching patterns might occur in biology. This modeling also showed generation
of branching structures produces patterns of self-similarities that occur across different degrees
of branching and multiple dimensions. Our studies demonstrated that geometric characteriza-
tion of Fibonacci p-numbers can help us understand the biological rules that underlie branching
patterns in nature.

The current study builds upon the Fibonacci p-number series by investigating geometric
capitulum patterns that are formed based on golden p-proportions. Many important studies on
the golden angle have provided an understanding of how densely packed phyllotaxis structures
and organizational patterns arise in biology [2, 3, 4, 5, 6]. The classic example being the
geometric pattern produced by the golden angle that simulates the organization of florets
on a sunflower. Other studies of geometric pattern generation [14] revealed that structure
organization and coverings are highly sensitive to the angle separating individual primordia.
Such organization arises in a meristem with the Fibonacci angle producing parastichy having an
optimal packing density [15]. In other studies of phyllotaxis [2, 3, 16, 17], packing efficiencies
and organization of a covering of a geometric capitulum are modeled according to different
angles of rotation which produces various circular patterns. Angles that are only a rational
fraction of a turn generally produce very poor coverings while the golden angle produces one
of the best coverings. Accordingly, to further understand how other phyllotaxis patterns might
arise, different geometric patterns were generated herein based on the generalized golden p-
sections, which are linked to the Fibonacci p-numbers [8, 9].

2. PREVIOUS RESULTS

In our recent study [13], we investigated the generalized golden p-sections (Figure 1) that
are associated with patterns of asymmetric cell division in tissues. We discovered that the
generalized golden p-sections can be modeled as branching structures based on a specific number
of decreasing-sized branches that arise from a main branch. It was assumed that the ratio
between the sizes of pairs of consecutive branches (ordered by size) equals the ratio of the largest
branch size to the next branch size and all other branches follow this same ratio (Figure 2). We
observed that the original expressions for the generalized golden p-sections were still retained
by the expressions in our new branched geometric structures (Figure 3). Our modeling using
these new expressions produced different branching patterns that emerged over time. These
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geometric structures also allowed us to create corresponding agent-based models to further
study different branching patterns and analyze the dynamics of these patterns as they emerge
over time [13]. The study herein builds on this geometric property to identify patterns formed
in geometric capitulum structures.

Add the below to page 3. 

 

 

Figure 1: Geometric expression of the Fibonacci p-numbers [9]. The Golden p-ratio is the ratio 
of two quantities CB and AC if their ratio is the same as the ratio of two larger quantities AB and 
CB raised to the power p. Algebraically, for AB, CB, and AC with AB > CB > AC, the ratio is: 
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A generalized Binet formula for Fibonacci p-numbers was derived by Kilic [8] and Stakhov [9]. 

  

Figure 1. Geometric expression of the Fibonacci p-numbers [9]. The golden
p-ratio is the ratio of two quantities CB and AC if their ratio is the same as the
ratio of two larger quantities AB and CB raised to the power p. Algebraically,
for AB, CB, and AC with AB > CB > AC, the ratio is ϕp = CB

AC = (AB
CB )p,

where the Greek letters(ϕp, τp or Φp) represent the golden p-ratio [8-13]. It is
also the positive root that is a solution to the quadratic equation ϕp+1

p −ϕp
p = 1.

The Fibonacci p-numbers, denoted Fp, are a generalization of the well-known Fibonacci
numbers. Fibonacci p-numbers form a sequence, the Fibonacci p-sequence (Table 1), whereby
each number is the sum of two preceding ones based on the recursive relation for n > p+ 1:
Fp(n) = Fp(n−1)+Fp(n−p−1), and Fp(0) = 0, Fp(1) = Fp(2) = . . . = Fp(p) = Fp(p+1) = 1.

Fibonacci p-numbers are closely linked to the golden p-ratio. For p = 1 that represents the
Fibonacci sequence, the Fibonacci numbers are related to the classic golden ratio. The Binet
formula gives the nth Fibonacci number in terms of n and the golden ratio [9]. It designates
that as n increases, the ratio of two consecutive Fibonacci numbers tends to the golden ratio.
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2
≈ 1.618034 and ψ =
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2
≈ 0.618034.

