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Abstract. We interpret the Padovan numbers combinatorially by having them count the
number of tilings of an n-strip using dominoes and triominoes. Using this interpretation, we
develop a collection of identities satisfied by the sequence of Padovan numbers.

1. Introduction

For as long as people have studied recursively defined sequences, they have attempted to find
additional identities satisfied by the terms of these sequences. This includes famous sequences
such as the Fibonacci sequence, the Lucas sequence, and the Catalan sequence, as well as
many lesser known sequences. We follow in their footsteps and develop identities for one such
lesser known sequence, the sequence of the Padovan numbers.

People have studied the sequence of Padovan numbers for centuries, but Padovan [6] first
introduced it formally and then Stewart [9] gave them the name Padovan numbers. The
combinatorial approach we take has been known for decades – for example, DeTemple and
Webb [3] reference the connection between the Padovan numbers and tilings with dominoes and
triominoes in their Appendix B and Shannon, et al. [7] hint at this interpretation. However,
there does not appear to be any literature using this interpretation to derive identities for the
terms of the Padovan numbers. It seems to be more common [2, 4, 8] to use matrix methods
to derive identities for this sequence.

For our purposes, it will be most convenient to define the Padovan numbers as follows:

P0 = P1 = P2 = 1; Pn = Pn−2 + Pn−3 for n ≥ 3.

Using this recursive definition, we can extend the Padovan numbers to negative indices. Al-
though it is possible to find P−n for any n ≥ 0, the only additional term we will need to
consider is P−1 = 0. This is known as Sequence A134816 in the Online Encyclopedia of
Integer Sequences [5].

To have a combinatorial interpretation of the Padovan numbers, we need to show that they
count something, i.e., that they represent the size of a set of objects. The set of objects we
consider is based on tilings of an n-strip of squares – a row of n squares. For example, here
is a 7-strip: . Given an n-strip, we will consider all possible tilings of this strip,
where there are two different types of tiles, either a domino ( ) or a triomino ( ). We
let Tn denote the collection of all such tilings for an n-strip. For example, T7 is given below:

T7 =
{

, ,
}

.

Finally, we set pn = |Tn| for n ≥ 1.
We first show that {pn}n≥1 is the sequence of the Padovan numbers with its index shifted

by two.

Theorem 1.1. For n ≥ 1, pn = Pn−2.
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Proof. We need to show that pn satisfies the same recursive definition and initial conditions
as Pn−2. We first consider T1, T2, T3, and T4.

T1 = ∅, T2 = { }, T3 = { }, T4 = { }

Given these sets, it is clear that p1 = 0 = P−1, p2 = 1 = P0, p3 = 1 = P1, and p4 = 1 = P2.
Thus, {pn}n≥1 has the same initial conditions as {Pn−2}n≥1.

Suppose n ≥ 3. Split Tn into two subsets: Let D be the subset of n-tilings that end in
a domino and T be the subset of n-tilings that end in a triomino. Thus, Tn = D ∪ T and
|Tn| = |D|+ |T |. Since |D| = pn−2 and |T | = pn−3, this implies that pn = |Tn| = pn−2 + pn−3.
Thus, pn satisfies the same recursive formula with initial conditions as Pn−2. Therefore,
pn = Pn−2 for all n ≥ 1. �

This interpretation is equivalent to the combinatorial interpretation where the Padovan
numbers count the number of ordered compositions of n with 2’s and 3’s. We prefer this
approach because, it will allow us to visualize the Padovan numbers as counting something,
and this will assist in proving additional identities for the Padovan numbers.

In general, one main combinatorial approach to showing an identity is to determine the
size of a collection of objects in two different ways. We did this in the previous proof by
considering Tn. By conditioning on the last element of each tiling, we were able to prove the
recursive identity. For the identities in the next section, we obtain a proof of each identity by
conditioning on the location of a given part of each tiling.

2. Identities by Conditioning

For our first identity, we will consider the collection of n-tilings and condition on the location
of the last triomino that occurs in a tiling.

Identity 2.1. Suppose n ≥ 1. Let k = ⌊n2 ⌋.

(1) If n is even, then

k−2
∑

m=0

p2m+1 = pn − 1.

(2) If n is odd, then

k−1
∑

m=0

p2m = pn − 1.

Proof. For both cases of this identity, we condition on the position of the last triomino that
occurs in the n-tiling.

n even n odd
pn−3

pn−5

pn−7
...
· · ·p1

pn−3

pn−5

pn−7
...
· · ·p2

In either of these cases, the diagram above is missing exactly one tiling. For even n, it is
missing the tiling consisting of all dominoes, and for odd n, it is missing the tiling that begins
with a triomino and has only dominoes after that. Either way, pn is equal to the sum given
plus one. �

If, instead of conditioning on the last triomino, we condition on the location of the last
domino, we obtain the following identities.
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Identity 2.2. Let n ≥ 1 and k = ⌊n3 ⌋.

(1) If n ≡ 0 (mod 3), then
k−1
∑

m=0

p3m+1 = pn − 1.

