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ABSTRACT

For given a;,as we determine the sequence (a;) where (¢;) is the complement of (a;) and
(a;) originates from (c;) by the Fibonacci-like recurrence a; = ¢;—1 + c;—». The sequences (a;)
turn out to be close to arithmetic progressions with difference 3.

1. INTRODUCTION

The complement of a sequence of positive integers is the strictly increasing sequence of all
positive integers not being in the given sequence. Complements of sequences are discussed for
example in [1-3]. Here we consider pairs of sequences (a;) and (¢;) where (¢;) is the complement
of (a;) and (a;) is determined by a Fibonacci-like recurrence from (c;). That is, given a1, as
with a; < as, the sequences (a;) and (c;) are determined by

a; =cj—1+c¢—2 forz >3,
c1 = smallest number # aq, az, (1)

¢; = smallest number # a;,a9,... ,a4,¢1,¢2,...,¢-1 fori> 2.

Observe that (c;) is the complement of (a;) since a; > ¢;—; and (¢;) is strictly increasing. The
sequence (a;) is strictly increasing at least for i > 3.

As an example we choose a; = 2, a2 = 5 and obtain

(a:) = (2,5,4,9,13,15,18, 21, 23, 26, 30, 33, 36, 39, 42, 46,49, . . )
(e:) = (1,3,6,7,8,10,11, 12,14, 16, 17, 19, 20, 22, 24, 25, 27, . ...)

Here we collect properties of these complementary Fibonacci sequences.
2. RESULTS FOR a; = a; =0 (mod 3)
In this case the sequence (a;) is an arithmetic progression with difference 3.
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Theorem 1: For a; = a2 =0 (mod 3) we have

a; =3i—6 fori >3 and

i — 1
i [322 J for i > 1.

Proof: It has to be checked that the asserted sequences fulfill the three equations in (1).
We have

4 .
a; = Cj—1 +Ci—a = l3ﬁ2 J+[3Z2 7J =3i—6 fori>3.

Since as > a; > 3 it follows ¢; = 1 as asserted. For the third equation of (1) we have ¢; # a; for
4 > 1since ¢; # 0 (mod 3). The sequence (c;) is monotonic increasing so that ¢; # ¢; for j <.
For even i we have the smallest possible value ¢; = ¢;—; + 1. For odd i we have ¢; = ¢;_; + 2
since ¢;_1 +1isana; for j <iasci1+1=0 (mod 3) and as a; = 3i — 6 > %;5=c;_1 for
i>3. 0O

3. RESULTS FOR a; = a; # 0 (mod 3)

Here the differences A; = a; 41 — a;, © > 3, of consecutive values of (a;) are not always 3
as in the preceding case. There occur also differences 2 and 4 for indices with exponentially
growing distances and the difference 5 occurs once.

Theorem 2: Fora; =a; =3j4+r>5,r=1orr =2, we haveaz =3 and A; = 3,7 > 3,
except for the indices

i= f4(n,‘u’j: T)

(v+r—4)(v+r—3)4" +4“—1)

=(2j+1)4"+1+(v~2)( - 3

4 fi#2j+2,

forvz1,2,3and'n=0,l,2,...whereA,—:{ . .
5 ifi=2j+2

and

i= fz(ﬂ.,U,j,T)

2 3
forv=1,2,3and n=0,1,2,... where A; =2.

:(4j+2)4"+v—1+2(u—2)((”+’"4)("+T—3)4ﬂ +4n*1)

Proof: Since a; = a > b it follows from (1) that ¢; = 1, c2 = 2, and thus a3 = 3.
Then (1) and Theorem 1 imply A; = 3 for 3 < 4 < 2j + r since the sequence (c;) starts as in
Theorem 1 and since | 252 | = 3j+r = a; = ag, that is, i = 2j+r determines the first ¢; being
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different from the corresponding value Li‘;—lj in Theorem 1. It follows that for a; = a2 > 5
and i = 2j +r —1,...,27 4+ r+ 1 the values ¢;, a;, and A; are as in Tables 1 and 2 for the
cases r = 1 and 2, respectively.

) | Ci 1 a; l A,’ i | Cy | a; | A,;

24 3i—1 65 —6 3 25+1 37+1 67 —3 3

27 +1 ‘ 35+2 ’ 6%—3 ‘ 4 27+2 3‘%-1—4 67 5

27+ 2 37 +4 67 + 1 5 2943 3j+5 675 +5 4
Table 1. The case r = 1. Table 2. The case r = 2.