A generalized Binet formula for Fibonacci p-numbers is derived by Kilic and Stakhov [8, 9].

Table 1. The Fibonacci p-number sequence (p = 2 to 5)

p-value OEIS number Fibonacci p-number sequence
p = 2 A000045 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 121, 181, . . .
p = 3 A000930 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, . . .
p = 4 A003269 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 34, 45, 60, . . .
p = 5 A003520 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, . . .
Online Encyclopedia of Integer Sequences (OEIS) numbers from https://oeis.org/
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Figure 2. A geometric branching pattern was created for p = 3 based on
a specific number of decreasing-sized branches that arise from a main branch
[13]. The quotient(q-ratio) between the sizes of pairs of consecutive branches
(ordered by size) equals the ratio of the largest branch size to the sum of the
largest and smallest branch sizes. The q-ratio is also the reciprocal of the golden
p-ratio.

Figure 3. Geometric branching pattern based on the generalized golden p-
sections for p = 1 to 5. The q-ratio is given for each p-value. For p = 1, the
structure is known as the golden section.
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3. NEW RESULTS

3.1. Supergolden Rectangles. To explore whether other possible geometric patterns ex-
ist based on these geometric branching patterns, it was determined if supergolden rectangles
might be created based on the golden p-proportions. The classic golden rectangle is linked to
the golden ratio (ϕ = 1.618034), which has been extensively studied [4, 6, 9, 18, 19]. The su-
pergolden rectangle (Figure 4) is constructed by creating a geometric structure that subdivides
a rectangle so that ABCD, EHGD, and HFCG are similar [19, 20].

Figure 4. The supergolden rectangle was created based on the geometric q-ratios.

The length of the supergolden rectangle (AD and BC) equals the value of generalized golden
p-section (ϕ). As ϕp+1 = ϕp + 1 (mentioned earlier in Figure 1), using ϕ = 1

q , we get on
dividing by ϕp, the equation ϕ = 1+ 1

ϕp , so ϕ = 1+qp, or 1
q = 1+qp, which gives 1 = q+qp+1.

It is then simple to solve for x because ABCD and EHGD are similar, so x equals q and
1 − x = qp+1. The supergolden rectangle for p = 2 has previously been reported [19, 20, 21].
The supergolden rectangles for p = 3 to 5 as well as the structure for any generalized golden
p-section were created herein and are illustrated in Figures 4 and 5.

Figure 5. The supergolden rectangles for generalized golden p-sections p = 2
to 5.

3.2. Geometric Capitulum Patterns on a Disk. To identify other structures that might be
established based on expression of the p-Fibonacci numbers, the centric model for geometrical
representation of plant and animal structures was explored. Indeed, this model has formed
the cornerstone of research in phyllotaxis. For example, the geometric structures that are
generated based on divergence angles for number sequences in Table 2 [3] produce patterns that
have parastichy pairs observed in plants of the Asteraceae flowering plant species [22, 23]. This
biologic family has over 25,000 species! The geometric capitulum patterns that are generated
on a disk by the known divergence angles (Table 2) were plotted herein and are shown in
Figure 6 below.
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Figure 6. Geometric capitulum patterns on a disk plotted based on the diver-
gence angle. Patterns were generated using 2D polar coordinates according to
the method outlined in reference [24].

3.3. Sectioning the Circle Circumference based on Fibonacci p-Proportions. The
centric model for generating geometrical patterns was then pursued to study other possible
manifestations of the p-Fibonacci numbers. Accordingly, the circle circumference was sectioned
into fractions based on the generalized golden p-sections (Figure 7). The arc lengths (a, b, c,
d, e, and f) correspond to branch sizes and properties illustrated in Figure 3. The ratio of the
length of the smallest arc to that of the largest arc equals the ratio of the large arc to the circle
circumference. The length of adjacent arcs (small/large) equals the q-ratio corresponding to
each golden p-proportion (Figure 3). So, the fraction of the circumference (f) subtended by
each of the arcs can be determined as well as the respective central angles of the circle. For
p = 1, the fraction of the circumference of the small arc (0.3819) corresponds to the golden
angle [25].

