A PRIMER FOR THE FIBONACCI NUMBERS: PART V

V. E. Hoggatt, Jr., and I. D. Ruggles
San Jose State College, San Jose, Calif.

INFINITE SERIES AND FIBCNACCI ARCTANGENTS
1. INTRODUCTION

In Section 8 of Part IV, we discussed an alternating series. This time
we shall lay down some brief foundations of sequences and infinite series.
This leads to some very interesting results and to the broad topics of
generating functions and continued fractions. Many Fibonacci numbers shall

appear.

2. SEQUENCES

Definition: An ordered set of numbers 8,4 859 a3. cecy By eee is called

an infinite sequence of numbers. If there are but a finite number of the a's,

al, 32' seey 2y then it is a finite sequence of numbers.

A sequence of real numbers {an}:zl is said to have a real number a as a
limit, written iiﬁpa = a, if for every positive real number €, ’an - a]<€
for all but a finite number of the members of the sequence {an} . If the
sequence {an} has a limit, this limit is unique and the sequence is said to

converge to this limit. If the sequence {an} fails to approach a limit, then

the sequence is said to diverge. We now give examples of each kind.
B lim | _,

1f a, = 1, {an} =1, 1, 1, ... converges since noo 8p =
1f a = 1/n, {an} =1, 1/2, /3, «..y 1/n, ... converges to zero.
If a = (-1)%, ~{an} =1, -1, +1, =1, +1, ... diverges by oscillationm.

That is, it does not approach any limit.
If a, =10, ian} =1, 2, 3y .. diverges to positive infinity.

Finally, if a = n/(n+l), then {an} =1/2, 2/3, ... converges to one.

Some limit theorems for sequences are the following:

If {an} and (bn} are two sequences of real numbers with limits a and b

respectively, then

lim (an + bn) =a+b

n—o°
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i_i,i(an -b)=a-b
lim (ca_ ) = ca, any real ¢
n—oe n
i_j;: (a b ) = ab
B (a /v ) =a/b, bAO.
3. BOUNDED MONOTONE SEQUENCES
The seguence {an} is said to be bounded if there exists a positive
number K such that [anl <K foralln2>1. Ifa ,2>a formn?2 1, the
sequence {an} is said to be a monotone increasing sequence; if a, 2 a .1

for n > 1, the sequence is monotone decreasing. If a sequence is such that

it is either monotone increasing or monotone decreasing, it will be called a
monotone sequence,
The following useful and important theorem is stated without proof:
Theorem 1: A bounded monotone sequence converges.
As an example, consider the sequénce {(l + l/n)n}, which is monotone

increasing and bounded above by 3. The limit of this sequen‘ce is well known.

We will use Theorem 1 in the material to come.
L, ANOTEER IMPORTANT THEOREM

The following sufficient conditions for the convergence of an alternating

series are given below.
Theorem 2: If, for the sequence {Sn} ’

1. s >0,

2. (s, - S)-D*> (s, -5, NV >0, fornz2,
lim
3¢ pmoe(Sy = 85,10 =0

then the sequence {Sn} converges to a limit S such that 0 < s < S:L .
5. AN EXAMPLE OF AN APPLICATION OF THEOREM 2

For the following example a limit is known to exist by the application

of Theorem 2 of Section &4,
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Let S = Fn/Fn+l s where {Fn} is the Fibonacci sequence. Then

lim

) . By Theorem 2 above, .5, exists.

n -
s -, = (-1)"/(F_F

n-1l n n+l

To find the limit, consider

Fral =1 + Fra
F B F ’
n n

which in terms of {Sn} is l/Sn

A . i
to infinity be S. Then iif’sn = i‘t’sn-l = § > 0. Applying the limit theorems

1 + sn-l . Let the limit of Sn as n tends

of Section 2, it follows that S satisfies

1 2
S = 753 or s+s5-1=0.

Thus S > O is given by S = (/5 - 1)/2, the positive root of the quadratié

equation S2 + S =-1=0.
6., INFINITE SERIES

If we add together the members of a sequence {an} , we get the infinite

series ay + a, + eee + B 4 ... o+ We now get another sequence from this

infinite series.
Define a sequence {sn} in the following way. Let S1 =2y 52 = 8y + a5

S3 = a; + a, + a3 g see 3 Or 1n general, Sn = a) + a, + a3 + oeee + B

This is called the segquence of partial sums of the infinite series. The
infinite series is said to converge to the limit S if the sequence {sn}

converges to the 1imit S; otherwise, the series is said to diverge.

7. SPECIAL RESULTS CONCERNING SERIES

1. If an infinite series a; + 2, + a3 +oeee + B F oeee converges, then

lim a = 0., This is immediate since a_ =S - S .
n*o n n n n-1

2. From section 3 above, an infinite series of positive terams converges

if the partial sums are bounded above since the partial sums form a monotone

increasing sequence.

oo
3, For the alternating serieszzln=l (-l)n*lan such that a_ > 0,n>1;

d iit’an = 0 , by Section 4 above, the infinite series

: n .
converges. In the theorem, Sn = EE j=1 (-1)333 . - An example of an alternati.

series was seen in Part IV, Section 8, of this Primer.
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8. FIBONACCI NUMBERS, LUCAS NUMBERS, AND PI

It is well known and easily verified that

x _ -11 =11 -11
T = Tan I = Tan 3 + Tan 3
Also one can verify
R _ 11 _ -11 -11 -11 ,
T = Tan I= Tan 5 + Tan 5 + Tan 3

11 -11

-1 % + Tan 5 ¢ Tan~1 % +Tan " § .

