Jens-P. Bode

Diskrete Mathematik, Technische Universität Braunschweig, 38023 Braunschweig, Germany e-mail: jp.bode@tu-bs.de

Heiko Harborth

Diskrete Mathematik, Technische Universität Braunschweig, 38023 Braunschweig, Germany e-mail: h.harborth@tu-bs.de

Clark Kimberling

University of Evansville, 1800 Lincoln Avenue, Evansville, IN 47722, USA e-mail: ck6@evansville.edu

(Submitted March 2006-Final Revision March 2007)

ABSTRACT

For given a_1, a_2 we determine the sequence (a_i) where (c_i) is the complement of (a_i) and (a_i) originates from (c_i) by the Fibonacci-like recurrence $a_i = c_{i-1} + c_{i-2}$. The sequences (a_i) turn out to be close to arithmetic progressions with difference 3.

1. INTRODUCTION

The complement of a sequence of positive integers is the strictly increasing sequence of all positive integers not being in the given sequence. Complements of sequences are discussed for example in [1-3]. Here we consider pairs of sequences (a_i) and (c_i) where (c_i) is the complement of (a_i) and (a_i) is determined by a Fibonacci-like recurrence from (c_i) . That is, given a_1 , a_2 with $a_1 \leq a_2$, the sequences (a_i) and (c_i) are determined by

$$a_i = c_{i-1} + c_{i-2}$$
 for $i \ge 3$,
 $c_1 = \text{smallest number} \ne a_1, a_2$, (1)
 $c_i = \text{smallest number} \ne a_1, a_2, \dots, a_i, c_1, c_2, \dots, c_{i-1}$ for $i \ge 2$.

Observe that (c_i) is the complement of (a_i) since $a_i > c_{i-1}$ and (c_i) is strictly increasing. The sequence (a_i) is strictly increasing at least for $i \geq 3$.

As an example we choose $a_1 = 2$, $a_2 = 5$ and obtain

$$(a_i) = (2, 5, 4, 9, 13, 15, 18, 21, 23, 26, 30, 33, 36, 39, 42, 46, 49, ...)$$

 $(c_i) = (1, 3, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 20, 22, 24, 25, 27, ...)$

Here we collect properties of these complementary Fibonacci sequences.

2. RESULTS FOR
$$a_1 \equiv a_2 \equiv 0 \pmod{3}$$

In this case the sequence (a_i) is an arithmetic progression with difference 3.

[AUGUST

Theorem 1: For $a_1 \equiv a_2 \equiv 0 \pmod{3}$ we have

$$a_i=3i-6$$
 for $i\geq 3$ and $c_i=\left|rac{3i-1}{2}
ight|$ for $i\geq 1.$

Proof: It has to be checked that the asserted sequences fulfill the three equations in (1). We have

$$a_i = c_{i-1} + c_{i-2} = \left\lfloor \frac{3i-4}{2} \right\rfloor + \left\lfloor \frac{3i-7}{2} \right\rfloor = 3i-6 \text{ for } i \ge 3.$$

Since $a_2 \ge a_1 \ge 3$ it follows $c_1 = 1$ as asserted. For the third equation of (1) we have $c_i \ne a_j$ for $j \ge 1$ since $c_i \ne 0 \pmod 3$. The sequence (c_i) is monotonic increasing so that $c_i \ne c_j$ for j < i. For even i we have the smallest possible value $c_i = c_{i-1} + 1$. For odd i we have $c_i = c_{i-1} + 2$ since $c_{i-1} + 1$ is an a_j for $j \le i$ as $c_{i-1} + 1 \equiv 0 \pmod 3$ and as $a_i = 3i - 6 > \frac{3i - 5}{2} = c_{i-1}$ for $i \ge 3$. \square

3. RESULTS FOR $\mathbf{a}_1 = \mathbf{a}_2 \not\equiv \mathbf{0} \pmod{3}$

Here the differences $\Delta_i = a_{i+1} - a_i$, $i \geq 3$, of consecutive values of (a_i) are not always 3 as in the preceding case. There occur also differences 2 and 4 for indices with exponentially growing distances and the difference 5 occurs once.

