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EPIGRAPH

Some people may sit back and say, I want to solve this problem and they sit
down and say, “How do I solve this problem?” I don’t. I just move around
in the mathematical waters, thinking about things, being curious, interested,
talking to people, stirring up ideas; things emerge and I follow them up. Or I
see something which connects up with something else I know about, and I try
to put them together and things develop. I have practically never started off
with any idea of what I'm going to be doing or where it’s going to go. I'm
interested in mathematics; I talk, I learn, I discuss and then interesting questions
simply emerge. I have never started off with a particular goal, except the goal of
understanding mathematics.

— Michael Atiyah

Talk is cheap. Show me the code.
— Linus Torvalds
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ABSTRACT OF THE DISSERTATION

Local-to-global Perspectives on Graph Neural Networks

by

Chen Cai

in Doctor of Philosophy
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Professor Jingbo Shang, Chair
Professor Yusu Wang, Co-Chair

Message Passing Neural Networks (MPNN) has been the leading architecture for machine
learning on graphs. Its theoretical study focuses on increasing expressive power and overcoming
over-squashing & over-smoothing phenomena. The expressive power study of MPNN suggests
that one needs to move from local computation to global modeling to gain expressive power in
terms of the Weisfeiler-Lehman hierarchy. My dissertation centers around understanding the
theoretical property of global GNN, its relationship to the local MPNN, and how to use local
MPNN for coarse-graining. In particular, it consists of three parts:

Convergence of Invariant Graph Network. One type of global GNNs is the so-called
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Invariant graph networks (IGN). In the first part, we aim to study the convergence behavior
of IGNs, where a similar understanding has already been provided for the local MPNNs. We
investigate the convergence of one powerful GNN, Invariant Graph Network (IGN) over graphs
sampled from graphons. We first prove the stability of linear layers for general k-IGN (of order
k) based on a novel interpretation of linear equivariant layers. Building upon this result, we
prove the convergence of k-IGN under the model of [124], where we access the edge weight
but the convergence error is measured for graphon inputs. Under the more natural (and more
challenging) setting of [78] where one can only access 0-1 adjacency matrix sampled according
to edge probability, we first show a negative result that the convergence of any IGN is not
possible. We then obtain the convergence of a subset of IGNs, denoted as IGN-small, after the
edge probability estimation. We show that IGN-small still contains functions rich enough to
approximate spectral GNNs arbitrarily well. Lastly, we perform experiments on various graphon
models to verify our statements.

The Connection between MPNN and Graph Transformer. In the second part, we
study the connection between local GNN (MPNN) and global GNN (Graph Transformer).
Previous work [82] shows that with proper position embedding, GT can approximate MPNN
arbitrarily well, implying that GT is at least as powerful as MPNN. Here we study the inverse
connection and show that MPNN with virtual node (VN), a commonly used heuristic with
little theoretical understanding, is powerful enough to arbitrarily approximate the self-attention
layer of GT. In particular, we first show that if we consider one type of linear transformer, the
so-called Performer/Linear Transformer, then MPNN + VN with only O(1) depth and O(1)
width can approximate a self-attention layer in Performer/Linear Transformer. Next, via a
connection between MPNN + VN and DeepSets, we prove the MPNN + VN with O(n¢) width
and O(1) depth can approximate the self-attention layer arbitrarily well, where d is the input
feature dimension. Lastly, under some (albeit rather strong) assumptions, we provide an explicit
construction of MPNN + VN with O(1) width and O(n) depth approximating the self-attention

layer in GT arbitrarily well.
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Graph Coarsening with Neural Networks. Finally, one way to obtain global infor-
mation via local MPNN is through graph coarsening, where at a coarser level, edges among
super-nodes represent more global connections. However, when performing graph coarsening,
one hope to be able to preserve the original graph’s properties. The specific property we aim to
preserve is its spectral property, which can capture long-range interaction in graphs (e.g., the
behavior of random walks). In the last part, we first propose a framework for measuring the
quality of coarsening algorithm and show that depending on the goal, we need to carefully choose
the Laplace operator on the coarse graph and associated projection/lift operators. Motivated by
the observation that the current choice of edge weight for the coarse graph may be sub-optimal,
we parametrize the weight assignment map with GNN and train it to improve the coarsening
quality in an unsupervised way. Through extensive experiments on both synthetic and real
networks, we demonstrate that our method significantly improves common graph coarsening
methods under various metrics, reduction ratios, graph sizes, and graph types. It generalizes to
graphs of larger size (25x of training graphs), is adaptive to different losses (differentiable and

non-differentiable), and scales to much larger graphs than previous work.
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Chapter 1

Introduction

1.1 Background

Graphs are flexible representations for modeling complex objects, such as road networks,
protein interaction networks, social networks, molecules, and so on. From the methodology
perspective, modeling functions on general graphs naturally requires handling greater variability
compared to deep learning on images (2d grid) and sequences (1d line graph). This implies that
the design of graph neural networks is more challenging than common techniques in processing
images and sequences such as CNN, RNN, and Transformer. The study of machine learning &
deep learning on graphs is therefore of great theoretical interest and practical significance, and
has been extensively studied in recent years [84, 143, 58, 57, 148, 20, 56, 15, 18, 164].

The purpose of this thesis is to provide a local-to-global perspective on the graph neural
network (GNN), a leading machine learning architecture for processing graphs. The local
approach to GNN results in Message Passing Neural Network (MPNN) that is widely used
in practice, which includes popular models like GAT [143], GCN [84], and GraphSAGE [58].
However, the theoretical study of MPNN reveals its limitations, such as limited expressive
power, over-smoothing, and over-squashing. Take the expressive power as an example, it is well
known MPNN can not be more expressive in terms of distinguishing non-isomorphic graphs
than the 1-WL (weisfeiler-lehman) test [156]. Increasing the expressive power of GNN beyond

1-WL has been extensively studied [11, 109, 5, 53, 129]. On the high level, most work requires



some elements of global modeling, in the form of modeling high-order interaction or subgraph
aggregation. This motivates the study of the global approach to learning on graphs such as
Invariant Graph Network (IGN) [110] and Graph Transformer (GT) [86, 159].

The first part of the thesis in Chapter 2 introduces the Invariant Graph Network (IGN),
a global GNN, and provides a systematic study of its convergence property. Convergence is
closely related to generalization, a central topic in graph neural network research and machine
learning in general.

The second part of the thesis in Chapter 3 studies the connection between local MPNNs
and global Graph Transformers. It connects the local approach (MPNN) and global approach
(Graph Transformer), with DeepSets and Invariant Graph Network (IGN) serving as the concep-
tual bridge.

One common approach to model long-range interaction modeling on irregular domain is
graph coarsening. In Chapter 4, the last part of the thesis, we study the creative use of MPNN to
perform graph coarsening. MPNN offers an alternative to classical optimization techniques, with
the advantage of generalizing to graphs of different sizes.

We next give a short introduction of models that appeared in the thesis and then provide

the outline of the thesis in Section 1.2 and list my contributions in Section 1.3.

1.1.1 Message Passing Neural Network (MPNN)

Message Passing Neural Networks (MPNN5s) are a class of neural networks designed to
handle structured data, specifically graph-like structures. MPNNs are capable of capturing the
complex relations between nodes in a graph, making them ideal for a variety of tasks ranging
from social network analysis to chemical structure prediction. They operate through a process
known as “message passing”’, where nodes in the graph exchange and aggregate information
iteratively, thereby enabling the network to learn a representation of the whole graph based on

local node features and their connections.



Specifically, the 7-th iteration of messaging passing takes the following form

m{;+1 - Ml‘ (hinhiw eVW)
weN(v)

Wy =, (hy,mit )

where /"1, the hidden representation for node v, are updated based on messages m’,"!. M, is the
message functions, and U, is the vertex update functions. Many popular graph networks such as

GCN [84], GAT [143], and GraphSage [58] can be realized under the MPNN framework.

1.1.2 Invariant Graph Network (IGN)

Invariant Graph Network (IGN) is a class of global GNN that treats graphs as order
2 tensors. Just as CNN interleaves the linear and nonlinear layers, IGN follows the same
approach to building graph networks. As there is no canonical node order, the linear layer
needs to be both linear and permutation equivariant. Such linear and permutation equivariance
constraints dramatically reduce the degrees of freedom. [110] characterizes the space of linear
and permutation equivariant functions from tensor of order / to tensor of order m, i.e. all linear
permutation equivariant functions from R" to R"™" is of dimension Bel (14 m). Note that the
dimension of space is independent of graph nodes n, and it is the reason why IGN can generalize
to graphs of different sizes.

Depending on the order of intermediate tensor representation, IGN can be parameterized
by k-IGN, where k is the largest tensor order. It is shown 2-IGN can arbitrarily approximate
MPNN, and therefore as least has the 1-WL expressive power. In general, k-IGN has the
expressive power of k-WL in terms of distinguishing non-isomorphic graphs, which implies that

IGN is a class of highly expressive GNN that deserve further investigation.



1.1.3 Graph Transformer (GT)

We next introduce another class of global GNN, Graph Transformer (GT). Because of the
great successes of Transformers in natural language processing (NLP) [142, 151] and recently
in computer vision [39, 45, 101], there is great interest in extending transformers for graphs.
In particular, it encodes the graph structure into the position embeddings and then applies the
Transformer layer to mix the features. One common belief of advantage of graph transformer
over MPNN is its capacity in capturing long-range interactions while alleviating over-smoothing
[96, 114, 21] and over-squashing in MPNN [3, 140].

Fully-connected Graph transformer [43] was introduced with eigenvectors of graph
Laplacian as the node positional encoding (PE). Various follow-up works proposed different
ways of PE to improve GT, ranging from an invariant aggregation of Laplacian’s eigenvectors in
SAN [86], pair-wise graph distances in Graphormer [159], relative PE derived from diffusion
kernels in GraphiT [112], and recently Sign and Basis Net [100] with a principled way of
handling sign and basis invariance. Other lines of research in GT include combining MPNN and
GT [153, 120], encoding the substructures [25], and efficient graph transformers for large graphs

[152].

1.2 Outline of Thesis

In Chapter 2, we introduce a class of GNN model named Invariant Graph Network
(IGN). IGN i1s parameterized by the k, order of intermediate tensor representation. The k is a
hyperparameter that can be tuned to balance the expressive power (in terms Weisfeiler-Lehman
hierarchy) and the computational complexity. We study the convergence property of IGN. The
problem is stated as follows: given a continuous graphon model where we can sample a sequence
of graphs G;, we are interested in whether the output of IGN ¢ (G;) will converge. Convergence
relates the output of IGN given a sequence of graphs sampled from the same continuous models.

Convergence is easier to study than generalization, a central topic in GNN research because we



restrict the variability of input graphs to come from the same model. Therefore, studying the
convergence may shed light on the generalization of GNN [16].

In Chapter 3, we study the connection between local MPNN and global Graph Trans-
former. Local MPNN has been widely studied while the global Graph Transformer is a new
model that receives a lot of attention recently. One advantage of the Graph Transformer is
that its Transformer backbone allows more effective feature mixing than MPNN, which will
require many layers to pass information when the radius of the input graph is large. Previous
work [82] shows that with proper position embedding, GT can approximate MPNN arbitrarily
well, implying that GT is at least as powerful as MPNN. In this chapter, we study the inverse
connection and show that MPNN with virtual node (VN), a commonly used heuristic with little
theoretical understanding, is powerful enough to arbitrarily approximate the self-attention layer
of GT. Our work draws a tighter connection between local and global GNN [23].

In Chapter 4, we study the problem of graph coarsening, which aims to reduce the size of
the graph while preserving the essential property. Despite rich graph coarsening literature, there
is only limited exploration of data-driven methods in the field. In this chapter, we propose a novel
data-driven graph coarsening method based on the message-passing neural network (MPNN)

[19].

