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ABSTRACT OF THE DISSERTATION

Verifying Correctness of Persistent Memory Programs

By

Hamed Gorjiara

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2022

Professor Brian Demsky, Chair

Persistent memory (PM) technologies offer performance close to DRAM with persistence.

Persistent memory enables programs to directly modify persistent data through normal load

and store instructions bypassing heavyweight OS system calls for persistency. Ensuring that

these programs are crash-consistent (i.e., power failures) is a major challenge. Stores to

persistent memory are not immediately made persistent — they initially reside in processor

cache and are only written to PM when a flush occurs due to space constraints or explicit

flush instructions. It is more challenging to test crash consistency for PM than for disks given

the PM’s byte-addressability that leads to significantly more states. Most of the existing

state-of-the-art testing tools require heavy user annotations, report violations that may not

correspond to actual bugs, do not test the recovery procedure, and rely on a test suite to

cover all test scenarios.

This dissertation describes three different testing tools to verify the crash consistency of

persistent memory programs:

1. Jaaru: a fully-automated and ultra-efficient model checker for PM programs. Key to

Jaaru’s efficiency is a new technique based on constraint refinement that can reduce

the number of executions that must be explored by many orders of magnitude. This

xiii



exploration technique effectively leverages commit stores, a common coding pattern,

to reduce the model checking complexity from exponential in the length of program

executions to quadratic.

2. PSan: a tool introducing robustness as a sufficient correctness condition to ensure that

program executions are free from bugs resulting from missing flushes. PSan implements

an algorithm for checking robustness. This tool can help developers both identify silent

data corruption bugs and localize bugs in large traces to the problematic memory

operations that are missing flush operations.

3. Yashme: a tool that can detect a novel class of crash consistency bugs for persistent

memory programs, which we call persistency races. Persistency races can cause non-

atomic stores to be made partially persistent. Persistency races arise due to the

interaction of standard compiler optimizations with persistent memory semantics. A

major challenge is that in order to detect persistency races, the execution must crash

in a very narrow window between a store with a persistency race and its corresponding

cache flush operation, making it challenging for naive techniques to be effective. Yashme

overcomes this challenge with a novel technique for detecting races in executions that

are prefixes of the pre-crash execution. This technique enables Yashme to effectively

find persistency races even if the injected crashes do not fall into that window.

These testing frameworks were capable of finding many bugs in well-tested applications

ranging from persistent data structures to real-world frameworks. These bugs are reported to

the developers of these frameworks and most of them are confirmed and the corresponding

fixes are available on their Github repositories.
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Chapter 1

Introduction

Persistent memory (PM) technologies, such as phase change memory (PCM) [97, 154,

165], resistive random-access memory (RRAM) [153], Spin-Transfer Torque memory (STT-

MRAM) [90], or 3D XPoint [32], promise to combine the performance and flexibility of DRAM

with the persistency of flash storage. Persistent memory revolutionizes the storage-memory

hierarchy [124, 133, 75]. This technology became commercially available with Intel’s release

of Optane DC Persistent Memory [74]. In terms of pricing, such PM technologies are even

cheaper than DRAM per GB of capacity [4]. Persistent memory interfaces with the processor

via the memory bus similar to DRAM, providing byte-addressable storage access to programs

via processor load and store instructions. This enables PM to provide programs with a

new level of performance by enabling them to manipulate data directly without needing

heavyweight OS system calls. Persistent memory can potentially change the way programs ma-

nipulate data structures to achieve greater performance; with PM, programs can use a single

copy of a data structure both as an in-memory working data structure and as a persistent store

of the data, eliminating the overhead of serialization and deserialization of data in the program

executions. The low latency and durability of PM have spurred the development and redesign

of file systems [40, 91, 92, 110, 150, 156, 158, 159, 28, 83], databases [7, 93, 35, 113, 127],
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log-based systems [103, 27, 81, 102, 50, 69], key-value stores [26, 155, 157, 84, 166, 170, 64],

and concurrent DRAM indexes [25, 164, 98, 129, 149, 172, 19] for persistent memory.

1.1 Primary Challenge of Using Persistent Memory

While persistent memory offers great performance, it is very challenging to write frameworks

for persistent memory that are both correct and efficient [126, 30, 36, 108, 107, 85, 22, 31,

66, 112, 114]. The main challenge is raised by the fact that stores are not immediately

written to persistent memory after getting issued by CPU. These stores are initially written

to volatile cache. The persistent memory is only eventually updated when the cache line

is written back. The cache system might decide to write back the modified cache lines to

persistent memory in any arbitrary order due to space constraints. Writing correct PM-based

applications is especially challenging because the cache and CPU registers are volatile and

their contents vanish after failures, e.g., due to a system crash or a power failure. Consequently,

a poorly-timed crash can yield data inconsistency in the persistent data structure.

To elaborate on this problem, let’s consider a program example in Figure 1.1-a. For this

program, we assume variables x and y are located on different cache lines. When this program

runs, the stores x = 1 and y = 2 update the cache lines corresponding to the variables x

and y, but they are not written to persistent memory yet. If the program crashes in this

state, the data on the modified cache lines are lost since the cache is volatile. Consequently,

none of these stores can become persistent and be observed by the post-crash execution.

Another scenario is that after the cache is updated with the store y = 2, the cache becomes

full. Depending on the cache eviction policy, the cache line containing the variable y may be

written back to persistent memory before the cache line containing the variable x. In this

scenario, the persistency order becomes different from the volatile memory order defined in

the program in Figure 1.1-a. This can be problematic if the system failure happens before
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the cache line containing the variable x becomes persistent. In this scenario, if the post-crash

execution reads from variable x and y, it observes the value 2 for y without observing the

store x = 1. This can cause data inconsistency bugs in the program.

1 x = 1;

2 y = 2;

(a) Incorrect program.

1 x = 1;

2 flush x;

3 y = 2;

4 flush y;

(b) Correct program.

Figure 1.1: (a) An example of normal program without proper flush operations (b) with
proper flush operation. In this example we assumed x and y are located in different cache
lines.

Processor manufacturers have introduced new instructions such as CLWB and SFENCE on x86 [73],

and DC CVAP on ARM [6], to force cache lines to be written back to persistent memory. Thus,

developers can use these instructions to enforce the persistency order to be as same as the

program order. Developers of PM programs need to carefully use these instructions since

a missing flush instruction can make a program vulnerable to crash consistency bugs. In

addition, these instructions have performance overhead, and excessively using them yields

performance degradation. Therefore, using these instructions correctly is very challenging;

it requires both subtle reasoning about the ordering of memory operations and attention

to detail to not miss persisting any of the many stores a program may perform. Moreover,

testing the correctness of persistent storage code w.r.t. failures is challenging. Exposing a

bug requires that the machine fails at a specific instruction and depends on the state of the

cache before the failure.

These challenges prompted us to work on techniques and approaches to improve the reliability

of applications and frameworks that use persistent memory. In the rest of this chapter, we

describe three key challenges in developing applications for persistent memory. Then, for each

of them, we describe our solution and the primary idea behind it to address the challenges

and to identify various crash consistency bugs in persistent memory programs.
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1.2 Model Checker

The problem of PM consistency has received much attention. There is a line of recent work

on testing/dynamically checking a PM program to find consistency-related bugs. XFDetec-

tor [107] uses a finite state machine to track the consistency and persistency of persistent

data by implementing a shadow PM, and with the help of user-provided annotations to

identify commit variables. XFDetector only shows violations of programming patterns for

consistency and does not generate an execution that shows how the violation can actually

lead to a bug. Moreover, it only supports scenarios in which a single failure occurs and

ignores the possibility of the occurrence of failures in the post-failure execution. Different

from XFDetector [107], PMTest [108] computes the persistency status of writes and ordering

constraints between writes. Developers must annotate the code with checking rules to ensure

that the code establishes the correct persistency and ordering properties. PMTest only

executes the pre-failure portion of the program and thus does not test failure recovery, which

may also contain bugs.

Pmemcheck [85] is a binary rewriting tool that checks how many stores were not made

persistent and detects memory overwrites, redundant flushes, and unnecessary flushes [85].

Similar to PMTest, Pmemcheck also requires user annotations and only executes the pre-failure

execution.

These testing-based bug-finding tools suffer from two major drawbacks: (1) They need users

to add extra annotations for various cache line flushing properties, which not only incur

burdens on users but also are error-prone themselves. Consequently, if the developer misses

an annotation or adds an incorrect annotation, the tool will have false negatives and miss

real bugs or have false positives and report bugs that are not real. (2) Violations they report

are with respect to design principles and may or may not correspond to actual bugs, e.g.,

certain tools report data has not been flushed. However, in some cases, the data may never
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be accessed in future executions. Thus, the absence of a flush is a false positive that does not

represent a real bug. (3) Most of these testing tools do not test the recovery procedure and

dismiss the possibility of occurrence of system crashes in the recovery code. (4) Some of these

tools are testing-based and only test the running example and they require a test suite that

covers all testing scenarios to fully test the program. These drawbacks call for techniques

such as model checking that can exhaustively explore states without needing manual effort

and provide strong witnesses (e.g., executions) for bugs exposed.

Model checking has been used extensively in the systems community (e.g., EXPLODE [162],

FiSC [163], or SAMC [99]) to find bugs in file/storage systems. However, there are several

fundamental differences between the file system bug problem and persistent memory crash

consistency problem that preclude direct application of existing model checkers in the PM

setting: (1) disks have a fundamentally different programming interface than PM ; updates

to a disk block are only made upon making an explicit write request, (2) disks have a larger

block size and therefore there are fewer possible states to enumerate, and (3) operating

systems receive explicit notifications of when disk blocks are written. All of these factors

combined indicate that the state space to be explored for model checking disks is significantly

smaller than that for PM programs.

In fact, a recent technique Yat [95] attempts to use an eager model checking approach to

enumerate all possible post-failure memory states for a PM program before it is aware of

what parts of the state the post-failure execution will read from. Since the number of memory

states that must be explored grows exponentially with the number of stores that have not

been flushed to memory, Yat cannot scale. For example, consider the common scenario of

code that allocates a cache line aligned array of n 64-bit integers, initializes the data, and

crashes right before flush operations for that array. This array spans n/8 cache lines and the

persistent memory copy of each cache line has 9 possible states (i.e., the initial value and the

state after each of the 8 writes). Therefore, persistent memory has 9n/8 possible states that
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Yat must explore.

1.2.1 Jaaru: Model checking Persistent Memory Programs

We develop Jaaru [62], a fully-automated and ultra-efficient model checker for PM programs

that achieves many orders-of-magnitude reductions in the number of states that must be

explored, compared to eager techniques such as Yat. It does not require any user annotation;

as a model checker, Jaaru exhaustively explores all possible states and can potentially find

more bugs than testing-based techniques.

Key to Jaaru’s efficiency is a constraint-refinement based technique that effectively leverages

commit stores ; a common programming practice in data structure implementations to

drastically reduce the space of executions. We elaborate on this insight below.

As stated above, a major challenge in model checking PM programs is the enormous post-

failure state space the model checker must explore ; a store writes a value into the cache, and

the value is not persisted until the cache line is flushed. However, when a failure occurs, it is

unclear whether a cache line has been flushed yet, leading to a large number of possibilities

that the model checker must explicitly enumerate.

To solve this problem, our major insight is that we can exhaustively explore all executions

by enumerating only a subset of post-failure states using constraints on the time at which

a cache line was previously flushed. A clflush or clflushopt instruction flushes a cache

line, imposing a constraint on the possible values that a persistent variable can have after

the failure. Jaaru builds such constraints during a pre-failure execution and refines them

during a post-failure execution (see §3.1.1). Leveraging these constraints in partial order

reduction [46, 168] enables Jaaru to explore exactly one post-failure state for each equivalence

class of post-failure executions, defined by which pre-failure stores are read by post-failure
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loads.

To effectively leverage this insight, we made an observation that there are often many stores

that have not been flushed out to persistent memory, PM programs often record in some

fashion, using a commit store, whether data is in a consistent state (see § 3.1.2). For example,

when adding a subtree to a node, the store of the node pointer to the subtree is a commit

store. Post-failure PM programs then read from this commit store to determine whether

data is consistent. This is a common practice in data structure implementations (1) because

the information about consistency also provides a reference to where the data is stored (e.g.,

if the pointer from the node to subtree is null, the subtree is not persisted; otherwise, it can

be found by following the pointer) and (2) for efficiency purposes. Such checks explicitly

prevent the post-failure execution from accessing many unflushed stores (e.g., if the pointer

is null, the program cannot access any data protected by the pointer).

This pattern offers an opportunity for us to not explicitly enumerate all possible states at a

failure ; lazily enumerating the stores read by the actual loads in the post-failure execution,

as opposed to eagerly enumerating all of them, reduces the number of executions to be

explored from exponential in the length of the program execution to linear (see §3.1.2). This

observation leads to the lazy exploration approach used in Jaaru, which does not enumerate

stores until loads are executed in the recovery code.

Note that leveraging such a programming pattern leads to efficiency, but has nothing to

do with the thoroughness of the state search ; Jaaru always exhaustively explores all the

non-determinism that arises from the persistency of cache lines. As a result, Jaaru does

not generate any false positives or negatives ; it reports all bugs w.r.t. an input and

any bug it reports must be a real bug. For programs that do not obey such a programming

idiom (e.g., the recovery code directly reads the data without checking consistency), Jaaru

would not miss any bug, but it would certainly spend more time on state exploration. In

practice, however, Jaaru is often still efficient because PM programs are extremely unlikely
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to read from many non-flushed cache lines.

Usage scenarios. Despite the aforementioned advantages, model checking is not a silver

bullet for bug finding in PM programs. For example, even though Jaaru is orders of magnitude

more efficient than existing model checkers such as Yat, Jaaru still needs to execute a program

many times (e.g., between 24 and 891 in our experiments) to fully explore the state space,

taking a large amount of time for checking. Compared to testing tools such as PMTest and

XFDetector, Jaaru is able to find more bugs, in a completely automated fashion. However,

it has difficulty checking programs such as Redis that interact with the outside world and

whose non-determinism from the network would require deterministic replay for a model

checker to work. As such, the best use case for Jaaru is to exhaustively check widely-used

libraries such as PMDK, finding as many potential bugs as possible before their release, while

non-exhaustive tools such as PMTest and XFDetector can scalably check large programs and

find bugs only when they are triggered in tests.

Chapter 3 elaborates on the algorithm behind Jaaru and its implementation. This chapter

also provides a rigorous evaluation of Jaaru on popular persistent memory benchmarks.

1.3 Robustness

Researchers have taken two primary approaches to improve PM reliability. First, there is a

body of work on developing high-level abstractions such as transactional libraries [30, 18, 161,

51, 53, 104, 33, 89, 151, 14, 167, 137, 52, 115], locks [9, 20, 68, 77, 105], or synchronization-free

regions [59] to hide the complexity of using such instructions, but these abstractions come at

a performance cost and their implementations are still susceptible to crash consistency bugs.

Second, researchers have developed testing/checking frameworks [95, 85, 108, 107, 126, 62,

76, 106, 67, 39, 125, 49, 63] to find and fix performance problems (e.g., redundant flushes
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and fences) and crash consistency bugs (e.g., missing fences and flushes).

Testing tools suffer from two major drawbacks. First, to detect persistency bugs, they require

test cases that can expose an execution error such as a segmentation fault or an assertion

failure. The issue is that not all bugs cause such visible symptoms. Some of these tools require

user annotations to catch bugs that do not lead to a program failure. Writing annotations

not only incurs a burden on users but also is error-prune itself. Consequently, such tools can

report false positives that originate from users’ mistakes in using annotations. Second, in

most cases, when a bug causes an execution to crash, it can be difficult to locate what part

of the execution contains the bug. In fact, a recent study [125] on 26 bugs reported by Intel’s

pmemcheck tool shows that these bugs took on average 23 days and a maximum of 66 days to

fix. These results highlight that diagnosing persistency bugs demands arduous human efforts.

1.3.1 Correctness Criteria for Flush Operations

Bugs in the uses of flush and drain operations can be trivially eliminated by making stores

become persistent in the same order that they become visible to other threads. Strict

persistency [131] is such a persistency model that ensures that the ”persistency memory order

is identical to volatile memory order”. Most hardware persistent memory specifications do

not provide strict persistency. However, Intel has developed an optional new feature called

enhanced Asynchronous DRAM Refresh (eADR) that relies on stored power to flush the

contents of the cache to persistent memory during a power failure. Consequently, eADR-

enabled persistent memory provides strict persistency. However, eADR functionality cannot

be relied upon because it requires the system vendor to provide additional stored energy

hardware such as a battery. Due to these specialized requirements on system vendors, it is

expected that many Intel PM systems will not provide strict persistency for the foreseeable

future according to our email discussions with Intel engineers.
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As a result, PM developers must explicitly use flush instructions (or similar mechanisms)

to ensure that program executions under weak persistency semantics are correct. Our key

observation is that the typical correct usage of flush instructions in PM programs ensures that

program executions under weak persistency semantics are equivalent to those under strict

persistency semantics. Building on this observation, we define a new notion of correctness,

robustness, for programs under weak persistency in terms of their equivalence to post-crash

executions under strict persistency. A program is robust to a weak persistency model if,

for any crash events, each post-crash execution of the program under that weak persistency

model is equivalent to some post-crash execution after some crash event under the strict

persistency model. Robustness is a sufficient criterion to assure correct usage of flush and

drain operations—adding more flush and drain operations to a robust program will not alter

the set of possible post-crash executions. Robustness is not a necessary condition because

programs may (1) be tolerant of reading stale values, e.g., counters that only need to be

approximately correct, or (2) use other mechanisms like checksums to detect and discard

inconsistent data after reading it.

In general, robustness does not require a developer to insert flush operations immediately

after every store. For example, consider a PM program in which a new node is added to a

persistent singly-linked list. Stores to the new node are not visible to post-crash executions

unless a commit store to the next field of some existing node in the linked list adds the new

node to the list before the crash. The program is robust as long as these stores are flushed

before the commit store is performed. This pattern of using a commit store is typically how

developers write PM programs, and robustness precisely captures the pattern.

Example. To illustrate, consider the example from Figure 1.2 on the x86 persistency

model. Suppose that execution of the addChild method crashes immediately before line 6

and that after the crash the program executes the readChild method on the same node.

There are two possible post-crash executions: (1) the post-crash execution that results from

10



1 void addChild(node *ptr , char * data) {

2 childNode * tmp = alloc_child ();

3 tmp ->data = data;

4 clflush(tmp , sizeof(childNode));

5 ptr ->child = tmp;

6 clflush (&ptr ->child , sizeof(childNode *));

7 }

8

9 char * readChild(node *ptr) {

10 if (ptr ->child != NULL) {

11 return ptr ->child ->data;

12 }

13 return NULL;

14 }

Figure 1.2: An example of execution being robust to the x86 persistency model, where the
pre-crash execution crashes before line 6, and the post-crash execution executes the readChild
method on the same node.

the pre-crash execution where the store of the reference to the child field was flushed, and

(2) the post-crash execution that results from the pre-crash execution where the store of

the reference was not flushed. The first post-crash execution is equivalent to the post-crash

execution under strict persistency where the pre-crash execution crashes after the store in

line 5. The second post-crash execution is equivalent to the post-crash execution under

strict persistency where the pre-crash execution crashes before the store in line 5. Since all

post-crash executions of this program under the weak persistency model are equivalent to

some post-crash execution under strict persistency, this program is robust.

1.3.2 PSan: Checking Robustness with Constraints

We develop PSan [61], a tool that dynamically checks robustness for programs under the x86

persistency model and reports violations in a fully automated fashion. For a given execution,

PSan can detect all persistency bugs due to ordering issues in that execution. Our definition

of an ordering bug is a bug that result from stores being persisted in an order that is different

from their happens-before order. These bugs can be corrected by the addition of flush and/or

fence operations. Finding other types of bugs is not the focus of PSan. In this work, we

focus on the x86 persistency model, while our ideas are generally applicable to other weak
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persistency models as well. Given a crash event and a post-crash execution, PSan computes

a set of strictly persistent executions whose pre-crash executions are consistent with the

post-crash execution. If this set becomes empty, i.e., such a strictly persistent execution does

not exist, PSan finds a robustness violation.