Thus there exist exceptional differences A; = 4 or A; = 5 as asserted for n = 0 and
v =1,2,3. Note the double occurences of the index i = 2j + 2 corresponding to the difference
A; = 5, that is,

2j+2:.f4(012:j11):f4(0:3:j)1)7 (2)
2j+2= f4(0:1:j: 2) = f4(012:ja 2)

In the following we will see that the differences A, = 3,4, and 5 in (a;) determine Az —1
consecutive numbers in (¢;) yielding Ay —1 consecutive differences A; being 2 or 3. Differences
A; = 2 result from differences A, = 4 and 5 only and yield a difference A; = 4 each. Thus
these cases determine (A;) completely.

For A, = 3 two differences 3 as in Table 3 are obtained using (1).

7 Ci a; Ai
T as 3
ap + 3
az — 1
az +1
az +2| 2ag 3
az+4(2a;+3 | 3
2a; +6

Table 3. Differences 3 determined by Ay = 3.

Assuming A, = 4 and a; = 3z —d, and using (1) we obtain further exceptional differences
Ay =2 and A, = 4 as shown in Table 4. Note that 6z — 2d; + 2 and 6z — 2d; + 6 do not
occur in (a;) since (c;) is strictly increasing, that is, A; = ¢; — ¢i—2 > 2. Table 4 also implies
that any other difference 2 or 4 in (a;) between indices z and y causes a difference 4 or 2,
respectively, between indices y and z. With a; = 3¢ — d; we get

dit+1 =d; +3— A;. (3)
It follows that d, = dy in Table 4. Then a, = 3z — d, = 3z — d;y = 12z — 4d; + 6 determines
z =4z — dy + 2. We obtain y = 2z + 1 — (2d,; — dy)/3 from ay = 3y — dy = 6z — 2d; + 3.
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] [+ a; A,;
T 3r —d, 4
z+1 3z —d;,+4
3z —d; — 1
3z —dgy+1
3z —d;+2 6 — 2d; 3
y=2z+1-(2d; —dy)/3 | 3z—d; +3 | 6x—2d;+3 | 2
3z —dy;+5 | 6z—2d,+5 3
6x — 2d; + 8
6z — 2d, + 2
6 — 2d, +4
z=4z —d; + 2 6z —2d, +6 | 122 —4d,+6 | 4
12z — 4d, + 10

Table 4. Differences 2, 3, and 4 determined by A, = 4.

If A; = 5 corresponding to Table 4 we obtain pairs of differences Ay, = Ayy; = 2 and
A, =A,1 =4 in Table 5.

7 Cy a; A;
z 3z —d; 5
r+1 3z —d;+5
3z —dy — 1
3z —dzs+1
3z —d, + 2 6z — 2d. 3
y=2z+1—(2d; —d,)/3 | 3z—d, +3 | 6z —2d,+3 |2
y+1 3r—d,+4 | 6x—2d; +5 2
3z —d,+6 | 6z—2d, +7 | 3
6x — 2d; + 10
6x — 2d; + 2
6z —2d, + 4
z=4z —d;+ 2 6r —2d,+6 | 122 —4d, +6 | 4
z+1 6r —2d; +8 |12z —4d; +10 | 4
12z — 4d, + 14

Table 5. Differences 2, 3, and 4 determined by A; = 5.

By Tables 3, 4, and 5 together with Tables 1 and 2 as bases we conclude that the sequence
of exceptional differences A; # 3 is as in the first rows of Tables 6 and 7 for r = 1 and 2,
respectively. It remains to check that the corresponding indices for n > 0 and v = 1,2,3
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are i = fa(n,v,5,7) for A; = 2 and i = fg(n,v,j,7) for A; = 4 and A; = 5 as asserted in
Theorem 2. Observe (2) for A; = 5.

A; |4 5 |2 2 24 4 412 2 2|4 4 4
n (0 0 (0001 1 1(1 1 1|2 2 2
v |1 2,31 2 3|1 2 3|1 2 31 2 3
d; |6 5 |3 45|65 4|3 4 5|6 5 4

Table 6. Exceptional differences in the case r = 1.

A; |5 41|12 2 214 4 4|2 2 214 4 4
n [0 00O O0O|1 1 1)1 1 1|2 2 2
v (1,2 3|1 2 31 2 3|1 2 3|1 2 3
di |6 4|3 4 5|6 5 4|3 4 5|6 5 4

Table 7. Exceptional differences in the case r = 2.

