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1. INTRODUCTION

In recent time there has been much progress made on the problem of determining suf-
ficiency conditions for a positive rational termed series to converge to either an irrational or
transcendental number (see [1], [4], [6] and the references cited therein). Surprisingly, in com-
parison, very little attention has been paid to finding such sufficiency conditions in the case
of infinite products. One such sufficiency condition is attributable to Cantor (see [3]) however
some generalisations of this condition have also been obtained in [8]. Cantor, in particular,
proved that if {an} is a sequence of positive integers such that an+1 > a2

n then the infinite
product

∞∏
n=1

(
1 +

1
an

)
(1)

converges to an irrational number. In this paper we shall improve upon Cantor’s result by
showing that, if for a fixed λ > 2, the sequence of integers {an} satisfies the growth condition

lim inf
n→∞

an+1

aλ+1
n

> 2 , (2)

then the infinite product, in (1), will, in fact, converge to a transcendental number. The above
condition, which is similar in form to the one the author developed in the case of infinite series,
(see [5]) will follow as an application of the following Diophantine approximation theorem of
Roth (see [7])
Theorem 1.1: If α is an algebraic number of degree greater than or equal to 2 and ε is any
positive number then the inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1
q2+ε

can have only finitely many solution p ∈ Z and q ∈ N with (p, q) = 1.
As an application of the main result we shall exhibit some examples from the class of

infinite products defined by (2). These products as we shall see will be formed using an = Uf(n)

and an = Vf(n), where Un, Vn are the generalised Fibonacci and Lucas sequences, respectively,
and f(·) a predefined integer valued function.

2. MAIN RESULT

To establish transcendence of the infinite products in question we shall need to make use
of the following technical lemma.
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Lemma 2.1: If a real number A > 1 has an infinite product representation of the form∏∞
n=1(1 + 1

an
), with an ∈ N and such that an+1 ≥ a2

n > 1, then the representation is unique.
Moreover each element of the sequence an can be calculated in succession via

an =
⌊

An
An − 1

⌋
, (3)

where An =
∏∞
r=n(1 + 1

ar
) and bxc denotes the largest integer not greater than x.

Proof: Under the assumption of the infinite product representation of A it will suffice to
demonstrate (3) in order to prove uniqueness of the representation. From repeated application
of the inequality an+1 ≥ a2

n, it is clear that an+s ≥ a2s

n for s ∈ N. Consequently, by recalling
the infinite product identity of Euler’s namely,

∏∞
n=0(1 + x2n) = (1 − x)−1 valid for |x| < 1,

one obtains after substituting x = a−1
n the following upper bound for An

An =
∞∏
r=n

(
1 +

1
ar

)
≤
∞∏
r=1

(
1 +

1
a2r−1
n

)
=

an
an − 1

= 1 +
1

an − 1
. (4)

From (4) it readily follows that An
An−1 ≥ an. Moreover as An > 1 + 1

an
one also deduces that

An
An−1 < an + 1. Hence

an ≤
An

An − 1
< an + 1,

and, as an ∈ N, it is clear that (3) holds from definition of the function bxc.
Using this Lemma we can now deduce the following result.

Theorem 2.1: Suppose {an} is a sequence of positive integers greater than unity and such
that, for a fixed λ > 2

lim inf
n→∞

an+1

aλ+1
n

> 2,

then the infinite product
∏∞
n=1(1 + 1

an
) converges to a transcendental number.

Proof: From the assumption it is clear that the infinite products in question are conver-
gent. Denoting the value of the infinite product by θ, we will demonstrate via Roth’s theorem
that θ cannot be an algebraic number of degree greater than or equal to two. Transcendence will
then follow upon showing that θ in addition cannot be rational. To this end, consider a sequence
of rational approximations pm/qm to θ generated from the mth partial products, expressed in
reduced form. We begin by obtaining an upper bound for qλm|θ−pm/qm|, when m is sufficiently
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large. From the assumption there must exist a δ > 0 such that an+1/2aλ+1
n ≥ (1 + δ), for all

n ≥ N(δ) say, moreover, we can take N(δ) = min{r ∈ N : an+1/2aλ+1
n ≥ (1+ δ) for all n ≥ r}.