(2) If n ≡ 1 (mod 3), then

k−1
∑

m=0

p3m+2 = pn.

(3) If n ≡ 2 (mod 3), then

k−1
∑

m=0

p3m+3 = pn − 1.

Proof. As stated above, we will consider all of these cases by conditioning on the location of
the last domino that occurs in the n-tiling.

n ≡ 0 (mod 3) n ≡ 1 (mod 3) n ≡ 2 (mod 3)
pn−2

pn−5

pn−8
...
· · ·p1

pn−2

pn−5

pn−8
...

· · ·p2

pn−2

pn−5

pn−8
...

· · ·p3

If n ≡ 0 (mod 3), then the tilings listed above miss the n-tiling consisting of all triominos.
For n ≡ 1 (mod 3), the tilings listed above consist of all of the n-tilings. Finally, for n ≡ 2
(mod 3), the tiling that begins with a domino and has triominoes as the remainder is missing.
For each of these cases, the listing above proves the corresponding part of the identity. �

For the next identity, we consider whether a tiling breaks after the kth square or not
(1 ≤ k ≤ n.) Parts 2. and 3. of this identity were proven by Sokhuma [8] using a Padovan
Q-matrix.

Identity 2.3. Suppose n ≥ 1 and 1 ≤ k ≤ n. Then,

(1) pn = pkpn−k + pk−1pn−k−1 + pk−2pn−k−1 + pk−1pn−k−2

(2) pn = pkpn−k + pk+1pn−k−1 + pk−1pn−k−2

(3) pn = pkpn−k + pk−1pn−k+1 + pk−2pn−k−1

Proof. We consider the possibilities of whether an n-tiling is breakable at tile k or not.

a)
pk pn−k

1 k k + 1 n

b)
pk−1 pn−k−1

1 k n

c)
pk−2 pn−k−1

1 k n

d)
pk−1 pn−k−2

1 k n

By considering the four cases separately, we obtain part 1. of the identity. If we group the
tilings from parts b) and c) together, we obtain part 2. of the identity. Finally, if we group the
tilings from parts b) and d) together, we obtain part 3. of the identity.

�
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We obtain one additional identity by considering the different possibilities for the first tiles
in an n-tiling.

Identity 2.4. Let k ≥ 1 and n ≥ 3k. Then,

pn =

k
∑

i=0

(

k

i

)

pn−(2k+i).

Proof. Because n ≥ 3k, there must be at least k tiles in any n-tiling. Additionally, any
combination of dominoes and triominoes are possible as the first k tiles. Therefore, there are
pn−2k n-tilings that begin with k dominoes. There are

(

k

1

)

ways to start an n-tiling that begins
with k−1 dominoes and one triomino. Then, there are pn−2k−1 ways to finish the tiling. Thus,

there are a total of
(

k

1

)

· pn−(2k+1) n-tilings that begin with k − 1 dominoes and one triomino.

In general, there are
(

k

i

)

· pn−(2k+i) n-tilings that begin with k − i dominoes and i triominoes.
Because this covers all the possible n-tilings, this proves the identity. �

3. Identities Using Bijections

For the identities in this section, we prove them by exhibiting a bijection between two sets
of tilings. This bijection then shows that the two sets have the same size, which proves the
identity. The benefit of this style of argument is that each proof consists of showing a mapping
and then proving that it is a bijection. For the maps we consider, proving each is a bijection
is trivial.

We begin with an identity that is sometimes used to define the Padovan numbers.

Identity 3.1. For n ≥ 5, pn = pn−1 + pn−5.

Proof. We build a bijection between Tn and Tn−1∪Tn−5. We describe the bijection graphically
as follows:

1 n
⇔

⇔

⇔

1 n− 1

1 n 1 n-1

1 n 1 n-5

Tn

Tn−1

Tn−5

In words, any n-tiling that begins with two dominoes, is mapped to the n − 1-tiling where
the two dominoes have been replaced with a triomino. If an n-tiling begins with a triomino,
then it is mapped to an n − 1 tiling where the triomino has been replaced with a domino.
Finally, any n-tiling that begins with a domino then a triomino are mapped to an n− 5-tiling
by dropping the domino and triomino. It is easy to see that this is a bijection between Tn and
Tn−1 ∪ Tn−5. Thus, pn = pn−1 + pn−5. �

For the next two identities, we relate the value of pn to the value of the previous term pn−1

and some other terms.

Identity 3.2. For n ≥ 5, pn = pn−1 + pn−2 − pn−4.
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Proof. To prove this identity, we will exhibit a bijection between Tn ∪ Tn−4 and Tn−1 ∪ Tn−2.
The bijection is shown below:

1 n
⇔

⇔

⇔

⇔

1 n-1

1 n 1 n-1

1 n 1 n-2

1 n-4 1 n-2
Tn−4

Tn

Tn−2

Tn−1

If an n-tiling begins with a triomino, the tiling is mapped to an n − 1-tiling by replacing
the triomino with a domino. If an n-tiling begins with a pair of dominoes, then it is mapped
to an n − 1-tiling by replacing them with a single triomino. Any n-tiling that begins with a
domino then a triomino is mapped to an n − 2-tiling by dropping the domino. Finally, each
n− 4-tiling is mapped to an n− 2-tiling by adding a domino to the beginning of the tiling.