Our key insight is that we can efficiently compute this set of consistent pre-crash executions

under strict persistency by reasoning about the interval in which an equivalent strictly

persistent pre-crash execution must have crashed using constraints. In particular, each load in

the post-crash execution that reads from a store s in the pre-crash execution under the x86

persistency model constrains where an equivalent strictly persistent execution may crash—the

crash point must be somewhere between the store s and the next store to the same memory

location. If this set of constraints is unsatisfiable, there is no equivalent strictly persistent

execution.

1 x = 1;

2 y = 1;

3 x = 2;

4 y = 2;

(a) Pre-crash execution.

1 r1 = x;

2 r2 = y;

(b) Post-crash execution.

Figure 1.3: A weakly-persistent execution that reads r1 = 1 and r2 = 2 is not robust.

To illustrate, consider the executions in Figure 1.3, which shows a single-threaded program

executed under a weak persistency model. If r1 = 1, we know that an equivalent strictly

persistent execution must have crashed after the assignment x = 1 but before the assignment

x = 2. If r2 = 2, then we know that an equivalent strictly persistent execution must have

crashed after the assignment y = 2. These two constraints are not simultaneously satisfiable,

and therefore this execution is not robust.

Next, we extend this approach to support multi-threaded programs. The key idea is that

PSan determines whether there is an equivalent trace that can be produced by selecting

different (but compatible) crash points for different threads. Our idea for implementing this
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is to have the robustness analysis compute per-thread crash intervals and ensure that these

intervals describe a prefix of the pre-crash execution that is closed under the happens-before

relation.

Robustness enables PSan to infer the exact program line with a missing flush or drain

operation. Each robustness violation involves an earlier store that was not made persistent

and a later store that was made persistent—the earlier store is missing a flush operation.

For instance, for the execution in Figure 1.3, PSan determines a flush instruction must be

inserted after x = 2 to fix the robustness violation.

Chapter 4 defines robustness as a sufficient correctness condition and elaborates on algorithm

PSan uses to identify robustness violations in the programs. This chapter also describe

how PSan localizes a bug and suggests the exact fixes for the stores that are missing flush

and fence instructions. At the end of Chapter 4, we describe our evaluation of PSan on 3

real-world applications and a collection of data structures for persistent memory.

1.4 Persistency Race

This section of the dissertation presents a new class of persistent memory bugs, referred to

as persistency races. Persistency races stem from the fact that most programming language

specifications provide compilers with the freedom to assume other threads will not observe a

non-atomic store until a synchronization operation. Compilers can for example implement a

non-atomic store with multiple store instructions. This is often referred to as store tearing.

For example, given an architecture having 16-bit store instructions with immediate fields,

the compiler might use two 16-bit store-immediate instructions to implement a 32-bit store.

Although it is rare that compilers introduce these optimizations, it is enough of a concern

that both PMDK developers and the Linux Kernel developers take care to avoid
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it. Indeed, the Linux kernel mailing list provides several examples [37] of modern compilers

tearing non-atomic stores even when they are aligned, word-length stores.

Compilers can also introduce store tearing via other optimizations. Mainstream compilers

commonly rewrite code that copies or initializes several contiguous fields into calls to the libc

functions memcpy, memmove, or memset. These functions do not guarantee 64-bit atomicity and

can hence result in store tearing. Store tearing creates the possibility that a poorly timed

crash can cause non-atomic stores to be made partially persistent. A post-crash execution

can then potentially read values that mix bytes from multiple different store operations. This

could for example cause a post-crash execution to read an invalid array index, leading to

further corruption.

Store tearing is not the only potential danger of persistency races. Compilers can also stash

temporary values in the memory location safely assuming that data race freedom means that

other threads will not see these values. Crashes can result in such temporary values being

made persistent.

1 pmobj ->val = 0←↩
x1234567812345678;

2 //crash here

3 flush(&pmobj ->val);

(a) Pre-Crash Code

1 if (pmobj ->val != 0) {

2 printf("0x%" PRIx64 "\n",

3 pmobj ->val);

4 }

(b) Post-Crash Code

Figure 1.4: A persistency race example. We assume pmobj->val is initially 0 and both
executions are single threaded. gcc optimization level O1 and above generate ARM64 code
for this example that can print 0x12345678. PRIx64 is a macro for printf that prints a 64-bit
integer as hex.

Figure 1.4 presents an example of persistent memory code with a persistency race. Figure 1.4a

and Figure 1.4b show the code snippets executed before and after the crash, respectively.

Suppose that the machine experiences a power failure immediately after line 1 in Figure 1.4a.

Since the store to the val field is non-atomic, the compiler is free to implement this store

with multiple store instructions. Thus, it is possible for only some of the bytes of this store
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to be made persistent. When the val field is read in line 3 of Figure 1.4b, the post-crash

execution can read a value that is some combination of the bytes from the previous value

and the newly stored value. This concern is not theoretical—the ARM64 backend of gcc

generates code for this program that could print 0x12345678.

A program has a persistency race if there exist a pre-crash execution Epre and post-crash

execution Epost such that (1) a load l in Epost reads from a non-atomic store s in Epre and (2)

the store s is not persistency ordered before the load of it in Epost. To provide an example of

persistency ordering, if the pre-crash execution explicitly flushes a store s before it crashes,

then the store s is persistency ordered before any loads that might read from it in the

post-crash execution.

Persistency vs. Data Race. Persistency races are similar in spirit to data races because

both persistency races and data races violate assumptions made by compilers and thus

can break the abstraction of a language-level store writing the specified value to memory.

Several tools have been designed to detect data races in code that uses standard lock-based

concurrency control [42, 43, 44, 70, 111, 171, 141]. These tools generally take one of two

approaches: (1) they verify that all accesses to shared data are protected by a locking

discipline or (2) they compute a happens-before relation to detect concurrent conflicting

accesses.

While persistency races are similar to data races, there are important fundamental differences

between the two as each persistency race involves three distinct events: (1) the racing store

in the pre-crash execution, (2) the crash event against which the store races, and (3) a

race-observing load in the post-crash execution that observes the effects of the race. This

differs from data races that consist of two memory operations that race against each other.

Persistency races exist even in single-threaded programs. Intuitively, in a persistency race, a

pre-crash execution thread races with the crash and a post-crash thread observes the effects

of the race.
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Researchers have developed techniques for detecting races in interrupt-based code [152, 29].

That body of work focuses on ensuring that interrupts are disabled when code performs a

memory access that could potentially conflict with memory accesses in an interrupt handler.

The focus on analyzing interrupt code that relies on disabling interrupts means that the

analysis techniques are not applicable to persistent memory where a crash can occur at any

point.

Most existing PM bug finding tools use techniques that fundamentally cannot detect per-

sistency races because they just validate that stores are flushed or performed in a specific

order. The one exception is that model checking tools could conceptually be adapted to find

persistency races by splitting the stores into single byte stores at the cost of an exponential

increase in the number of executions that must be explored. Dynamic instrumentation

frameworks [85, 39, 107, 95] can observe actual store instructions in the binary. The primary

challenge in detecting persistency races with these frameworks is that they cannot infer

whether two stores in the binary were originally one source-level store nor can they infer

which stores were atomic at the source level, thus it is not possible for these tools to directly

detect a persistency race. However, if these frameworks explore the correct execution, they

can potentially observe a crash caused by a persistency race, e.g., a segmentation fault caused

by accessing a partially persisted pointer. Moreover, these tools can give no warning for stores

that could potentially be torn in the future. XFDetector [107] uses a finite state machine

to track the consistency and persistency of persistent data. XFDetector finds cross-failure

races, which are defined as loads that read from locations that were not persisted before

a failure. Cross failure races are different from persistency races in that cross failure races

model normal stores as effectively atomic and do not consider the possibility that due to

compiler optimizations a store may made partially persistent. Cross failure race detection

cannot detect persistency races because it does not model the effects of cache coherence or

the difference between atomic and normal memory operations. XFDetector is limited to

detecting cross failure races in the given execution and cannot detect cross failure races in
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any other potential executions.

There is a large body of work on finding atomicity violation bugs [82, 130, 169, 109] which

are fundamentally different from persistency races. Atomicity violations occur when code

written by developers performs many operations that were intended to be atomic, but are not

atomic because of a bug. However, persistency races violate language-level store abstractions

because of a race with a crash event.

1.4.1 Yashme: Detecting Persistency Races

Detecting persistency races is extremely challenging as it requires reasoning about the cache

behavior of a program, e.g., where the crash occurs, where a cache line is flushed, and which

pre-execution store the post-execution code reads from. On one hand, data race detectors

focus on reasoning about mutual exclusions, not on cache behavior. As a result, none of the

data race detection algorithms are directly applicable to detecting persistency races. On the

other hand, existing persistent memory bug detectors reason about the timing of cache line

flushes, but rely on effective test cases and appropriate crash events to find bugs. Detecting

a persistency race with respect to a store, however, requires the crash to fall into a small

window of execution after the store and before the (explicit or implicit) cache line flush.

Such a strict requirement dictates aggressively injecting crash events in a great number of

executions and exhaustively exploring thread schedules, which is impractical.

Model checkers (e.g., Yat [95] and Jaaru [62]) and fuzzers (e.g., PMFuzz [106]) automatically

explore many possible cache states, but their effectiveness depends on the selected thread

schedule—they would not detect a persistency race if the thread schedule causes the window

to close; as such, they suffer from the same weakness as other bug detectors.

Clearly, a major challenge in devising an effective persistency race detector is where to inject
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the crash event, i.e., the nature of a persistency race is that the pre-crash event races with

the crash event.

Key Insight. Key to the success of Yashme [63] is a shift of focus from generating

race-manifesting crash events to generalizing/expanding the executions under a small number

of crash events to make races observable. In other words, Yashme does not rely on perfect

crash events to trigger races; instead, given a target crash event, Yashme runs the program,

obtains its pre-crash execution, and expands it to derive many executions that can also be

used to detect races.

Yashme’s approach is similar to model checking in that both derive many executions from

existing ones. However, Yashme expands an existing pre-crash execution using a set of prefix

constraints, which guarantee that the derived executions are consistent with the original

execution with respect to the post-crash execution. In particular, if the post-crash execution

reads from a store in the original pre-crash execution e, it must read from the same store

in any executions derived from e. Expansion enables Yashme to detect races in derived

executions without actually executing them, while model checkers incur the overhead of

actually executing their derived executions.

In other words, any execution that shares a common prefix (starting at the store) with e

and does not later perform and persist stores that overwrite locations read by the post-crash

execution is consistent and can be used to detect persistency races. Prefix-based derivation

significantly expands the race-detection scope, enabling Yashme to find more bugs even than

a technique that injects a crash event before every fence instruction. As a result, Yashme has

found persistency bugs in all but one of the programs we have experimented with.

Chapter 5 formalize persistency race and describes the baseline algorithm as well as prefix

algorithm that Yashme uses to detect persistency races in the program. Also, this chapter

reports an evaluation of Yashme on three real-world applications and a collection of data
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structure for persistent memory. In total, Yashme found 24 persistency races in these

benchmarks.

1.5 Organization

The rest of this dissertation is structured as follows:

1. Chapter 2 describes background of X86 persistency model

2. Chapter 3 describes our observation regarding the commit store pattern in persistent

memory and elaborates on Jaaru’s constraint-based refinement technique to leverage

this patter. This chapter also discusses details about the implementation of Jaaru and

evaluation of Jaaru on a Recipe benchmarks and PMDK where Jaaru found 18 new

bugs in them.

3. Chapter 4 presents the notion of robustness as a sufficient criterion in to assure correct

usage of flush and fence instructions in persistent memory applications. This chapter

formalizes robustness and provides details on algorithms used by PSan to localize

persistency bugs and provide the corresponding fixes for each bug. At the end, this

chapter evaluates PSan’s bug finding capabilities on a collection of data structure and

three popular real-world benchmarks for persistent memory.

4. Chapter 5 presents and formalizes a new class of persistency bugs that we call it

persistency race. This chapter introduces an algorithm to expand the detection window

to detect persistency races in executions without exploring them. At the end, this chapter

evaluates Yashme on a collection of data structure and three real-world benchmarks

where Yashme found 19 persistency races in these benchmarks.

5. Chapter 6 discusses existing literature and compares prior work with Jaaru, PSan, and
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Yashme.

6. Chapter 7 concludes this dissertation and discuss limitations of the presented tools that

can be addressed as future work.
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Chapter 2

Background

This chapter briefly overviews the Intel-x86 persistency semantics following the Px86sim

model in Raad et al. [136] which is supported by Jaaru, PSan, and Yashme.

2.1 Overview of x86 Persistent Memory Storage

In this section, we overview the Intel-x86 persistent storage system. We refer interested

readers to the Px86sim model in Raad et al. [136]. For our purposes, the differences between

Raad et al. [136] and Khyzha [86] are minor and do not affect our work. The Px86sim

semantics capture the behavior Intel implemented and intended for the architecture. They

differ slightly from the semantics in Intel’s manual due to mistakes in precisely specifying

the intended behavior in the documentation. Since the Px86sim semantics do not formalize

non-temporal store semantics, we do not support them in any of the presented tools in this

dissertation. Figure 2.1 presents a graphical overview of the x86-TSO storage system. Each

core/thread on x86 has a store buffer that buffers stores to the cache to hide the store latency.

The store buffers implement bypassing — when a core performs a load, the core checks
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Figure 2.1: An x86-TSO storage system.

whether there is a store to the same address in its local store buffer. If so, it returns the

value written by the most recent such store. Effectively, this allows the local core to observe

the effect of a local store before that store becomes visible to other cores. The memory fence

instruction mfence waits for the store buffer to be empty before future instructions can be

executed. Locked RMW instructions also clear the store buffer before future instructions can be

executed.

Stores in the store buffer are written to the cache in the order they were executed — they are

written to the cache in a total order and all other threads/cores observe these stores in that

same order. The cache is volatile — a power loss event will cause cached data that has not

yet been written back to persistent storage to be lost. Under normal execution, cache lines

are written back to main memory non-deterministically when the cache needs the space for

other data. The x86 architecture provides instructions to force the cache to write data back

to persistent storage. The three such instructions are: (1) the flush cache line instruction

clflush that flushes a cache line, (2) the optimized flush cache line instruction clflushopt,
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Table 2.1: Summary of reordering constraints in the Px86sim model. A ✓ indicates that the
order between the two instructions is preserved, a ✗ indicates that the two instructions can
be reordered, and a CL indicates that the order is preserved only if they both operate on the
same cache line. These constraints are also used in Raad et al. [136].

Later in Program Order
E
a
rl
ie
r
in

P
ro
g
ra
m

O
rd
er Re Wr RMW mf sf clflushopt clflush

Read ✓ ✓ ✓ ✓ ✓ ✓ ✓
Write ✗ ✓ ✓ ✓ ✓ CL ✓
RMW ✓ ✓ ✓ ✓ ✓ ✓ ✓
mfence ✓ ✓ ✓ ✓ ✓ ✓ ✓
sfence ✗ ✓ ✓ ✓ ✓ ✓ ✓

clflushopt ✗ ✗ ✓ ✓ ✓ ✗ CL
clflush ✗ ✓ ✓ ✓ ✓ CL ✓

and (3) the cache line write back instruction clwb. Each of these instructions takes as input

the address of the cache line and flushes that line.

A key difference between these instructions is how they can be reordered across other

instructions. Table 2.1 summarizes the instruction ordering constraints for persistent storage

on x86-TSO. The clflush instruction is inserted into the store buffer just like store instructions,

and when it exits the store buffer it causes the cache line to be flushed to persistent memory.

The clflushopt instruction is inserted into the store buffer also like store instructions, but

it can be reordered across store instructions to other cache lines, clflush instructions to

other cache lines, and other clflushopt instructions. The clflushopt instruction cannot be

reordered across mfence or locked RMW instructions. The store fence instruction sfence also

orders clflushopt instructions relative to clflush, clflushopt, clwb, and store instructions.

The clwb instruction only writes back the contents of the cache line and does not evict it

from the cache and thus has better performance. However, from a semantics perspective,

the clwb instruction is identical to the clflushopt instruction [136], and thus we treat them

identically in our discussions.
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Chapter 3

Model Checker

Recall from Chapter 1, testing persistent memory programs are difficult since the program

has to crash at the specific instruction and it depends on the state of the cache before the

crash event. This chapter elaborates on Jaaru implementation, an efficient model checker for

persistent memory. In fact, this chapter makes the following contributions:

• Automated and Efficient Model Checking: It elaborates on the developed model

checker based on a novel partial order reduction algorithm that uses constraint refinement

and leverages commit stores.

• Support for Simulating Multiple Failures: Failures during recovery have the

potential to corrupt data structures. Testing for bugs in recovery procedures requires

the ability to generate multiple failure events — e.g., one failure event to cause the

initial recovery and the second failure event during the recovery procedure. This chapter

presents the first tool that supports simulating the effect of an arbitrary number of

failure events to find bugs in recovery code.

• Full TSO Support: Jaaru incorporates a full simulation of the underlying TSO

memory model including support for store buffering, buffering flush operations, and
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buffering sfence operations.

• Implementation: It describes the implementation of Jaaru model checker. Jaaru has

an LLVM compiler frontend to instrument programs and Jaaru is implemented as a

runtime library. Jaaru simulates the x86-TSO memory model and provides full support

for multi-threaded PM programs.

• Evaluation: It provides a discussion on evaluation of Jaaru with PMDK [33] and

RECIPE [98]: Jaaru is effective at finding persistency bugs in our benchmark set. Jaaru

finds 18 new correctness bugs in extensively studied PM programs, while PMTest and

XFDetector finds only 1 and 4 correctness bugs, respectively.

3.1 Basic Ideas

Recall that prior work (e.g., Yat [95]) on model checking persistent memory programs eagerly

enumerates all possible post-failure states of persistent memory. As the number of states grows

exponentially with the amount of data that has not been flushed, this approach can easily

have scalability problems. Such eager approaches will explore many post-failure states that

yield identical post-failure executions in which the loads read from the same stores. Dynamic

partial order reduction (DPOR) [1, 46, 168] is a popular technique that can determine that

these states produce the same execution, and instead explore the equivalent post-failure

executions once.

3.1.1 Constraint-Refinement

Traditional DPOR techniques do not consider the effect of cache line flushes and volatile

memory. Näıve adaptation of these techniques in our setting would lead to the exploration
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of many states that are not possible due to the use of instructions such as clflush that

explicitly flush cache lines.

To reduce search space, our first idea is to use clflush instructions to infer constraints on

the last time each cache line was written back to persistent memory in a pre-failure execution

and refine these constraints in a post-failure execution to narrow down when a cache line

became persistent. For example, when a clflush instruction leaves the store buffer, it forces

the cache line to be written back to persistent memory. That same cache line can later be

written back to persistent memory due to space constraints in the cache. Hence, the clflush

instruction essentially sets a constraint that the last time the corresponding cache line is

written back to memory must be after the clflush instruction exits the store buffer.

Figure 3.1 illustrates the application of this idea on an execution prior to a failure. The

program executes the instruction sequence on the left-hand side prior to the failure. The blue

line shows the order that stores were written to the cache. Both variables x and y are located

in the same cache line. After the program executes the stores y = 1 and x = 2, it performs a

clflush instruction. This instruction flushes the cache line that holds x and y to persistent

memory. At this point, Jaaru computes that the cache line for x and y was most recently

flushed during the interval [clflush,∞) as represented by the red line in Figure 3.1. After

the clflush, the program performs the stores y = 3, x = 4, y = 5, and x = 6. Finally, power

is lost and the program fails. The red interval indicates that when the machine is powered

back up, the persistent storage may have the values 2, 4, and 6 for the variable x.