Theorem 2: For $a_1 = a_2 = 3j + r \ge 5$, r = 1 or r = 2, we have $a_3 = 3$ and $\Delta_i = 3$, $i \ge 3$, except for the indices

$$i = f_4(n, v, j, r)$$

$$= (2j+1)4^n + 1 + (v-2)\left(\frac{(v+r-4)(v+r-3)4^n}{2} + \frac{4^n-1}{3}\right)$$
for $v = 1, 2, 3$ and $n = 0, 1, 2, \ldots$ where $\Delta_i = \left\{ egin{array}{l} 4 & ext{if } i
eq 2j+2, \\ 5 & ext{if } i = 2j+2. \end{array}
ight.$

and

$$egin{aligned} i &= f_2(n,v,j,r) \ &= (4j+2)4^n + v - 1 + 2(v-2) \left(rac{(v+r-4)(v+r-3)4^n}{2} + rac{4^n-1}{3}
ight) \ & ext{for } v = 1,2,3 ext{ and } n = 0,1,2,\ldots ext{ where } \Delta_i = 2. \end{aligned}$$

Proof: Since $a_1 = a_2 \ge 5$ it follows from (1) that $c_1 = 1$, $c_2 = 2$, and thus $a_3 = 3$. Then (1) and Theorem 1 imply $\Delta_i = 3$ for $3 \le i < 2j + r$ since the sequence (c_i) starts as in Theorem 1 and since $\left\lfloor \frac{3i-1}{2} \right\rfloor = 3j + r = a_1 = a_2$, that is, i = 2j + r determines the first c_i being

different from the corresponding value $\lfloor \frac{3i-1}{2} \rfloor$ in Theorem 1. It follows that for $a_1 = a_2 \geq 5$ and $i = 2j + r - 1, \ldots, 2j + r + 1$ the values c_i , a_i , and Δ_i are as in Tables 1 and 2 for the cases r = 1 and 2, respectively.

Table 1. The case r = 1.

Table 2. The case r = 2.

Thus there exist exceptional differences $\Delta_i = 4$ or $\Delta_i = 5$ as asserted for n = 0 and v = 1, 2, 3. Note the double occurrences of the index i = 2j + 2 corresponding to the difference $\Delta_i = 5$, that is,

$$2j + 2 = f_4(0, 2, j, 1) = f_4(0, 3, j, 1),$$

$$2j + 2 = f_4(0, 1, j, 2) = f_4(0, 2, j, 2).$$
(2)

In the following we will see that the differences $\Delta_x = 3, 4$, and 5 in (a_i) determine $\Delta_x - 1$ consecutive numbers in (c_i) yielding $\Delta_x - 1$ consecutive differences Δ_i being 2 or 3. Differences $\Delta_i = 2$ result from differences $\Delta_x = 4$ and 5 only and yield a difference $\Delta_j = 4$ each. Thus these cases determine (Δ_i) completely.

For $\Delta_x = 3$ two differences 3 as in Table 3 are obtained using (1).

Table 3. Differences 3 determined by $\Delta_x = 3$.

Assuming $\Delta_x = 4$ and $a_x = 3x - d_x$ and using (1) we obtain further exceptional differences $\Delta_y = 2$ and $\Delta_z = 4$ as shown in Table 4. Note that $6x - 2d_x + 2$ and $6x - 2d_x + 6$ do not occur in (a_i) since (c_i) is strictly increasing, that is, $\Delta_i = c_i - c_{i-2} \ge 2$. Table 4 also implies that any other difference 2 or 4 in (a_i) between indices x and y causes a difference 4 or 2, respectively, between indices y and z. With $a_i = 3i - d_i$ we get

$$d_{i+1} = d_i + 3 - \Delta_i. \tag{3}$$

It follows that $d_z = d_x$ in Table 4. Then $a_z = 3z - d_z = 3z - d_x = 12x - 4d_x + 6$ determines $z = 4x - d_x + 2$. We obtain $y = 2x + 1 - (2d_x - d_y)/3$ from $a_y = 3y - d_y = 6x - 2d_x + 3$.