1.3 Contributions

The first family of popular global GNN we look into is the so-called Invariant graph
networks (IGN). In Chapter 2, we study the convergence of k-IGN under two models, the edge
weight continuous model, and the edge probability discrete model. We first provide a novel
interpretation of the linear permutation equivariant basis of k-IGN for any k, which is interesting
on its own. Based on such interpretations, we prove the convergence of k-IGN under the edge
weight continuous model. Under the more challenging edge probability discrete model, we first

show that convergence of k-IGN is not possible. We then showed that under the preprocessing



step of edge smoothing (used in Graphon estimation), we can retain the convergence property
of a subset of k-IGN, named IGN-small, under the edge probability discrete model. Lastly, we
characterize that IGN-small in some sense is not too small as it still contains the rich class of
functions that can approximate spectral GNN arbitrarily well.

Another popular class of global GNN is Graph Transformer (GT). GT recently has
emerged as a new paradigm of graph learning algorithms, outperforming the previously popular
Message Passing Neural Network (MPNN) on multiple benchmarks. In Chapter 3, we provide a
systematic study of the approximation power of MPNN with virtual node (VN). In particular,
In particular, we first show that if we consider one type of linear transformer, the so-called
Performer/Linear Transformer (Choromanski et al., 2020; Katharopoulos et al., 2020), then
MPNN + VN with only O(1) depth and O(1) width can approximate a self-attention layer in
Performer/Linear Transformer. Next, via a connection between MPNN + VN and DeepSets, we
prove the MPNN + VN with O(n) width and O(1) depth can approximate the self-attention
layer arbitrarily well, where d is the input feature dimension. Lastly, under some assumptions, we
provide an explicit construction of MPNN + VN with O(1) width and O(n) depth approximating
the self-attention layer in GT arbitrarily well. On the empirical side, we demonstrate that 1)
MPNN + VN is a surprisingly strong baseline, outperforming GT on the recently proposed
Long Range Graph Benchmark (LRGB) dataset, 2) our MPNN + VN improves over early
implementation on a wide range of OGB datasets.

Finally, one way to obtain global information via local MPNN is through graph coarsen-
ing, where at a coarser level, connections among super-nodes represent more global connections.
However, when performing graph coarsening, one hopes to be able to preserve the original
graph’s properties. The specific property we aim to preserve is its spectral property, which can
capture long-range interaction in graphs (e.g., the behavior of random walks). In Chapter 4, we
explored the use of data-driven methods for graph coarsening. We leverage the recent progress
of deep learning on graphs for graph coarsening. We first propose a framework for measuring the

quality of coarsening algorithm and show that depending on the goal, we need to carefully choose



the Laplace operator on the coarse graph and associated projection/lift operators. Motivated by
the observation that the current choice of edge weight for the coarse graph may be sub-optimal,
we parametrize the weight assignment map with graph neural networks and train it to improve the
coarsening quality in an unsupervised way. Through extensive experiments on both synthetic and
real networks, we demonstrate that our method significantly improves common graph coarsening
methods under various metrics, reduction ratios, graph sizes, and graph types. It generalizes to
graphs of larger size (25x of training graphs), is adaptive to different losses (differentiable and

non-differentiable), and scales to much larger graphs than previous work.



Chapter 2

Convergence of Invariant Graph Networks

2.1 Introduction

In this chapter, we focus on the the convergence property of a class of powerful global
GNN called Invariant Graph Networks (IGN). Although theoretical properties of GNN such as
expressive power [111, 80, 109, 51, 5, 53, 11] and over-smoothing [96, 114, 21, 168] of GNNs
have received much attention, their convergence property is less understood. In this chapter, we
systematically investigate the convergence of one of the most powerful families of GNNss, the
Invariant Graph Network (IGN) [110]. Different from message passing neural network (MPNN)
[54], it treats graphs and associated node/edge features as monolithic tensors and processes
them in a permutation equivariant manner. 2-IGN can approximate the message passing neural
network (MPNN) arbitrarily well on the compact domain. When allowing the use of high-order
tensor as the intermediate representation, k-IGN is shown at least as powerful as k-WL test. As
the tensor order k goes to O(n*), it achieves the universality and can distinguish all graphs of
size n [111, 80, 5].

The high level question we are interested in is the convergence and stability of GNNGs.
In particular, given a sequence of graphs sampled from some generative models, does a GNN
performed on them also converge to a limiting object? This problem has been considered
recently, however, so far, the studies [124, 78] focus on the convergence of spectral GNNs, which

encompasses several models [13, 33] including GCNs with order-1 filters [84]. However, it



is known that the expressive power of GCN is limited. Given that 2(k)-IGN is strictly more
powerful than GCN [156] in terms of separating graphs! and its ability to achieve universality, it
is of great interest to study the convergence of such powerful GNN. In fact, it is posted as an
open question in [79] to study convergence for models more powerful than spectral GNNs and
higher order GNNs. This is the question we aim to study in this chapter.

Contributions. We present the first convergence study of the powerful k-IGNs (strictly
more powerful than the Spectral GNN which previous work studied). We first analyze the
building block of IGNs: linear equivariant layers, and develop a stability result for such layers.
The case of 2-IGN is proved via case analysis while the general case of k-IGN uses a novel
interpretation of the linear equivariant layers which we believe is of independent interest.

There have been two existing models of convergence of spectral GNNs for graphs sampled
from graphons developed in [124] and [78], respectively. Using the model of [124] (denoted
by the edge weight continuous model) where we access the edge weight but the convergence
error is measured between graphon inputs (see Section 2.4 for details), we obtain analogous
convergence results for k-IGNs. The results cover both deterministic and random sampling for
k-IGN while [124] only covers deterministic sampling for the much weaker Spectral GNNs.

Under more natural (and more challenging) setting of [78] where one can only access 0-1
adjacency matrix sampled according to edge probability (called the edge probability discrete
model), we first show a negative result that in general the convergence of all IGNs is not possible.
Building upon our earlier stability result, we obtain the convergence of a subset of IGN, denoted
as IGN-small, after a step of edge probability estimation. We show that IGN-small still contains
rich function class that can approximate Spectral GNN arbitrarily well. Lastly, we perform

experiments on various graphon models to verify our statements.

'In terms of separating graphs, k&-IGN > 2-IGN = GIN > GCN for k > 2.



Table 2.1. Linear equivariant maps for R**" — R"*"* and RO s RO 1 g a all-one vector
of size n x 1 and I,,—, is the indicator function.

Operations Discrete Continuous Partitions
1-2: The identity and TA)=A TW)=W {{1,3},{2,4}}
transpose operations T(A)=AT TW)=wT {{1,4},{2,3}}
3: The diag operation T(A) = Diag(Diag*(A)) T(W)(u,v) =W (u,v)L— {{1,2,3,4}}
. : replics T(4) = A1l T(W)(e,u) = [W(u,v)dv {{1,4},{2},{3}}
R A e
¢ 7(4) = i Diag(41) T(W)(,v) =Tumy JW(Y)dy {{1,3.4},{2}}
. . T(4) = 1AT11 T(W)(ev) = [ W (i) {24161
T G 10 (e EHT
¢ T(A) = 1Diag(a1) T(W) () = Ly [ W (i, v)dut ({1},{2,3,4}}
10-11: Average of all elements T(A) = nz(lTAl) u’ T(W)(*,%) = [W(u,v)dudv {{1}.,{2},{3}.{4}}
replicated on all matrix/ diagonal TA) =4 1. (17A1) - Diag(1). TW)(u,v) =L—y [W(W/' V)du'dv  {{1},{2},{3,4}}
12-13: Average of diagonal elements 7T(A) = 7(ITD1ag (A)-11T T(W)(*,%) = [L=,W (u,v)dudv {{1,2},{3},{4}}
replicated on all matrix/diagonal T(A)= l(ITDlag (A))-Diag(1) T(W)(u,v) =Lu=y [W ('t )di/ {{1,2},{3,4}}
14-15: Replicate diagonal elements T (A) = Diag*(A)17 T(W)(u,v) =W (u,u) {{1,2,4},{3}}
on rows/columns T(A) = 1Diag*(A)T T(W)(u,v) =W(v,v) {{1,2,3},{4}}

Table 2.2. Linear equivariant maps for R” — R"*" and RI%1] — RIO1P,

Operations Discrete Continuous Partitions
T(A) = Diag(A) T(W)(u,v) = L=y W (u) {{1,2,3}}
1-3: Replicate to diagonal/rows/columns  T(A); j = A; T(W)(u,v) =W(u) {{1,3},{2}}
T(A)i,j*f‘j T(W)(u,v) =W(v) {{1,2}.{3}}
<. . . . T(A);,;=,Al TW)(u,v) =L=y [W(w)du {{1},{2,3}}
4-5: Replicate mean to diagonal/all matrix T(A);; = %Al TW) () = [ W {u)du (11421.030)

Table 2.3. Linear equivariant maps for R**” — R" and ROy RO,

Operations Discrete Continuous Partitions
1-3: Replicate diagonal/row mean/ EAg _ ]lD/i‘alg* (4) ;Egggzg i ?vati;)v)dv }H’i’?{};}}
columns mean v B ’ <1

TA) =, e T(W)(u) = JW(u,v)du {{1.3}.{2}}
4-5: Replicate mean of all elements/ 7T (A); = - L1741 T(W)(u) = [W(u,v)dudv {{1},{2}.{3}}
mean of diagonal T(A); = illTDlag(Dlag (AN1 T(W)(u) = [LW(u,v)dudv {{1,2},{3}}
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2.2 Preliminaries

2.2.1 Notations

To talk about convergence/stability, we will consider graphs of different sizes sampled
from a generative model. Similar to the earlier work in this direction, the specific general model
we consider is a graphon model.

Graphons. A graphon is a bounded, symmetric and measurable function W : [0, 1]* —
[0, 1]. We denote the space of graphon as . It can be intuitively thought of as an undirected
weighted graph with an uncountable number of nodes: roughly speaking, given u;,u; € [0, 1], we
can consider there is an edge (i, j) with weight W (u;,u;). Given a graphon W, we can sample
unweighted graphs of any size from W, either in a deterministic or stochastic manner. We defer
the definition of the sampling process until we introduce the edge weight continuous model in
Section 2.4 and edge probability discrete model in Section 2.5.

Tensor. Let [n]| denote {1,...,n}. A tensor X of order k, called a k-tensor, is a map
from [n]“* to RY. If we specify a name name; for each axis, we then say X is indexed by
(namey, ...,namey ). With slight abuse of notation, we also write that X € R X4 We refer to d as
the feature dimensions or the channel dimensions. If d = 1, then we have a k-tensor R X1 = RA*
Although the name for each axis acts as an identifier and can be given arbitrarily, we will use set
to name each axis in this chapter. For example, given a 3-tensor X, we use {1} to name the first
axis, {2} for the second axis, and so on. The benefits of doing so will be clear in Section 2.3.2.

Partition. A partition of [k], denoted as ¥, is defined to be a set of disjoint sets y :=
{71, %} with s < k such that the following condition satisfies, 1) for all i € s,y C [k], 2)
YNy =0,Y1i,j € [s],and 3) UL_,7% = [k]. We denote the space of all partitions of [k] as I';. Its
cardinality is called the k-th bell number bell(k) = |T';|.

Other conventions. By default, we use 2-norm (Frobenius norm) to refer ¢, norm for
all vectors/matrices and L, norm for functions on [0,1] and [0, 1]>. |- || or || - || denotes the

2 norm for discrete objects while ||W{|z, := | [ W(u,v)dudv denotes the norm for continuous
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objects. Similarly, we use || - || and || - ||z, to denotes the infinity norm. When necessary, we
use || [|,([o,1]) to specify the support explicitly. We use || - [[spec to denote spectral norm. &, and
®, refers to the continuous IGN and discrete IGN respectively. We sometimes call a function
£:[0,1] = R? a graphon signal. Given A € R"*d B c R"*% [A B] is defined to be the
concatenation of A and B along feature dimensions, i.e., [A,B] € R *(d1+d2) _See Table 3.2 for

the full symbol list.

2.2.2 Invariant Graph Network

Definition 1. An Invariant Graph Network (IGN) is a function @ : R xdo _y RA of the following
form:

F:hoL(T)oGo~~oGoL(1), 2.1)

. o ke K : .
where each LY is a linear equivariant (LE) layer [110] from R~ %41 1o R % (j ¢ mapping
a k;_q tensor with d;,_| channels to a k; tensor with d; channels), o is nonlinear activation
function, h is a linear invariant layer from kp-tensor R™" %97 to vector in RY. d; is the channel

number, and k; is tensor order in t-th layer.