Note that there are constraints between the values for variable x and those for y since they

share a cache line. For example, it is not possible for the post-failure state of the persistent

memory to have y = 1 and x = 6, because the store y = 5 is ordered between y = 1 and

x = 6. To ensure that variables that share a cache line have consistent values, Jaaru refines

these intervals using the values observed by loads during the recovery execution. Figure 3.2

shows a post-failure execution. This execution reads the value 4 from the variable x. This
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y=1;	
x=2;	
clflush(x);	
y=3;	
x=4;	
y=5;	
x=6;	

y=1	 x=2	 clflush	 y=3	 x=4	 y=5	

Most	recent	cache	line	
writeback	for	x	&	y	

X	

Power	
failure	

x=6	

Figure 3.1: Pre-failure execution of a simple PM program. We assume that x and y reside on
the same cache line. The blue line represents the total order in which stores are written to
the cache. The red line shows the interval for the last time the cache line containing x and y

may be written back to persistent memory.

r1=x;
r2=y;

y=1 x=2 clflush y=3 x=4 y=5

Most recent cache line
writeback for x & y

X

Power
failure

x=6

Figure 3.2: Post-failure (recovery) execution of the program that reads the value 4 from x.
This refines the interval for the most recent writeback of the cache line to be between the
store x = 4 and the store x = 6.

tells us that the cache line must have been flushed some time after the store x = 4 and before

the store x = 6. Thus, we can refine the interval for the most recent flush to be [x = 4, x = 6),

which imposes a much tighter bound.

Since both variables x and y share the same cache line, reading the value 4 for x constrains

the set of values that we can read from y. In particular, since the last flush occurred some

time during the interval from x = 4 to x = 6, we know that the cache line was flushed some

time after the assignment y = 3 and potentially after the assignment y = 5. Therefore, if the

post-failure execution reads from y, it could only read the value 3 or 5. It could not read the
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value y = 1, because the fact that the read from x returned 4 tells us that the cache line was

flushed after y = 1 was overwritten.

Jaaru uses this refinement-based approach to simulate cache line flushes and lazily construct

the state of persistent memory after the failure, eliminating the need to eagerly explore all

(equivalence classes of) states.

3.1.2 Leveraging Commit Stores for Additional Efficiency

Our constraint-refinement approach works well for PM programs because it effectively leverages

commit stores to achieve efficiency. Commit stores are a rather common programming practice;

in fact, all programs in our evaluation have such commit stores. To effectively leverage such

stores, Jaaru does not eagerly enumerate all pre-failure stores; instead, Jaaru lazily enumerates

a small subset of them that are actually read by a post-failure execution.

1 void addChild(node *ptr , char * data) {

2 childNode * tmp = alloc_child ();

3 tmp ->data = data;

4 clflush(tmp , sizeof(childNode));

5 ptr ->child = tmp;

6 clflush (&ptr ->child , sizeof(childNode *));

7 }

8

9 char * readChild(node *ptr) {

10 if (ptr ->child != NULL) {

11 return ptr ->child ->data;

12 }

13 return NULL;

14 }

Figure 3.3: An example program with a commit store.

To illustrate, Figure 3.3 presents a simple program that uses a commit store. There are two

methods here ; method addChild that adds a child to store data and method readChild that

returns a pointer to the data stored in the child. We first discuss the addChild method. The

store at Line 3 writes a reference to the data field in the newly created child node. Next, the

clflush instruction at Line 4 forces this write to persistent memory. Finally, the commit
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store at Line 5 makes the child node reachable from the data structure and the clflush at

Line 6 makes the commit store persistent.

We next discuss the readChild method. The load at Line 10 checks whether the child field

is non-null. If it is, then we know that (1) the clflush instruction at Line 6 completed and

(2) the child node has been persisted and is safe to read in Line 11.

To illustrate how Jaaru leverages this pattern for efficient state exploration, let us consider a

client program that executes method addChild, fails, and then calls the readChild method

during recovery. Jaaru injects failures in the execution of method addChild at three points:

(1) immediately before the clflush instruction at Line 4, (2) immediately before the clflush

instruction at Line 6, and (3) at the end of the execution of method addChild. Injecting

failures at these three points is sufficient to explore all distinct program behaviors (see § 3.2).

While Jaaru supports failure scenarios that involve crashes in the recovery routine, in this

example we focus on a single failure for simplicity.

To inject a failure, Jaaru stops the execution at the failure point, resets volatile memory, and

starts a new execution with the same persistent memory region. In the new execution, loads

from persistent memory check the stores from the pre-failure execution to determine which

values the program will read from.

Let us first consider the failure immediately before Line 4. Since the clflush instruction has

not executed, the write to the data field may not have been persisted. When the readChild

method executes, it first reads the child field. Since the child field is null, it does not access

the data field. Jaaru explores exactly one post-failure execution for this failure point.

Next, consider the failure immediately before Line 6. The data field has been persisted by the

first clflush instruction, but the write to the child field has not. Thus, when the post-failure

execution reads from the child field, Jaaru observes that the interval for the most recent

flush of the child field is [0,∞). Jaaru then explores two executions. In the first execution,
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Figure 3.4: Jaaru system overview.

the child field is null, and this execution has the same behavior as the previously explored

execution. In the second execution, the child field is non-null and thus it reads the data field.

Since the interval [clflush4,∞) for the data field’s cache line starts after the last write to

the data field, the method returns the data field (clflush4 denotes the clflush instruction

at Line 4.).

Finally, consider the failure at the end of the execution of method addChild. At this point,

both clflush instructions have executed. When the post-failure execution reads from the

child field, Jaaru observes that the interval for the most recent flush of the child field is

[clflush6,∞). Therefore the load must see the value written to the child field and thus

it reads the data field. Since the interval [clflush6,∞) for the cache line of the data field

starts after the last write to data, the method returns data.
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To illustrate why such stores are useful, consider the following scenario. Suppose that method

readChild accesses the data field of the child node without first checking the commit store in

Line 5. If the addChild method crashes before the first clflush instruction, there would be

two different potential post-failure states for the data field. If the child node has n different

cache lines that were accessed in a similar manner, then the number of post-failure states

would grow to be O(2n). If the post-failure code accesses all of the child’s states, the model

checker would have to explore O(2n) executions. The commit store limits the number of

unflushed stores that the post-failure program execution reads from, and thus the executions

Jaaru must explore.

The complexity of model checking programs that use commit stores like this example is O(m2)

where m is the length of the execution. We obtain this complexity because the number of

failure injection points is O(m), the post-failure execution involves O(m) steps, and with

commit stores, we explore two executions at each failure point ; a first execution that reads

from the commit store and a second execution that reads the value of the memory location

before the commit store.

Note that prior techniques that eagerly explore all pre-failure stores cannot take advantage of

such commit stores. The key difference between prior model checkers such as Yat and Jaaru

is that Yat enumerates all possible states at the failure point before executing the post-failure

code (thus with a complexity of O(2n)) while Jaaru executes the post-failure code and lazily

explores pre-failure stores that are actually read by the post-failure code.

3.1.3 System Overview

Jaaru uses an LLVM compiler pass to instrument both atomic and normal memory accesses

along with fences and cache flush operations. The instrumented binary is then dynamically

linked with the Jaaru library. Figure 3.4 presents an overview of Jaaru. A failure scenario
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Figure 3.5: An example of Jaaru’s runtime system.

involves multiple executions ; the simplest failure scenario (a single failure) involves a pre-

failure execution and a post-failure execution. To simulate a failure scenario, Jaaru keeps the

information about each of the executions in the sequence that comprises the failure scenario.

Figure 3.5 shows the exploration of a failure sequence composed of a pre-failure execution

and the current post-failure execution.

Jaaru uses a fork-based approach to roll back executions to simulate failures and start new

executions. In each execution, Jaaru records all of the stores that have been written to the

cache and the clflush instructions that have taken effect (shown with the blue lines). Jaaru

also records a set of intervals for every flushed cache line to identify the time ranges of the

most recent writes of each cache line into persistent memory (shown in the red lines). As

shown earlier in the example, these intervals are used by the model checker to make decisions

about the values of variables in the post-failure execution. The right side of each execution

shows the thread-specific state Jaaru maintains ; each thread has a local store buffer that

simulates the processor’s store buffer and a flush buffer that implements the reordering of
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clflushopt instructions (based on the constraints in Table 2.1).

3.2 Model Checking Algorithm

This section presents the model checking algorithm. We begin by presenting the following

notations that we will use throughout the chapter:

• We refer to an execution as e.

• A given failure scenario may involve a sequence of multiple executions ending in failures.

We record this sequence of executions that have been executed on the persistent store

using a stack, referred to as exec.

• Function top(exec) denotes the most recent execution (the current one) on the stack

exec.

• Function prev(e) returns the execution that immediately precedes e in exec.

• A global sequence number counter σcurr is used to assign increasing sequence numbers

to stores, clflush, sfence instructions.

• Each store, clflush, and sfence instruction i is assigned a sequence number σi. These

numbers record the total order in which these instructions take effect in the cache.

• Each execution e has a map e.getcacheline() that maps an address to an interval in

which the cache line was most recently flushed to persistent memory in the exection e.

• Each execution e has a map e.queue() that maps each address addr to a sequence of

tuples ⟨val , σ⟩ that record the values stored at the address and the sequence number σ

generated at the moment that value was stored.
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• We denote a thread using τ ∈ T.

• Each thread τ has a store buffer Sτ that keeps a queue of store, clflush, and sfence

operations that have not yet taken effect in the cache.

• Each thread τ has a cache line flush buffer Fτ that stores the set of clflushopt operations

that have not yet flushed the cache line to persistent storage.

• We refer to the timestamp as t.

The Jaaru LLVM frontend instruments only memory operations and cache operations as those

are the operations relevant to persistent storage. Jaaru implements a software simulation of

those instructions with full support for the persistency semantics from the Px86sim model [136].

The majority of PM-based tools have been developed for x86 since it provides the most

advanced and mature architectural support for accessing persistent memory. By fully

supporting x86 semantics, Jaaru satisfies the fast-growing need for a scalable and fast model

checker to validate and test these programs. Although the current version of Jaaru is

developed for x86, the primary idea behind it is not limited to x86 and could potentially be

adapted to support other architectures such as ARM.

The TSO memory model separates the executions of stores, cache flush operations, and

sfence operations into two phases: (1) the initial phase that often inserts an operation into a

buffer and (2) the second phase that removes the instruction from the buffer and updates the

state of the cache or persistent storage. We present our algorithm for each of the stages.

Executing instructions. Figure 3.6 presents our algorithm for the first phase of instruction

execution, which inserts an instruction into each thread’s local store buffer Sτ . The mfence

instruction waits until Sτ is empty and then clears the thread’s flush buffer Fτ .

Updating storage. The second phase occurs when the instruction leaves the store buffer.

This phase updates the storage system. Figure 3.7 presents our algorithm for this phase.
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1: function Exec Store(addr , val , τ)
2: Enqueue ⟨store, addr , val⟩ into Sτ .

3: function Exec CLFLUSH(addr)
4: Enqueue ⟨clflush, addr⟩ into Sτ .

5: function Exec CLFLUSHOPT(addr)
6: Enqueue ⟨clflushopt, addr , σcurr⟩ into Sτ .

7: function Exec SFENCE
8: Enqueue ⟨sfence⟩ into Sτ .

9: function Exec MFENCE
10: Evict all entries in Sτ .
11: Flush Fτ .

Figure 3.6: Algorithm for executing instructions.

1: function Evict SB(⟨store, addr , val⟩)
2: σcurr := σcurr + 1
3: Enqueue ⟨val , σcurr⟩ into top(exec).queue(addr).
4: tτ,CacheID(addr) = σcurr

5: function Evict SB(⟨clflush, addr⟩)
6: σcurr := σcurr + 1
7: cl := top(exec).getcacheline(addr)
8: cl.begin = σcurr

9: tτ,CacheID(addr) = σcurr

10: function Evict SB(⟨clflushopt, addr , σ⟩)
11: Add ⟨addr , max(σ, tτ,CacheID(addr), tτ)⟩ to Fτ .

12: function Evict SB(⟨sfence⟩)
13: σcurr := σcurr + 1
14: Flush Fτ .
15: tτ = σcurr

16: function Evict FB(⟨addr , σ⟩)
17: cl := top(exec).getcacheline(addr)
18: cl.begin = max(cl.begin, σ)

Figure 3.7: Algorithm for evicting store and flush buffers.

We have four different implementations of the Evict SB function for different types of

instructions.

The Evict SB(⟨store, addr , val⟩) function handles store instructions. This function assigns

a sequence number to each store. These sequence numbers enforce a total order over all

writes to the cache. The function then moves the store to the queue of stores that records

possible cache line values based upon the address it writes to. Finally, the function updates

the timestamp (tτ,CacheID(addr)) for the most recent write to the cache line or clflush from

this thread to be the store’s sequence number.

35



The Evict SB(⟨clflush, addr⟩) function handles the cache line flush instruction clflush.

The function first assigns a unique sequence number to the instruction. It then updates the

lower bound of when the cache line was most recently flushed to be the sequence number

for this particular flush operation. Finally, the function updates the timestamp for the most

recent write to the cache line or clflush from this thread to be the store’s sequence number.

The Evict SB(⟨clflushopt, addr , σ⟩) function handles the optimized cache line flush in-

struction clflushopt. The clflushopt instruction can be reordered with other clflushopt

instructions, previous stores to other cache lines, clflush instructions to different cache

lines, and later stores to any cache line. Support for reordering with previous operations is

implemented by computing the maximum sequence number of the most recent instruction that

the clflushopt cannot be reordered with. Support for reordering with later instructions is

implemented by a flush buffer that is emptied when an instruction, which cannot be reordered

with previous clflushopt instructions (i.e.,sfence, mfence, or RMW instructions), executes.

The Evict SB(⟨sfence⟩) function handles the store fence instruction sfence. This sfence

instruction is ordered relative to all previous clflushopt instructions and thus it flushes the

thread’s flush buffer when it exits the thread’s store buffer.

Finally, the Evict FB(⟨addr , σ⟩) function handles clflushopt instructions when they are

evicted from the flush buffer by an sfence, mfence, or RMW instruction. This function updates

the lower bound of when the cache line was most recently flushed to be the sequence number

σ from the tuple in the flush buffer. Recall that this sequence number is the maximum of the

following four values: (1) the current sequence number when the clflushopt instruction was

first executed, (2) the sequence number of the most recent sfence instruction executed by the

thread, (3) the sequence number of the most recent store to the same cache line executed by

the same thread, or (4) the sequence number of the most recent clflush to the same cache

line executed by the same thread.
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1: function BuildMayReadFrom(addr)
2: if ∃val .Sτ = b1.⟨addr , val⟩.b2 ∧ ∀val ′.⟨addr , val ′⟩ /∈ b2 then
3: return {⟨top(exec), , val⟩}
4: if ∃val , σ.top(exec).queue(addr) = m1.⟨val , σ⟩ then
5: return {⟨top(exec), , val⟩}
6: return ReadPreFailure(prev(top(exec)), addr)

7: function ReadPreFailure(e, addr)
8: cl := e.getcacheline(addr)
9: set := {⟨e, σ, val⟩ | σ < cl.end ∧ e.queue(addr) = m1.⟨val .σ⟩.m2 ∧ (σ ≤ cl.begin ⇒ ∀val ′.∀σ′ ≤

cl.begin.⟨val ′, σ′⟩ /∈ m2)}
10: if ∃⟨val , σ⟩ ∈ set.σ ≤ cl.begin then
11: return set
12: else
13: return set ∪ReadPreFailure(prev(e), addr)

Figure 3.8: Algorithm for BuildMayReadFrom.

Load operations. Figures 3.8 and 3.9 present our algorithm for loads. We split handling

of loads into two functions: (1) the BuildMayReadFrom function that computes and

returns a set of stores that a load may read from and (2) the DoRead function that refines

the cache line flush intervals once Jaaru has selected a specific store for the load to read from.

Splitting the load handling into two components makes it straightforward to integrate loads

into Jaaru’s exploration.

We first discuss the BuildMayReadFrom function in Figure 3.8. This function returns a

set of tuples for each possible store that the load may read from. Each tuple contains the

execution e that performed the store, the sequence number σ of the store, and the value

val stored. We use when the store is from the current execution and thus does not have

a sequence number that can be used to constrain when a cache line was last flushed in the

previous execution.

Lines 2–3 check whether there is a store to read from in the store buffer, and if so, returns

the tuple for the newest such store. More precisely, the syntax b1.⟨addr , val⟩.b2 represents the

state of store buffer with b1 being the oldest operations and b2 being the newest operations.

A load can read from a store ⟨addr , val⟩ in the store buffer if there are no newer stores to the

same address.
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1: function DoRead(addr , ⟨e, σ, val⟩)
2: if e ̸= top(exec) then
3: UpdateRanges(prev(top(exec)), addr , ⟨e, σ, val⟩)
4: function UpdateRanges(ec, addr , ⟨e, σ, val⟩)
5: if e ̸= ec then
6: cl := ec.getcacheline(addr)
7: ⟨val ′, σ′⟩ := first(ec.queue(addr))
8: cl.end = min(cl.end, σ′)
9: UpdateRanges(prev(ec), addr , ⟨e, σ, val⟩)
10: else
11: cl := ec.getcacheline(addr)
12: cl.begin := max(cl.begin, σ)
13: Let σ′ be the sequence number for the next tuple after ⟨val , σ⟩ in ec.queue(addr) or ∞ if there is

no such tuple.
14: cl.end := min(cl.end, σ′)

Figure 3.9: Algorithm for DoRead.

Lines 4–5 check whether there is a store in the current execution that has updated the cache.

If so, they return the tuple for that store. More precisely, the syntax m1.⟨val , σ⟩ represents

the sequence of stores written to the cache with m1 being the older operations. A load can

read from a store ⟨val , σ⟩ in the cache queue for an address if there are no newer stores to

the same address. Otherwise, Line 6 invokes the ReadPreFailure function to compute

potential stores from the executions before the most recent failure.

We next discuss the ReadPreFailure function in Figure 3.8. This function computes the

set of stores from previous executions that a load may read from. Lines 8–9 compute the set

of stores that would have been present on the cache line for the time range specified by the

cache line’s last flush interval. Line 10 checks whether there was a store performed before

the earliest possible time for the cache line flush. If there is no such store, it is possible

that the load has read from an earlier execution. In this case, the algorithm recursively calls

ReadPreFailure on earlier executions and combines the set of stores from the current

execution with those returned by the recursive call.

After the model checking algorithm has selected a store for the load to read from, it invokes

the DoRead function in Figure 3.9 to refine the most recent cache line flush intervals for

previous executions. Line 2 checks whether the store is from the current execution. If so,
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there is no refinement to be performed and the function returns. Otherwise, it calls the

function UpdateRanges to refine the interval in which the last cache flush was performed.

We next discuss the UpdateRange function. Line 5 checks whether the store is from the

execution ec. If not, Lines 6–9 refine the upper bound of the most recent flush interval to

occur before the first store because the load reads from a store from a prior execution e and

thus we know that the current execution eC did not flush the cache line after performing a

store. It then recursively calls the UpdateRange function on previous executions.

If the store is from the execution ec, then Lines 11–14 refine the interval for the most recent

cache line flush. The key insight is that the cache line must have been flushed after the store

that the load reads from and before any subsequent stores.

Exploration algorithm. Finally, we present the core model checking algorithm. Figure 3.10

presents the Explore function that implements Jaaru’s exploration. The Explore function

takes in an execution s and a stack of executions exec. Lines 2–3 inject failures and start

new executions. Lines 4–8 decide whether to evict an entry from a thread’s store buffer.