Table 4. Differences 2, 3, and 4 determined by $\Delta_x = 4$.

If $\Delta_x = 5$ corresponding to Table 4 we obtain pairs of differences $\Delta_y = \Delta_{y+1} = 2$ and $\Delta_z = \Delta_{z+1} = 4$ in Table 5.

i	c_i	a_i	$ \Delta_i $	
\overline{x}		$3x-d_x$	5	
x + 1		$3x - d_x + 5$		
y :	:		:	
	$ 3x - d_x - 1$			
	$3x - d_x + 1$			
	$3x - d_x + 2$	$6x-2d_x$	3	
$y = 2x + 1 - (2d_x - d_y)/3$	$3x - d_x + 3$	$6x - 2d_x + 3$	2	
y+1	$3x - d_x + 4$	$6x - 2d_x + 5$	2	
- · · · · · · · · · · · · · · · · · · ·	$3x - d_x + 6$	$6x - 2d_x + 7$	3	
		$6x - 2d_x + 10$		
:	:	:	:	
	$ 6x-2d_x+2 $			
	$6x-2d_x+4$	1		
$z=4x-d_x+2$	$6x-2d_x+6$	$12x - 4d_x + 6$	4	
z + 1		$12x - 4d_x + 10$	4	
		$12x - 4d_x + 14$		

Table 5. Differences 2, 3, and 4 determined by $\Delta_x = 5$.

By Tables 3, 4, and 5 together with Tables 1 and 2 as bases we conclude that the sequence of exceptional differences $\Delta_i \neq 3$ is as in the first rows of Tables 6 and 7 for r=1 and 2, respectively. It remains to check that the corresponding indices for n>0 and v=1,2,3

are $i = f_2(n, v, j, r)$ for $\Delta_i = 2$ and $i = f_4(n, v, j, r)$ for $\Delta_i = 4$ and $\Delta_i = 5$ as asserted in Theorem 2. Observe (2) for $\Delta_i = 5$.

Δ_i	4	5	2	2	2	4	4	4	2	2	2	4	4	4	
\overline{n}	0	0	0	0	0	1	1	1	1	1	1	2	2	2	
v	1	2,3	1	2	3	1	2	3	1	2	3	1	2	3	
$\overline{d_i}$	6	5	3	4	5	6	5	4	3	4	5	6	5	4	

Table 6. Exceptional differences in the case r = 1.

Δ_i	5	4	2	2	2	4	4	4	2	2	2	4	4	4	
\overline{n}	0	0	0	0	0	1	1	1	1	1	1	2	2	2	
v	1,2	3	1	2	3	1	2	3	1	2	3	1	2	3	
$\overline{d_i}$	6	4	3	4	5	6	5	4	3	4	5	6	5	4	

Table 7. Exceptional differences in the case r=2.

For the last rows in Tables 6 and 7 we have from Tables 1 and 2 that $d_{2j+r}=6$ for the first exceptional Δ_i . The following values change only for $\Delta_i \neq 3$ according to (3). Thus it holds

$$d_i = 7 - v \text{ for } \Delta_i = 4 \text{ and}$$

 $d_i = v + 2 \text{ for } \Delta_i = 2.$ (4)

For $\Delta_x=4$ we obtain from $x=f_4(n,v,j,r)$ as in Theorem 2 with $d_x=7-v$ and $z=4x-d_x+2$ from Table 4 the induction step that

$$z = f_4(n+1, v, j, r) = 4f_4(n, v, j, r) + v - 5$$

as asserted in Theorem 2. Furthermore, with $d_y = v + 2$ and $y = 2x + 1 + (d_y - 2d_x)/3$ from Table 4 it follows

$$y = f_2(n, v, j, r) = 2f_4(n, v, j, r) + v - 3$$

as asserted.