Let Diag(-) be the operator of constructing a diagonal matrix from vector and Diag*(+)
be the operation of extracting a diagonal from a matrix. Under the IGN framework, we view
a graph with n nodes as a 2-tensor: In particular, given its adjacency matrix A, of size n X n
with node features X, € R4 and edge features E,x, € R *%dee the input of IGN is the
concatenation of [A,,Diag(X,),Enxn| € R X (1+dnode +deage) along different channels. We drop
the subscript when there is no confusion. We use 2-IGN to denote the IGN whose largest tensor
order within any intermediate layer is 2, while k-IGN is one whose largest tensor order across
all layers is k. We use IGN to refer to the general IGN for any order k.

Without loss of generality, we consider input and output tensor to have a single channel.
Consider all linear equivariant maps from R" to R™, denoted as LE,,,,. [110] characterizes

the basis of the space of LE ,,. It turns out that the cardinality of the basis equals to the bell
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Table 2.4. Summary of important notations.

Symbol ‘ Meaning

1, all-one vector of size n x 1

- 112/1 - 1z, 2-norm for matrix/ graphon

I o/l - e infinity-norm for matrix/graphon

['7']
W 0,112 —=[0,1]

Given A € R" >4 B c RW*d2,
[A, B] is the concatenation of A and B along feature dimension. [A,B] € RAx(di+d2)
graphon

X e RIO1xd 1D signal
v space of graphons
I |lpn partition-norm. When the underlying norm is L., norm, we also use || - || pn—eo-
I indicator function
1 interval
SGNN spectral graph neural networks, defined in Equation (2.14)
LEy,, linear equivariant maps from ¢-tensor to m-tensor
Notations related to sampling
W, Induced piecewise constant graphon from fixed grid
Wv,, Induced piecewise constant graphon from random grid
Induced piecewise constant graphon from random grid, but resize the all
WoE individual blocks to be of equal size (also called chessboard graphon in this chapter).
Wn,E(Ii X Ij) = W(u@,u(,))
Woiscn n x n matrix sampled from W; Wy, (i, j) = W (ui, u;)
W e R the estimated edge probability from graphs sampled according to
e edge probability discrete model from [165]
X, € R4 sampled signal [x,]; := X (1;)
X, induced 1D piecewise graphon signal from fixed grid
X, induced 1D piecewise graphon signal from random grid
Su normalized sampling operator for random grid. Sy f (i, j) = %( Fugy), f(ug)
Sn normalized sampling operator for fixed grid. S,f(i, j) = %(f(%),f(%))
RMSEy (x, f) (nfl Yl — f ()] 2 for 1D signal; (nfzzi Y| — f (uiyuy) Hz) 2 for 2D case
oy a parameter that controls the sparsity of sample graphs. Set to be 1 in the chapter.
Notations related to IGN
bell(k) Bell number: number of partitions of [k]. bell(2) = 2,bell(3) = 5,bell(4) = 15,bell(5) = 52...
Iy space of all partitions of [k]
i the space of indices. % := {(i1,...,ix)|i1 € [n],...,ix € [n]}. Elements of .7 is denoted as a
rell partition of [k]. For example {{1,2},{3}} is a partition of [3].
The total number of partitions of [k] is bell(k).
acy a satisfies the equivalence pattern of y. For example, (x,x,y) € {{1,2},{3}} where x,y,z € [n].
Y<pB given two partitions ¥, B € I'y, ¥ < B if y is finer than . For example, {1,2,3} < {{1,2},{3}}.
[ + m tensor; tensor representation of LE; ,,, maps.
B, . : ’ .
we differentiate T, (operators) from B, (tensor representation of operators)
B a basis of the space of linear equivariant operations from ¢-tensor to m-tensor. # = {Ty|y € T'1 14}
T./T; linear equivariant layers for graphon (continuous) and graphs (discrete)
D /Dy IGN for graphon (continuous) and graphs (discrete)
L0 i-th linear equivariant layer of IGN
L normalized graph Laplacian
T; basis element of the space of linear equivariant maps; sometimes also written as 7.
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number bell(¢ 4 m), thus depending only on the order of input/output tensor and independent
from graph size n. As an example, we list a specific basis of the space of LE maps for 2-IGN
(thus with tensor order at most 2) in Tables 2.1 to 2.3 when input/output channel numbers are
both 1. Extending the LE layers to multiple input/output channels is straightforward, and can
be achieved by parametrizing the LE layers according to indices of input/output channel. See
Remark 1. Note that one difference of the operators in Tables 2.1 to 2.3 from those given in the
original paper is that here we normalize all operators appropriately w.r.t. the graph size n. (This
normalization is also in the official implementation of the IGN paper.) This is necessary when

we consider the continuous limiting case.

Remark 1 (multi-channel IGN contains MLP). For simplicity, in the main text, we focus on
the case when the input and output tensor channel number is 1. The general case of multiple
input and output channels is presented in Equation 9 of [110]. The main takeaway is that
permutation equivariance does not constrain the mixing over feature channels, i.e., the space of
linear equivariant maps from R <1y R xda if of dimension dydybell(l +m). Therefore IGN

contains MLP.

To talk about convergence, one has to define the continuous analog of IGN for graphons.
In Tables 2.1 to 2.3 we extend all LE operators defined for graphs to graphons, resulting in the
continuous analog of 2-IGN, denoted as 2-cIGN or ®,. in the remaining text. Similar operation
can be done in general for k-IGN as well, where the basis elements for k-IGNs will be described

in Section 2.3.2.

Definition 2 (2-cIGN). By extending all LE layers for 2-IGN to the graphon case as shown in

Tables 2.1 to 2.3, we can definite the corresponding 2-cIGN via Eq. (2.1).

2.2.3 Edge Probability Estimation from [165]

We next restate the setting and theorem regarding the theoretical guarantee of the edge

probability estimation algorithm.
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Definition 3. For any 6,A; > 0, let F5.; de note a family of piecewise Lipschitz graphon
functions f:[0,1]> — [0,1] such that (i) there exists an integer K > 1 and a sequence 0 =
xo < -+ < xg = 1 satisfying mino<s<x—1 (Xs+1— X5) > 0, and (ii) both |f (u1,v) — f (uz,v)| <
Arluy —up| and | f (u,vy) — f (u,v)| <Ay | vi— va | hold for all u,uy,uy € [x5,x541],v,v1,V2 €

[X,x041] and 0 < s,t < K — 1

Assume that o, = 1. It is easy to see that the setup considered in [165] is slightly more
general than the setup in [78]. The statistical guarantee of the edge smoothing algorithm is stated

below.

Theorem 2.2.1 ([165]). Assume that Ay is a global constant and & = 8(n) depends on n, satisfy-
ing lim, .. 8/(n~"logn)'/? — oo, Then the estimator P with neighborhood A; defined in [165]
and h = C(n~"logn)'/2 for any global constant C € (0, 1], satisfies max se 75, pr{ds(P,P)*> >
C (10%)1/2} < n~© where Cy and C, are positive global constants. Here, d(P,Q) =

nV2|P — Ol = maxin V2|~ Ol

2.3 Stability of Linear Layers in IGN

In this section, we first show a stability result for a single linear layer of IGN. That is,
given two graphon Wy, W, we show that if || W; — Wa ||, is small, then the distance between the
objects after applying a single LE layer remain close. Here || - ||pn is a partition-norm that will
be introduced in a moment. Similar statements also hold for the discrete case when the input
is a graph. We first describe how to prove stability for 2-(c)IGN as a warm-up. We then prove
it for k-(c)IGN, which is significantly more interesting and requires a new interpretation of the
elements in a specific basis of the space of LE operators in [110].

A the general LE layer T : R" — R""can be written as T = Y.ycyTy, where Ty € & :=
{Ty|y € T'y4m} is the basis element of the space of LE, ,, and ¢y are denoted as filter coefficients.
Hence proving the stability of 7' can be reduced to showing the stability for each element in %,

which we focus from now on.
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2.3.1 Stability of Linear Layers of 2-IGN

A natural way to show stability is by showing that the spectral norm of each LE operator
in a basis is bounded. However, even for 2-IGN, as we see some LE operator requires replicating
“diagonal elements to all rows" (e.g., operator 14-15 in Table 2.1), and has unbounded spectral
norm. To address this challenge, we need a more refined analysis. In particular, below we will
introduce a “new" norm that treats the diagonal differently from non-diagonal elements for the
2-tensor case. We term it partition-norm as later when handling high order k-IGN, we will see
that this norm arises naturally w.r.t. the partition of index set of tensors.

Definition 4 (Partition-norm). The partition-norm of 2-tensor A € R™ js defined as ||A||pn 1=

(|\Dia§£A)\|2’ Hf;\Iz)

as | W |lpn = (¢ TW2(u,u)du,\/ ffw2<u,v)dudv).

We refer to the first term as the normalized diagonal norm and the second term as the

. The continuous analog of the partition-norm for graphon W € W' is defined

normalized matrix norm. Furthermore, we define operations like addition/comparison on the

partition-norm simply as component-wise operations. For example,

A“pn < HBHpn if each of

the two terms of A is at most the corresponding term of B.

As each term in partition-norm is a norm on different parts of the input, the partition-norm
is also a norm. By summing over the finite feature dimension both for finite and infinite cases,
the definition of the partition-norm can be extended to multi-channel tensors R4 and its
continuous version RI%1*¢_ See Section 2.9.1 for details.

The following result shows that each basis operation for 2-IGN, shown in Tables 2.1, 2.2
and 2.3, is stable w.r.t. the partition-norm. Hence a LE layer consisting of a finite combination of
these operations will remain stable. The proof is via a case-by-case analysis and can be found in

Section 2.9.1.

Proposition 2.3.1. For all LE operators T; : R"” — R" of discrete 2-IGN listed in Table 2.1,
T3 (A)||pn < ||A]|pn for any A € R". Similar statements hold for T : R" — R" and T, : R" — R"

in Tables 2.2 and 2.3. In the case of continuous 2-cIGN, the stability also holds.
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Remark 2. Note that this also implies that given Wi, W, € W/, we have that || T;(W) — T;(W2) || pn <
Wi — Wa||pn. Similarly, given Ay,A; € R™X1 = R"™ we have 1Ti(A1) — Ti(A2)[|pn < ||A1 —

A2 || pn-

2.3.2 Stability of Linear Layers of k-IGN

We now consider the more general case of k-IGN. In principle, the proof of 2-IGN can
still be extended to k-IGN, but going through all bell(k) number of elements of LE basis of
k-IGN one by one can be quite cumbersome. In the next two subsections, we provide a new
interpretation of elements of the basis of space of LEy ,, in a unified framework so that we can
avoid a case-by-case analysis. Such an interpretation, detailed in Section 2.3.3, is potentially of

independent interest. First, we need some notations.

Definition 5 (Equivalence pattern). Given a k-tensor X, denote the space of its indices { (i1, ..., i) |
i1 € [nl,...,ix € [n]} by F. Given X, y={",....,Ya} € ['x and an element a = (ay,...,a;) € %,
we say a € Y if i, j € y for some | € [d] always implies a; = a;. Alternatively, we also say a

satisfies the equivalence pattern of vif a € 7.

As an example, suppose ¥ = {{1,2},{3}}. Then (x,x,y) € y while (x,y,z) ¢ y. Equiva-

lence patterns can induce “slices”/sub-tensors of a tensor.

Definition 6 (Slice/sub-tensor of X € R"*! for y € T). Let X € R"*! be a k-tensor indexed
by ({1},...,{k}). Consider a partition Y= {Vi,...,%} € [k of cardinality k' < k. The slice
(sub-tensor) of X induced by 7y is a k'-tensor Xy, indexed by (y,...,Y), and defined to be
Xy(j1, s jir) 1= X (ty(j1s oy jur)) where j. € [n] and ty(j1, s jir) € Y. 1y - [0]¥ — [n]* is defined
to be ty(ji,..., ji) = (i1, ..., ix) such that {a,b} C v, implies i, = i, )= j.. Here a,b € [k],c € [K'].