3.4. Geometric Capitulum Patterns based on Fraction of Circumference. Geomet-
ric capitulum patterns were then generated on a disk using the fraction of the circumference
corresponding to each of the generalized golden p-sections. The approach relied on the poly-
nomials for the generalized golden p-sections that describe ratios of branch sizes (i.e. q-ratios)
in Figure 3 as given in Table 3. Then, polynomial expressions corresponding to each p-value
were expanded (Table 3, Appendix A) and the q-values in the expanded polynomials were
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Table 2. Divergence angles for number sequences (p = 1) that correspond to
geometric patterns of phyllotaxis [3]. Divergence angle is defined as “the two
angles at the center of a transverse section of a growing root tip determined by
consecutively initiated primordia” [3]. Fraction of the circumference is calcu-
lated by dividing the divergence angle by 360o.

Divergence Angle Fraction of Circumference Number Sequence
137.51◦ 0.381972 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .
99.50◦ 0.276389 1, 3, 4, 7, 11, 18, 29, 47, 76, . . .
77.96◦ 0.216556 1, 4, 5, 9, 14, 23, 37, 60, 97, . . .
64.08◦ 0.178 1, 5, 6, 11, 17, 28, 45, 73, 118, . . .
54.40◦ 0.151111 1, 6, 7, 13, 20, 33, 53, 86, 139, . . .
47.25◦ 0.13125 1, 7, 8, 15, 23, 38, 61, 99, 160, . . .
151.14◦ 0.419833 2, 5, 7, 12, 19, 31, 50, 81, 131, . . .
158.15◦ 0.439306 2, 7, 9, 16, 25, 41, 66, 107, 173, . . .
162.42◦ 0.451167 2, 9, 11, 20, 31, 51, 82, 133, 215, . . .
68.75◦ 0.190972 2 (1, 2, 3, 5, 8, 13, 21, 34, 55, . . .)
49.75◦ 0.138194 2 (1, 3, 4, 7, 11, 18, 29, 47, 76, . . .)
45.84◦ 0.127333 3 (1, 2, 3, 5, 8, 13, 21, 34, 55, . . .)

Figure 7. Division of the circle circumference into fractions based on the q-
ratios. The arc lengths (a, b, c, d, e, f) correspond branch sizes in Figure 3.

correlated with the fractions of the circumference in Figure 8. The angle that is subtended by
each fraction of the circumference was then used to create a geometric capitulum pattern.

The resulting geometric disk patterns (Figure 9) showed that all of them have a spiral
configuration and very uniform coverings. None of these patterns exhibit obvious parastichy
pairs that correspond to the p-number sequences. The disk patterns for q and qp+1 for each
p-proportion (p = 1 to 5) were identical because of the relationship q + qp+1 = 1. Several disk
patterns, p = 2(q4), p = 3(q4), p = 4(q6), and p = 5(q7), show highly dense coverings. But
these disk patterns having a high density have an arc length that is close to the value of an
arc length (Table 2) corresponding to one of geometric patterns shown in Figure 6. However,
overlay of the different patterns (Figure 9) corresponding to each p-value (p = 2 to 5) produced
highly dense coverings and the cells in each covering did not appear to overlap.
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Table 3. Polynomial expressions for Fibonacci p-number sequence (p = 2 to
5) based on q-ratio.

p-value Polynomial Expression Expanded Polynomial Expression
p = 2 q3 + q = 1 q4 + q3 + q2 = 1
p = 3 q4 + q = 1 q6 + q5 + q4 + q3 = 1
p = 4 q5 + q = 1 q8 + q7 + q6 + q5 + q4 = 1
p = 5 q6 + q = 1 q10 + q9 + q8 + q7 + q6 + q5 = 1

Figure 8. Circle circumference sections based on the expanded polynomial equations.