For $\Delta_x = 5$ it remains to check

$$f_4(1, 4-r, j, r) = f_4(1, 3-r, j, r) + 1$$
 and $f_2(0, 4-r, j, r) = f_2(0, 3-r, j, r) + 1$

since the indices y and z in Table 5 are the same as in Table 4. \square

By Theorem 2 with (3) the elements of (a_i) can be expressed as follows.

Theorem 3: For $a_1 = a_2 = 3j + r \ge 5$, r = 1, 2, and with f_2 and f_4 from Theorem 2 we have

$$a_i = 3i-6$$
 for $3 \le i \le 2j+r = f_4(0,1,j,r)$ and $a_i = 3i-d_t$ for $s < i \le t$

where $\Delta_s \neq 3$ and $\Delta_t \neq 3$ are two consecutive exceptional differences and

$$d_t = \left\{ egin{array}{ll} 7-v & ext{if } t = f_4(n,v,j,r), \ 2+v & ext{if } t = f_2(n,v,j,r). \end{array}
ight.$$

If $a_1 = a_2 \ge 5$ we have found (Tables 6 and 7) that the sequence of exceptional differences consists of triples of $\Delta_i = 4$ and triples of $\Delta_i = 2$, alternatingly. If $a_1 = a_2 = 1, 2$, or 4 then the sequence of exceptional differences consists of alternating values $\Delta_i = 4$ and $\Delta_i = 2$.

Theorem 4: For $a_1 = a_2 = 1, 2$, and 4 the sequences (a_i) , $i \geq 3$, are $(n \geq 0)$

 $a_1 = a_2 = 1$:

$$a_3 = 5$$
, $a_4 = 7$, $a_5 = 10$,
 $a_i = 3i - 4$ for $f_4(n) = 4^{n+1} + 1 < i \le f_2(n)$,
 $a_i = 3i - 5$ for $f_2(n) = 2 \cdot 4^{n+1} + 1 < i \le f_4(n+1)$,

 $a_1 = a_2 = 2$:

$$a_3 = 4,$$

 $a_i = 3i - 4$ for $f_4(n) = 2 \cdot 4^n + 1 < i \le f_2(n),$
 $a_i = 3i - 5$ for $f_2(n) = 4^{n+1} + 1 < i \le f_4(n+1),$

 $a_1 = a_2 = 4$:

$$a_3 = 3, \ a_4 = 7,$$

 $a_i = 3i - 4 \text{ for } f_4(n) = 3 \cdot 4^n + 1 < i \le f_2(n),$
 $a_i = 3i - 5 \text{ for } f_2(n) = 6 \cdot 4^n + 1 < i \le f_4(n + 1).$

Proof: By Table 8 there are differences $\Delta_i = 4$ for $i = f_4(0) = 5$, 3, and 4 in the cases $a_1 = a_2 = 1$, 2, and 4, respectively. The asserted intervals for i follow inductively with $z = f_4(n+1) = 4f_4(n) - 3$ and $y = f_2(n) = 2f_4(n) - 1$ by Table 4 for $x = f_4(n)$ since $d_x = 5$ and $d_y = 4$ by (3). \square

i	c_i	a_i	Δ_i	c_i	a_i	Δ_i	c_i	a_i	Δ_i
1	2	1		1	2		1	4	
2	3	1		3	2		2	4	
3	4	5	2	5	4	4	5	3	4
4	6	7	3	6	8	3	6	7	4
5	8	10	4	7	11	2	8	11	3
6	9	14	3		13		9	14	3
7	11	17	3				10	17	2
8	12	20	3					19	
9	13	23	2						
10		25							

Table 8. First exceptional differences for $a_1 = a_2 = 1, 2, 4$.