As an example, we show five slices of a 3-tensor in Figure 2.1.

Consider the LE operators from R" to R"". Each such map T, can be represented by

0

a matrix of size n° x n™ which can further considered as a (¢ + m)-tensor By. [110] showed

that a specific basis for such operators can be characterized as follows: Each basis element will
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correspond to one of the bell(¢ + m) partitions in I's,. In particular, given a partition ¥ € 'y,

we have a corresponding basis LE operator 7y and its tensor representation B, defined as follows:

I acy
forany a € ., By(a) = 2.2)

0 otherwise

The collection % = {Ty | y € I'y4,,} form a basis for all LE;,, maps. In Section 2.3.3, we will

provide an interpretation of each element of %, making it easy to reason its effect on an input
tensor using a unified framework.

Before the main theorem, we also need to extend the partition-norm in Definition 4 from
2-tensor to high-order tensor. Intuitively, for X € R, || X||pn has bell(k) components, where
each component corresponds to the normalized norm of Xy, the slice of X induced by y € I';.
See Figure 2.1 for examples of slices of a 3-tensor. The partition-norm of input and output of a

LEy,, will be of dimension bell(¢) and bell(m) respectively. See Section 2.9.1 for details.

{1} 2N

{3} AN \

Figure 2.1. Five possible “slices” of a 3-tensor, corresponding to bell(3) = 5 partitions of
3]. From left to right: @) {{1,2},{3}} b {{1},{2,3}} © {{1.3},{2}} & {{1}.{2},{3}} )
{{1,2,3}}.

The following theorem characterizes the effect of each operator in % in terms of partition-

norm of input and output, generalizing Theorem 2.3.1 from matrix to high order tensor.

Theorem 2.3.2 (Stability of LE layers for k-IGN). Let Ty : RO — RO be a basis element
of the space of LEy,, maps where ¥ € oy If || X||pn < €lpen(p), then the partition-norm of

Y := Ty(X) satisfies ||Y || pn < €lpen(m) for all Y € Ty .
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The proof relies on a new interpretation of elements of % in k-IGN. We give only an

intuitive sketch using an example in the next subsection. See Section 2.9.1 for the proof.

2.3.3 Interpretation of Basis Elements

For better understanding, we color the input axis {1,...,¢} as red and output axis {¢+
1,...,4+m} as blue. Each T, corresponds to one partition y of [¢ + m].

For any partition y € I';, 4, we can write this set as disjoint union y = S; US> U S3 where
S is a set of set(s) of input axis, and S3 is a set of set(s) of output axis. S is a set of set(s) where
each set contains both input and output axis. With slight abuse of notation, we omit the subscript
y for Sy, 83,53 when its choice is fixed or clear, and denote {¢+1,...,£+m} as £+ [m]. As an

example, one basis element of the space of LE3 3 maps is y = {{1,2},{3,6},{4},{5}}

S1={{1.2}} U S2= {{3,6}} US; = {{4},{5}} 2.3)

Only has input axis has both ) only has output axis
input and output axis

where 1,2,3 specifies the axis of input tensor and 4, 5, 6 specifies the axis of the output tensor.

Recall that there is a one-to-one correspondence between the partitions over [¢ + m] and the base

{{1,2},{3,6} {4} ,{5}}

{1
/ / 1’ {4}
A7
w332 [\
S
{3} 1’ 2,3 Ba., TG

Figure 2.2. An illustration of the one basis element of the space of LE3 3. It selects area spanned
by axis {1,2} and {3}, average over the axis {1,2}, and then align the resulting 1D tensor with
axis {6}, and finally replicate the slices along axis {4} and {5} to fill in the whole cube on the
right.

elements in % as in Eqn (2.3.2). The basis element T, corresponding to y = Sy US, US3 operates
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. 4 m
on an input tensor X € R" and produce an output tensor ¥ € R as follows:

Given input X, (step 1) obtain its slice Xy on IT; (selection axis), (step
2) average Xy over II; (reduction axis), resulting in Xy requction- (Step 3) Align
Xy reduction On I3 (alignment axis) with ), and (step 4) replicate Yy along Iy (repli-
cation axis), resulting Yy replication, @ slice of Y. Entries of Y outside Y replication
will be set to be 0.

In general, I1; can be read off from S1-53. See Section 2.9.1 for details. As a running example,
Figure 2.2 illustrates the basis element corresponding to ¥ = S} US, US3 where §; = {{1,2}}U
S» ={{3,6}}US; ={{4},{5}}. In the first step, given 3-tensor X, indexed by {{1},{2},{3}}
we select slices of interest Xy on IT; = {{1,2},{3}}, colored in grey in the left cube of Figure 2.2.
In the second step, we average X, over axis ITp = {{1,2}} to reduce 2-tensor Xy, indexed by
{{1,2},{3}} to a 1-tensor Xy reduction> indexed by {{3}}. In the third step, the Xy requction 15
aligned with I3 = {{6} }, resulting in the grey cuboid Yy indexed by {{6}}, shown in the right
cube in Figure 2.2. Here the only difference between Xy reduction and Yy is the index name of two
tensors. In the fourth step, we replicate the grey cuboid Y, over axis ITy = {{4},{5}} to fill in
the cube, resulting in Yy replication. indexed by {{3},{4},{5}}. Note in general Y} replication 1S @
slice of Y and does have to be the same as Y.

These steps are defined formally in the Section 2.9. For each of the four steps, we can
control the partition-norm of output for each step (shown in Theorem 2.9.2), and therefore control

the partition-norm of the final output for every basis element. See Section 2.9.1 for full proofs.

2.4 Convergence of IGN in the Edge Weight Continuous
Model

[124] consider the convergence of || ®.(W) — P.(W,)||L, in the graphon space, where W
is the original graphon and W, is a piecewise constant graphon induced from graphs of size n
sampled from W (to be defined soon). We call this model as the edge weight continuous model.
The main result of [125] is the convergence of continuous spectral GNN in the deterministic

sampling case where graphs are sampled from W deterministically. Leveraging our earlier
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stability result of linear layers of continuous IGNs in Theorem 2.3.2, we can prove an analogous
convergence result of cIGNs in the edge weight continuous model for both the deterministic and
random sampling cases.

Setup of the edge weight continuous model. Given a graphon W € #  and a signal
X € RO1X4 the input of cIGN will be [W, Diag(X)] € RIO.11?%(1+d) T the random sampling
setting, we sample a graph of size n from W by setting the following edge weight matrix and

discrete signal:

[An]ij = W(u,-,uj) and [)%71], ::X(ui) (2-4)

where u; is the i-th smallest point from 7 i.i.d points sampled from uniform distribution on [0, 1].
We further lift the discrete graph (Z; ,Xn) to a piecewise-constant graphon W, with signal X,.

Specifically, partition [0, 1] to be I; U...UI, with I; = (u;,u;11]. We then define

—~ —~

Wn(u,v) = [An]ij X I(Lt € I,-)I(v S Ij) and
(2.5)

—~

Xo(u) := [Xp)i x W(u € I))

where 1 is the indicator function. Replacing the random sampling with fixed grid, i.e., let 4; = %,
we can get the deterministic edge weight continuous model, where W, and X,, can be defined
similarly as the lifting of a discrete sampled graph to a piecewise constant graphon. Note that

W, isa piecewise constant graphon where each block is not of the same size, while all blocks

1

W, are of size ; X % We use - to emphasize that an/z are random variables, in contrast to the

deterministic W,/X,.

We also need a few assumptions on the input and IGN.
AS1. The graphon W is Ay-Lipschitz, i.e. |W (uz,v2) — W (up,v1)| < A1(Jup —up| + [va —vi]).
AS2. The filter coefficients cy are upper bounded by A,.

AS3. The graphon signal X is Az-Lipschitz.
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, and

AS4. The activation functions in IGNs are normalized Lipschitz, i.e. |p(x)—p(y)| <|x—y
p(0)=0.

Such four assumptions are quite natural and also adopted in [124]. With AS 1-4, we have
the following key proposition. The proof leverages the stability of linear layers for k-IGN from

Theorem 2.3.2; see Section 2.9.2 for details.

Proposition 2.4.1 (Stability of ®.). If cIGN ®, : RO xdn _ Rdow sqrisfy AS2, AS4 and
||W1 —W2||pn < €1y, then ||CI)C(W1> —CI)C(W2>||pn = ||(I)C(W1) _(I)c(WZ)HLZ < C(AQ)S . The same

statement still holds if we change the underlying norm of Partition-norm from L t0 L.
Remark 3. Statements in Theorem 2.9.6 holds for discrete IGN ®; as well.

From AS3 we can also bound the difference between the original signal X and the induced

signal (X, and 5(;).

Lemma 2.4.2. Let X € RIOUX4 pe an As-Lipschitz graphon signal satisfying AS3, and let X,
and X, be the induced graphon signal as in Egs. (2.4) and (2.5). Then we have i) || X — X, ||pn

converges to 0 and ii) | X — X, | pn converges to 0 in probability.
We have the similar statements for W as well.

Lemma 2.4.3. If W satisfies AS1, ||W —W,||pn converges to 0. |W — anHpn converges to 0 in

probability.

The following main theorem (for k-cIGN of any order k) of this section can be shown by

combining Theorem 2.9.6 with Theorems 2.4.2 and 2.4.3; see Section 2.9.2 for details.

Theorem 2.4.4 (Convergence of cIGN in the edge weight continuous model). Under the fixed

sampling condition, IGN converges to cIGN, i.e., | ®. ([W,Diag(X)]) — ®c([Wn, Diag(X,))) ||z,
converges to 0.
An analogous statement hold for the random sampling setting, where

|®.([W, Diag(X)]) — @.([W,, Diag(X,,)]) ||z, converges to 0 in probability.
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2.5 Convergence of IGN in the Edge Probability Discrete
Model

In this section, we will consider the convergence setup of [78], which we call the edge
probability discrete model. The major difference from the edge weight continuous model of
[124] is that (1) we only access 0-1 adjacency matrix instead of full edge weights and (2) the
convergence error is measured in the graph space (instead of graphon space).

This model is more natural. However, we will first show a negative result that in general
IGN does not converge in the edge probability discrete model in Section 2.5.2. This motivates
us to consider a relaxed setting where we estimate the edge probability from data. With this
extra assumption, we can prove the convergence of IGN-small, a subset of IGN, in the edge
probability discrete model in Section 2.5.3. Although this is not entirely satisfactory, we show
that nevertheless, the family of functions that can be represented by IGN-small is still rich enough

to for example approximate any spectral GNN arbitrarily well.

2.5.1 Setup: Edge Probability Continuous Model

We first state the setup and results of [78]. We keep the notation close to the original
paper for consistency. A random graph model (P, W, f) is represented as a probability distribution
P uniform over latent space %7 = [0, 1], a symmetric kernel W : % x % — [0, 1] and a bounded
function (graph signal) f : % — R%. A random graph G, with n nodes is then generated from

(P,W, f) according to latent variables U := {uy,...,u, } as follows:

Vj<i<n: graphnode u; ilrgP, zi = f(u;), (2.6)

graph edge a;j ~ Ber (0, W (u;,u;)) 2.7

where Ber is the Bernoulli distribution and «,, controls the sparsity of sampled graph. Note

that in our case, we assume that the sparsification factor o, = 1 (which is the classical graphon
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model). We define a degree function by dw p(-) := [W(-,u)dP(u). We assume the following

||W('7u)||Lw < Cmax, dW,P(u) Z Cmin, (2.8)

W (-, u)is (cLip‘ ,n%) -piecewise Lipschitz. (2.9)

A function f: % — R is said to be (cLip_ ,nag/) -piecewise Lipschitz if there is a partition
U, ..., %, of % such that, for all u,u’ in the same %;, we have |f(u) — f(u')| < crip.d(u,u’).
We introduce two normalized sampling operator Sy and S, that sample a continuous func-
tion to a discrete one over n points. For a function W' : % ®k _y Rdou S, W' (i1y.eeyig) i=
(\/iﬁ)k(W’(u(,-l)), s W' (u(;,)) where u;) is the i-th smallest number over n uniform random sam-
ples over [0,1] and iy, ...,i; € [n]. Similarly, S,W’(iy,...,ix) := (\/lﬁ)k <W’(%),...,W’(%‘)) Note
that the normalizing constant will depend on the dimension of the support of W’. We have
ISuW’ll2 < WL and [|S, W]} < [[W] ...