Furthermore, choose m > N(δ) and note from Lemma 2.1, as am+1 = b Am+1
Am+1−1c,

that am+1(Am+1−1) ≤ Am+1. Consequently, one obtains the following sequence of inequalities

qλm

∣∣∣∣θ − pm
qm

∣∣∣∣ = qλm

{ ∞∏
n=1

(
1 +

1
an

)
−

m∏
n=1

(
1 +

1
an

)}

=
qλ−1
m pm
am+1

am+1

{ ∞∏
n=m+1

(
1 +

1
an

)
− 1

}

≤ qλ−1
m pm
am+1

∞∏
n=m+1

(
1 +

1
an

)

<
qλ−1
m pm
am+1

θ. (5)

Now, as the mth partial product is equal to (a1+1)(a2+1) · · · (am+1)/a1 · · · am and (pm, qm) =
1, we must have pm ≤ (a1 + 1)(a2 + 1) · · · (am + 1) ≤ 2ma1a2 · · · am and qm ≤ a1a2 · · · am.
Thus combining with the inequality in (5) yields, for m > N(δ), the upper bound

qλm

∣∣∣∣θ − pm
qm

∣∣∣∣ < 2m
(a1a2 · · · am)λ

am+1
θ = bmθ. (6)

We now demonstrate that bm = o(1) as m→∞. As N(δ) ∈ N is fixed, it will suffice to show
b′m = o(1), as m→∞ where

b′m =
1

am+1

m∏
r=N(δ)

(2
1
λ ar)λ.

To this end consider

log(1/b′m) =
m∑

r=N(δ)

(log ar+1 − log ar) + log aN(δ) − λ
m∑

r=N(δ)

log(2
1
λ ar)

=
m∑

r=N(δ)

log
(
ar+1

2aλ+1
r

)
+ log aN(δ)

≥
m∑

r=N(δ)

log
(
ar+1

2aλ+1
r

)
. (7)
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However, since r ≥ N(δ) one must have

log
(
ar+1

2aλ+1
r

)
≥ log(1 + δ).

Consequently, from (7), we have log(1/b′m) ≥ (m − N(δ) + 1) log(1 + δ) → ∞, as m → ∞.
So there exists an integer N1 > 0 such that bm < θ−1 for m ≥ N1. Hence, for all m >
max{N1, N(δ)}, the rational approximations pm/qm to θ satisfy the inequality∣∣∣∣θ − pm

qm

∣∣∣∣ < 1
qλm

,

and as λ > 2, we conclude from Theorem 1.1 that θ is either transcendental or rational.
However, as |qmθ − pm| < qλm|θ − pm/qm|, we deduce from (6) that |qmθ − pm| = o(1) as
m → ∞. Thus via standard criterion of irrationality, θ cannot be rational and so the infinite
product must have a transcendental value.

3. APPLICATION

In this section we shall exhibit some transcendental valued infinite products involving
specific integer sequences {an}. We begin with the generalised Fibonacci and Lucas sequences,
denoted by Un and Vn respectively. These sequences can be defined as follows: Let (P,Q) be
a relatively prime pair of integers, such that the roots α and β of x2−Px+Q = 0 are distinct,
then Un, Vn are given by

Un =
αn − βn

α− β
and Vn = αn + βn.