4. GENERAL CASES

At first we state the two simple subcases where (a_i) is as in Theorem 1 or 3.

Theorem 5: If $a_1 \equiv 0 \pmod{3}$ then $a_i = a'_i$, $i \geq 3$, for the sequence (a'_i) with $a'_1 = a'_2 = a_2$ as in Theorem 1 or 3.

If $a_1 \not\equiv 0 \pmod 3$ and a_2 occurs in (a_i') for $a_1' = a_2' = a_1$ (as in Theorem 3) then $a_i = a_i'$, $i \geq 3$.

Proof: In the first case a_1 occurs in (a_i') due to Theorem 1 or 3 and $a_1 < a_2$. Therefore in both cases $(c_i') = (c_i)$ by (1) and thus $a_i = a_i'$, $i \ge 3$. \square

In the general case, starting with an exceptional difference $\Delta_i = 2$ or 4, repeated application of Table 4 generates an exponential sequence of indices belonging to differences 4 and 2 alternatingly and each being nearly twice the preceding index. Let $V(a_1, a_2)$ count the number of infinite exponential sequences of this kind for given a_1 and a_2 .

Theorem 6: For all $a_1 \le a_2$ we have $a_i = 3i - d_i$, $i \ge 3$, for $0 \le d_i \le 6$ and $V(a_1, a_2) = 0, 1, 2, 3, 4$, or 6 only.

Proof: In the cases of Theorems 1, 4, and 2 we have $V(a_1, a_2) = 0, 1$, and 3, respectively and $d_i = 3, 4, 5$, or 6 by Theorem 1 and Tables 6, 7, and 8. The cases of Theorem 5 reduce to the preceding cases.

It remains $a_1 \not\equiv 0 \pmod{3}$ and a_2 does not occur in (a_i') for $a_1' = a_2' = a_1$. These are the cases where both initial values a_1 and a_2 have an effect on (a_i) being treated in the following.

In addition to the occurrence of $\Delta_x=5$ as in Theorem 3 in the general case also $\Delta_x=6$ may occur as exceptional difference. For $\Delta_x=6$ which will occur in Tables 10 to 12 and 14 we obtain further exceptional differences $\Delta_y=\Delta_{y+1}=\Delta_{y+2}=2$ in Table 9 corresponding to Tables 4 and 5.

i	c_i	a_i	$ \Delta_i $
\boldsymbol{x}		$3x-d_x$	6
x + 1		$3x-d_x+6$	
v i gr	Ė	:	:
	$ 3x-d_x-1 $		
	$3x-d_x+1$		
	$3x-d_x+2$	$6x-2d_x$	3
$y = 2x + 1 - (2d_x - d_y)/3$	$3x-d_x+3$	$6x - 2d_x + 3$	2
y + 1	$3x-d_x+4$	$6x - 2d_x + 5$	2
y + 2	$3x - d_x + 5$	$6x - 2d_x + 7$	2
	$3x-d_x+7$	$6x - 2d_x + 9$	3
		$6x - 2d_x + 12$	

Table 9. Exceptional differences 2 determined by $\Delta_x = 6$.

If $a_2 - a_1 \le 4$ then Tables 10 to 13 prove that $V(a_1, a_2) = 6$ for the indicated values of a_1 and a_2 . For $(a_1, a_2) = (1, 2)$, (2, 3), (4, 5), (1, 3), (4, 6), (5, 7), (1, 4), (2, 5), (4, 7), (5, 8), (7, 10), (2, 6), (4, 8), (5, 9), and (7, 11) we get the values $V(a_1, a_2) = 2, 2, 2, 0, 4, 4, 2, 2, 1, 2, 4, 2, 2, 2, 3, 4, 4$, respectively. The values of d_i are in the asserted interval for the listed pairs (a_1, a_2) with small values of a_1 . For the cases of Tables 10 to 13 we observe the first value $d_3 = 6$. By

(3) there are changes of d_i only after $\Delta_i \neq 3$. In all four cases at first d_i is decreased by 6 due to $\Delta_i = 4$, 5, or 6 before d_i is increased 6 times by 1 because of $\Delta_i = 2$. Thus d_i oscillates between 0 and 6.