Function next(τ, h) calls the appropriate Evict function from Figure 3.7. Line 9 selects the

next thread to execute. Line 10 checks whether the thread’s next operation is a load. If so,

Lines 11–14 handle the load ; we first call BuildMayReadFrom to compute the set of

potential stores that the load may read from. The foreach loop then explores executions for

each possible store that the load may read from.

If the thread’s next operation is not a load, then Line 16 explores the next step. Function

next(τ) computes the next step by calling the appropriate Exec function from Figure 3.6.

Injecting failures. The natural points to inject failures are those immediately before

operations that flush cache lines. The reason is that writes to the cache increase the set of

possible post-failure executions while flushes decrease the set of possible post-failure executions.

Thus, injecting failures at these points is sufficient to explore all program behaviors. Jaaru,
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1: function Explore(s, exec)
2: if choose to fail then
3: Explore(s0, exec.push(fresh execution()))

4: if choose to evict then
5: Select τ from nonemptystorebuffer(s)
6: Pop head h off of Sτ

7: Explore(s.next(τ, h), exec)
8: else
9: Select τ from enabled(s)
10: if next action a for thread τ is a load then
11: rfset := BuildMayReadFrom(a.addr)
12: for each ⟨e, σ, val⟩ ∈ rfset do
13: Explore(s.DoRead(⟨e, σ, val⟩), exec)
14: end for
15: else
16: Explore(s.next(τ), exec)

Figure 3.10: The main model checking Algorithm.

therefore, injects failures at those points.

For long runs or scenarios in which multiple failures are injected, injecting failures before

every flush can result in exploring many executions. Jaaru contains an optimization that

skips injecting a failure if there have been no writes since the last injected failure. Jaaru can

also support injecting failures into a post-failure execution (with a command line option).

This option controls the maximum depth of the exec stack.

Locked RMW instructions. Locked (atomic) read-modify-write instructions include compare-

and-swap (CAS), atomic exchange, and many atomic arithmetic instructions. On x86 these

instructions also have fence-like semantics. They are equivalent to the atomic execution of

the following sequence of instructions: mfence, load, store, and mfence. Jaaru implements

them by atomically executing this sequence.

Mixed size accesses. C and C++ programs may access fields using stores and loads with

different widths. For example, a 32-bit integer field in a union may be initialized to 0 with a

64-bit integer store and then read with a 32-bit integer load. We implement accesses that

are larger than a byte as a sequence of byte accesses that are performed atomically. Thus, a

32-bit load is implemented as four 8-bit loads.
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Checksum-based recovery. One approach to ensure data persistency is to write a

checksum along with data ; recovery code reads the checksum to verify that the data was

persisted. Checksum-based recovery differs from other approaches in that the recovery code

may read from a larger number of non-persisted stores. Jaaru provides special support that

can exhaustively check programs that use checksum-based recovery without explicit flushes.

Debugging support. Jaaru can identify different types of bugs including missing fences,

misordered flushes, missing flushes, and misordered stores that cause atomicity violations.

The most common bug type we found was due to missing cache line flush instructions.

Looking at the entire trace to understand a bug is not easy. Therefore, we extend Jaaru with

additional functionality to help developers quickly determine why a program crashed.

Our observation is that a missing flush instruction effectively increases the number of pre-

failure stores that a post-failure load may read from. Jaaru, therefore, contains optional

support for flagging loads that can read from more than one store. To facilitate debugging,

Jaaru prints out the load that can read from multiple stores, the source location of the load,

each of the stores, their locations in the trace, and their source locations. Our experience

shows that this information is very useful for quickly understanding missing flush instructions

that cause the program to crash or loop.

3.2.1 Discussion

Existing DPOR algorithms [21, 46, 96, 140, 143, 144, 147] are not directly applicable in the

setting of persistent memory. None of the traditional DPOR algorithms consider the effect of

volatile memory such as crashes and cache flushes. For example, a crash makes pre-failure

stores that were executed but not written to persistent memory completely disappear.

Jaaru can be viewed as implementing a form of dynamic partial order reduction that avoids
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exploring equivalent executions. Pre-failure executions that differ in when cache lines are

flushed and thus generate different post-failure states can still yield the same post-failure

executions if the post-failure executions never read from the memory locations that contain

different values. Such cache line flushes can be viewed as commuting with the crash. Other

cache line flushes make stores visible to post-failure loads and thus do not commute with

the crash. Jaaru’s constraint refinement algorithm lazily identifies non-commuting cache line

operations during the post-failure execution and effectively explores reordering such cache

line flushes.

Many PM programs are multi-threaded, creating the opportunity for concurrency bugs.

Jaaru does not exhaustively explore all concurrent schedules and thus does not provide any

guarantees that it will find concurrency bugs. However, since Jaaru controls the concurrent

schedule and fully simulates the TSO memory model, as future work, it can be used to fuzz

for concurrency bugs.

3.3 Evaluation

In this section, we evaluate Jaaru’s bug-finding capabilities and performance with a set of

benchmarks. Our system configuration is reported in Table 3.1.

Table 3.1: System configuration.

CPU 6-core 3.7 GHz Intel i7-8700K processor
Volatile Memory 32GB DDR4, 2666MT/s

Non-volatile Memory Full Px86sim semantics simulated (see §3.2)
OS Ubuntu Linux 18.04

Compiler
gcc version 7.5.0 opt level O3

clang version 11.0.0 opt level O3
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Our benchmarks. We have evaluated Jaaru on PMDK [33] and RECIPE [98]. PMDK is

a library used extensively in prior work to evaluate bug-finding techniques [107, 108]. Both

PMTest and XFDetector would require extra annotations to cover different behaviors of

PMDK (e.g., PMTest requires the persistency order of every single variable to be defined

by annotations). These annotations are on top of the normal assertions used to sanity

check the program. However, Jaaru, as a model checker, can exhaustively explore the state

space without the need to write any extra assertions other than the basic sanity checks that

programs often have. For RECIPE, we were not able to run the P-HOT program because it

did not compile with LLVM. All programs in the PMDK library have been used.

Memcached and Redis have both been ported to use PMDK and evaluated in prior work [107,

108]. Unfortunately, Memcached and Redis can only be executed as servers that interact with

clients via sockets. Model checking a program that interacts with other programs requires

support for deterministically replaying those socket interactions that the current version of

Jaaru does not support. Jaaru could potentially be integrated with existing record-and-replay

debugging frameworks to lift this limitation.

3.3.1 Bug Detection

We ran Jaaru over PMDK and RECIPE automatically to find bugs. The inputs are examples

that come with these benchmark suites. We have not developed any new inputs ourselves.

Jaaru has found a total of 25 bugs, of which 18 are new bugs that have not been reported

before. Bugs that Jaaru can identify must have some visible manifestation ; either a crash,

e.g., segmentation fault, or an assertion failure in the program. Missing sanity checks in the

program can result in silent data corruption where the program appears to recover successfully

but has incorrect data.

We first discuss our experience with PMDK. Figure 3.11 reports the bugs we have found.
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For each bug, we list the program in which the bug was found. Note that the majority of

these bugs are in the core libpmemobj library in PMDK and the examples merely have served

as test cases for the library. For each bug, Figure 3.11 reports the symptoms of the bug,

e.g., an assertion failure or illegal memory access. For many of these bugs, we have found

that multiple failure injection points have led to the same symptom. These bugs may or

may not be the same and to be conservative we report each such group of bugs as one bug.

We have found 6 new bugs in the PMDK library ; only bug #2 was previously found by

XFDetector [107]. Some of these bugs are not missing-flush bugs since the stores are followed

by appropriate flush instructions, but atomicity violations in which partially completing

updates leaves the data structures in inconsistent states. None of these 6 bugs was reported

before (in either PMTest [108] or XFDetector [107]).

# Benchmark Symptom
1 Btree∗ Illegal memory access at btree map.c:89
2 Btree Failed to open pool error
3 Hashmap atomic∗ Assertion failure at heap.c:533
4 CTree∗ Assertion failure at obj.c:1523
5 Hashmap atomic∗ Assertion failure at pmalloc.c:270
6 Hashmap tx∗ Illegal memory access at obj.c:1528
7 RBTree∗ Illegal memory access at rbtree map.c:137

Figure 3.11: Bugs found in PMDK. Bugs with a * are new bugs. Only the second bug was
reported before in XFDetector [107].

We next discuss results for the RECIPE benchmarks. We have found 12 new bugs in the

RECIPE programs. Many programs contain multiple bugs. When Jaaru has found an

execution that causes the program to crash (or loop) we have examined Jaaru’s outputted

trace and debugging information to understand the bug. Since these benchmarks are easier

to understand than PMDK benchmarks, we have fixed the bug and used Jaaru to look for

additional bugs. We continued this until the program executed correctly.

Figure 3.12 presents the bugs we have found. We confirmed that each bug caused the

program to crash. Jaaru found bugs in every program. These bugs are primarily missing

flush instructions in object constructors. All of the bugs can potentially corrupt a persistent
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# Benchmark Type of Bug
1 CCEH∗ Missing flush in CCEH constructor
2 CCEH∗ Missing flush in CCEH constructor
3 CCEH∗ Missing flush in CCEH constructor
4 FAST FAIR Missing flush in header constructor
5 FAST FAIR Missing flush in entry constructor
6 FAST FAIR∗ Missing flush in btree constructor
7 P-ART∗ Use of non-persistent data structure in Epoch
8 P-ART∗ Missing flush in Tree constructor
9 P-ART∗ Use of non-persistent data structure for recovery
10 P-BwTree∗ GC crash leaves data structure in inconsistent state
11 P-BwTree∗ Missing flush of GC metadata pointer
12 P-BwTree∗ Missing flush of GC metadata
13 P-BwTree∗ Missing flush in AllocationMeta constructor
14 P-BwTree∗ Missing flush in BwTree constructor
15 P-CLHT Missing flush in clht constructor
16 P-CLHT Missing flush for hashtable object
17 P-CLHT Missing flush for hashtable array
18 P-MassTree Flushed referenced object instead of pointer

Figure 3.12: Bugs were found by Jaaru in every program of RECIPE. Bugs with a * are new
bugs.

data structure leading to data loss.

Many bugs are simple cases of forgetting to flush stores or mistakenly flushing the wrong

memory location. However, we have found other kinds of bugs. In P-ART, the developer has

used a vector data structure from tbb to track locks that must be unlocked in the recovery

procedure. The bug is that tbb data structures do not persist across failures. In P-BwTree,

Jaaru has found a logical error in the garbage collection (GC) algorithm in which failures

during the GC can corrupt the GC data structures. This bug is an atomicity violation and

not a case of missing flushes.

Comparing these results with the bugs found by PMTest [108] and XFDetector [107], Jaaru

appears to have a stronger bug-finding ability than PMTest and XFDetector. For example,

PMTest reported three new bugs and XFDetector reported four; several of these bugs were

performance bugs. On the contrary, Jaaru found serious functional bugs that can corrupt data

structures and lead to a crash or an assertion failure in the program. This is not surprising

because Jaaru explores many more states than PMTest and XFDetector, which focus on a
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single execution.

Among the several bugs reported before, three were not found by Jaaru. We inspected those

bugs and found it was because (1) two were performance bugs that are not our focus and (2)

one was in the Redis code which we did not test. Jaaru could be extended to find performance

bugs such as redundant cache flushes and fences.

3.3.2 Jaaru Bug Reporting

We presented Jaaru and the bugs found by our tool to the authors of RECIPE and we

received overall positive feedback. At the time of writing, 6 out of 18 bugs found by Jaaru

were fixed by the developers of RECIPE. There were 6 bugs that were related to memory

allocators and garbage collectors. The RECIPE developers did not fix the persistency bugs

related to memory allocators because they believe these bugs need to be addressed by the

memory allocators, which is not their focus. The remainder of the bugs were already fixed

before our bug report.

3.3.3 Performance

Figure 3.13 presents the performance results for Jaaru on RECIPE benchmarks. Providing

performance results for a model checker requires first fixing the bugs we have found so that

Jaaru can run to completion and fully explore the state space of the program; otherwise, it

would not make sense to report running time. We have spent much time fixing all the bugs

we have found in RECIPE so that the model checker can fully explore these benchmarks. The

bugs in the PMDK framework are more complicated and would take more time to fix, so we

did not include our performance results for PMDK. Note that Jaaru is able to model check

each RECIPE program in less than 15 seconds. We next discuss our evaluation of the state
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Benchmark #JExec. JTime #FPoints #Yat Execs.
CCEH 891 14.51s 528 2.17×10182

FAST FAIR 170 1.48s 41 5.43×1015

P-ART 174 1.86s 22 1.21×1034

P-BwTree 71 0.79s 36 1.50×1016

P-CLHT 25 1.59s 12 1.93×10605

P-Masstree 24 0.17s 16 1.67×1015

Figure 3.13: Jaaru’s state space reduction. Reported are the number of times Jaaru executes
a program (JExec.), time Jaaru takes to finish exploration (JTime), number of failure
injection points (FPoints), and the number of program executions Yat needs to eagerly
explore pre-failure stores (Yat Execs.).

space reduction that Jaaru achieves on these programs, relative to an eager model checking

approach such as that implemented in Yat [95]. Since Yat is not publicly available, we have

calculated the number of legal post-failure states that Yat would have to explore. Figure 3.13

presents these results. Given the very large number of executions Yat would have to explore,

it is unlikely to be feasible to exhaustively model check these realistic programs with Yat.

To better understand Jaaru’s effectiveness, we compare the total number of executions with

the number of failure injection points in the original execution. As shown in Figure 3.13,

Jaaru only explores a few executions per failure injection point. The number of executions

per failure injection point ranges from 1.5 to slightly less than 8.

It does not make much sense to compare performance directly between Jaaru and non-

exhaustive approaches such as PMTest and XFDetector, which detect bugs on single exe-

cutions. However, as a reference, Jaaru incurs an overall slowdown of 736× per execution,

which is on par with the overhead of XFDetector (i.e., from dozens of times to almost a

thousand times as reported in the paper [107]). PMTest and Pmemcheck have much lower

overhead (1.69× and 22.3×, respectively). This is because Jaaru fully simulates the x86 TSO

persistency semantics while the other tools ignore the effects of store buffers.
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3.3.4 Key Takeaway

Our results highlight the strengths and weaknesses of model checking: Jaaru finds more bugs

without any user involvement, but cannot easily handle programs with complex interactions

with the outside world. Jaaru is a good fit for checking library code that is usually small in

size but has a large impact. Non-exhaustive tools such as PMTest and XFDetector should be

used to check large programs such as Redis whose non-determinism from the network can

give a model checker much trouble. It is also clear that the constraint refinement approach

enables Jaaru to efficiently check these programs; without refinement, it would not be possible

for a model checker to scale even to library code.
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Chapter 4

Robustness

Recal from Chapter 1, majority of testing frameworks detect persistency bugs that have

visible symptoms such as assertion failure or segmentation fault. The issue is that not all bugs

can have visible manifestation such as silent data corruption bugs. This chapter introduces a

notion of robustness and elaborates on PSan’s implementation. To be more specific, this

chapter makes the following contributions:

1. Robustness: It defines robustness, a sufficient correctness condition for the placement

of flush and drain operations in persistent memory programs.

2. Detecting Robustness Violations: It presents an approach that uses robustness to

identify persistency bugs that may not have visible symptoms.

3. Bug Localization: It presents an algorithm that localizes bugs in PM programs to

the specific stores where flush and drain operations should be inserted.

4. Bug Fixes: It presents an algorithm for translating robustness violations into bug

fixes. PSan’s bug fixes ensure that stores are persisted in the correct order.

5. Implementation and Evaluation: We implemented PSan with a full simulation of
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Px86sim semantics with different modes and strategies to support complex, real-world

programs. We evaluated PSan on CCEH, FAST FAIR, the RECIPE persistent memory

indexes, the PMDK library, as well as two popular industrial applications Redis and

memcached. PSan found 48 persistency bugs that 17 of them have never been reported

before; so far 7 bugs have been confirmed.

4.1 Preliminaries

Recovery mechanisms often rely on specific persistency orderings in the program’s execution.

Failure to enforce such orderings can lead to data corruption and loss after a system crash.

There are different memory persistency models that allow different persistency orderings to be

observed by recovery procedures [132, 131, 41, 80, 60, 47]. Among them, strict persistency is

the most conservative and intuitive model which integrates memory persistency into memory

consistency [131]. Under strict persistency, the recovery procedure observes the memory in

an equivalent state as a separate processor would under the memory consistency model.

This section describes the strict persistency model and robustness condition. The formal

definition of them can be found in the supplemental material of PSan paper [61]. First,

we will introduce some notations. Given a PM program P , an execution of the program is

the complete trace of memory operations, fences, cache flush operations, and crash events

in executing the program P . Each execution Exec includes n crash events and n + 1 sub-

execution. This terminology describes the scenario where a process crashes and then recovers

multiple times.

Memory operations include load and store operations: a load is denoted as ld⟨x, τ⟩, and a

store is denoted as st⟨x, τ⟩, where x is the memory location and τ is the thread executing the

operation. Since we only care about which store a load reads from, the actual values that

50



a store writes and a load reads from are not important in our context, and we omit them

in the notation. When the memory location or the thread that performs that operation is

irrelevant in the context, we will omit them in the notation and write ld⟨x⟩ or st⟨x⟩.

4.1.1 Strict Persistency

We describe strict persistency in terms of the total store order (TSO) memory model. If

in an execution, a store st⟨x⟩ is ordered before another store st⟨y⟩ in the x86-TSO memory

consistency order, i.e., st⟨x⟩ takes effect in the cache before st⟨y⟩, we write st⟨x⟩ tso−→st⟨y⟩ to

represent TSO-ordered-before relationship between these two stores. Under strict persistency,

the volatile memory order and persistent memory order are identical. That means that for

two stores st⟨x⟩ and st⟨y⟩, if st⟨x⟩ tso−→st⟨y⟩, then st⟨x⟩ is persisted before st⟨y⟩.

4.1.2 Robustness Condition

One can näıvely implement strict persistency by inserting flush operations after every memory

access. Developers typically do not do this because this strategy can incur unacceptable

overheads. However, the strict persistency model can be utilized as a correctness condition

in using a weaker persistency model, e.g., relaxed persistency. Recall from Section 1.3, a

program under weak persistency models can behave the same as the program under strict

persistency without requiring flush operations after every load and store. Building on this

idea, we next define robustness for a single execution with n crash events.

Definition 4.1.1. An execution with n crash events under weak persistency model is robust

if:

1. the last sub-execution of the program under weak persistency model is identical to the

last sub-execution of program under strict persistency model ;
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2. in execution under weak persistency model, if st⟨x⟩ in any sub-execution is read from

by a load in later sub-executions, then st⟨x⟩ must exist in the execution under strict

persistency model .

3. the execution under strict persistency model preserves the sequenced-before and reads-

from relations, the happens-before relation over stores, and the TSO order in the

execution under weak persistency model. .

The happens-before relation over stores is defined in Section 4.1.4. Note that the execution

under weak persistency model and execution under weak persistency model may not in general

have the same crash point. This means threads in each sub-execution under weak persistency

model can have different crash point compared to threads in each each sub-execution under

strict persistency model.

Definition 4.1.1 states that at any point of the execution under weak persistency model, the

most recent sub-execution has the same behavior as that of some strictly persistent execution.

For store operations that are not included by any of sub-executions under strict persistency,

their effects are either not written to the persistent memory or not read from by loads in

later sub-executions. However, if the stores in any sub-execution is read from by loads in

later sub-executions, then it must be included in sub-execution under strict persistency.

The following definition presents the notion of robustness for programs:

Definition 4.1.2. A program P is robust to a weak persistency model if every execution

Exec of program P is robust.

4.1.3 Persistent Lock-Free Data Structures

As prior studies note [149, 9, 78, 34], strict persistency guarantees recoverability for lock-free

data structures. Thus, robustness is a sufficient criterion to correctly port lock-free data
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structures to persistent memory. The key observation is that a crash of a lock-free data

structure under the strict persistency model is equivalent to a crash-free execution in which

one set of threads runs the pre-crash execution and stop at their respective crash locations

and then after those threads stop, the second set of threads runs the post-crash execution.