For the last rows in Tables 6 and 7 we have from Tables 1 and 2 that dgj;, = 6 for the
first exceptional A;. The following values change only for A; # 3 according to (3). Thus it
holds

di=T7—v for A; =4 and

4
di=v+2 for A; =2. )

For A; = 4 we obtain from z = fs(n,v,j,7) as in Theorem 2 with d; = 7 — v and
2z = 4z — dg + 2 from Table 4 the induction step that

z= fa(n+1,v,5,7) = 4fa(n,v,j,r) +v -5

as asserted in Theorem 2. Furthermore, with dy = v+ 2 and y = 2z + 1 + (dy — 2d;)/3 from
Table 4 it follows

= f‘Z(ﬂ':vaj)T) = 2f4(n,v,j,r) +v—3
as asserted.

For A, = 5 it remains to check

f4(1:4* T,j,‘l") = f‘i(l:?’_ T',j,T‘) +1 and
f2(014”7':j:7') = f2(0,3_7';j,7') 41

since the indices y and z in Table 5 are the same as in Table 4. O

By Theorem 2 with (3) the elements of (a;) can be expressed as follows.

Theorem 3: For a; = az = 3j+r > 5,r = 1,2, and with f; and fs from Theorem 2 we have

a;=3—6 for3<i<2j+r=fs1(0,1,75,7r) and
a;=31—d; fors<i<t
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where A; # 3 and A; # 3 are two consecutive exceptional differences and

_{7—1} ift = fy(n,v,5,1),
Tl 24w ift = fa(m,v,4,7).
If a; = az > 5 we have found (Tables 6 and 7) that the sequence of exceptional differences

consists of triples of A; = 4 and triples of A; = 2, alternatingly. If a; = as = 1,2, or 4 then
the sequence of exceptional differences consists of alternating values A; =4 and A; = 2.

Theorem 4: For a; = as = 1,2, and 4 the sequences (a;), i > 3, are (n > 0)
a] = Gz = 1
a3 =25, a4 =17, a5 =10,

a; =3i—4 for fa(n) =4"" +1 < i < fa(n),
a;=3i—5 for fa(n) =2-4""1 +1<i< fa(n+1),

a1 262:2:

a3=4,

a; =3 —4 forf4(n)=2-4”+1<i§f2(n),

a; =3 —5 for fo(n) =4"*"1 +1<i< fa(n+1),
ag=a=4%:

0,3:3, 0427,
a; =3i—4 for fa(n)=3-4"+1<i< fa(n),
a; =3i—5 for fa(n) =6-4"+1<i< fa(n+1).

Proof: By Table 8 there are differences A; = 4 for i = f4(0) = 5, 3, and 4 in the
cases a; = ag = 1, 2, and 4, respectively. The asserted intervals for ¢ follow inductively with
z= fa(n+1)=4fs(n) — 3 and y = fo(n) = 2f4(n) — 1 by Table 4 for £ = f4(n) since d; =5
and dy =4 by (3). O

i ¢ ap A ¢ a; A ¢ oa; A
1 2 1 1 2 1 4

2 3 1 3 2 2 4

3 4 5 2 5 4 4 5 3 4
4 6 7 3 6 8 3 6 7 4
5 8 10 4 7 11 2 8 11 3
6 9 14 3 13 9 14 3
7 11 17 3 10 17 2
8 12 20 3 19

9 13 23 2

10 25

Table 8. First exceptional differences for a; = a; =1,2,4.
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4. GENERAL CASES

At first we state the two simple subcases where (g;) is as in Theorem 1 or 3.

Theorem 5: If a; = 0 (mod 3) then a; = a}, ¢ > 3, for the sequence (a}) with a} = @}, = as
as in Theorem 1 or 3.
- Ifa; #0 (mod 3) and a3 occurs in (a}) for a} = a4 = a; (as in Theorem 3) then a; = al,

ix> 3.

Proof: In the first case a; occurs in (a}) due to Theorem 1 or 3 and a; < az. Therefore
in both cases (¢;) = (¢;) by (1) and thus a; = a},i>3. 0O

In the general case, starting with an exceptional difference A; = 2 or 4, repeated applica-
tion of Table 4 generates an exponential sequence of indices belonging to differences 4 and 2

alternatingly and each being nearly twice the preceding index. Let V (a1, a2) count the number
of infinite exponential sequences of this kind for given a; and as.

Theorem 6: For all a; < as we have a; = 3 — di, 1> 3, for 0 <d; <6and V(a,az) =0, 1,
2, 3, 4, or 6 only.