To measure the convergence error, we consider root mean square error at the node
level: for a signal x € R"**dout and latent variables U, we define RMSEy (f,x) = |Suf—=2l2=
(02X Xy || (wiyuj) —x(i ) H2)1/2‘ Again, there is a dependency on the input dimension —

the normalization term n~2 will need to be adjusted when the input order is different from 2.

2.5.2 Negative Result

Theorem 2.5.1. Given any graphon W with ¢, < 1 and an IGN architecture (fix hyper-
parameters like number of layers), there exists a set of parameters 0 such that convergence
of IGNg to cIGNy is not possible, i.e., RMSEy (D, ([W,Diag(X)]),®4([An, Diag(x,)])) does
not converge to 0 as n — o, where A, is 0-1 matrix generated according to Eq. (2.7), i.e.,

i) = ai,.

The proof of Theorem 2.5.1 hinges on the fact that the input to IGN in discrete case is
0-1 matrix while the input to cIGN in the continuous case has edge weight upper bounded by

cmax < 1. The margin between 1 and cpx makes it easy to construct counterexamples. See
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Section 2.9.3 for details.

Theorem 2.5.1 states that we cannot expect every IGN will converge to its continuous
version cIGN. As the proof of this theorem crucially uses the fact that we can only access 0-1
adjacency matrix, a natural question is what if we can estimate the edge probability from the
data? Interestingly, we can obtain the convergence of for a subset of IGNs (which is still rich

enough), called IGN-small, in this case.

2.5.3 Convergence of IGN-small

Let W, be the estimated n x n edge probability matrix from A,,. W, is the induced
graphon defined in Eq. (2.5). To analyze the convergence error for general IGN after edge
probability estimation, we first decompose the convergence error of the interest using triangle

inequality. Assuming the output is 1-tensor, then

A~

RMSEy (P (W), Py (Wixn))

= ||Sy®(W) — %%(ann)H

< [Su®e(W) = Sy®e(W) ||+ ||Su®e (Wy) — DSy (Wa)|

(.

-~

First term: discretization error Second term: sampling error
— 1 ~
+ [ @Sy (W) — —=Pa (W) | (2.10)

n

N J/
-~

Third term: estimation error

The three terms measure the different sources of error. First-term is concerned with the
discretization error, which can be controlled via a property of Sy and Theorem 2.9.6. The Second
term concerns the sampling error from the randomness of U. This term will vanish if we consider
only S, instead of Sy under the extra condition stated below. The third term concerns the edge

probability estimation error, which can also be controlled by leveraging existing literature on the
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Figure 2.3. The convergence error for three geﬁerative models: (left) stochastic block model,
(middle) smooth graphon, (right) piece-wise smooth graphon. EW and EP stands for edge weight
continuous model (Eq. (2.4)) and edge probability discrete model (Eq. (2.7)).

statistical guarantee of the edge probability estimation algorithm from [165]. 2
Controlling the second term is more involved. This is also the place where we have to
add an extra assumption to constrain the IGN space in order to achieve convergence after edge

smoothing.

Definition 7 (IGN-small). Let V/V:;; be a graphon with “chessboard pattern” 3, i.e., it is a
piecewise constant graphon where each block is of the same size. Similarly, define )?,;75 as
the 1D analog. IGN-small denotes a subset of IGN that satisfies SnQJC([W;;,Diag()/(;;;)]) =
@S, (Wi, Diag(X.£)))-

Theorem 2.5.2 (convergence of IGN-small in the edge probability discrete model). Assume AS
1-4, and let Wy, be the estimated edge probability that satisfies %Han 0 — W nll2 converges to
0 in probability. Let ®., D, be continuous and discrete IGN-small. Then

RMSEy (CIDC ([W,Diag(X)]),®, <[Wan,Diag(5c;,)]>> converges to 0 in probability.

ZFor better readability, here we only use the W as input instead of [W, Diag(X)]. Adding Diag(X) into the input
is easy and is included in the full proof in Section 2.9.3.
3See full definition in Definition 12.
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We leave the detailed proofs in Section 2.9.3 with some discussion on the challenges for
achieving full convergence results in the Remark 6. We note that Theorem 2.5.2 has a practical
implication: It suggests that in practice, for a given unweighted graph (potentially sampled from
some graphon), it may be beneficial to first perform edge probability estimation before feeding
into the general IGN framework, to improve the architecture’s stability and convergence.

Finally, although the convergence of IGN-small is not entirely satisfactory, it contains
some interesting class of functions that can approximate any spectral GNN arbitrarily well. See

Section 2.9.4 for proof details.

Theorem 2.5.3. IGN-small can approximates spectral GNN (both discrete and continuous ones)

arbitrarily well on the compact domain in the || - ||, sense.

2.6 Experiments

We experiment 2-IGN on three graphon models of increasing complexity: Erdoes Renyi
graph with p = 0.1, stochastic block model of 2 blocks of equal size and probability matrix
[[0.1,0.25],[0.25,0.4]], a Lipschitz graphon model with W (u,v) = “2**1 and a piecewise Lip-
schitz graphon with W (u,v) = w where % is modulo operation. Similar to [78], we
consider untrained IGN with random weights to assess how convergence depends on the choice
of architecture rather than learning. We use a 5-layer IGN with hidden dimension 16. We take
graphs of different sizes as input and plot the error in terms of the norm of the output difference.
The results are plotted in Figure 3.3.

As suggested by the Theorem 2.4.4, for both deterministic and random sampling, the
error decreases as we increase the size of the sampled graph. Interestingly, if we take the 0-1
adjacency matrix as the input, the error does not decrease, which aligns with the negative result in
Theorem 2.5.1. We further implement the edge smoothing algorithm [47] and find that after the

edge probability estimation, the error again decreases, as implied by Theorem 2.5.2. We remark

that although Theorem 2.5.2 works only for IGN-small, our experiments for the general 2-IGN
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with randomized initialized weights still show encouraging convergence results. Understanding
the convergence of general IGN after edge smoothing is an important direction that we will leave

for further investigation.

2.7 Related Work

One type of convergence in deep learning concerns the limiting behavior of neural
networks when the width goes to infinity [73, 41, 4, 91, 40]. In that regime, the gradient flow on
a normally initialized, fully connected neural network with a linear output layer in the infinite-
width limit turns out to be equivalent to kernel regression with respect to the Neural Tangent
Kernel [73].

Another type of convergence concerns the limiting behavior of neural networks when the
depth goes to infinity. In the continuous limit, models such as residual networks, recurrent neural
network decoders, and normalizing flows can be seen as an Euler discretization of an ordinary
differential equation [150, 27, 106, 126].

The type of convergence we consider in this chapter concerns when the input objects
converge to a limit, does the output of some neural network over such sequence of objects also
converge to a limit? In the context of GNNs, such convergence and related notion of stability
and transferability have been studied in both graphon [124, 78, 50, 125] and manifold setting
[85, 95]. In the manifold setting, the analysis is closely related to the literature on convergence
of Laplacian operator [155, 149, 9, 10, 35].

Lastly, after ICML 2022 conference (where the papaer this chapter is based on is pub-
lished) it is brought to our attention that the characterization of linear permutation equivariant
layers in k-IGN bears similarity in [1]. The pooling and broadcasting operations in [1] are
the same as what we call the "averaging" and "replication" operations in this chapter. This is

discussed in details in Remark 4.
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2.8 Concluding Remarks

in this chapter, we investigate the convergence property of a powerful GNN, Invariant
Graph Network. We first prove a general stability result of linear layers in IGNs. We then prove
a convergence result under the model of [124] for both 2-IGN and high order k-IGN. Under the
model of [78] we first show a negative result that in general the convergence of every IGN is not
possible. Nevertheless, we pinpoint the major roadblock and prove that if we preprocess input
graphs by edge smoothing [165], the convergence of a subfamily of IGNs, called IGN-small,
can be obtained. As an attempt to quantify the size of IGN-small, we also show that IGN-small

contains a rich class of functions that can approximate any spectral GNN.

2.9 Missing proofs

2.9.1 Missing Proofs from Section 2.3

Extension of Partition-norm

There are three ways of extending Partition-norm 1) extend the definition of partition-
norm to multiple channels 2) changing the underlying norm from L, norm to L., norm, and 3)
extend Partition-norm defined for 2-tensor to k-tensor.

First recall the definition partition-norm.

Definition 4 (Partition-norm). The partition-norm of 2-tensor A € R"" is defined as |A]|pn :=

(I\Diag*(A)Hz IAll2

N ’on
as |W|pn = <¢ TW2(u,u)du,\/ ffw2<u,v)dudv).

We refer to the first term as the normalized diagonal norm and the second term as the

). The continuous analog of the partition-norm for graphon W € W is defined

normalized matrix norm. Furthermore, we define operations like addition/comparison on the
partition-norm simply as component-wise operations. For example, ||A||pn < ||B||pn if each of

the two terms of A is at most the corresponding term of B.

.. . 2 .
To extend partition-norm to signal A € R” *¢ of multiple channels, we denote A = A€
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R7*! A4 € R”*] where [, ] is the concatenation along channels. [|A||pn := Y%, ||A.

pn-

both for multi-channel signal both for graphs and graphons.

Another way of generalizing Partition-norm is to change the L, to L., norm. We denote the
resulting norm as || - || pn—co- For W € #/, ||W | pn—o0 := (max,,c o,y W (e, 1), max,cjo 1],vefo,) W (1, v))-
The discrete case and high order tensor case can be defined similarly as the L, case.

. .. k .
The last way of extending Partition-norm to k-tensor X € R” *! is to define the norm

for each slice of X, i.e.,

Xllpn = (L)X [, L) Bl X 11) where 7. € Ty Note

how we order (y1,..., %eu(k)) can be arbitrary as long as the order is used consistent.

Proof of stability of linear layer for 2-IGN

Proposition 2.9.1. For all LE operators T; : R” — R™ of discrete 2-IGN listed in Table 2.1,
| T3 (A)||pn < ||Al|pn for any A € R™. Similar statements hold for Ty : R" — R" and T; : R — R™

in Tables 2.2 and 2.3. In the case of continuous 2-cIGN, the stability also holds.

Proof. The statements hold in both discrete and continuous cases. Without loss of generality,
. . . . . 2 2.
we only prove the continuous case by going over all linear equivariant maps RI01" — RO jp

Table 2.1.

1-3: It is easy to see that the partition-norm does not increase for all three cases.

4-6: Tt is enough to prove case 4 only. Since T(W)(x,u) = [ W (u,v)dv, diagonal norm
||Diag(T(W))||%2 = [(JW(u,v)dv)>du < [[ W?(u,v)dudv. For matrix norm: ||T(W)H%2 =
|Diag(T (W))||L, < Jf W?(u,v)dudv. Therefore the statement holds for this linear equiv-

ariant operation.

7-9: same as case 4-6.

10-11: It is enough to prove the first case: average of all elements replicated on the whole
matrix. The diagonal norm is the same as the matrix norm. Both norms are decreasing so

we are done.
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* 12-13: It is enough to prove only case 12. Since diagonal norm is equal to matrix norm,

and diagonal norm is decreasing by Jensen’s inequality we are done.

* 14-15: Since matrix norm is the same as diagonal norm, which stays the same so we are

done.

As shown in all cases for any W € % with |W||,n < (€,€), || Ti(W)||pn < (€,€). Therefore we
finish the proof for RO 5 RIOI® We next go over all linear equivariant maps RO RO

in Table 2.2 and prove it case by case.

* 1-3: It is enough to prove the second case. It is easy to see diagonal norm is preserved and

IT(W)l[2 = [[Wll2 < &. Therefore [|7(W)]|pn < (&, €).