Lock-freedom guarantees progress for such execution, and thus robustness plus lock-freedom

suffices to ensure crash consistency.

The robustness definition is generic and can be applied to any program, including single-

threaded, log-free, and lock-based multi-threaded programs, in addition to lock-free programs.

For persistency strategies other than lock-free programs, robustness can still be a useful

tool for finding any potential flush/fence bugs even though robustness is not sufficient to

guarantee crash consistency for such programs. Broadly speaking, the domain of applicability

for PSan is PM programs that attempt to persist data across crashes.

4.1.4 Clock Vectors and Sequence Numbers

Our algorithm for checking robustness requires tracking the happens-before relation and

the TSO order, so we will cover some basics on how we use clock vectors to track the

happens-before relation [45] over stores and sequence numbers to track the TSO order.

Clock vectors have an initial value ⊥CV, a union operator ∪, a comparison operator ≤, and

a per-thread increment operator incτ that is invoked every time a thread performs a store.
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States:

Tid ≜ Z CV ≜ Tid → Z CV ≜ Tid → CV SCV ≜ store → CV

seq : Z SEQ ≜ store → Z

[LOAD]

st⟨x, τs⟩
rf−→ld⟨x, τ⟩ CV′ = CV[τ 7→ CV(τ) ∪ SCV(st⟨x, τs⟩)]

⟨CV,SCV,SEQ, seq⟩ ⇒ld⟨x,τ⟩,st⟨x,τs⟩ ⟨CV′,SCV,SEQ, seq⟩

[STORE ISSUE]

CV′ = CV[τ 7→ incτ(CV(τ))] SCV′ = SCV[st⟨x, τ⟩ 7→ CV′(τ)] SEQ′ = SEQ[st⟨x, τ⟩ 7→ 0]

⟨CV,SCV,SEQ, seq⟩ ⇒st⟨x,τ⟩ ⟨CV′,SCV′,SEQ′, seq⟩

[STORE COMMIT]

seq′ = seq + 1 SEQ′ = SEQ[st⟨x, τ⟩ 7→ seq′]

⟨CV,SCV,SEQ, seq⟩ ⇒st⟨x,τ⟩ ⟨CV,SCV,SEQ′, seq′⟩

[CRASH]

seq′ = 0 CV′ = reset(CV)
⟨CV,SCV,SEQ, seq⟩ ⇒crash ⟨CV′,SCV,SEQ, seq′⟩

Figure 4.1: Algorithm for updating clock vectors that track the happens-before relation over
stores and sequence numbers that record the TSO order.

These are defined as follows:

⊥CV = λτ.0,

CV1 ∪ CV2 ≜ λτ.max(CV1(τ),CV2(τ)),

CV1 ≤ CV2 ≜ ∀τ.CV1(τ) ≤ CV2(τ),

incτ(CV ) = λu. if u == τ then CV(u) + 1 else CV(u).

Each store has a clock vector associated with it, and each thread has its own clock vector.

We define a map CV that maps a thread identifier to the thread’s clock vector and write

CV(τ) to denote the clock vector for thread τ. We define SCV as a map from a store to

store’s clock vector.
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In order to keep track of the TSO order, we define a sequence number for each store operation,

representing the order the stores take effect in the cache. We maintain a map SEQ that maps

a store to its sequence number.

Figure 4.1 presents the algorithm for updating clock vectors and sequence numbers. The

sequence counter seq is a strictly increasing global counter, which is initialized to 0. The

[LOAD] rule applies when a load reads from a store and merges the clock vector of the thread

performing the load with the clock vector of the store being read from. The [STORE ISSUE]

rule applies when a thread τ performs a store, i.e., inserting the store into the thread’s store

buffer. It updates the thread τ’s clock vector using the incτ operator, initializes the store’s

clock vector, and initializes the store’s sequence number to 0. The [STORE COMMIT] rule

applies when a store leaves its store buffer. It increments the counter seq by 1, and assigns

the store’s sequence number as the counter’s current value. When a crash event occurs, the

[CRASH] rule resets the sequence number counter seq to 0 and the map CV to an empty

map. For two stores st⟨x⟩ and st⟨y⟩ in the same sub-execution, if SCV(st⟨x⟩) ≤ SCV(st⟨y⟩),

then the store st⟨x⟩ happens before the store st⟨y⟩.

Given a store st⟨x, τ⟩ and its clock vector SCV(st⟨x, τ⟩), we define the clock of the store

as SCV(st⟨x, τ⟩)(τ), the τ-th component of its clock vector. We will use a helper function

getcl throughout this chapter that takes a store as input and returns the clock of the store.

Because the incτ operator is only applied to thread τ, and a load operation in thread τ may

only update components of thread τ’s clock vector other than the τ-th component, every

store in a thread has a unique clock. Note that the clock of stores orders stores in a single

thread in a sub-execution by when they are issued, while the sequence number orders stores in

a sub-execution by when they commit their values to the cache.
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4.2 Basic Ideas

PSan builds on the open-source Jaaru infrastructure [62] for simulating the x86 persistent

memory model. Jaaru’s frontend takes as input the PM program source and generates an

instrumented binary. The instrumented binary is executed by Jaaru, and Jaaru generates

an execution trace. Jaaru assumes as input a set of test cases that explore a program’s

PM data structures. These can potentially be generated by existing test data generation

tools [106, 5, 16, 17, 12, 8, 100, 148, 145, 57, 58, 135]. Jaaru generates executions of PM

programs, and then PSan checks these executions for robustness violations using Jaaru’s

plugin interface.

PSan reports robustness violations to users, which can help users find bugs in the uses of

flush and drain operations. PSan can also be helpful for debugging known bugs. When

an assertion violation or other error is detected, Jaaru provides developers with the trace.

This trace can contain millions of operations, and it can be difficult to understand which

ones are relevant to the crash. PSan can quickly relate bugs in the uses of flush and fence

operations to the individual memory operation that is either missing a flush operation or has

an incorrectly placed flush operation. PSan then suggests to users one or more bug fixes.

4.2.1 Checking Equivalence

PSan’s approach for identifying equivalent strictly persistent executions computes a set of

strictly persistent executions that are consistent with the behavior of the weakly persistent

execution thus far. The basic approach relies on computing potential crash intervals that

describe the set of equivalent strictly persistent executions. We model potential crash intervals

using constraints. If the constraints become unsatisfiable, then no such equivalent strictly

persistent pre-crash execution exists and the program is not robust. At this point, PSan
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would then report a robustness violation.

During the post-crash execution of the program, PSan updates the constraints to compute a

potential crash interval for the pre-crash execution. The constraint set is initially empty to

indicate that any strictly persistent pre-crash execution is consistent with the behavior of the

initially empty post-crash execution. Each load in the post-crash execution potentially narrows

the set of strictly persistent pre-crash executions that are consistent with the post-crash

execution.

For each potential crash interval constraint, the beginning of a range corresponds to a unique

store, and so does the end of a range. We use the clocks of stores defined in Section 4.1.4 to

mark the beginnings and ends of ranges. Note that although the clocks of stores are used to

mark the beginning and end ranges of potential crash interval constraints, a constraint really

means that an equivalent strictly persistent execution should crash after the store corresponding

to the beginning of the range commits to the cache and before the store corresponding to the

end of the range commits to the cache.

1 x = 1;

2 y = 2;

3 x = 3;

4 y = 4;

5 x = 5;

(a) Pre-crash execution

r1 = y;

r2 = x;

(b) Post-crash execution

Figure 4.2: An example of non-robust program with missing flush and drain operations. x
and y are initialized to 0.

Figure 4.2 presents an example that we will use to present our basic approach. The left

column in Figure 4.2 shows the code of the pre-crash execution and the right column shows

the code of the post-crash execution. Section 4.4.1 elaborates on how PSan inserts crash

points in the program. The clocks of stores in the pre-crash execution are listed on the left of

Figure 4.2-a.

Consider an execution in which r1 = 2 and r2 = 5. Figure 4.3 shows such an example and
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r1=2;

x=1 y=2 x=3 y=4 x=5
X

Power
failure

Initially

r2=5; X

Figure 4.3: Constraints for execution of code in Figure 4.2 where r1 = 2 and r2 = 5.

illustrates the process of checking for an equivalent strictly persistent execution. At the

beginning of the post-crash execution, the potential crash interval constraint set is empty.

After the post-crash execution reads 2 from y, this constrains an equivalent strictly persistent

pre-crash execution to have crashed after the assignment y = 2 commits to the cache, but

before y = 4 commits to the cache. Therefore, the potential crash interval constraint [2, 4)

is added to the constraints. When the post-crash execution reads 5 from x, this constrains

an equivalent strictly persistent pre-crash execution to have crashed after the store x = 5

commits to the cache and implies the potential crash interval constraint [5,∞) should be

added to the constraints. However, the combination of the prior interval constraint [2, 4)

and the new interval constraint [5,∞) is unsatisfiable. Thus, there is no equivalent pre-crash

execution under strict persistency. This execution is possible under the x86 persistency model

because there is no flush and drain operation for y after y = 4.

4.2.2 Supporting Threads

We next discuss the basic ideas of how we generalize our approach for updating potential

crash interval constraints to the multi-threaded context.
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x = 1;

flush x;

(a) Thread τ1 in pre-crash execution

y = 1;

flush y;

(b) Thread τ2 in pre-crash execution

r1 = x;

r2 = y;

(c) Post-crash execution

Figure 4.4: x and y reside in different cache lines and are initialized to 0. We assume that
in the pre-crash execution, a third thread observes that x = 1 is TSO ordered before y = 1.
Can the execution read r1 = 0 and r2 = 1?

x = 1;

flush x;

(a) Thread τ1 in pre-crash execution

r1 = x;

y = r1;

flush y;

(b) Thread τ2 in pre-crash execution

r2 = x;

r3 = y;

(c) Post-crash execution

Figure 4.5: An example of just adding flushes after stores is not always sufficient to provide
robustness. x and y are initialized to 0. x and y reside in different cache lines. Can the
execution read r1 = 1, r2 = 0, and r3 = 1?

Per-Thread Crash Intervals

Näıvely applying potential crash interval constraints to a multi-threaded execution trace

using TSO order is overly restrictive. Figure 4.4 presents an example that demonstrates the

issue with this approach. We assume that the store x = 1 is TSO ordered before the store

y = 1 in the pre-crash execution and this could potentially be observed by pre-crash threads.

Consider the execution where r1 = 0 and r2 = 1.

This execution is robust, because it is equivalent to a strictly persistent execution where
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thread τ1 does not perform any operation, thread τ2 executes y = 1, and then the program

crashes. Then the post-crash execution of the strictly persistent execution would read r1 = 0

and r2 = 1.

In the näıve approach, we inspect the trace of the pre-crash execution to determine where

an equivalent execution should crash. Since clocks of stores do not order stores in different

threads, sequence numbers have to be used in the constraints. r1 = x = 0 yields the constraint

[0, seqx = 1), because an equivalent strictly persistent execution must crash before the store x

= 1. Similarly, r1 = y = 1 yields the constraint [seqy = 1,∞). However, the combination of

the two constraints [0, seqx = 1) ∧ [seqy = 1,∞) is unsatisfiable.

To solve this issue, each thread requires its own potential crash interval constraints, since each

thread can make different progress when a program crashes. Therefore, we define potential

crash interval constraints C as a map from a thread identifier to a potential crash interval

constraint for the thread. The map C is satisfiable if and only if each interval constraint in

its range is satisfiable. Each C(τ) is initially empty.

Persistency Closure under Happens-Before

Another aspect of the simple approach in Section 4.2.1 is that it only updates potential crash

interval constraints based on the TSO ordering between stores at the same memory location.

This simple approach is not enough to detect robustness violations in the multi-threaded

context. More specifically, if a store is made persistent in a robust execution, then all stores

that are read from and that happen before this store must also be made persistent. However,

the simple approach cannot detect robustness violations in executions where a store that has

been read from and that happens before a persistent store is not made persistent.

Figure 4.5 presents an example that shows such robustness violations. This example is also

interesting because it shows that simply adding flush operations after each store is not always
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sufficient to guarantee robustness. Figure 4.5-(a) and 4.5-(b) present the pre-crash execution

code for thread τ1 and thread τ2. Figure 4.5-(c) shows the code for the post-crash execution.

We assume that both x and y are initialized to 0, and that they reside in different cache

lines. Consider the execution where thread τ1 executes x = 1 and is paused by the operating

system before executing the corresponding flush. Then, thread τ2 reads r1 = x = 1, stores

y = r1 = 1, and flushes y. If the program crashes at this point, the post-crash execution can

read r2 = 0, but r3 = 1. Such an execution is not feasible under strict persistency.

When the post-crash execution reads r2 = 0, it can be inferred that the thread τ1 of an

equivalent strictly persistent execution must have crashed before the store x = 1 commits to

the cache. Therefore, we have C(τ1) = [0, getcl(x = 1)). Similarly, when the load r3 = y

reads from the store y = r1, it can be inferred that the thread τ2 of the equivalent strictly

persistent execution must have crashed after the store y = r1 commits to the cache, and

C(τ2) = [getcl(y = r1),∞). At this point, both C(τ1) and C(τ2) are satisfiable, failing to

detect the robustness violation in this execution.

This execution exhibits a robustness violation because the store y = r1 is made persistent,

but the store x = 1 that happens before it is not. This robustness violation can be fixed if

x = 1 is forced to be persistent before y = r1 by adding a flush instruction after the load

r1 = x in thread τ2.

It is worth noting that if we require that stores that are not read from and are TSO ordered

before a persistent store be made persistent in a robust execution, then this condition is

too strong in that it would classify some robust executions as non-robust. For example, the

execution in Figure 4.4 is robust, but x = 1 is not persistent even though it is TSO ordered

before y = 1, and y = 1 is made persistent.
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4.2.3 Implications for Updating Constraints

In this section, we will present implications for updating potential crash interval constraints

in executions with a single crash event. Every time a load ld⟨x⟩ in the post-crash execution

reads from a store st⟨x, τ1⟩ in the pre-crash execution, PSan updates constraints based on

the following implications:

1. Observed stores must have executed: When a load ld⟨x⟩ in the post-crash execution

reads from a store st⟨x, τ1⟩ in the pre-crash execution, we can infer that an equivalent strictly

persistent execution must have crashed after the store st⟨x, τ1⟩ commits for thread τ1:

st⟨x, τ1⟩
rf−→ld⟨x⟩

⇒ C(τ1) := [getcl(st⟨x, τ1⟩),∞) ∧ C(τ1). (4.2.1)

2. Newer stores must have not executed: If there is a second store st⟨x, τ2⟩ that is TSO

ordered after the st⟨x, τ1⟩, then the equivalent strictly persistent execution must have crashed

before st⟨x, τ2⟩ commits for thread τ2, because otherwise, ld⟨x⟩ would read from st⟨x, τ2⟩ in

the strictly persistent execution instead:

st⟨x, τ1⟩
rf−→ld⟨x⟩ ∧ st⟨x, τ1⟩

tso−→st⟨x, τ2⟩

⇒ C(τ2) := [0, getcl(st⟨x, τ2⟩) ∧ C(τ2). (4.2.2)

3. An execution prefix is closed under happens before: If there is any store st⟨y, τ3⟩

that happens before st⟨x, τ1⟩ in the pre-crash execution, then the equivalent strictly persistent

execution must have crashed after st⟨y, τ3⟩ commits for thread τ3, because st⟨y, τ3⟩ must have
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been executed before st⟨x, τ1⟩:

st⟨x, τ1⟩
rf−→ld⟨x⟩ ∧ st⟨y, τ3⟩

hb−→st⟨x, τ1⟩

⇒ C(τ3) := [getcl(st⟨y, τ3⟩),∞) ∧ C(τ3). (4.2.3)

4.2.4 Supporting Multiple Crash Events

So far, our discussion has only focused on executions with one crash event. In an execution

Exec with n crash events, the execution has n+1 sub-executions. Therefore, each crash event

should have its own potential crash interval constraints, and we define map C that maps a

sub-execution e to the potential crash interval constraints for the crash event immediately

following the sub-execution. For a complete execution, C would map the last sub-execution

to an empty set of constraints, because there is no crash event after the last sub-execution.

In an ongoing execution, we refer to the sub-execution after the last crash event that has

occurred so far as the current sub-execution. When a load in the current sub-execution

reads from a store in a previous sub-execution e, PSan would update the potential crash

interval constraints for the sub-execution e. However, if a load in the current sub-execution

reads from a store in a previous sub-execution that does not immediately precede the current

sub-execution, then some additional constraints would apply, because the store that is read

from cannot be overwritten by any store in sub-executions later than e. We present these

additional constraints in Section 4.3.1.

x = 1;

y = 1;

(a) sub-execution e1

y = 2;

r = x;

(b) sub-execution e2

s = y;

(c) sub-execution e3

Figure 4.6: A single-threaded program with three sub-executions. Both sub-executions e1
and e2 are followed by crash events. x and y reside in different cache lines and are initialized
to 0. The execution reads r = 0 and s = 1.
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Figure 4.6 presents an example of a single-threaded execution with two crash events and

three sub-executions. Although this example is single-threaded, the general idea applies to

multi-threaded programs. Both sub-executions e1 and e2 are followed by crash events. The

load r = x = 0 reads from the initial value of x, and the load s = y = 1 reads from the store

y = 1 in the first sub-execution.

Right after the crash event following sub-execution e2, the execution is robust so far. Since the

program is single-threaded, we will omit the thread identifier in the notation. The load r = x

= 0 updates C(e1) as C(e1) = [0, getcl(x = 1)), because the first sub-execution of an equivalent

strictly persistent execution must crash before x = 1 commits to the cache, and C(e2) has no

constraints. Then when the load s = y reads from y = 1, C(e1) becomes [0, getcl(x = 1)) ∧

[getcl(y = 1),∞), because the first sub-execution of the equivalent execution must crash

after y = 1 commits to the cache. Also, C(e2) becomes [0, getcl(y = 2)), because the second

sub-execution of the equivalent execution must crash before y = 2 commits to the cache.

Otherwise, the older store y = 1 would be overwritten. However, the constraints in C(e1) are

not satisfiable, and such equivalent execution does not exist.

Note that a misinterpretation of the constraint C(e2) = [0, getcl(y = 2)) would suggest that

the second sub-execution should be empty. Then since r = x is not executed, C(e1) becomes

[getcl(y = 1),∞), resutling in satisfiable constraints. However, this is not the case. First of

all, the constraint C(e2) = [0, getcl(y = 2)) suggests that the second sub-execution of the

equivalent execution should crash before y = 2 commits to the cache, not necessarily before y

= 2 is executed. Second, even if the second sub-execution of the equivalent execution crashes

before y = 2 is executed, it does not affect the original weakly persistent execution that was

used to derive the map C, and so we do not remove the implications of the load r = x from

C(e1).
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4.3 Algorithm

a ∈ Reg v ∈ Val τ ∈ TId

Prog ::= TId
fin−−→ Com

Com ::= Exp | PCom

| let a := Com in Com

| if (Com) then {Com} else {Com}

| repeat Com

PCom ::= load(x) | store(x,Exp) | CAS(x,Exp ,Exp)

| FAA(x,Exp) | mfence | sfence

| flushopt x | flush x

Exp ::= v | a | Exp op Exp

Figure 4.7: A simple concurrent programming language.

We present our algorithm for detecting robustness violations with respect to the simple

concurrent language used by Px86sim [136], as described in Figure 4.7. We assume that Reg is

a finite set of registers (local variables), Val is a finite set of values, and TId ⊆ N is a finite set

of thread identifiers. An expression Exp is either a register, a value, or the result of applying

an arithmetic operation on two expressions. We define a multi-threaded program Prog as

a function mapping each thread to the sequential program that the thread executes. The

sequential fragment of the language is given by the Com grammar, which includes primitive

commands PCom, expresssions, assignments to local variables, conditional statements, and

loops. The load(x) denotes an atomic read from location x, and the store(x,Exp) denotes

an atomic write to location x. The CAS(x,Exp,Exp) denotes the atomic compare-and-swap.