Proof: In the cases of Theorems 1, 4, and 2 we have V(a;,a2) = 0,1, and 3, respectively
and d; = 3, 4, 5, or 6 by Theorem 1 and Tables 6, 7, and 8 The cases of Theorem 5 reduce to
the preceding cases.

It remains a; # 0 (mod 3) and a2 does not occur in (a}) for aj = a% = ay. These are the
cases where both initial values a; and as have an effect on (a;) being treated in the following.

In addition to the occurence of A, =5 as in Theorem 3 in the general case also A, = 6
may occur as exceptional difference. For A; = 6 which will occur in Tables 10 to 12 and 14
we obtain further exceptional differences Ay = A,4; = Ay42 =2 in Table 9 corresponding to
Tables 4 and 5.

i [ a; A;
T 3z —dg 6
z+1 3r—d;+6
3z —dgy —1
3z —d;+1
3r—d;+2 6x — 2d, 3
y=2z+1—(2d; —dy)/3 |3z —d;+3| 6z—2d; +3 | 2
y+1 3z —d;+4| 6z —2d; +5 | 2
y+2 3z —d,+5|6x—-2d,.+7 | 2
3z —d; +7| 6z —2d,+9 | 3
6z — 2d; + 12

Table 9. Exceptional differences 2 determined by A, = 6.

If a3 — a; < 4 then Tables 10 to 13 prove that V (a1, az) = 6 for the indicated values of a;
and az. For (a1,a2) = (1,2), (2,3), (4,5), (1,3), (4,6), (5,7), (1,4), (2,5), (4,7), (5,8), (7,10),
(2,6), (4,8), (5,9), and (7,11) we get the values V(aj,a2) =2,2,2,0,4,4,2,2,1,2, 4,2 2,
2, and 4, respectively. The values of d; are in the asserted interval for the listed pairs (a1, az)
with small values of a;. For the cases of Tables 10 to 13 we observe the first value d3 = 6. By
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(3) there are changes of d; only after A; # 3. In all four cases at first d; is decreased by 6 due
to A; = 4, 5, or 6 before d; is increased 6 times by 1 because of A; = 2. Thus d; oscillates
between 0 and 6.

C; Qg A,‘ Cqi a; Ai
ay a1
a;+1 a1 +2
01—4 31L2
a; —1 a; +1
a;+ 2 a+4
>a1+3
a1—3
a1—3 (11-1
a; — 2 a1+ 3 2a1 — 4 6
a; +3 2a; — 5 6 a +5 2ai + 2 6
a1 +4 2a1 + 1 6 2a; + 8
2a; + 7
Table 10. ag = a1 + 1, Table 11. as = a1 + 2,
a1 =1 (mod 3),a1 > 7. a; =2 (mod 3), a; > 8.
ci ai Ai Ci a; JAY;
a1 (5]
G.1+3 Gl+3
a —4 a :—2
aigl ai+1
ay + 2 a +4
a +9 ay +7
ay — 3 a; —3
a1 — 2 ai —1
a; +1 201 —5 4 a; +2 2a1 —4 5
a; +4 2a; — 1 6 a1 +5 2a;1 +1 6
a;+6 2a1 + 5 5 a; +6 2a; +7 4
2a1 + 10 2a; +11

Table 12. az = a; + 3, a; = 1,2 (mod 3), a; > 8.

C; Qg ‘ﬁi
a)
a; +4
Za;s —4
a; —1
a
>én+8
ap — 3
ai?r% By 4
erd | Bl 5
S| B |
a a
A 2a11+13

Table 13. az = a1 +4, a1 = 1 (mod 3), a; > 10.
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If a; — a; > 5, then that index 4y where Ci, = a2, that is, ¢;, # c] , we have a] = a; for
3 <1 <4 and @,+1 differs from 0‘20'1"1' We distinguish the cases A, = 2, 3, 4, and 5 for that
z with az < az < ay4; where as =3z —d; +j for 1 < j < A; —1. In Tables 14 to 17 we
present the essential values of ¢;, a;, and A; beginning with ¢ = 45 — 2 and for A, = 5 and

J =4 with ¢ = 49 — 3. We use the abbreviations a} = a; — (6z — 2d;) and ¢} = ¢; — (32— d,).

g | af | A ¢ | a? | A ¢ | ef | A
-2 -2 -3
-1 -1 -1
3 -3 5 3 -3 5 3 —4 6
4 2 5 b 2 6 4 2 5
7 8 T
A:|:—1 > 3:- A.’t:—l 2 3, Aa:—l = 27
Agy1 >3 - Ag=2 Azy12>3

Table 14. Effects of as = 3z —d, + 1 for A, = 2.