4. DISCUSSION and CONCLUSIONS

All living multi-cellular organisms maintain themselves in a highly ordered state. Under-
standing the biologic rules that explain how organisms maintain proper organization of cells
within their tissues is key to understanding of life itself. The organization of plant structures
has been subject of much study in phyllotaxis. The structure of animal tissues is mainly pur-
sued in histology and anatomy. Both fields show that tissue structure stays constant, making
it appear static, when in fact tissues are continuously undergoing growth and renewal. Indeed,
our previous modeling of asymmetric cell division [10, 13] helps us understand how the organi-
zation of cells in tissues remains constant despite continuous cell division occurring within the
tissue structure.

Fibonacci numbers have given us great insight into tissue organization. The design of plants
follows specific patterns that are frequently described by a Fibonacci sequence. Although not
commonly recognized, animal tissues can also have a patterned structure that is described by
the Fibonacci sequence. The classic example is invertebrate animals such as jellyfish. Since
Fibonacci sequences appear so frequently in nature, it clearly indicates that this does not
happen randomly or by accident. This gap in our knowledge has prompted me to study how
patterned structures arise in biology. So the question becomes: what mechanisms explain
Fibonacci number patterns in tissue biology?

This work focused on studying different geometric patterns that arise based on Fibonacci
p-proportions. The basis for studying the Fibonacci p-numbers is that the p-number sequence
is linked to cell population growth dynamics of proliferation that occurs in biology due to
asymmetric cell division [10, 11, 13]. Indeed, asymmetric cell division is the cellular mechanism
that is essential for proper tissue renewal and wound healing. The current study builds upon
the Fibonacci p-number series by investigating geometric capitulum patterns that are formed
based on the golden p-proportions. Investigation of geometric capitulum patterns helps us
understand how the angle and rotation of cell division control tissue organization. The results
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show that geometric structures are linked to the generalized golden p-sections including the
supergolden rectangle and organization of a covering of a geometric disk. Specifically, these
geometric structures can be described mathematically based on the q-ratio and the golden
p-proportions. Our previous model also revealed that characteristics of branching can be
described mathematically based on branch ratios (q) and the degree of branching (p).

The current results show that organized geometric disk patterns are generated for each of
the generalized golden p-proportions. When geometric disk patterns are overlaid, there was
little, or even no, overlap between the parastichies generated by the different angles of rotation.
This result using modeling in 2D may begin to help understand how multi-cellular tissues are
organized in 3D based on asymmetric cell division. Thus, modeling organized patterns based on
the Fibonacci p-numbers can contribute to our understanding of how asymmetric cell division
controls tissue structure in biology, particularly the organization of different cell types within
tissues.

5. FURTHER WORK and QUESTIONS

Since our modeling of the generalized golden p-proportions generates geometric patterns
with self-similarity across multiple dimensions [13], it will be important to model the geometric
patterns in 3D based on the Fibonacci p-proportions. Taking this approach, it may be possible
to begin to geometrically characterize living histologic tissues using the p-Fibonacci sequences.
An initial strategy might be to analyze geometric patterns generated by the Fibonacci p-
proportions using the cylindrical lattice. This approach could build on the work by Spears et
al. [12] on Fibonacci phyllotaxis involving models of asymmetric cell division using mapping
of cylindrical patterns. Although understanding how geometric patterns normally appear in
nature is an important question, another reason to discover the biologic rules that control
normal tissue structure is to understand how tissue disorganization might occur in cancer and
other diseases.

APPENDIX A. EXPANSION of POLYNOMIAL EQUATIONS.

The expansion of the polynomial equations relating to the different p-values is obtained by
the following simple approach.

If the general polynomial expression for Fibonacci p-number sequences based on q-ratios is
qp+1 + q = 1, multiplying both sides of the equation by q gives qp+2 + q2 = q.

Then substituting this expression for q back into the original equation gives an expanded
expression. For example, q3 + q = 1 can be expanded to q4 + q3 + q2 = 1.

Using this same approach in a repetitive manner, it can expand the other polynomial ex-
pressions corresponding to Fibonacci p-number sequences p = 3 to 5 (Table 3), and to any
expressions corresponding to larger p values.
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Figure 9. Geometric capitulum patterns generated by the different arc lengths
(Figures 7 & 8).
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