The FAA(x,Exp) denotes the atomic fetch-and-add operation. Our analysis treats RMW

operations in the same fashion as a load immediately followed by a store. The mfence and

sfence denote a memory fence and a store fence, respectively. Lastly, flushopt and flush

denote persist instructions, persisting the cache line where location x resides.

4.3.1 Operational Semantics

Figure 4.8 presents our algorithm in operational semantics as an extension to the Px86sim

operational model. Before performing the analysis in Figure 4.8, the algorithm in Figure 4.1
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for computing clock vectors and sequence numbers is applied to the corresponding operations.

After the analysis in Figure 4.8, we extend the transitions for the Px86sim operational

model [136].

We use the following notations in the algorithm:

• getexec(st⟨x, τ⟩) returns the sub-execution that contains the store st⟨x, τ⟩;

• next(st⟨x, τ⟩, e) returns the smallest set of stores that includes (1) the first store to

the location x in each thread that is TSO ordered after store st⟨x, τ⟩ in the sub-

execution getexec(st⟨x, τ⟩) and (2) the first store to the location x in each thread in

any sub-execution that follows getexec(st⟨x, τ⟩) and precedes e.

• nextop(i) returns the instruction that follows i in the execution;

• top(Exec) returns the last sub-execution in Exec, i.e., the current sub-execution;

• C maps a sub-execution e to its mapping Ce from threads to potential crash intervals.

States:

C ≜ Exec → C C ≜ TId→ Constraint List

[LOAD-PREV]

st⟨x, τ⟩ rf−→ld⟨x⟩ ê = getexec(st⟨x, τ⟩) ec = top(Exec) ld⟨x⟩ ∈ ec
ê ̸= ec {st⟨x, τ1⟩1, ..., st⟨x, τn⟩n} = next(st⟨x, τ⟩, ec) ∀i ∈ {1, ..., n}.êi = getexec(st⟨x, τi⟩i), σi = SCV(st⟨x, τi⟩i)(τi)

C0 = C[ê 7→ {⟨τ ′, C(ê)(τ ′) ∧ [SCV(st⟨x, τ⟩)(τ ′),∞)⟩ | τ ′ ∈ TId}]
∀i ∈ {1, ..., n}.Ci = Ci−1[ei 7→ Ci−1(êi)[τi 7→ Ci−1(êi)(τi) ∧ [0, σi))]]

⟨ld⟨x⟩, C⟩ =⇒ ⟨nextop(ld⟨x⟩), Cn⟩

Figure 4.8: Semantics for checking robustness violations.

We only check for robustness violations when a load in the current sub-execution reads from

a store in a previous sub-execution. The clock vector SCV(st⟨x, τ⟩) has information about

the last store in each of the other threads that happens before st⟨x, τ⟩, because for each

τ ′ ̸= τ, SCV(st⟨x, τ⟩)(τ ′) is exactly the clock of the last store in thread τ ′ that happens before
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st⟨x, τ⟩. When τ ′ = τ, SCV(st⟨x, τ⟩)(τ ′) is the clock of st⟨x, τ⟩. Therefore, C0 is the result of

applying implications 4.2.1 and 4.2.3. Then the last line in Figure 4.8 iteratively applies the

implication 4.2.2 for each store in the set next(st⟨x, τ⟩, ec).

Generally speaking, we can prove the correctness of our algorithm by contradiction. Suppose

the algorithm reports a robustness violation for a program that is robust. This means that a

constraint inferred by later load conflicts with the existing constraint. These constraints are

either of the form [0, α) or of the form [β,∞) but they cannot have the same form. If the

new constraint is in the form of [0, α), there is a later store to the same location, x, with the

clock of α that enforces this constraint that can be in the same executions or later executions.

In this case, the existing constraint is in the form of [β,∞). This means that prior loads

read from a store to a different variable, y, that happens after the later store to x. The

store to y has to happen after the later store to x since β > α. Due to the condition 2 in

Definition 4.1.1, it can be inferred the later store to x has to be in the consistent prefix under

the strict persistency model which means the cache line is flushed after the later store to x.

Since we assumed the program is robust the load from x needed to read from the later store

to x which contradicts our initial assumption where the load reads from the first store to x.

Similar reasoning for the case where the new constraint is in the form of [β,∞). We present

a correctness proof for the algorithm in the supplemental material of our PSan paper [61].

Refer to this source for more detailed technical information on the proof of the algorithm.

4.3.2 Suggesting Fixes for Robustness Violations

We next discuss how PSan suggests fixes for robustness violations. In general, there are

two ways to fix a robustness violation. The first is to use flush and/or drain operations to

force the cache to write back a cache line to persistent memory. The second is to leverage

the existing cache coherence mechanism to enforce the desired ordering by locating a pair of
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stores for which an ordering violation is observed on the same cache line.

Each identified bug is defined by a pair of stores: the first store is ordered earlier in the

happens-before relation than the second store, but only the second store was persisted and

observed by loads in post-crash executions. PSan gives this pair of stores to users. The bug

fix is a little more complicated because these stores could potentially be in different threads

and it is possible, for example, that the thread that executes the first store stops immediately

after the store, and some other thread reads from this store and later performs a second store.

In this case, we cannot prevent this robustness violation by adding a flush after the first

store since that thread stops. We have to fix this bug by adding a flush after the load. Thus,

PSan defines a fix as a set of flush intervals that cover operations that happen between the

pair of stores.

There are two cases in which a robustness violation may be reported ; the first case is when

the most recent load reads from a store that is too old to be consistent with the strict

persistency model, and the second case is when the most recent load reads from a store that

is too new. We first discuss the first case in more detail.

Reading from Too Old of Store. Figure 4.9 presents a robustness violation that occurs

when the most recent load ld⟨y⟩ reads from a store st1⟨y⟩ that is too old. This occurs because

the program is missing a flush on some newer store st2⟨y⟩ to the same memory location. Our

algorithm detects this when the presence of the later store st2⟨y⟩ causes the algorithm to

move the end of the crash interval backward past the beginning of the interval. A single load

can potentially reveal multiple stores st2⟨y⟩ that are missing flush operations. This set of

stores are the stores st⟨x, τi⟩i such that the computation of the maps Ci in the load rule of

our operational semantics computes a new unsatisfiable interval.

The fix for this bug is to insert a flush and a drain that happen after the store st2⟨y⟩ and

happen before the beginning of some potential crash interval. Specifically, PSan computes
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Figure 4.9: Reading from a store that is too old.

for each thread a potential flush window that starts at the first operation in that thread

that happens after st2⟨y⟩ and continues until the beginning of that thread’s crash interval.

We distinguish the interval for the thread that performed st2⟨y⟩, and call this interval the

primary fix interval. While all the suggested fixes will eliminate the robustness violation, we

believe the primary fix interval is typically the desired fix. However, the primary fix interval

may not always exist as seen in the scenario in Figure 4.5 in which a thread crashes between

performing a store and flushing and draining the store, but a second thread observes the

presence of that store and then persist stores of their own. In this case, the primary fix

interval would be empty, and PSan would produce an alternate interval for that second

thread.

Alternatively, to fix this bug by colocating fields on the same cache line, PSan would compute

the store that sets the beginning of the crash interval shown in Figure 4.9. The store st2⟨y⟩

must be made persistent before that store, and thus developers must modify the memory

layout to ensure that both stores write to the same cache line.

Reading from Too New of Store. Figure 4.10 presents an execution in which the most

recent load ld⟨z⟩ reads from a store st3⟨z⟩ that is too new to be consistent with the strict
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Figure 4.10: Reading from a store that is too new.

persistency model. This occurs because a previous load ld⟨y⟩ read from a store that was too

old since some store st2⟨y⟩ was missing an appropriate flush operation. Our algorithm detects

this violation when the store st3⟨z⟩ causes the beginning of the crash interval to be move

forward past the end of the crash interval.

The fix for this bug is to insert a flush and a drain operation such that st2⟨y⟩ happens before

the flush and drain operation and the flush and drain operation happens before st3⟨z⟩. We

must first compute the store st2⟨y⟩. We implement this by recording for each crash interval

the store that sets that its end. If the store at the end of an interval happens before st3⟨z⟩,

then this store is a store st2⟨y⟩. There can be multiple such stores. For each thread and

each store st2⟨y⟩, we report an interval such that st2⟨y⟩ happens before operations in the

interval and operations in the interval happen before st3⟨z⟩. We distinguish the interval for

the thread that executed st2⟨y⟩ as a primary fix. Similar to the previous case, the primary

interval is typically the desired fix. But the interval can be empty if st2⟨y⟩ happens before

st3⟨z⟩ only if some other thread in the pre-crash execution reads from st2⟨y⟩.

Alternatively, to fix this bug by colocating fields on the same cache line, the store st2⟨y⟩ must

be made persistent before the store st3⟨z⟩, and thus developers must modify the memory
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layout to ensure that both x and y are located on the same cache line.

Implementation. The algorithm as described only detects robustness violations on the

current execution. Our implementation is built on the Jaaru model checker and at every

load, it selects a store for that load to read from. Before selecting a store for a load to read

from, PSan checks each possible store that the load can read from to see if it will create a

robustness violation. PSan reports any detected violation. A straightforward application of

the algorithm can only detect a single robustness violation in an execution. PSan can detect

multiple robustness violations in a single execution by forcing loads to read from stores that

do not cause robustness violations. This allows PSan to continue the execution past the first

detected robustness violation so that PSan can detect additional robustness violations.

4.4 Evaluation

In this section, we evaluate the usefulness and effectiveness of PSan in finding persistency

bugs in a set of benchmarks. We start by describing the benchmarks and the configuration

of our system. Then, we describe our evaluation methodology and analyze the bugs found by

PSan. Finally, we discuss our observations from our experiments.

System Setup. PSan was implemented atop the open-source Jaaru model checker for

persistent memory [62]. Our experiments were carried out on an Ubuntu 18.04 machine with

a 6 core 3.7 GHz Intel i7-8700K processor and 32GB RAM.

4.4.1 Methodology

We first tested PSan on the RECIPE [98] collection of PM indexes based on B+-trees, tries,

radix trees, and hash tables [123, 72, 98]. CCEH [123] is an efficient hash table for persistent
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memory. FAST FAIR [72] is an efficient implementation of B+-tree. We used all of these

data structures (i.e., P-ART, P-BwTree, P-CLHT, and P-Masstree) in our experiment except

P-HOT because it does not compile with LLVM. We recompiled each of these programs with

Jaaru’s LLVM compiler pass to instrument memory accesses and cache operations. Each

program has a test driver that performs operations on the data structure.

We also evaluated PSan on three popular real-world frameworks and applications: PMDK [33],

Memcached [35], and Redis [93]. PMDK is the most active open-source library for accessing

persistent memory and is developed and maintained by Intel. This well-tested library

simplifies accessing persistent memory and debugging PM applications. PMDK incorporates

a wide range of libraries from direct APIs to access persistent memory, i.e., libpmem, to

object transactional APIs, i.e., libpmemobj. Similar to prior works, we used five PMDK

data structure examples to evaluate our tool, BTree, CTree, RBTree, Hashmap atomic,

and Hashmap tx. Memcached is a high-performance distributed memory caching system

implemented by Lenovo to use persistent memory. This in-memory key-value store uses

low-level libpmem APIs to efficiently store data in persistent memory. To evaluate PSan with

Memcached, we implemented a client that issues insertion and lookup requests. Redis is an

industrial high-performance cache server and in-memory database developed by Intel. Redis

is capable of caching data on DRAM and persisting it in persistent memory through PMDK’s

transactional APIs. Similar to Memcached, we implemented our own client to modify and

lookup data.

PSan supports two different exploration strategies that target different types of applications:

(1) random search mode in which PSan explores random executions with random crash

points and (2) model checking mode in which PSan systematically inserts crashes before

each fence-like operation and after the last operation of the program and then, explores all

values that each load can read.

In our data structure benchmark experiments, i.e., CCEH, FAST FAIR, and RECIPE, we
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used both model checking mode as well as random execution mode with 10,000 executions.

We used a similar configuration for evaluating PMDK examples. However, for Redis and

Memcached we just used random mode since these benchmarks require an outside client,

which makes model checking challenging.

4.4.2 Bug Detection

During our experiment, PSan found a total of 48 bugs in benchmarks, and 17 of them

were not reported by any of the state-of-the-art testing frameworks. 13 bugs were related to

robustness violations in the memory management code of the benchmarks. Table 4.1 reports

only violations/bugs that are not in the memory allocation code due to space constraints.

Violations with * are known bugs. We reported these violations to the developers of these

tools and so far, developers of CCEH and FAST FAIR have confirmed these violations are

real bugs. The RECIPE developers acknowledged the reported bugs but did not fix them,

since these bugs are related to memory allocators and garbage collectors, and the code for

memory allocators has to change regardless. For each of these violations, PSan reports the

variable that needs a flush instruction and the precise range where the flush needs to be

inserted. In our experiment, we simply applied PSan’s suggestions and reran the program

until no robustness violations were reported.

After analyzing each reported robustness violation, we categorized them into three different

types:

Missing Flushes/Fences. Table 4.1 presents all memory locations that participated in

robustness violations. Note that some of these violations refer to different usages of the same

variable in different functions or executions. All the robustness violations except #9 are due

to missing fence/flush instructions. 12 robustness violations caused program failures in our

experiment and the rest had no visible manifestations. We examined the code and verified
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for each violation that the bugs could cause data corruption, data loss, or memory leak.

Cache-line Alignment Bugs. PSan identified one robustness violation that would likely

not be fixed with flush or fence instructions, i.e., #9 in Table 4.1, in FAST FAIR benchmark.

In this benchmark, the header class (Shown in Figure 4.11) is used at the beginning of the

page class [72]. The problem is that the developers did not carefully consider C++ object

layout semantics. They neglected the fact that a word-aligned 8-bit field has 8 bits of padding

following it when it is followed by the 16-bit field. Consequently, the header class is larger

than expected and results in the rest of the page class not having the expected cache line

alignment and thus breaks code that relies on stores to different fields in the page class

writing to the same cache line to maintain ordering.

1 class header{

2 page* leftmost_ptr; // 8 bytes

3 page* sibling_ptr; // 8 bytes

4 uint32_t level; // 4 bytes

5 uint32_t switch_counter; // 4 bytes

6 std::mutex *mtx; // 8 bytes

7 union Key highest; // 8 bytes

8 uint8_t is_deleted; // 2 bytes

9 int16_t last_index; // 2 bytes

10 uint8_t dummy [5]; // 5 bytes

11 }

Figure 4.11: Source code for bug #9 which leads to unaligned accesses by the program.

Memory Management Bugs. In addition to robustness violations in Table 4.1, PSan

found 9 more robustness violations in P-ART and 4 more in P-BwTree. PSan found these

violations in memory management code such as garbage collection and the memory allocation

implementation. As mentioned in the paper [98], the RECIPE benchmark implementations

focused on providing a platform to measure performance and did not fully implement the crash

recovery and memory management components. These 13 reported robustness violations are

real robustness violations, but there are more significant bugs in the code than just missing

flush and drain instructions; fixing them requires more fundamental changes in the design of

the memory management component.
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While robustness is a sufficient condition for an execution to be free of bugs related to missing

flush and fence operations, PSan, like all dynamic tools, can miss reporting a flush/fence

bug if it does not explore an execution that reveals the missing flush/fence.

4.4.3 Performance

We next ran 100 random executions with both PSan and Jaaru, the underlying model checker,

to report the overhead of PSan. Table 4.2 reports the average times taken to run one random

execution for each of the benchmarks. PSan and Jaaru have comparable execution times

because checking robustness introduces minimal overheads. This table also reports the total

number of executions that PSan explored to find all reported bugs. Overall, it takes less

than a minute to explore all executions used to find bugs for a benchmark and an average of

13.1 seconds per benchmark.

4.4.4 Discussion

Harmless Violations. While the proposed approach to correctness can handle many

persistent data structures, there are design patterns that can cause false positives. These

design patterns include link-and-persist [36], pointer tagging [101], and checksums. These

design patterns all allow post-crash executions to safely observe low-level violations of

robustness without compromising high-level safety. In particular, during our evaluation, we

observed that PM programs that use checksums can safely read from data that has only been

made partially persistent because the checksum will fail and the program will safely discard

the data. Programs that use checksums are not robust by our prior definition because their

post-crash executions may observe robustness violations. However, the values read by the

loads that cause the robustness violations are discarded when a checksum check fails. PSan

supports these patterns by using annotations. In particular, PSan uses these annotations to

75



postpone the processing of the loads from a given checksum computation until the checksum

validation completes successfully. If the checksum validation fails, those loads operations are

discarded. In Table 4.1, violations #33 - #35 are caused by checksums validating redo logs.

These violations are harmless because the program safely discards the data when checksum

fails, while such harmless violations could be avoided by checksum annotations.

Comparison with Other Tools. Of the six tools that can potentially detect ordering

violations, only two tools, Jaaru [62] and Witcher [49], are both available and do not require us

to annotate the expected ordering properties to be checked. Thus, we limited our comparison

to Jaaru and Witcher. Jaaru found 18 persistency bugs in CCEH, FAST FAIR, and RECIPE

benchmarks, of which 15 are related to missing proper persistency mechanisms. Jaaru’s

developers had to manually examine each bug and reason about the execution traces to fix

each persistency bug. On the contrary, PSan automatically reported the exact variable that

needed a flush instruction and the precise location where the flush needed to be inserted.

PSan reported 20 bugs that were not identified by Jaaru. Witcher reported 4 ordering bugs

in our evaluated benchmarks and for each bug, Witcher requires developers’ manual efforts

to reason about the root cause of intricate crash states. One of these bugs was also found by

PSan. PSan did not report the rest of these bugs since Witcher used different test driver

programs to exercise the RECIPE benchmarks, while we used the programs from Jaaru’s

distribution of the RECIPE. While we would like to perform an evaluation on the exact

same programs, this is problematic. We could not run PSan’s programs on Witcher, because

Witcher’s distribution does not contain support for finding correctness bugs. We could not

run Witcher’s programs on PSan, because they do not have any code that runs after a crash.

PSan reported 31 bugs that could not be found by Witcher.

Note that not being able to find all bugs reported by other tools on the same set of benchmarks

evaluated by PSan and these tools is primarily due to the implementations of these tools

that have particular dependencies on program versions, inputs, environments, etc., not a
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limitation of using robustness as a correctness criterion. As discussed earlier, robustness

subsumes all ordering-related constraints and PSan should report all ordering bugs for given

executions that are caused by missing flush and fence instructions.
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Table 4.1: Robustness violations.