* 4-5: It is enough to prove the second case. Norm on diagonal is no larger than ||W|| by
Jensen’s inequality. The matrix norm is the same as the diagonal norm therefore also no

large than €. Therefore || T(W)||pn < (€, €).

Last, we prove the cases for R[OJ]Z — RO,

For cases 1-3, it is enough to prove case 2. Since the norm of the output is no large than
the matrix norm of input by Jensen’s inequality, we are done. Similar reasoning applies to cases

4-5 as well. O]
Proof of Theorem 2.3.2

We need a few definitions and lemmas first.

Definition 8 (axis of a tensor). Given a k-tensor X € R™ X! indexed by (namey,...,namey). The

axis of X, denoted as ax(X), is defined to be ax(X) := (namey, ...,namey,).

As an example, the aixs of the first grey sub-tensor in Figure 2.5a, which is a 2-tensor, is

{{1,2},{3}}.
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{{1,2,3}}

//////// \\\\\\\\

{n2h 3 Hn3n{2i  {2.3h{1}}

\\\\\\\\ ////////

{13,{2}, {3}

Figure 2.4. Space of partitions forms a Hasse diagram under the partial order defined in
Definition 10.

Top to bottom corresponds to coarse partition to finer partition.
Definition 9 (replication of a tensor). Given a k-tensor X € R X! indexed by (1,...,k), replicat-

ing X over new axis (k+1,...,k+d) means that the resulting new tensor X' of k+ d dimension

i X! (i1, oy ipy %, ey %) = X (i1, .0y i)

Definition 10 (partial order of partitions). Given two partitions of [k], denoted as y = {1,..., V4, }

and B = {1, ..., Ba, }, we say v is finer than B, denoted as y < B, if and only if 1) y # B and 2)

for any B; € B, there exists y; € 'y such that B; C ¥,.

For example, {{1,2,3}} is finer than {{1,2},{3}} but {{1,2},{3}} is not comparable
with {{1,3},{2}}. Note that space of partitions forms a Hasse diagram under the partial order
defined above (each set of elements has a least upper bound and a greatest lower bound, so that it

forms a lattice). See Figure 2.4 for an example.

Definition 11 (average a k-tensor X over IT). Let X € R"™*1 be g k-tensor indexed by {{1},....,{k}}.
Without loss of generality, let 11 = {{1},...,{d}}. Denote the resulting (k—d)-tensor X', indexed

by {{d+1},....{k}}. By averaging X over I1, we mean

X”Q);::i; Y X(t,).

tedy

The definition can be extended to RIO1 by replacing average with integral.
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Lemma 2.9.2 (properties of partition-norm). We list some properties of the partition-norm.
Although all lemmas are stated in the discrete case, the continuous version also holds. The

statements also holds for || - || pp—e as well.

(a) Let X € R"*! be a k-tensor and denote one of its slices X' € R <1 ywith K < k. If

X |pn < €lpenn(r)> then [| X' [|pn < €lpen(rr)-

(b) Let k' <k. Let X € R™ %1 be g k-tensor and X' € R"™ *1 be the resulting k'-tensor after

averaging over k— k' axis of X. If [|X||pn < €lpenr), then || X'{|pn < €lpen()-

(c) Letk' > k. Let X € R™ 1 pe q k-tensor and X' be the resulting k'-tensor after replicating

X over k' —k axis of X' If [|X ||pn < €lpenr), then [|X'{|pn < €lpen(i)-

(d) Letk' <kand X € R™ X1 be q k-tensor such that it has only one non-zero slice Xy of order

K, ie.,ifac I, X(a)#0, it implies a € . If || Xy||pn < Elpen(wr), then || X ||pn < €lperp)-

Proof. We prove statements one by one. Note that although the proof is done for L, norm, we
do not make use of any specific property of L, norm and the same proof can be applied to L. as

well. Therefore all statements in the lemma apply to || - ||pn—oo as well.

1. By the definition of partition-norm and slice in Definition 6, we know that any slice of X’
is also a slice of X, therefore any component of ||X’||, will be upper bounded by &, which

concludes the proof.

2. Without loss of generality, we can assume that k' = k — 1 as the general case can be handled
by induction. Let the axis of X that is averaged over is axis {1}. To bound || X’||ps, we need
to bound the normalized norm of any slice of X’. Let Xj’,, be arbitrary slice of X’. Since X’
is obtained by averaging over axis 1 of X, we know that le/ is the obtained by averaging
over axis of 1 of Xy, a slice of X, where y:= ¥ U{{1}}. Since ||X||pn < 1lpen(x), we know

that (\/L;l)”’| | Xy|| < &. By Jensen’s inequality, we have (\/LE)M ||X}’,|| < (\/Lﬁ)|7’|||Xy||, and
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therefore (\/lﬁ)”/| ||X}’,|| < e. Since (=) ||X}’,,|| < € holds for arbitrary slice of X', we

L
N
conclude that [|X’|[pn < €1lpen(r)-

The proof above only handles the case of k' = k — 1. The general case where k — k' > 1

can be handled by evoking the proof above multiple times for different reduction axis.

. Similar to the Theorem 2.9.2 (b), we can handle general case by performing induction.
Therefore without loss of generality, we assume X is indexed by ({1},...,{k}) and X' is
indexed by ({1},...,{k+ 1}). Just as the last case, without loss of generality we assume
that X’ is obtained by replicating X over 1 new axis, denoted as {k+ 1}. In other words,
ax(X') = ax(X)U{{k+1}}.

To control ||X’||ps, we need to bound (\/Lﬁ)“’| |X5|| where y € Ty 1. Since X' is obtained
from X by replicating it over {k+ 1}, (ﬁ)m X1l = (\/Lﬁ)‘ﬁ| |Xg|| where B = y]y. As
[X[pn < €lpeiqr) it implies that (\/iﬁ)“’| |Xy| < € holds for any y € ['y. Therefore we

conclude that [|X’|[pn < €lpen(r)-

. To bound ||X||pn, we need to bound the normalized norm of any slice of X. Let Xg be
arbitrarily slice of X where 8 € T;. Since y and 3 are partitions of [k], there exist partitions
that are finer than both 8 and 7y, where the notion of finer between two partitions is defined
in Definition 10. Among all partitions that satisfy such conditions, denote the most coarse

one as o € I'. This can be done because the Iy is finite. Note that |a| < [B| and || < |y].
Since X is a slice of Xy and [|Xy[|pn < €lpen(r), (\%)""| | X«|| < € according to Theo-
rem 2.9.2 (a). As Xy is the slice of Xg (implies || Xy < Xg|| ) and o is the most coarse
partition that is finer than § and y (implies ||Xq/|| > ||Xp|| we have ||Xg|| = [[X¢/|. This
implies (=) P1[Xg || < (J2)1 |1 Xall <e.

As (-L)¥ | Xg| < € holds for arbitrary slice § of X, we conclude that || X ||pn < €Lpey(x)-

1)
U]

Now we are ready to prove the main theorem.
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Theorem 2.3.2 (Stability of LE layers for k&-IGN). Let T, : ROV — RON" pe g basis element
of the space of LEy,,, maps where ¥ € oy . If || X||pn < €lpen(p), then the partition-norm of

Y :=Ty(X) satisfies ||Y ||pn < ELpen(m) for all Y € Ty .

. . . . . 0
Proof. Without loss of generality, we first consider discrete cases of mapping from X € R" to
Y eR™. In general, each element T, of linear permutation equivariant basis can be identified

with the following operation on input/output tensors.

Given input X, (step 1) obtain its subtensor Xy on a certain II; (selection
axis), (step 2) average Xy over I, (reduction axis), resulting in Xy requction- (Step
3) Align Xy reduction On I3 (alignment axis) with Yy and (step 4) replicate Yy along
I14 (replication axis), resulting Yy replication, @ slice of Y. Entries of ¥ outside
Yy replication Will be set to be 0. In general, IT; can be read off from §;-S3.

IT;-I14 corresponds to different axis of input/output tensor and can be read off from different
parts of Sy = §1 US> U S35 as we introduced in the main text. Note such operation can be naturally
extended to the continuous case, as done in Tables 2.1 to 2.3 for 2-IGN. We next give detailed

explanations of each step.

{1}

{2}
{3}

Figure 2.5. Five “slices” of a 3-tensor, corresponding to bell(3) = 5 partitions of [3]. From left

toright: a) {{1,2},{3}} b) {{1},{2,3}} o) {{1,3},{2}} d) {{1},{2},{3}} o) {{1,2,3}}.

First step (X — X): select X, from X via IT;.

I, corresponds to

Slig ={sN[l]| s € Sand sN[]] # 0}.

It specifies the what parts (such as diagonal part for 2-tensor) of the input /-tensor is under

consideration. We denote the resulting subtensor as Xy. See Definition 6 for formal definition.
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As an example in Equation (2.3), IT; corresponds to {{1,2},{3}}, meaning we select a 2-tensor
with axises {1,2} and {3}. Note that the cardinality |S|;| = |(S1 US2)|(y| < [ encodes the order
of Xy.

Second step (Xy — Xy reduction): average of X, over Il,. Il corresponds axes in
Sy C S| ¢]> Which tells us along what axis to average over Xy. It will reduce the tensor X, of order
|S1] + 52|, indexed by S|y, to a tensor of order ||| —[S1] = [S2/, indexed by S> ;. Recall the
definition of "averaging" in Definition 11.

In the example of Figure 2.6, this corresponds to averaging over axis {{1,2}} , reducing
2-tensor (indexed by axis {1,2} and {3}) to 1-tensor (indexed by axis {3}). The normalization
factor in the discrete case is n/51l. We denote the tensor after reduction as Xy reduction-

As the second step performs tensor order reduction, we end up with a tensor Xy reduction
of order |S;|. The next two steps will describe how to fill in the output tensor Y using Xy reduction-
To fill in ¥, we will first align Xy requction With Yy, a subtensor of Y, in the third step. We then
replicate Yy on Iy in the fourth step, resulting in Yy repiication, @ Sub-tensor of Y. Finally, we fill
all entries of Y outside the subtensor Yy to be zero.

Third step (Xy requction — Yy): align X reduction With Yy. To fill in ¥, we need to specify
how the resulting | S5 |-tensor Xy reduction 1S aligned with a certain |S5|-subtensor Yy of Y. After all,
there are many ways of selecting a |S;|-tensor from Y, which is indexed by {{/+1},...,{¢+m}}.
Specifically, set Yy be the |S>|-tensor indexed by S5, +[m]- We next define the precise relationship
between Xy reduction and Yy. Xy reduction is indexed by S2|m while Y, is indexed by S| I+[m) and
defined to be Yy(-) = Xy reduction(-). In the example of Figure 2.6, Xy reduction is @ 1D tensor
indexed by {3} and Y, (the grey cuboid on the right cube of Figure 2.6) is indexed by {6}.

Fourth step (Yy — Y replication): replicating Yy over I1y. Iy corresponds to axes in S3.
It will be used to specify along what axis (axes) we will replicate the |S,|-tensor Y}, over. Recall
that Yy is indexed by S»| 1+[m] L€t Yy replication be @ subtensor of ¥ € R" indexed by (S, US3)] I+[m]-
Obviously, the tensor Yy output from the Third step is a subtensor of Yy replication- Without loss of

generality, let the first |S> | component are indexed by S5 |; +[m) and the rest components are indexed
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by S3; +[m]- The mathematical definition of the fourth step is then Yy replication (++ 1) := Yy(+) for all
t € [n] 153, Note that the order of Yy replication €an be smaller than order of Y.

The example in Equation (2.3) has S3 = {{4},{5}}, which means that we will replicate
the 1-tensor along axis {4} and {5}. Note that in general, we do not have to fill in the whole

m-tensor (think about copy row average to diagonal in Table 2.1).

{{1,2},43,6}, {4} ,{5}}

2 A= {4}

| =T o

161
165

Figure 2.6. An illustration of the one basis element of the space of LE3 3. It selects area spanned
by axis {1,2} and {3}, average over the axis {1,2}, and then align the resulting 1D tensor with
axis {6}, and finally replicate the slices along axis {4} and {5} to fill in the whole cube on the
right.