Table 10. $a_2 = a_1 + 1$, $a_1 \equiv 1 \pmod{3}$, $a_1 \geq 7$.

Table 11.
$$a_2 = a_1 + 2$$
, $a_1 \equiv 2 \pmod{3}$, $a_1 \geq 8$.

c_i	$ a_i $	$ \triangle_i$	c_{i}	a_i	\triangle_i	
	$a_1 + 3$			$a_1 + 3$		
				: .	2	
	$\begin{vmatrix} a_1 - 4 \\ a_1 - 1 \end{vmatrix}$			$\begin{vmatrix} a_1 - 2 \\ a_1 + 1 \end{vmatrix}$		
	$\begin{vmatrix} a_1 - 4 \\ a_1 - 1 \\ a_1 + 2 \\ a_1 + 5 \end{vmatrix}$			$\begin{vmatrix} a_1 - 2 \\ a_1 + 1 \\ a_1 + 4 \\ a_1 + 7 \end{vmatrix}$		
	:	L		:	4	
$a_1 - 3$			$a_1 - 3$			
$egin{array}{c} a_1-3 \ a_1-2 \ a_1+1 \ a_1+4 \ a_1+6 \end{array}$	$2a_1 - 5$	4	$egin{array}{c} a_1 - 3 \ a_1 - 1 \ a_1 + 2 \ a_1 + 5 \ a_1 + 6 \ \end{array}$	$2a_1 - 4$	5	
$a_1 + 4 \\ a_1 + 6$	$\begin{vmatrix} 2a_1 - 5 \\ 2a_1 - 1 \\ 2a_1 + 5 \\ 2a_1 + 10 \end{vmatrix}$	6 5	$a_1 + 5 \\ a_1 + 6$	$egin{array}{c} 2a_1-4\ 2a_1+1\ 2a_1+7\ 2a_1+11 \end{array}$	5 6 4	
	$ 2a_1 + 10$			$ 2a_1 + 11$		

Table 12. $a_2 = a_1 + 3$, $a_1 \equiv 1, 2 \pmod{3}$, $a_1 \geq 8$.

c_{i}	a_i	$ \Delta_i$	
	$a_1 + 4$		
	:	T	
	$\begin{vmatrix} a_1 - 1 \\ a_1 + 2 \end{vmatrix}$	·	
	$\begin{vmatrix} \leq a_1 - 4 \\ a_1 - 1 \\ a_1 + 2 \\ a_1 + 5 \\ \geq a_1 + 8 \end{vmatrix}$		
$a_1 - 3 \\ a_1 - 2$	0. 5	1	
$egin{array}{l} a_1-3 \ a_1-2 \ a_1+1 \ a_1+3 \ a_1+6 \ a_1+7 \end{array}$	$\begin{vmatrix} 2a_1 - 5 \\ 2a_1 - 1 \\ 2a_1 + 4 \end{vmatrix}$	5 5 4	
$\overset{a_1}{a_1} + \overset{o}{7}$	$\begin{array}{c} 2a_1 - 5 \\ 2a_1 - 1 \\ 2a_1 + 4 \\ 2a_1 + 9 \\ 2a_1 + 13 \end{array}$	4	

Table 13. $a_2 = a_1 + 4$, $a_1 \equiv 1 \pmod{3}$, $a_1 \ge 10$.