@ | e | A g | e | A ¢ |a | A g |a | A
-2 -3 -1 ~1
-1 -1 1 1
2 -3 4 2 —4 ] 4 5 4 0 5
4 1 5 4 1 5 5 5 4 6 5 5
6 6 10
ji=1 j=1, Jj=2, j=2,
Az_1>3 Ay =2 Azp1>3 App1=2
Table 15. Effects of az = 3z —d; + j for A; =3 and j =1,2.
¢ | af | A ¢ | e | A ¢ | e | A
-1 1 2
2 -3 4 3 0 4 5 3 4
3 1 4 5 4 4 6 7 4
5 8 11
j=1 j=2 j=3
Table 16. Effects of ap =3z —dy +jfor Ay, =4 and j=1,2,3.
¢ | a | A | e | A d | a | A g | el | A
-2 -1 1 1
-1 1 2 2
2 | -3 4 3 0 4 4 3 3 3 3 2
3 1 4 4 4 3 6 6 4 6 9 4
4 5 2 7 10 7 9 4
7 13
i=1 j=2 =3 =

J J
Table 17. Effects of ag =3z —d; +j for A, =5 and j=1,2,3,4.
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Since as — a; > 5, in Tables 14 to 17 there are no coincidences of a; with the essential values
of ¢; corresponding to cj.

To determine the values of V' (a1, az) in the general cases we first note that V! = V{(a1,a;)
is 1 or 3 by Tables 6 to 8. In the cases of Table 14 we have a; within a gap A; = 2. In the
leftmost case this results in 2 differences A = 5 implying 2 pairs of A = 2. Thus we obtain
V = V' —1+4. In the remaining two cases of Table 14 we have a; within one of 2 consecutive
gaps A = 2 resulting in differences 5 and 6 or 6 and 5 and implying 5 differen.es A = 2. Thus
we obtain V =V’ —2+5.

Correspondingly, in the first and third case of Table 15 we obtain V' = V43 and for the
remaining cases V = V' — 1+ 4. In Table 16 we get V = V' — 1+ 2 in all three cases. Cases 1
and 4 of Table 17 yield V = V' —2+ 3 and cases 2 and 3 yield V = V' —2+1. Altogether, the
value ay increases the number 1 or 3 of exceptional differences V' by 3, 1, or —1 to V =2, 4,
or 6 as asserted in Theorem 6. Values of V(ay, az) for small a;, az are presented in Table 18.

1 2 3 4 5
az = 1234567890123456789012345678901234567890123456789012345

1 1202141441222144144144141441441441441441441441222144144
2 121222144141441441441222144144144144144144144141441441
3 01303303303303303303303303303303303303303303303303303
4 1241222144144141441441441441441222144144144144144144
5 334224344436363663663636634443444366366366366344436
6 03303303303303303303303303303303303303303303303303
7 3634443422436636366366363636636636634443663663663
8 336634224344436636636363663663636636636636636634

9 03303303303303303303303303303303303303303303303
10 3636634443422436636636636366366363636636636636
11 336636634224344436636636636636363663663636636
12 03303303303303303303303303303303303303303303
13 3636636634443422436636636636636636366366363
14 336636636634224344436636636636636636636363
15 03303303303303303303303303303303303303303
16 3636636636634443422436636636636636636636
17 336636636636634224344436636636636636636

18 03303303303303303303303303303303303303
19 3636636636636634443422436636636636636
20 336636636636636634224344436636636636

Table 18. Values of V(a1, az) for small a4, as.

For d; we observe that Tables 6 to 8 imply 3 < d} < 6 for (a}) with aj = a} = a;. In the
cases of Table 14 and the second and fourth case of Table 15 there is one A = 2 or a pair of
consecutive differences A = 2 and thus by (3) we have d} > 4 or d} > 5 before d; is decreased
by 4 or 5 due to A =5, 5 or A =5, 6, respectively. In the remaining cases of Tables 15 to 17
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the decrease of d; is at most 3. Since the corresponding exceptional differences A = 2 always
increase d; by the same amount we have 0 < d; < 6 and Theorem 6 is proved. [

Now the sequences (a;) are determined completely to be a; = 3i — d;, i > 3, where d;
oscillates within subintervals of (0,6) with exponentially growing step lengths. Most of the
differences A; = a;4+1—a; are 3. There are V(ay, a2) infinite sequences of exponentially growing
indices with differences 4 and 2 alternatingly. Differences A; = 5 and 6 occur at most three
times.

It may be future work to consider complementary sequences (a;) being determined by
other recurrences.
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