After the interpretation of general linear equivariant maps in k-IGN, We now show that if
[X[pn < €Lpen(e) then Ty(X) < €lyey(y holds for all y. This can be done easily with the use of
Theorem 2.9.2.

For any partition of [¢+m] ¥, according to the first step we are mainly concerned about the
[|Xypn instead of ||X||pn. Since Xy is a slice of X, then if || X||pn < €1peri(ora(x))» by Theorem 2.9.2
(@), then || Xy[[pn < €Xpern(js,|+(s,))-

According to the second step and Theorem 2.9.2 (b), we can also conclude that || Xy reduction||pn <

€lbell(]s,|)-

For the third step of align Xy reduction With Yy, it is quite obvious that ||Yy||pn = || Xy.reduction||pn <

€1peii(|s,))-

For the fourth step of replicating Yy over Il4 to get Yy replication, by Theorem 2.9.2 (c), we

have HYy,replicatioann < 81bell(|S2\+|S3\)-
Lastly, we evoke Theorem 2.9.2 (d) to get ||Y|[pn < €lpeii(m)> Which concludes our proof.

]
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Remark 4 (On the difference from Incidence Networks for Geometric Deep Learning.). A
recent preprint Incidence Networks for Geometric Deep Learning [1] characterize the linear
equivariant maps between incidence tensor, which encodes the combinatorial structure of graphs
and its higher order analog simplicial complex and polytopes. [1] characterizes the linear
permutation equivariant maps in terms of pooling and broadcasting operations. The pooling
and broadcasting operations is the same as the averaging and replication operation defined in
Definition 11 and Definition 9.

The main difference of [1] from this chapter is 1) their motivation is to characterize
the linear permutation equivariant maps between incidence tensors while in this chapter, the
similar characterization (in the case of linear permutation equivariant maps of k-IGN) serves
as a building block for our convergence proof; 2) the characterization in [1] is slightly more
general as incidence tensor can have different length for different axis while tensors considered
in our case has the same length across all axis.

2.9.2 Missing Proofs from Section 2.4 (Edge Weight
Continuous Model)

First we need a lemma on the distribution of gaps between n uniform sampled points on

0,1].

Lemma 2.9.3. Let u(;) be n points uniformly sampled on [0, 1], sorted from small to large with
(o) =0and u, 1= 1. Let D; = u(;) — u(;_y). All D;s have same distribution, which is Beta(1,n).

In particular, expectation of D; E(D;) = ﬁ E(D?) = m E(D}) = m.

Proof. By a symmetry argument, it is easy to see that all intervals follow the same distribution.
For the first interval, the probability all the n points are above x is (1 —x)" so the density of the
length of the first (and so each) interval is (1 —x)"~!. This is a Beta distribution with parameters
o = 1 and B = n The expectation of higher moments follows easily. Note that although the

intervals are identically distributed, they are not independently distributed, since their sum is

1. U
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Lemma 2.9.4. Let X € ROUX4 pe an As-Lipschitz graphon signal satisfying AS3, and let 5(;
and X, be the induced graphon signal as in Egs. (2.4) and (2.5). Then we have i) ||X — X, ||pn

converges 1o 0 and ii) | X — X,|| pn converges to 0 in probability.

Proof. We first bound the || X — X ||z, (0,1 and [|X — X, L,[0,1]- For the first case, partitioning the
unit interval as I; = [(i — 1) /n,i/n] for 1 <i < n (the same partition used to obtain x,, and thus

X, from X), we can use the Lipschitz property of X to derive

1/n A2
2 2 2, A3
1X = XallZ, 1, <A3/O wdu= =5

Az

. 2
We can then write HX_X"HiZ([OJD =L IX =X,y < 5%

Az
3n2"

For the second case, since [|X —ZH%MO ) = Li ||X —ZH%Z([,) , we will bound the
2

which implies that || X — X[ 7,((0,1]) <

HX—)?; . As

Ly (L)

Jx-x.

2 D;
gA%/ wldu = AsD3 /3
Ly(I)) 0

therefore

x=x.

2
<A D3
La(n) 3/3; ’

? HX X,
L) Z,' "

where D; stands for the length of [;, which is a random variable due to the random
sampling.

According to Theorem 2.9.3, all D; are identically distributed and follows the Beta

distribution B(1,n —1). The expectation E(D;) = m. Since by Jensen’s inequality

E(\Y) < \/E(Y) holds for any positive random variable Y, E ( % Y, D}) < \/E(% Y, D}) =

‘% n(n1+2) = @(%) Using Markov inequality, we can then upper bound the
Az 3
— Az E(\/F¥LiD;) 1
PX -l > &) <P |2 ED}2e) < — 20 —e( ) @l
i
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Since the P(||X — X, |L,(1) = €) goes to 0 as n increases, we conclude that || X — X, | pn converges

to 0 in probability. [

probability.

Proof. For the first case, partitioning the unit interval as I; = [(i — 1) /n,i/n] for 1 <i< n, we

can use the graphon’s Lipschitz property to derive

1/n rl/n I/n r1/n Ay Ay A
||W_Wn||L1(1ix1j) <A1/O /0 |u|dudv+A1/0 /0 [v|dvdu = 2_n3+ P

We can then write [W =W, ||, (0.12) :Z,-7j||W—W,,||L1(IiX, <n —31:A1 which, since W —W,, :

(0,12 — [—1,1], implies IW = Wall,0.12) < \/||W—Wn||Ll([071]z \/ . The second last

inequality holds because all entries of W — W, lies in [—1, 1].

Similarly, [|Diag(W —Wa)[1,p0,1] < \/IIDiag(W ~ W)y, < \/20A1 fy " udu= /AL,

Therefore we conclude the first part of the proof.

For the second case, diagonal norm is similar to the proof of Theorem 2.4.2 so we only

focus on the [[W —Wal|1,0,12)- Since W — W, : [0,1]% — [—1,1] implies

W — W, (0,112 \/||W A Iy (o1p2) = \/Z”W Wi Ly (1<)

where
W =WallL, (ix1;) < A ] |u|dudv+ A, L lv|dvdu = 7(D,~Dj+Dle-)

Therefore

IW ~Walloor) < A/ IW = Walloy o) 2 DD} DD} = [MEDF 1
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where we use the ¥; D; = 1 for the last equality. Since by Jensen’s inequality E(v/Y) < \/E(Y)
for any positive random variable Y, E(1/Y,;D?) < \/E(Y;D?) = @(\/Lﬁ) since E(D?) = O()

by Theorem 2.9.3. By Markov inequality, we then bound

. — E(\/ZiDlz) 1
P([[W =Wl 0,112 > €) < P(\/HW_WV!HLI([OJP) >€) < - < G(\/ﬁe)

Therefore, we conclude that both ||[W — W, ||, and ||W — A || pn converges to 0.

Proposition 2.9.6 (Stability of ®.). If cIGN ®, : RO xdn _y R sarisfy AS2, AS4 and
HWI _WZHpn < €1y, then Hq)c(Wl) _q)c(WZ)Hpn = HCI)C(Wl) _(I)c(WZ)”Lz < C(A2)8 . The same

statement still holds if we change the underlying norm of Partition-norm from L t0 L.

Proof. Without loss of generality, it suffices to prove for 2-IGN as k-IGN follows the same proof
with the constant being slightly different. Since we have proved stability of every linear layers of
IGN in Theorem 2.3.2, the general linear layer 7 is just a linear combinations of individual linear
basis, i.e. T =}, ¢yTy where ¢; < A; for all i according to AS2. Without loss of generality, We

can assume 7' (X) is of order 2 and have

I7(W1) = T(W2)llpn = || 3 ey Ty (Wi — Wa)l|pn
l
<Y lleyTy (Wi — Wa)lpn
i

< (Y leyle, Y leyle) = (15A2¢,15A,¢)
To extend the result to nonlinear layer, note that AS4 ensures the 2-norm shrinks after
passing through nonlinear layers. Therefore |6 oT(X) —coT(Y)|pn < ||T(X) =T (Y)|lpn =

|T(X =Y)||pn < 15A2||X —Y||,n. Repeating such process across layers, we finish the proof of

the L, case.
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The extension to L. is similar to the case of L, norm. The main modification is to change
the definition of the partition-norm from L; norm on different slices (corresponding to different
partitions of [¢] where / is the order of input) to L., norm. The extension to the case where input

and output tensor is of order ¢ and m is also straightforward according to Theorem 2.3.2.

]

Theorem 2.4.4 (Convergence of cIGN in the edge weight continuous model). Under the fixed

sampling condition, IGN converges to cIGN, i.e., | D, ([W,Diag(X)]) — ®.([Wy,Diag(X,)])||L,
converges to 0.

An analogous statement hold for the random sampling setting, where

|®.([W, Diag(X)]) — ®.([W,, Diag(X,)]) ||z, converges to 0 in probability.

Proof. By Theorem 2.9.6, it suffices to prove that ||[W,Diag(X)]) — [W,,Diag(X,)]||pn and
|[W, Diag(X)]) — Wy, Diag(X,)]||pn goes to 0.

| [W,Diag(X)]) — [W,,, Diag(X,)]|/pn is upper bounded by (@(%) @(%)) according to
Theorems 2.4.2 and 2.4.3, which decrease to 0 as n increases. Therefore we finish the proof of
convergence for the deterministic case.

For the random sampling case, by Theorems 2.4.2 and 2.4.3, we know that both
W —W,|| Ly(jo,112) and [[X — X, | ,(1) goes to 0 as n increases in probability at the rate of G)( s ).
Therefore we can also conclude that the convergence of IGN in probability according to Theo-

rem 2.9.6. ]

2.9.3 Missing Proof from Section 2.5 (Edge Probability Continuous
Model)

Missing Proof for Section 2.5.2

Theorem 2.5.1. Given any graphon W with ¢y < 1 and an IGN architecture (fix hyper-
parameters like number of layers), there exists a set of parameters 0 such that convergence

of IGNy to cIGNy is not possible, i.e., RMSEy (P, ([W,Diag(X)]),®4([A,, Diag(x,)])) does
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not converge to 0 as n — oo, where A, is 0-1 matrix generated according to Eq. (2.7), i.e.,

Anli][Jj] = ai j

Proof. Given a fixed IGN architecture @, that maps input R xd1 ¢ R"kx‘b, it suffices to show
the case of k =1 and d, = 1. Under the case of k = 1 and d, = 1, it suffice to show that single
layer IGN may not converge. Let IGN = o o LW have only one linear layer, and let the input
to IGN be A in the discrete case and W in the continuous case. For simplicity, we assume that
graphon W is constant p on [0, 1]?. As A consists of only 0 and 1 and all entries of W is below
Cmax> We can set weights of IGN such that its first linear layer consists of only identity map and
bias term. By choosing bias term to be any number between [—1, —cmax], L map any number
no large than ¢y« to negative and maps 1 to positive.

Therefore L") (W) = 0 and L") (A) is a positive number ¢ € Rt on entries (i, j) where
A(i,j) = 1. Let & be ReLU and L) be average of all entries. We can see that c/GN (W) = 0 for
all n while IGN(A) converges to ¢ (c)p as n increases.

As the construction above only relies on the fact that there is a separation between ¢pax
and 1 (but not on size n), it can be extended to deeper IGNs , which means the gap between
cIGN(W) and IGN(A) will not decrease as n increases. In the general case of W not being
constant, the only difference is that IGN(A) will converge to be o (c)p* where p* is a different

constant that depends on W. Therefore we conclude the proof. [l

Remark 5. The reason that the same argument does not work for spectral GNN is that spectral
GNN always maintains Ax in the intermediate layer. In contrast, IGN keeps both A and Diag(x)

in separate channels, which makes it easy to isolate them to construct counterexamples.
Missing Proofs from Section 2.5.3

Notation. For any P,Q € R"*", define d, ., the normalized 2,0 matrix norm, by
droo(P,Q) = 0\ /2||P — Q|20 := max;n~'/?||P. — Q;.||, where P,.,Q;. are i-th row of P and

- 1
Q, respectively. Note that da «o(P,Q) > . ||P — Q|2.
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Let Sy be the sampling operator for W, i.e., Sy (W) = LW (U;,U;)]xs. Note that as U is
randomly sampled, Sy is a random operator. Denote S, as sampling on a fixed equally spaced
grid of size n x n, i.e. S,W = %[W(fl, ,il)]nxn S, is a fixed operator when n is fixed.