If $a_2-a_1\geq 5$, then that index i_0 where $c'_{i_0}=a_2$, that is, $c_{i_0}\neq c'_{i_0}$, we have $a'_i=a_i$ for $3\leq i\leq i_0$ and a_{i_0+1} differs from a'_{i_0+1} . We distinguish the cases $\Delta_x=2$, 3, 4, and 5 for that x with $a_x< a_2< a_{x+1}$ where $a_2=3x-d_x+j$ for $1\leq j\leq \Delta_x-1$. In Tables 14 to 17 we present the essential values of c_i , a_i , and Δ_i beginning with $i=i_0-2$ and for $\Delta_x=5$ and j=4 with $i=i_0-3$. We use the abbreviations $a_i^*=a_i-(6x-2d_x)$ and $c_i^*=c_i-(3x-d_x)$.

c_i^*	a_i^*	Δ_i	c_i^*	a_i^*	Δ_i	c_i^*	a_i^*	$ \Delta_i $
$\begin{array}{c} -2 \\ -1 \\ 3 \\ 4 \end{array}$	$\begin{array}{c} -3 \\ 2 \\ 7 \end{array}$	5 5	$ \begin{array}{r} -2 \\ -1 \\ 3 \\ 5 \end{array} $	-3 2 8	5 6	$ \begin{array}{c} -3 \\ -1 \\ 3 \\ 4 \end{array} $	$\begin{array}{c} -4 \\ 2 \\ 7 \end{array}$	6 5
	$\begin{array}{c} x_{x-1} \ge 3 \\ x_{x+1} \ge 3 \end{array}$			$\Delta_{x-1} \ge 3$ $\Delta_{x+1} = 2$			$ \begin{aligned} x-1 &= 2, \\ x+1 &\ge 3 \end{aligned} $	

Table 14. Effects of $a_2 = 3x - d_x + 1$ for $\Delta_x = 2$.

Table 15. Effects of $a_2 = 3x - d_x + j$ for $\Delta_x = 3$ and j = 1, 2.

Table 16. Effects of $a_2 = 3x - d_x + j$ for $\Delta_x = 4$ and j = 1, 2, 3.

c_i^*	a_i^*	Δ_i	c_i^*	a_i^*	Δ_i	c_i^*	$ a_i^* $	$ \Delta_i$	c_i^*	a_i^*	Δ_i
$ \begin{array}{c} -2 \\ -1 \\ 2 \\ 3 \\ 4 \end{array} $	-3 1 5 7	4 4 2	$\begin{array}{c} -1 \\ 1 \\ 3 \\ 4 \end{array}$	0 4 7	4 3	1 2 4 6	3 6 10	3 4	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 6 \\ 7 \end{array}$	3 5 9 13	$\begin{bmatrix} 2\\4\\4 \end{bmatrix}$

j=1 j=2 j=3 j=3 j=4 Table 17. Effects of $a_2=3x-d_x+j$ for $\Delta_x=5$ and j=1,2,3,4.

Since $a_2 - a_1 \ge 5$, in Tables 14 to 17 there are no coincidences of a_1 with the essential values of c_i corresponding to c_i^* .

To determine the values of $V(a_1,a_2)$ in the general cases we first note that $V'=V(a_1,a_1)$ is 1 or 3 by Tables 6 to 8. In the cases of Table 14 we have a_2 within a gap $\Delta_x=2$. In the leftmost case this results in 2 differences $\Delta=5$ implying 2 pairs of $\Delta=2$. Thus we obtain V=V'-1+4. In the remaining two cases of Table 14 we have a_2 within one of 2 consecutive gaps $\Delta=2$ resulting in differences 5 and 6 or 6 and 5 and implying 5 differences $\Delta=2$. Thus we obtain V=V'-2+5.

Correspondingly, in the first and third case of Table 15 we obtain V=V'+3 and for the remaining cases V=V'-1+4. In Table 16 we get V=V'-1+2 in all three cases. Cases 1 and 4 of Table 17 yield V=V'-2+3 and cases 2 and 3 yield V=V'-2+1. Altogether, the value a_2 increases the number 1 or 3 of exceptional differences V' by 3, 1, or -1 to V=2, 4, or 6 as asserted in Theorem 6. Values of $V(a_1,a_2)$ for small a_1 , a_2 are presented in Table 18.