It is well known that when the discriminant ∆ = P 2 − 4Q > 0 both {Un} and {Vn} are
increasing sequences of positive integers. In particular, for (P,Q) = (1,−1) one has Un = Fn
and Vn = Ln, where Fn and Ln are the Fibonacci and Lucas numbers respectively. We now
establish the transcendence of the infinite products

∏∞
n=1(1+ 1

Uf(n)
) and

∏∞
n=1(1+ 1

Vf(n)
),

where the index function f : N → N satisfies for a fixed λ > 2 the inequality f(n + 1) ≥
(λ+ 2)f(n).
Corollary 3.1: Let (P,Q) be a relatively prime pair of integers with P > |Q+ 1| and Q 6= 1
and {Um}, {Vm} the associated generalised Fibonacci and Lucas sequences. If, for a fixed
λ > 2, the function f : N→ N has the property that f(n+ 1) ≥ (λ+ 2)f(n), then the infinite
product

∏∞
n=1(1 + 1

an
) converges to a transcendental number, where an = Uf(n) or an = Vf(n).

Remark 3.1: We note that the restriction on Q is required as the sequence {Um} will contain
infinitely many zero elements when (P,Q) = (1, 1).

Proof: In view of Theorem 2.1, it will suffice to demonstrate in either case that
am+1/a

λ+1
m →∞ as m→∞. Clearly, from definition α = (P +

√
∆)/2 and β = (P −

√
∆)/2,

where ∆ = P 2 − 4Q. Now from assumption
√

∆ >
√

(Q+ 1)2 − 4Q = |Q− 1| > 1 and so

|β| =

∣∣∣∣∣P −
√

∆
2

∣∣∣∣∣ =
|2Q|

P +
√

∆
<

|2Q|
|Q+ 1|+ |Q− 1|

= 1 ,
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noting here that the right hand equality holds for all Q ∈ R with |Q| ≥ 1. Consequently,
|α| = |Q|/|β| > |Q| ≥ 1 and |β/α| < 1. Now, in the case when am = Uf(m), observe

am+1

aλ+1
m

= αf(m+1)−(λ+1)f(m)(
√

∆)λ
(1− (β/α)f(m+1))
(1− (β/α)f(m))λ+1

∼ αf(m+1)−(λ+1)f(m)(
√

∆)λ ,

as m→∞. While in the latter case

am+1

aλ+1
m

= αf(m+1)−(λ+1)f(m) (1 + (β/α)f(m+1))
(1 + (β/α)f(m))λ+1

∼ αf(m+1)−(λ+1)f(m) ,

as m → ∞. However as f(m + 1) − (λ + 1)f(m) ≥ f(m) and α > 1 one has αf(m) → ∞ as
m→∞, hence the condition of Theorem 2.1 is satisfied.

As an example, in the case (P,Q) = (1,−1), we have for λ = 3 and f(n+1) = 5f(n), with
f(1) = 5, the infinite products

∏∞
n=1(1 + 1

F5n
) and

∏∞
n=1(1 + 1

L5n
) converge to transcendental

numbers. In [2, p. 86], it was noted that the transcendence of the series
∑∞
n=1 a

bn , for
integers a ≥ 2 and b ≥ 3, could be deduced as an application of a result of Schmidt. We now
demonstrate, as a special case of the following corollary, the transcendence of those infinite
products involving sequence terms of the form an = ab

n

for integers a ≥ 2 and b ≥ 5.
Corollary 3.2: If, for a fixed λ > 2, the function f : N→ N has the property that f(n+ 1) ≥
(λ+ 2)f(n), then the infinite product

∏∞
n=1(1 + 1

an
) converges to a transcendental number,

where an = af(n) for any integer a ≥ 2.
Proof: Again it will suffice to demonstrate that an+1/a

λ+1
n → ∞ as n → ∞. Now by

assumption
an+1

aλ+1
n

= af(n+1)−(λ+1)f(n) ≥ af(n).

But as a > 1 one has af(n) →∞ as n→∞.
Taking λ = 3 and f(n) = bn, for integer b ≥ 5, one finds that f(n + 1) ≥ 5f(n) and so

the infinite product
∏∞
n=1(1 + 1

abn
) converges to a transcendental number,
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