% = Tan

We note Fibonacci and Lucas numbers here, surely. We shall here easily
extend these results in several ways.
In this section we shall use several new identities which are left as

exercises'for the reader and will be marked with an asterisk,

L 3 - 2
Lemma 1: Loplons2 =1 = 5%
. 2 n
Lemma 2t Ln = L2n + 2(=1)
Lemma 3: s Li - 5F§ = 4(-1)"
n
*Lemma b4: Ll =Iopert (=1)

We now discuss

Theorem 3: If tan On = l/Ln , then tan (e2n + 92n+2) = l/F2n+1 s OT,

1

ran~t F l - pan? f;- + Tan~ £ .
2n+l 2n 2n+2

Proof:
L + L
2n 2n+2 1
Tan{6.. + © ) = =S S078 o e
2n 2n+2 L2 L2n+2 -1 »F2n+1

using the trigonometric identity tan(x + y) = (tan x + tan y)/(1 - tan x tan y)
with Lemma 1 above and the identity L2n+2 + Lan = 5F2n+l .

Theorem 4: If tan °n = l/Fn y then tan (ean - 92n+2) = 1/F2n+1 v OT
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'.T.‘an.1 F 1 = Tan™t fl— - Tan™t F .
2n+l ‘ 2n 2n+2
Prdof:
{
F - F
2n+2 2n 1
Tan (© -8 ) = =
2n  "2n+2" C Py Fo 0t Fonsl
. 2 2n+l
since F,p > = Fyp = Fons1 and Fo Foie2 ” Fone1 © (-1) 1.
From Theorem 4,
M M
Z F = Z (Tan-l -F—l- - Tan™t 5 1 )= Tan'l-f.l— - Tan™t F 1
2n+l1 2n 2n+2 2 2M+2
= n = 1
and since im Tan-l 1 = 0 by continuity of Tan-l x at x = 0 , we may
Mo FZM
+2
write
oo
Theorem 5: L ran~t 1 = ZTan-lrl ] (
a1 2n+l

This is the celebrated result of D. H. Lehmer, Nov., 1936, American Mathematical

Monthly , p. 632, Problem 380l.
We note in passing that the partial sums

M
Sy = Z Tan~t F 1 = Tan™t Fi' - Tan™t T 1 »
2n+l 2 2Me+2 f
n=1
are all bounded above by ’I‘an'1 1 = n/k and sM is monotone. Thus Theorem 1 (:
can be applied. From Theorem 3, '
M
Tan~t F 1 = (Tan'l ii- + Tan~t T 1 )
no 1 2n+l =1 2n 2n+2

80 that

M M
Z + Tan~t -;- = 2 Z Tan™+ fl_ + Tan~3 - S
- 2n+l _ 2n 2M+2
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The limit on the left tends to Tan™L 1 + Tan™t 1/3 = Tan~t 2 , and the right-

hand side tends to this same limit. Since 1in Tan-l 1 =0, then
Moo L
2M+2
oo
Theorem 6: Z Tan~t i-l'— = Tan~t f—ia:—l- = % ran~t 2 .
n 1 2n

Compare with Theorem 6 in Part IV,

s 3 3 = 3 s & 5 & ®

FIBONACCI DETERMINANTS

Below are reprinted a selection of problems which appeared in early
issues of the Fibonacci Quarterly.
H~8 (Proposed by Brother Alfred Brousseau) Prove that

2 2 2

Fn n+l Fn+2
2 2 2

Fola Fre2 Fn+3 = 2(_1)n+1 R
2 2 2 '

Fn+2 Fn+3 Fn+#

where Fn is the nth Fibonacci number.

B-28 (Proposed by Brother Alfred Brousseau) Using the nine Fibonacci
numbers FZ through Flo (1, 2, 3, 5, 8, 13, 21, 34, 55), determine a third-order

determinant having each of these numbers as elements so that the value of the

determinant is a maximum.
B-13 (Proposed by S. L. Basin) Prove the (n - 1l)storder determinant below
has value Fn. (This is a special case of B-13)

1 -1 o] (o] 0 eee
1 1 -1 o o cee
F, =109 1l 1 -1 0 ...
o] (o] 1 1 -1 PN
0 o o] 1 1 oee
etsesssecsssscssscncs ees jn=1

Such determinants are called continuants.

A problem which predates B-28 is to determine the third-order determinant
of maximum value which has each of the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9
as elements, and to determine the complete set of determinant values possible.

(See Bicknell and Hoggatt, "An Investigation of Nine-Digit Determinants,”

Mathematics Magazine, May-June, 1963, pp. 1l47-152.)