					1		2		3	3		4		5	
		$a_2 =$	12345	6789	01234	15678	89012	23456	7890	1234	5678	9012	3456	789012	2345
		-2													
	-	1:-	10001	1111	10001	1441	4414	11 11 1	11111	1 4 4 1	1111	11 11	1 / / 1 6	20014	1111
a_1	$_{1} = 1$	7	12021											222144	
	2	2	1212	2214	41414	1414	41441	12221	4414	4144	1441	4414	4144	141441	1441
	:	3	013	0330	33033	30330	03303	33033	0330	3303	3033	0330	3303	303303	3303
	4	1	12	4122	21441	441	41441	4414	4144	1441	2221	4414	4144	144144	1144
	Ę		3	3422	43444	13636	63663	36636	3663	4443	4443	6636	6366	366344	4436
	(303303	
				0000	00000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0000					
	7			000										363663	
	8	3		33	66342	22434	44436	66366	3636	3663	6636	3663	66366	636636	5634
	()		0	33033	30330	03303	33033	0330	3303	3033	0330	3303	303303	3303
	10)			36366	3444	43422	24366	3663	6636	3663	6636	36360	636636	3636
	1				3366	33665	34224	13444	3663	6636	6366	3636	36636	663636	3636
	12	-												303303	
	-	~			000							- 1			
	13	-												366366	
	14	1			3	33663	36636	66342	2434	4436	6366	3663	66366	336636	3363
	15	5				0330	03303	3033	0330	3303	3033	0330	33033	303303	3303
	16	3				363	36636	6366	3444	3422	4366	3663	66366	36636	3636
	17	7												336636	
						•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0000			0000			
	18					(303303	
	19)					0000		0000	000-				636636	
	20)					336	6366	3663	6636	6342	2434	44366	36636	3636
									100						

Table 18. Values of $V(a_1, a_2)$ for small a_1, a_2 .

For d_i we observe that Tables 6 to 8 imply $3 \le d_i' \le 6$ for (a_i') with $a_1' = a_2' = a_1$. In the cases of Table 14 and the second and fourth case of Table 15 there is one $\Delta = 2$ or a pair of consecutive differences $\Delta = 2$ and thus by (3) we have $d_i' \ge 4$ or $d_i' \ge 5$ before d_i is decreased by 4 or 5 due to $\Delta = 5$, 5 or $\Delta = 5$, 6, respectively. In the remaining cases of Tables 15 to 17

the decrease of d_i is at most 3. Since the corresponding exceptional differences $\Delta=2$ always increase d_i by the same amount we have $0 \le d_i \le 6$ and Theorem 6 is proved. \square

Now the sequences (a_i) are determined completely to be $a_i=3i-d_i, i\geq 3$, where d_i oscillates within subintervals of (0,6) with exponentially growing step lengths. Most of the differences $\Delta_i=a_{i+1}-a_i$ are 3. There are $V(a_1,a_2)$ infinite sequences of exponentially growing indices with differences 4 and 2 alternatingly. Differences $\Delta_i=5$ and 6 occur at most three times.

It may be future work to consider complementary sequences (a_i) being determined by other recurrences.

REFERENCES

- [1] C. Kimberling. "Almost Arithmetic Sequences and Complementary Systems." Fibonacci Quarterly 19 (1981): 426-433.
- [2] M. L. Gargano and L. V. Quintas. "Complementary Arithmetic Sequences." Congr. Numer. 192 (2003): 33-42.
- [3] I. Vidav. "Complementary Sequences of Positive Integers." Obz. Mat. Fiz. 45 (1998): 1-8.

AMS Classification Numbers: 11B37, 11B39, 11B25

班班班