It is easy to see that this map is a bijection between Tn∪Tn−4 and Tn−1∪Tn−1, and therefore,
pn + pn−4 = pn−1 + pn−2. �

Identity 3.3. For n ≥ 7, pn = pn−1 + pn−3 − pn−6.

Proof. As in the previous proof, we will prove this identity by showing pn+pn−6 = pn−1+pn−3.
Additionally, we will give a bijection between Tn ∪ Tn−6 and Tn−1 ∪ Tn−3. The bijection is
shown below:

1 n
⇔

⇔

⇔

⇔

1 n-1

1 n 1 n-1

1 n 1 n-3

1 n-6 1 n-3
Tn−6

Tn

Tn−3

Tn−1

If an n-tiling begins with a triomino, then it is mapped to an n − 1-tiling by replacing the
triomino with a domino. If an n-tiling begins with a pair of dominoes, then it is mapped to
an n − 1-tiling by replacing the pair with a triomino. If an n-tiling begins with a domino
then a triomino, then it is mapped to an n− 3-tiling by removing the triomino. Finally, each
n− 6-tiling is mapped to an n− 3-tiling by adding a triomino to the beginning of the tiling.

This map is clearly a bijection between Tn∪Tn−6 and Tn−1∪Tn−3. This proves pn+pn−6 =
pn−1 + pn−3. �

Finally, we consider some members of the sequence of inequalities for the Padovan numbers
proved by Cerda-Morales [2]. Each term of this sequence of inequalities is of the form pn =
σipn−i + µipn−2i + pn−3i for i = 1, 2, 3, . . .. After showing a few beginning patterns, Cerda-
Morales determines a general formula for µi and σi by using Padovan numbers with positive
and negative indices. Although we do not have a combinatorial argument for the general
formula, we do have arguments for the first few cases. In each case, we build a bijection
between appropriate sets of tilings.

Identity 3.4. For n ≥ 7, pn = 2pn−2 − pn−4 + pn−6.
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Proof. We build a bijection between Tn∪Tn−4 and Tn−2∪Tn−2∪Tn−6, where Tn−2∪Tn−2 should
be interpreted as every element of Tn−2 appearing twice. This will show that pn + pn−4 =
2pn−2 + pn−6. The bijection is given in the following diagram:

1 n-4
⇔

⇔

⇔

⇔

⇔

1 n-2

1 n 1 n-2

1 n 1 n-2

1 n 1 n-2

1 n 1 n-6

Tn

Tn−4

Tn−6

Tn−2

Tn−2

Using the bijection shown above, it is clear that |Tn ∪ Tn−4| = |Tn−2 ∪ Tn−2 ∪ Tn−6|, thus
proving the identity. �

Identity 3.5. For n ≥ 10, pn = 3pn−3 − 2pn−6 + pn−9.

Proof. Once again we build a bijection, this time between Tn ∪Tn−6 ∪Tn−6 and Tn−3 ∪Tn−3 ∪
Tn−3 ∪ Tn−9. We exhibit the bijection below.

1 n
⇔

⇔

⇔

1 n-3

1 n 1 n-3

1 n 1 n-3

1 n
⇔

⇔

⇔

1 n-3

1 n 1 n-3

1 n-6 1 n-3

1 n
⇔

⇔

⇔

1 n-3

1 n 1 n-3

1 n-6 1 n-3

1 n
⇔

1 n-9

Tn−3

Tn−3

Tn−3

Tn−9

Using this bijection, it is clear that |Tn ∪ Tn−6 ∪ Tn−6| = |Tn−3 ∪ Tn−3 ∪ Tn−3 ∪ Tn−9|, thus
proving the identity. �

Identity 3.6. For n ≥ 13, pn = 2pn−4 + 3pn−8 + pn−12.
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Proof. We build a bijection between Tn and Tn−4∪Tn−4∪Tn−8∪Tn−8∪Tn−8∪Tn−12, as shown
below:

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

n

n

n

n

n

n

n

n

n

n

n

n

n-4

n-4

n-4

n-4

n-4

n-4

n-8

n-8

n-8

n-8

n-8

n-8

1 n 1 n-12

Tn−4

Tn−4

Tn−8

Tn−8

Tn−8

Tn−12

Using this bijection, it is clear that |Tn| = |Tn−4 ∪ Tn−4 ∪ Tn−8 ∪ Tn−8 ∪ Tn−8 ∪ Tn−12|, thus
proving the identity. �

Notice that the description for the required bijection is growing in complexity as the value
of i increases in the sequence. We hope to find an underlying pattern that can determine
combinatorially the coefficients needed for each term in the sequence of identities.

Additionally, Benjamin and Quinn [1] introduced other techniques for considering more
complicated identities. We hope that these techniques can be applied to the sequence of
Padovan numbers as well to generate combinatorial proofs for additional identities.
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