Let W, be the estimated edge probability from graphs A sampled from W. Let W,
be the piece-wise constant graphon induced from sample U as Eq. (2.5). Similarly, denote
W< be the n x n matrix realized on sample U, i.e., W, x,[i, j] = W (u;, u;). Itis easy to see that
Suy(W) = %Wan- Let I/m be the graphon induced by W, ,, with n X n blocks of the same size.
In particular, W,:;;(I,- x 1) =W (ug),u(j)) where I; = [%, 1], E in the subscript is the shorthand
for the “blocks of equal size”. Similarly we can also define the 1D analog of W:l and m )A(,;
and )?n\;;

Proof strategy. We first state five lemmas that will be used in the proof of Theorem 2.5.2.
Theorem 2.9.7 concerns the property of normalized sampling operator Sy and S,,. Theorems 2.9.8
and 2.9.9 concern the convergence of ||W, — W||,_ and HVT/;;; —W/||r... Theorem 2.9.10 charac-
terize the effects of linear equivariant layers 7 and IGN & on L., norm of the input and output.
Theorem 2.9.11 bounds the L., norm of the difference of stochastic sampling operator Sy; and
the deterministic sampling operator S,. Theorem 2.5.2 is built on the results from five lemmas
and the existing result on the theoretical guarantee of edge probability estimation from [165].

The convergence some lemmas states is almost surely convergence. Convergence almost
surely implies convergence in probability, and in this chapter, all theorems concern convergence
in probability. Note that proofs of Theorems 2.9.7 to 2.9.9 and 2.9.11 for the W and X are almost

the same. Therefore without loss of generality, we mainly prove the case of W.

Definition 12 (Chessboard pattern). Let u; = % for all i € [n]. A graphon W is defined to
have chessboard pattern if and only if there exists a n such that W is a piecewise constant on
(i, uip1] % [uj,ujq1] for alli, j € [n]. Similarly, f :[0,1] — R has 1D chessboard pattern if there

exists n such that f is a piecewise constant on [uj,uj1] for all i € |n).

See Figure 2.7 for examples and counterexamples.
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(@) (b) © @ (e

Figure 2.7. (a) and (c) has chessboard pattern. (e) has 1D chessboard pattern. (d) does not has
the chessboard pattern. (b) is of form Diag(f, £) and also does not have chessboard pattern, but
in the case of IGN approximating Spectral GNN, (b) is represented in the form of ¢).

Lemma 2.9.7 (Property of S,, and Sy). We list some properties of sampling operator Sy and S,,

1. Sy oo = ooSy. Similar result holds for S,, as well.

2. |ISv fiall < I f14llL..

where f14:[0,1] — R. Similar result holds for f>4:[0,1]> — R and S, as well.

Lemma 2.9.8. Let W be 0,112 — R and X be [0,1] — R. If W is Lipschitz, |W, — W||._

X, — X ||lL.. converges to 0 in probability.

converges to 0 in probability. If X is Lipschitz,

Proof. Without loss of generality, we only prove the case for W. By the Lipschitz condition
of W, if suffices to bound the Z, = max’_,D; where D; is the length of i-th interval |u(,~) -
U1y |. Characterizing the distribution of the length of largest interval is a well studied problem
| ot 1 ,
[121, 118, 65]. It can be shown that Z, follows P (Z, < x) = Z”+ (—=1)7(1— jx)L
J
with the expectation E(Z;) = - +1 Yyl 1 = (lof “). By Markov inequality, we conclude that

|W,, — W||. converges to 0 in probability.
]

Lemma 2.9.9. Let W be [0,1]> — R and X be [0,1] — R. If W is Lipschitz,

E WL,

converges to 0 almost surely. If X is Lipschitz, Xn’E — X ||1.. converges to 0 almost surely.

Proof. As m is a piecewise constant graphon and W is Lipschitz, we only need to examine

max; ;||(W — WnE)( ).

n’n
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It is easy to see that (W — m)(ﬁ, ﬁ) =W(L, 1) — W (u;),uj)) where u; stands for the
i-th smallest random variable from uniform i.i.d. samples from [0, 1]. By the Lipschitz condition
of W, if suffices to bound || — upll + ||ﬁ —u(j||- Glivenko-Cantelli theorem tells us that the L
of empirical distribution F;, and cumulative distribution function F' converges to 0 almost surely,
i.e., sup,c(o 1 |F () — Fy(u)| — 0 almost surely. Since max;||u ;) — i) = supue{u(l),_“’u(n)}|F(u) —

Fy(u)| < sup,¢jo )| F (u) — Fp(u)| when F(u) = u (cdf of uniform distribution), we conclude that

Hm — W||L., converges to 0 almost surely.

We also need a lemma on the property of the linear equivariant layers 7.

Lemma 2.9.10 (Property of T, and ©). Let ¢ be nonlinear layer. Let T, be a linear combination
of elements of basis of the space of linear equivariant layers of cIGN, with coefficients upper

bounded. We have the following property about T, and &

1. If W is Lipschitz, T,(W) is piecewise Lipschitz on diagonal and off-diagonal. Same

statement holds for ®.(W).

2. 8,00(Wnr) =00S,(Wor).
Proof. We prove two statements one by one.

1. We examine the linear equivariant operators from RO to RIO1? i Table 2.1. There
are some operations such as “average of rows replicated on diagonal” will destroy the
Lipschitz condition of 7.(W) but T..(W) will still be piecewise Lipschitz on diagonal and
off-diagonal. Since ¢ will preserve the Lipschitzness, ®.(W) is piecewise Lipschitz on

diagonal and off-diagonal.

2. This is easy to see as O acts on input pointwise.
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Lemma 2.9.11. Let W be [0,1]> = R

1. If W is Lipschitz,

SuW — S, W|| converges to 0 almost surely. Similarly, if X is Lipschitz,

||SuDiag(X) — S,Diag(X)|| converges to 0 almost surely.

2. If W is piecewise Lipschitz on S| and S where Sy is the diagonal and S, is off-diagonal,

then ||SyW — S,W|| converges to 0 almost surely.
Proof. Since the case of X is essentially the same with that of W, we only prove the case of W.

1. As n[|SyW — S, Wl > [|SyW — S, W

, it suffices to prove that n||SyW — S,W e =
max; j|W (ugy, ujy) — W (L, 1)| converges to 0 almost surely. Similar to Theorem 2.9.9,

n’n

using Lipschitz condition of W and Glivenko-Cantelli theorem concludes the proof.
2. This statement is stronger than the one above. The proof of the last item can be adapted
here. As W is A Lipschitz on off-diagonal region and A, Lipschitz on diagonal,

iJ
W (g, ucy) —Wi(=,>)

nHSUW—S,,WHoo:maXiJ 2

i
W (uiy,uj)) _W(Z’Z)D :

[ ]
=max (max,;h W(u(i),u(j)) _W(Z7 ;)' , MaX;=j

Using Lipschitz condition on diagonal and off-diagonal part of W and Glivenko-Cantelli

theorem concludes the proof.

With all lemmas stated, we are ready to prove the main theorem.

Theorem 2.5.2 (convergence of IGN-small in the edge probability discrete model). Assume AS
1-4, and let W,,.,, be the estimated edge probability that satisfies %Han n— WanHz converges to
0 in probability. Let ®., P, be continuous and discrete IGN-small. Then

RMSEy <<I>c ([W,Diag(X)]), P, <[an n,Diag()E;)])) converges to 0 in probability.
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Proof. Using the triangle inequality

RMSEy (P, ([W,Diag(X)]) , P4 ([ann, Diag(fc;)]))

= ||Sy. (W, Diag(X)]) - %% (1<, Diag(5,)]) H

= |[Syc ([W, Diag(X)]) — Sy®c ( Wy, Diag(X,)])
+ Sy ( (W, Ding(X,)] ) — @aSu (W, Diag(5,)])

+ @Sy (W, Diag(X,))) —%q>d<[wnxn,1>iag®>]>||

< ‘SUQDC ([W,Diag(X)]) — Sy®. <[W"’D‘ag > H

.

vV
First term: discretization error

+ v (7, Diag(5,)]) — 817, D ()|

TV
Second term: sampling error

v%cbd ()]

Third term: estimation error

+ || ®uSy ([Wn, Diag(X,)]) - (2.13)

J/

The three terms measure the different sources of error. The first term is concerned with the
discretization error. The second term concerns the sampling error from the randomness of U.
This term will vanish if we consider only S,, instead of Sy for IGN-small. The third term concerns
the edge probability estimation error.

For the first term, it is similar to the sketch in Section 2.5.3. ||Sy®,([W,Diag(X)]) —
Sy ([Wa, Diag(X,)])| = |ISu (@c([W, Diag(X)]) — ®c([Wy, Diag(X,)]))l. if suffices to upper
bound ||®,([W, Diag(X)]) — @, ([W,, Diag(X,)])|| ... according to property of S in Theorem 2.9.7.
Since || @ ([W, Diag(X)]) — Pc([Wn, Diag (X)) . < C(|W ~Wy|r.. + | Diag(X) — Diag(X,)l|r..)
by Theorem 2.9.6, and |W — W, || .. converges to 0 in probability according to Theorem 2.9.8,
we conclude that the first term will converges to O in probability.

For the third term || ®ySy ([Wy, Diag(X,,)]) — ﬁ@d([ann,Diag(@)DH
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= || J5 (@a (Wi, Diag(%2)]) — Pa([Waxn, Diag(%:)]))[|= [[@a([Woxn, Diag(%)]) -
@ ([Wascn Diag()]) lpns
it suffices to control the ||[Wyx, Diag(%n)] — [Wasxn, Diag(%n)]lon = [|[Wasxn — Wi |2 <
|Wsn — I//I\/nxn||27oo, which will also goes to 0 in probability as n increases according to the
statistical guarantee of edge probability estimation of neighborhood smoothing algorithm [165],
stated in Theorem 2.2.1. Therefore by Theorem 2.9.6, the third term also goes to 0 in probability.
Therefore the rest work is to control the second term ||Sy®, ([I/Vn, Diag(i,)]) -

DSy ([WZ,Diag(Z)]) ||. Again, we use the triangle inequality

Second term
= |[su. (W, Diag(X,)]

+ ‘ S, e ([V%,Diag(fﬁ)]) — @Sy ([W/nDiag(j(;)]) H

)
(Wi, Diag(X, )
&)

)|
|+ |[Suoc (W, Diag(Xs2)]) — @uSa(Wa, Diag (%) |
|

(W, Diag(X,

S
)
o
(0]
~
x|
=
N— N N N
\
%
e
/\/_\/_\

< [Su e (Wi, Diag(X,)]) — Su e ([Woz, Diag(X,.2)]

N—

‘ + ’SU<1>C ([@,Diag(}?ﬁ)}) —5,®, ([W,Z;,Diag(i,;)]) H

= }sw d%([Wn,Diago?;)])fcbc([Wn,E,Diag(xn,Eﬂ)H+H<Swsn)<bc (W Ding(X,2)]) |

term a term b

The second equality holds because Sy ([W,,, Diag(X,)]) = Sn([VT/,:g,)?,E]) by definition

of V/V;;— and IGN-small (See Remark 6 for more discussion). The third equality holds by the

definition of IGN-small. We will bound the term a) ||Sy (®c([W,, Diag(X,)]) — @ ( (W, E,)?,,T;])) I
and b) || (Sy — $u) @ ([Wy. &, Diag(X,, £)])|| next.

For term a) ||Sy (®.([W,, Diag(X,)]) — CIDL([Vm,)?;;;])) ||, if suffices to prove that
| D ([Wy, Diag(X,)]) — (I)C([Vm,)m])) ||.. converges to O in probability. According to Theo-
rem 