# Benchmark Field Cause of Robustness Violation
1 CCEH sema locking sema in Segment::Insert
2 CCEH sema unlocking sema in Segment::Insert
3* CCEH key writing to key in Segment::Insert
4* CCEH Directory:: [i] writing to [i] in CCEH constructor
5* CCEH Directory:: writing to in CCEH constructor

6* CCEH CCEH
writing to CCEH fields
in CCEH constructor

7 FAST FAIR switch counter incrementing it in page::insert key
8 FAST FAIR last index updating it in page::insert key
9 FAST FAIR dummy unalignment caused by header class
10 FAST FAIR entry::ptr writing to ptr in insert key
11* FAST FAIR entry::ptr writing to ptr in entry constructor

12* FAST FAIR leftmost ptr
writing to leftmost ptr in

header constructor
13* FAST FAIR btree::root writing to root in btree constructor

14 P-ART
typeVersion-

locking it in N::writeLockOrRestart
LockObsolete

15 P-ART
typeVersion-

locking it in N::lockVersionOrRestart
LockObsolete

16 P-ART
typeVersion-

unlocking it in N::writeUnlock
LockObsolete

17 P-ART nodesCount updating it in DeletionList::add
18 P-ART N16::keys updating it in N16::insert
19 P-ART N16::count updating it in N16::insert
20* P-ART N4::keys updating it in N4::insert
21* P-ART N4::children updating it in N4::insert

22* P-ART deletionLists
writing to deletionLists in

Epoche constructor
23* P-ART Tree::root writing to root in Tree constructor
24 P-BwTree next updating it in GrowChunk function

25* P-BwTree gc metadata p
writing to gc metadata p address in
GCMetaData::PrepareThreadLocal

26* P-BwTree gc metadata p
writing to content of gc metadata p
in GCMetaData::PrepareThreadLocal

27* P-BwTree tail writing to tail in AllocationMeta

28* P-BwTree epoch manager
writing to epoch manager
in BwTree constructor

29* P-CLHT version list
writing to clht t::version list

in clht gc thread init

30* P-CLHT num buckets
writing to clht t::num buckets

in clht hashtable create

31* P-CLHT table
writing to clht t::table
in clht hashtable create

32 PMDK PMEMobjpool
memcpy operation on pool object

in libpmemobj library
33 PMDK ulog storing ulog in libpmemobj library

34 PMDK
ulog entry memcpy in applying modifications

base on a single ulog entry base

35 PMDK
ulog entry applying ULOG OPERATION OR

base on a single ulog entry base
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Table 4.2: Execution times for PSan and Jaaru (the underlying model checking infrastructure).
PSan incurs minimal overhead compared to Jaaru.

Benchmark Jaaru Time (s) PSan Time (s) # total executions
CCEH 0.050 0.051 1068

Fast Fair 0.036 0.038 19
P-ART 0.045 0.047 348

P-BwTree 0.032 0.032 93
P-CLHT 0.142 0.143 6

P-Masstree 0.035 0.037 93
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Chapter 5

Persistency Race

Chapter 3 and Chapter 4 discusses tools and techniques to detect persistent memory bugs

that are originated by developers’ error in inserting flush and fence instructions. This chapter

discusses a new class of persistency bugs, that we call it Persistency Race, which arises

because of the interaction of compilers’ optimizations with persistent memory. This chapter

makes the following contributions:

• Persistency Races: It recognizes the issue of persistency races and formalize the

notion of persistency races.

• Persistency Race Detection: It presents a baseline race detection approach that

can detect persistency races in persistent memory software.

• Expanding Detection Window: It recognizes the problem that a crash must occur

in a very narrow window of an execution to expose a given persistent race. It then

presents an optimized persistency race detection algorithm that expands the window

for detecting persistency races.
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• Evaluation: It discusses how we have implemented Yashme with a full simulation

of Px86sim semantics and applied it on widely-used persistent memory programs in-

cluding RECIPE persistent memory indexes; the PMDK library; Memcached, a high-

performance cache server; and Redis, a persistent memory data store. Yashme found a

total of 24 persistency bugs in every single program with 10 benign races.

5.1 Motivation

The correctness of crash consistent data structures rests on careful analysis of the ordering of

operations to reason about the potential intermediate states that a crash can leave a data

structure in. Applying this type of reasoning to non-atomic memory operations is problematic

due to compiler optimizations. Compilers perform optimizations assuming that programs are

race-free—other threads (or post-crash executions) will not observe updates to the states

of non-atomic shared variables until a release operation, e.g., an unlock, is performed. For

example, a compiler may implement a non-atomic store using multiple store instructions (i.e.,

store tearing) or even generate new store instructions (i.e., store inventing) to temporarily

stash intermediate results, e.g., if the compiler runs out of registers to store temporary values.

5.1.1 Example Persistency Race

To provide a concrete example, we examined the source code of the Cacheline-Conscious

Extendible Hashing (CCEH) hashtable [123], which is distributed with the RECIPE suite of

persistent memory indexes [98]. Figure 5.1 presents the Insert procedure. It uses a CAS on

the key field to lock a slot in the hashtable. When the slot is locked, it first writes the value

field and then the key field. This design relies on the fact that both value and key fields

reside on the same cache line to ensure that the store to the value field persists before the
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int Segment :: Insert(Key_t& key , Value_t value ,

size_t loc , size_t key_hash) {

...

if (CAS(&_[slot].key , &LOCK , SENTINEL))

{

_[slot].value = value;

mfence ();

_[slot].key = key;

ret = 0;

break;

}

...

}

Figure 5.1: The Segment::Insert method from the CCEH hashtable. The store to the key field
commits an insertion into the table. This store is non-atomic and thus a poorly timed crash
could cause the key to be partially written.

store to the key field. Once the key field is written, the key-value value insertion has been

committed to the table. The caller of this procedure later flushes both stores to persistent

memory.

The problem with this implementation is that since the store to the key field is non-atomic,

the compiler is free to implement this store with multiple store instructions. While we might

imagine this would only occur in cases where the key field is not aligned or does not match

the native word size of the machine, there are examples of modern compilers implementing

such aligned, word-size stores using multiple store instructions [37]. Hence, a crash could

potentially cause an incorrect key to be inserted into the table. To fix this bug, the developer

should implement the store of the key field using an atomic store operation. On an x86

processor, this fix would incur minimal overhead—the atomic store can still be compiled into

a normal store instruction as long as the compiler is prevented from performing problematic

optimizations (such as store tearing).

5.1.2 Severity of Persistency Races

Ubiquity. The conventional wisdom in concurrent programming is for developers to (1) use

locks to protect critical sections and (2) only use atomic operations when strictly necessary for
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Table 5.1: Ubiquity of persistency races.

(a) Summary of popular compilers and observed store optimizations that can lead to persistency
races.

Compiler Arch Store Optimizations

gcc ARM64 Use a non-atomic pair of stores for a 64-bit store
gcc & LLVM-clang ARM64 Replace a seq. of stores of zero with a memset

gcc & LLVM-clang ARM64 Replace a seq. of assignments with a memmove or memcpy

LLVM-clang x86-64 Replace a seq. of stores of zero with a memset

LLVM-clang x86-64 Replace a seq. of assignments with a memcpy

gcc x86-64 Replace a seq. of assignments with a memmove

(b) Number of memory operations (i.e.,memset, memcpy, memmove) used in source code of Fast Fair,
CCEH, and RECIPE benchmarks compared to number in the assembly code generated by clang

version 11.0 with the -O3 option.

Prog #src-op #asm-op
CCEH 6 33
Fast Fair 1 4
P-ART 17 8
P-BwTree 6 15
P-CLHT 0 0
P-Masstree 3 14

performance or progress guarantees. Applying such practices to persistent memory programs

inevitably leads to implementations with persistency races. Developing race-free persistent

data structures requires extensive use of atomic operations or other techniques like checksums.

In our experiments with the RECIPE [98] persistent benchmark suite, we found a total of 19

persistency races in the persistent memory indexes that we were able to execute. 1

Compilers Performing Store Optimizations. Since persistency races hinge upon

certain store optimizations performed by a compiler, we have conducted a study of recent

versions of gcc (version 10.3) and LLVM-clang (version 11.0), two widely-used compilers for

native code, with a goal to understand how common these optimizations are on different

architectures. As reported in Table 5.1a, store optimizations are widely used by both gcc

1i.e., CCEH, Fast&Fair, and Recipe benchmarks except P-HOT. We were not able to execute the P-HOT
because it did not compile with LLVM.
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and clang on both ARM and x86 architectures. Whether such optimizations are applied to

a particular program depends on the implementations of compilers and libraries (such as

memmove and memcpy).

5.1.3 Empirical Validation

To understand the importance of this issue, we carried out a study on a collection of data

structures [72, 123, 98]. We compiled each data structure with clang version 11.0 with the

-O3 optimization level. Table 5.1b compares the number of different memory operations (i.e.,

memset, memcpy, and memmove) that appear in the source code with the number of them that

appear in the assembly code. For all programs except P-ART and P-CLHT, the assembly

code contains more memory operations than the source code, showing that the compiler has

replaced normal stores with memory operations to optimize the code. We carefully audited

both P-ART and P-CLHT programs to understand why they do not report more memory

operations in their assembly code. For P-ART, it turns out the source code uses 14 memset

operations inefficiently in the constructors. The compiler optimized them into 3 memset and

replaced different normal write operations in the source code with 2 memcpy. For P-CLHT,

we observed that this program uses a lock-free design and critical store operations are defined

as volatile and the compiler did not optimize them with memory operations.

The transformation of normal stores into function calls to memcpy and memset is very common

and disabling this optimization in the compiler would likely have significant performance

penalties. Compiler optimizations are prone to persistency races not only because of store

tearing but also due to store inventing [79]. Compilers can legally invent stores to memory

locations that code is guaranteed to write to, e.g., the compiler could generate new store

instructions to temporarily stash intermediate results if the compiler runs out of registers to

store temporary values. Thus, fixing persistency races requires restricting legal optimizations
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and adding constraints to memory operation calls. While this might seem an easy solution,

in practice it can be extremely challenging since all of these optimizations are currently

standards compliant and thus ensuring safety would require revising the C/C++ language

standard. This process would likely take many years and there is no guarantee that the

standards committee would not simply decide that developers should simply use atomics to

avoid persistency races. In addition, there would be a wait for any changes to get rolled out

to compilers and libraries.

Although persistency races may not manifest under a particular compiler/architecture, they

can lead to bugs that are extremely difficult to detect. For example, a library or compiler

update may expose a latent persistency race in recovery code, triggering cascading bugs and

even system-wide failures. Such failures can lead to disasters in mission-critical systems—e.g.,

upgrading the compiler can expose a latent bug in a storage system, causing complete loss of

data. As such, there is a pressing need to find and fix such bugs early on before they manifest.

In fact, the (Intel) developers of PMDK have confirmed [65] that “we do try to ensure that

those issues are not present in PMDK and we do extensive validation on compiled binaries to

that end; but something can always slip through the cracks; and we definitely don’t want to

depend on compiler-defined behavior if we can avoid that.”

5.2 Yashme Overview

This section presents our basic idea and an overview of how Yashme finds persistency races.

We focus our presentation of persistency races on the x86-TSO persistency model. However,

persistency races are more general than x86-TSO and will be applicable on other hardware

and software persistency models.

Yashme is focused on finding whether an application or library has code for which the
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language standard permits the compiler to generate code that exhibits a persistency race.

Thus, Yashme instruments the LLVM Intermediate Representation (IR) to call into the

Yashme library that simulates the x86-TSO persistency model and monitors for persistency

races.

Yashme has two modes of operation: (1) model checking and (2) random execution. In

the model checking mode, Yashme explores all executions to find persistency races. This

mode is suitable for programs that are relatively small. For large programs for which it is

time-consuming to explore all possible executions, Yashme can operate in random mode to

detect persistency races.

Yashme’s basic approach is to simulate the execution of a PM program, inject a crash, and

then simulate the execution of the post-crash recovery program. During the post-crash

execution, we compute which stores may have persisted incorrect values due to the crash.

There are two ways that PM program executions can ensure that stores are fully persisted:

(1) the execution explicitly flushes the cache line after the store writes to the cache line and

before the crash to ensure that the stored value was persisted or (2) the post-crash execution

reads from a later atomic store to the same cache line and relies on cache coherence to ensure

the persistency of the store.

Section 5.2.1 presents our approach to handling (1) explicit flushes and (2) cache coherency

to determine whether stores are fully persisted. Section 5.2.2 then presents how Yashme

leverages the idea of execution prefixes to maximize the persistency races that can be detected

at a given injected crash.
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5.2.1 Basics

Flush Operations. Flush operations can be used to force a cache line to be persisted after

a store is fully completed. Without an appropriate flush operation, a non-atomic store can

be partially persisted. Thus accurately modeling the effects of cache line flush operations is

critical for detecting persistency races. We first describe how Yashme models clflush.

Figure 5.2 presents an example of using the clflush instruction to flush a cache line. In this

example, the pre-crash execution stores 1 to the variable x, and then persists this store by

executing a clflush instruction. To ensure that a clflush instruction persists a store, it is

critical that the store happens before the clflush instruction. Although store s is non-atomic,

this execution does not expose a persistency race because s has been flushed before the crash

(although other executions can expose a persistency race).

x=1 clflush(x)

pre-crash
execution

rd(x)

post-crash
execution

CRASH!

hb

Figure 5.2: Example of using clflush to flush the store to x.

We next discuss how Yashme tracks whether stores have been persisted using the clflush

instruction. Yashme assigns each operation an increasing clock σ that uniquely identifies

the operation. Yashme tracks which stores have been flushed by building a map flushmap,

which maps the clock of each store s to a pair of the form ⟨τ, σ⟩, where τ is the identifier of

the thread that performs a clflush that happens after s, and σ represents the clock that

labels that clflush such that there is no other clflush that is ordered between the store s and

this clflush by happens before. To build this map, when a clflush instruction takes effect on
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x=1 clwb(x)

pre-crash
execution

rd(x)

post-crash
execution

CRASH!

hb
fence

sb

Figure 5.3: Example of using clwb to flush the store to x.

the cache, Yashme updates flushmap for the latest store to each memory location to include

the thread that executed the clflush and the clock of the clflush. When the post-crash

execution reads from x, Yashme determines that since flushmap(σx=1) (i.e., flushmap applied

to the timestamp of the store x=1) is not empty, there is no persistency race.

The x86 architecture provides a second, more efficient cache line flush mechanism: the cache

line write back instruction clwb. Figure 5.3 presents an example in which the pre-crash

execution stores 1 to the variable x, and then persists this store by executing a clwb instruction

and a fence instruction. To persist the store, it is critical that (1) the store happens before

the corresponding clwb instruction and (2) the thread that executes clwb also executes a

fence instruction later. In our example, although the store x=1 is non-atomic, this execution

does not have a persistency race because x=1 has been flushed before the crash.

We next extend our approach to track whether stores have been persisted using the clwb

instruction. Yashme maintains a per-thread set Fτ of clwb instructions that have not been

followed by a fence. When a thread τ executes a fence instruction, Yashme processes each

of the clwb instructions in Fτ for the thread. When a clwb instruction takes effect on the

cache, Yashme updates the flushmap for the latest store to each memory location (if the

store happens before the clwb instruction) to include the thread that executed the fence

instruction and the sequence number of the fence. Similarly, when the post-crash execution
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reads from x, Yashme determines that flushmap(σx=1) is not empty and hence there is no

persistency race.

Cache Coherence. Cache coherence protocols ensure a total order in the persistence

of stores to the same cache line. Figure 5.4 provides an example of an execution that uses

cache coherence to avoid a persistency race. Assume that the variables x and y reside on the

same cache line. We use the notation yrel=1 to indicate that the store of 1 to y is an atomic

release store. In the pre-crash execution, the store to x happens before the store to y. Since

x and y are on the same cache line, cache coherence protocols guarantee x=1 is completely

written to the cache line before yrel=1 even if store to x is torn into multiple store operations.

Since the post-crash execution observes the store to y, the cache line is flushed sometime

after persisting yrel=1 and before the crash event. Consequently, the post-crash execution

must also observe the fully completed store to x due to cache coherence. Thus, there is no

persistency race in this execution.

x=1 yrel=1

pre-crash
execution

rd(y)

post-crash
execution

CRASH!

hb

rd(x)hb

Figure 5.4: Example of coherence preventing persistency races. Assume that the variables x
and y reside on the same cache line and that the store to y is an atomic release store.

To model the effect of cache coherence, Yashme maintains a map lastflush that maps each

cache line to a clock vector that represents the earliest point in the pre-crash execution

where the cache line could have been written back to persistent memory—any stores that

happen before this point must have been fully persisted. When the post-crash execution

reads from an atomic store yrel=1, Yashme updates the lastflush map to indicate that the
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x=1 clflush(x)

window for detecting 
persistency racepre-crash

execution

rd(x)

post-crash
execution

CRASH!

Figure 5.5: Crash misses window for detecting persistency race using core algorithm.

cache line must have been written back some time after the atomic store to y. When the

post-crash execution reads from the non-atomic store to x, Yashme uses the lastflush map

to determine there is no persistency race because the cache line must have been persisted

after the store to x was completed. More technical details about the basic algorithm are

described in §5.4.

5.2.2 Key Idea: Expanding the Detection Window

Our core approach is to randomly inject crash events and use the aforementioned maps

to determine the existence of a persistency race. In particular, we can use the flushmap

map to detect whether a store was fully persisted via a flush operation and the lastflush

map to determine whether a store must have been fully persisted because the post-crash

execution has read from a later store to the same cache line. However, this approach can only

detect persistency races involving stores in a small window of the pre-crash execution. In

practice, persistent memory programs often flush stores in a timely manner. Hence, detecting

a persistency race from a given store requires the crash point to fall into the window between

the store and the explicit flushing of its corresponding cache line.
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Here we present how we optimize the core approach to improve its ability to detect persistency

races. Figure 5.5 shows an example crash scenario to illustrate this problem. In this example,

the pre-crash execution writes to the variable x, flushes the write, and then crashes. The

post-crash execution then reads from x. Since the crash occurs after the write is flushed, the

approach misses detecting the persistency race in this program. To detect this persistency

race, the program must crash in the small window of time between the store to x and the

corresponding flush. This implies that detecting races using the approach would require

injecting crashes in a large number of executions, which can be prohibitively expensive for

large programs.

x=1 clflush(x)

window
for detecting
persistency racepre-crash

execution

rd(x)

post-crash
execution

Consistent crash interval

Figure 5.6: Prefixes of pre-crash execution that are consistent with the post-crash execution.

Our key insight for effectively detecting persistency races is that we can check whether the

post-crash execution E ′ has a persistency race with any prefix E+ of the pre-crash execution

E that is consistent with E ′. Figure 5.6 illustrates this insight. While the pre-crash execution

has flushed the store to x, the post-crash execution has not read from any store that happens

after the cache line flush. Thus the post-crash execution at this point is consistent with

any prefix of the pre-crash execution starting at the store that writes 1 to x. The blue

arrow shows the range of consistent prefixes of the pre-crash execution. In Figure 5.7, as
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rd(y)hb
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Figure 5.7: Prefixes of pre-crash execution that are consistent with the post-crash execution
after reading from y residing on the same cache line as x.

the post-crash execution reads from the atomic variable y, Yashme updates the constraint

of pre-crash execution to be consistent with the post-crash execution and to include the

clflush(x) instruction.

Consistent Prefixes. Intuitively, a consistent prefix of the pre-crash execution must

contain any statement which happens before a pre-crash store that the post-crash execution

reads from. Yashme tracks every pre-crash store that the post-crash executions reads from

and computes the shortest consistent prefix by using clock-vector-based techniques [44] that

are commonly used by race detectors. Yashme uses the consistent prefix to determine whether

there is a prefix of the pre-crash execution that did not execute a given clflush, clwb, or

fence instruction. If so, Yashme ignores the instruction when checking for races, because there

is a pre-crash execution that does not execute the instruction and yields the same post-crash

execution. For example, in Figure 5.6, there is a prefix of the pre-crash execution which does

not execute clflush (x). Thus, Yashme can ignore this instruction. However, after reading

y in Figure 5.7, clflush(x) must be executed in all prefixes of the pre-crash execution and

cannot be ignored anymore. The constraint prefix helps Yashme find persistency races even
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when the crash event is inserted outside of the detection window in the model-checking mode

or random mode.

Multi-threaded Programs. Yashme fully supports multi-threaded programs. For multi-

threaded executions, we use a per-thread prefix of the execution. Note that in the mul-

tithreaded case the prefix-based approach can detect persistency races in executions that

cannot be generated by inserting a crash event at any point in the pre-crash execution. For

example, consider a pre-crash execution in which thread 1 performs a racy store to z, flushes

z, then thread 2 sets an atomic flag f to true and a post-crash execution that reads from z

and if f is true then reads from z. There is no point in the pre-crash execution trace that

we can insert a crash to observe the race in this code. The prefix analysis can determine

that the post-crash execution has not read from any store that happens after the flush of

z, and therefore we can rearrange the pre-crash execution to a race revealing execution in

which thread 1 performs a racy store to z, thread 2 sets an atomic flag f to true, and then it

crashes.

5.3 Algorithm Preliminaries

We begin by formalizing our notion of a persistency race. Intuitively, a persistency race occurs

if an execution reads from a non-atomic store that could have been made partially persistent.

Definition 5.3.1 presents our definition for whether an execution contains a persistency race.

Definition 5.3.1. A load l in a post-crash execution E ′ that reads from a store s in a

pre-crash execution E is a persistency race if (1) s is not atomic, (2) there is no atomic

release store s′ to the same cache line as s in E such that s
hb−→s′ and E ′ reads from s′ before

it reads from s, (3) there is no cache-line flush clflush to the same cache line as s such that

s
hb−→clflush, and (4) there is no cache-line flush clwb to the same cache line as s and a

fence fence such that s
hb−→clwb and clwb

sb−→fence.
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The first condition ensures that the compiler could legally implement the store with several

store instructions or insert other store instructions to the same memory address. The second

condition ensures that there were no later atomic stores to the same cache line that were read

by the post-crash execution and thus the cache line must have been written back after store

s completed. The third and fourth conditions ensure that there was no cache line flush that

forced the CPU to flush the entire cache line and thus the processor would have been free to

flush the cache line when the store was partially completed or after a compiler inserted store.

5.3.1 Persistency Races in Execution Prefixes

Our key insight for effectively detecting persistency races is that we can check whether the

post-crash execution E ′ has a persistency race with any prefix E+ of the pre-crash execution

E that is consistent with E ′.

Consistent Prefixes. For each store s in the pre-crash execution E that some load in

the post-crash execution E ′ reads from, Yashme computes the prefix Es of the pre-crash

execution that happens-before s. Since the post-crash execution E ′ has observed s, it is only

consistent with prefixes of the pre-crash execution that include Es. Yashme computes E+

as the union of the sets Es that correspond to each pre-crash store s that the post-crash

execution reads from. This union is efficiently computed using clock vector techniques that

are commonly used by race detectors. The prefix E+ is the smallest prefix of E that is

consistent with the post-crash execution.

Yashme uses E+ to compute whether a store must have been made persistent in all prefixes

of E that are consistent with E ′. There are two situations in which the post-crash execution

must observe s as fully persisted: (1) s was flushed to persistent memory in E+ or (2) the

execution E ′ has already observed a later store to the same cache line.
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Under x86 TSO, recall that there are two ways to flush a cache line after a store s. The

program can execute the clflush instruction or it can execute the clwb instruction followed

by a fence. Yashme checks whether there is a clflush or clwb instruction in E+ to the same

cache line written by the store s that happens after s. If there is a clflush instruction, the

store s has been made persistent. If there is a clwb instruction, Yashme must also check

whether the thread that executed the clwb instruction later executed an instruction in E+

with fence semantics. If so, the store s was fully persisted.

If the cache line was not explicitly flushed, Yashme checks whether the post-crash execution

has already observed a later store to the same cache line. If not, Yashme reports a persistency

race and the pre-crash execution prefix E+ combined with the post-crash execution E ′ as a

witness.

Theorem 1 (Persistency Race in Execution Prefixes). Given a pre-crash execution E and

a post-crash execution E ′, there exists a race-revealing pre-crash execution E+ that has a

persistency race with E ′ if there is a load l in E ′ that reads from a store s in E and all of the

following conditions hold:

1. s is not atomic.

2. ∄s′ ∈ E, such that s′ is an atomic release store, and s
hb−→s′ ∧ samecacheline(s, s′) ∧

E ′ reads from s′ before it reads from s

3. ∄clflush ∈ E such that s′ ∈ E, s
hb−→clflush∧samecacheline(s, clflush)∧clflush hb−→s′∧

E ′ reads from s′

4. ∄clwb, fence ∈ E such that s′ ∈ E, s
hb−→clwb∧samecacheline(s, clwb)∧clwb sb−→fence∧

fence
hb−→s′ ∧ E ′ reads from s′

Proof. Assume that we have a pre-crash execution E and post-crash execution E ′ where a

load in E ′ reads from a store s in E that satisfies the conditions 1 through 4.
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We define the execution E+ to include all statements in E that happen before the stores in

E that are read by E ′ and those stores. We next show that E+ has a persistency race with

the post-crash execution E ′.

The store s in E+ is non-atomic by the assumed condition 1 and thus satisfies condition 1

from Definition 5.3.1. The store s in E+ satisfies condition 2 by assumption and thus satisfies

condition 2 from Definition 5.3.1. By assumption, condition 3 is true for the store s in E.

Since E+ by construction only contains events from E that happen before some store s′ that

E ′ reads from, there cannot be a clflush in E+ to the same cache line as s that is ordered

after s. Therefore, s in E+ satisfies condition 3 of Definition 5.3.1. By the same argument,

the store s in E+ satisfies condition 4 from Definition 5.3.1. Therefore, the execution E+ has

a race with E ′.

5.4 Race Detection Algorithm

We next present our persistency race detection algorithm. We begin by presenting the

following notations that we will use throughout this chapter:

• We refer to an execution as e.

• We denote a thread using τ ∈ T.

• Each thread τ has a store buffer Sτ that keeps a queue of store, clflush, and sfence

operations that have not yet taken effect on the cache.

• Each thread τ has a cache line flush buffer Fτ that stores the set of clwb operations

that have not yet flushed the cache line to persistent storage.

• A given failure scenario may involve a sequence of multiple executions ending in failures.

For example, a persistency race in the recovery procedure would require two crashes:
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one to get into the recovery procedure and a second to reveal a bug in the recovery

procedure. We record this sequence of executions that have been executed on the

persistent store using a stack, referred to as exec.

• Function top(exec) denotes the most recent execution (the current one) on the stack

exec.

• Function prev(e) returns the execution that immediately precedes e in exec.

• A global sequence number counter σcurr is used to assign increasing sequence numbers to

stores, clflush, and sfence instructions. Each store, clflush, and sfence instruction

i is assigned a sequence number σi. These numbers record the total order in which

these instructions take effect in the cache. Using a global sequence number has no

performance drawbacks since Yashme already determines the interleaving of threads

and has full control over the scheduling of all memory operations.

• Each execution e has a map e.storemap that maps each address addr to the thread τ

and sequence number σ generated at the moment that value was stored.

• Each e has a map e.flushmap that maps a store’s sequence number σ to a set of pairs

⟨τ, σ⟩ of a τ and the sequence number σ of the first flush it performed after the store.

• Each e has a map e.lastflush that maps a cache line identifier to a clock vector that

is a lower bound for when the cache line was written back.

• Each e has a clock vector e.CVpre that records how much of the execution e that later

executions have observed.

The TSO memory model separates the executions of stores, cache flush operations, and

sfence operations into two phases: (1) the initial phase that often inserts an operation into a

buffer and (2) the second phase that removes the instruction from the buffer and updates the

state of the cache or persistent storage. We present our algorithm for each of the stages.
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Executing instructions. Figure 5.8 presents our algorithm for the first phase of instruction

execution, which inserts an instruction into each thread’s local store buffer Sτ . The mfence

instruction waits until Sτ is empty and then clears the thread’s flush buffer Fτ . RMW

instructions also have mfence like semantics and are handled in the same fashion.

1: function Exec Store(addr , val , τ)
2: Enqueue ⟨store, addr , val⟩ into Sτ .

3: function Exec CLFLUSH(addr)
4: Enqueue ⟨clflush, addr⟩ into Sτ .

5: function Exec CLWB(addr)
6: Enqueue ⟨clwb, addr⟩ into Sτ .

7: function Exec SFENCE
8: Enqueue ⟨sfence⟩ into Sτ .

9: function Exec MFENCE
10: Evict all entries in Sτ .
11: Flush Fτ .

Figure 5.8: Algorithm for executing instructions.

Evicting Operations. Figure 5.9 presents our algorithm for the second phase of instruction

execution when the instructions exit the core’s store buffer and take effect on the memory

system. The Evict SB procedure for stores assigns a store a clock when it is evicted from

the store buffer. It then updates the storemap for the execution to record that the address

addr was written to by the current thread τ and store. The Evict SB procedure for clflush

instructions assigns the clflush instruction a clock.

Next it updates the storemap for each most recent store to an address on the same cache line

to include the thread and clock vector for this clflush instruction if (1) the store happens

before the clflush instruction and (2) there is not already a flush instruction in storemap

that happens before the clflush. The Evict SB procedure for clwb instructions adds the

clwb instruction to the thread’s flushbuffer Fτ .

The Evict SB procedure for sfence instruction evicts the clwb instructions in the thread’s

flushbuffer Fτ . The Evict FB procedure handles evicting a clwb instruction from the

flushbuffer. It takes as parameters (1) the address, clock vector, and thread identifier for
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1: function Evict SB(⟨store, addr , val⟩, τ)
2: σcurr := σcurr + 1
3: top(exec).storemap := top(exec).storemap[addr → ⟨τ, σcurr⟩].
4: function Evict SB(⟨clflush, addr ,CVclflush⟩, τ)
5: σcurr := σcurr + 1
6: for all addrs such that CacheID(addrs) = CacheID(addr) do
7: ⟨τs, σs⟩ = top(exec).storemap(addrs)
8: if σs < CVclflush(τs)∧
9: ∄⟨τ ′, στ ′⟩ ∈ top(exec).flushmap(σs), στ ′ < CVclflush(τ ′) then
10: top(exec).flushmap(σs) := top(exec).flushmap(σs) ∪ {⟨στ ,CVclflush(τfence)⟩}
11: function Evict SB(⟨clwb, addr ,CV⟩, τ)
12: Add ⟨addr ,CV, τ⟩ to Fτ .

13: function Evict SB(⟨sfence⟩, τ)
14: σcurr := σcurr + 1
15: Flush Fτ .

16: function Evict FB(⟨addr ,CVflush⟩, τflush, ⟨CVfence, τfence⟩)
17: for all addrs such that CacheID(addrs) = CacheID(addr) do
18: ⟨τs, σs⟩ = top(exec).storemap(addr)
19: if σs < CVflush(τs) ∧
20: ∄⟨τ, στ⟩ ∈ top(exec).flushmap(σs), στ < CVfence(τ) then
21: top(exec).flushmap(σs) := top(exec).flushmap(σs) ∪ {⟨τfence,CVfence(τfence)⟩}

Figure 5.9: Algorithm for evicting store and flush buffers.

the clwb instruction and (2) the clock vector and thread identifier for the fence instruction.

This procedure updates the storemap for each most recent store to an address on the same

cache line to include the thread and clock vector for this clflush instruction if (1) the store

happens before the clwb instruction and (2) there is no flush instruction in storemap that

happens before the fence.

Processing Loads. Figure 5.10 presents our algorithm for handling loads that read from

stores performed by a prior execution e. The Load Atomic function handles atomic loads.

It updates the lower bound for the last time that the respective cache line was flushed in

execution e. It then updates the clock vector CVpre that is used to compute the smallest

consistent prefix of the execution e. The Load NonAtomic function handles non-atomic

loads. It checks whether the store that the load reads from is ordered after the lower bound

for the last time that its cache line was flush. If so, then it checks whether the cache line was

flushed after the store. If not, it prints an error. It then updates the clock vector CVpre that

is used to compute the smallest consistent prefix of the execution e.
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1: function Load Atomic(addr , ⟨e,CVs, val⟩)
2: e.lastflush := e.lastflush[CacheID(addr) → e.lastflush(CacheID(addr)) ∪ CVs]
3: e.CVpre := e.CVpre ∪ CVs

4: function Load NonAtomic(addr , ⟨e,CVs, τ, val⟩)
5: if CVs(τ) > e.lastflush(CacheID(addr))(τ) ∧
6: ∄⟨τf , σf ⟩ ∈ e.flushmap(s), σf < e.CVpre(τf ) then
7: Print persistency race error

8: e.CVpre := e.CVpre ∪ CVs

Figure 5.10: Algorithm for loads.

5.5 Implementation

Yashme uses the Jaaru open-source model checking infrastructure [62] to simulate program

executions. This infrastructure uses an LLVM compiler frontend to automatically instrument

programs to intercept reads, writes, clflush instructions, clwb instructions, and memory

fences. This infrastructure implements a simulation framework for persistent memory and

this framework supports injecting crashes between executions. The simulation framework

enables Yashme to reason about all potential effects of cache flushes and precisely control

execution while at the same time avoids requiring access to actual hardware supporting

these instructions. Yashme is implemented as a plugin for the model checking infrastructure,

which reports persistent memory relevant execution events to Yashme. In model checking

mode, Yashme systematically injects crashes before every clflush or fence operation. While

Yashme controls multithreaded scheduling to regenerate the same execution, it does not

exhaustively explore the space of schedules.

We implement a new mode, random mode, on the infrastructure that randomly generates

executions in addition to the existing model checking mode. This enables Yashme to execute

programs that cannot easily be model checked. At each load, the infrastructure computes a

set of candidate stores from pre-crash executions that the load could read from depending

on when a cache line was made persistent. Yashme leverages this design to check all of

these candidate stores for potential data races using the Load NonAtomic procedure. In

random mode, Yashme randomly explores different concurrent schedules and read choices and

100



simulates crashes before random fence operations. Users can specify the number of random

executions based on the complexity and size of the tool under test.

5.6 Evaluation

We ran our experiments on an Ubuntu Linux 18.04 machine with a 4 core Intel Xeon E3-1245

v3 CPU and 32GB RAM. We used gcc version 7.5.0 and clang version 11.0.0.

Our Benchmarks. We have evaluated Yashme on state-of-the-art persistent memory appli-

cations and libraries. Yashme was tested with the RECIPE benchmarks [98], FAST FAIR [72],

CCEH [123], PMDK [33], Memcached [35], and Redis [93]. These frameworks were used in

prior works to evaluate their bug-finding tools [62, 126, 107, 108]. Prior testing tools revealed

multiple bugs but none of them were capable of detecting persistency races. Yashme is the

first persistency race detector and has found 24 persistency races in well-tested persistent

memory applications.

5.6.1 Methodology

We first evaluated Yashme on a collection of data structures [98, 123, 72]. RECIPE [98]

is a collection of concurrent DRAM indexes for persistent memory. We used all RECIPE

benchmarks (i.e., P-ART, P-BwTree, P-CLHT, and P-Masstree) except P-HOT because it

did not compile with LLVM. CCEH [123] is an efficient hash table for persistent memory.

FAST FAIR [72] is a fault-tolerant B+-tree for persistent memory. We changed the compiler

options for these benchmarks to disable optimizations to avoid any optimizations that might

reorder memory operations and potentially cause us to miss reporting persistency races. We

recompiled these programs with Yashme and used their example test application to drive our

testing. These example programs manipulate each data structure through standard insertion,
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deletion, and lookup operations.

We also evaluated Yashme on real-world frameworks [33, 93, 35]. PMDK [33] is a collection

of libraries and tools developed by Intel for application developers to simplify accessing

persistent memory devices. This is the most active open-source PM framework, which has

been maintained for 7 years, and is used both by academia and industry. Similar to prior

works [62, 108, 107, 126], we used example data structures provided with PMDK to find

bugs in the PMDK library (i.e., BTree, CTree, RBTree, Hashmap atomic and Hashmap TX).

Redis [93] is a popular in-memory database and memory cache ported by Intel to use both

DRAM and persistent memory. It uses PMDK’s transaction APIs to store data on persistent

memory. We developed our own client to modify the database server using insertion and

lookup operations. Memcached [35] is a high-performance distributed memory caching system

ported to use persistent memory. This in-memory key-value store uses low-level libpmem APIs

to flush cache lines to persistent memory. We developed our own client from Memcached’s

test cases to evaluate Yashme. This client modifies the cache server using insertion and

lookup operations. We adapted the original compilation flags for these frameworks and only

changed the flags to cause them to link against Yashme dynamic library.

We evaluated Yashme with PM indexes with the model checking mode, and we used the

random execution mode for Memcached, Redis, and PMDK which are relatively more

complicated. The working mode can be specified by a command-line argument.

5.6.2 Race Detection

We run Yashme over RECIPE, CCEH, FAST FAIR, PMDK, Memcached, and Redis to

automatically detect persistency races. We manually deduplicated all race reports since one

variable can participate in multiple buggy scenarios. Then, we manually inspected the race

reports. Yashme has found a total of 24 races in these programs that are all new and have
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not been discovered by prior tools. We first discuss our experience with the collection of PM

data structures [98, 123, 72]. Table 5.2 reports 19 races we found in these data structures.

For each bug, we list the program in which the bugs were found and the field that causes the

persistency race.

Table 5.2: Races found in CCEH, FAST FAIR, and RECIPE benchmarks.

# Benchmark Root Cause of Bug
1 CCEH value in Pair struct in pair.h
2 CCEH key in Pair struct in pair.h
3 FAST FAIR last index in header class in btree.h
4 FAST FAIR switch counter in header class in btree.h
5 FAST FAIR key in entry class in btree.h
6 FAST FAIR ptr in entry class in btree.h
7 FAST FAIR root in btree class in btree.h
8 FAST FAIR sibling ptr in header class in btree.h
9 P-ART compactCount in N class in N.h
10 P-ART count in N class in N.h

11 P-ART
deletitionListCount in DeletionList class

in Epoche.h

12 P-ART
headDeletionList in DeletionList class

in Epoche.h
13 P-ART nodesCount in LabelDelete struct in Epoche.h
14 P-ART added in DeletionList class in Epoche.h

15 P-ART
thresholdCounter in DeletionList class

in Epoche.h
16 P-BwTree epoch in BwTreeBase class in bwtree.h
17 P-Masstree root in masstree class in masstree.h
18 P-Masstree permutation in leafnode class in masstree.h
19 P-Masstree next in leafnode class in masstree.h

Due to space constraints, we only elaborate on the persistency races for bug #1 and #2 of

Table 5.2. Figure 5.1 shows the source code of pre-crash execution where the program writes

to the key and value fields of a Segment and flushes them. Figure 5.11 shows the post crash

execution where the program reads from key and value fields. These variables are non-atomic

and thus a poorly timed crash could cause the program to read from from partially persisted

stores in the CCEH:Get method in the post-crash execution.

Note that the majority of these persistency race bugs are in the core implementation of the

data structures, e.g., the key and value fields of the tree. Some of the persistency races were

found in memory allocators. These races can lead to different symptoms in the program
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Value_t CCEH::Get(Key_t& key) {

...

if (dir_ ->_[slot].key == key) {

...

return dir_ ->_[slot].value;

}

...

}

Figure 5.11: The CCEH::Get method from the CCEH hashtable reads from the non-atomic key

and value fields.

including (1) accessing an illegal memory address and crashing with a segmentation fault, (2)

exiting with assertion failure, and (3) showing wrong or undefined behavior.

Next, we discuss the results for the PMDK benchmarks, Redis, and Memcached [35, 93, 33].

Redis uses PMDK’s libpmemobj and transaction APIs to modify persistent memory and

Memcached uses PMDK’s libpmem API. Table 5.3 reports 5 new persistency races found by

Yashme in PMDK, Redis, and Memcached. For each bug, we list the variable that causes the

persistency race. The majority of races revealed by Memcached and PMDK testcases involve

header fields for the object pool. PMDK library uses these fields for memory management,

e.g., defragmentation and garbage collection. Most of these races could be revealed by Redis

as well. Yashme found 4 persistency races in Memcached. Similar to PMDK, the majority

of these races are related to the internal representation of the object pool, e.g., flags for

validating the data. Persistency races in Table 5.3 can corrupt a persisted store leading to

data loss. All these races are new and none have been reported before.

Table 5.3: Races found in PMDK, Redis, and Memcached.

# Benchmark Root Cause of Bug
1 PMDK pointer to ulog entry in ulog.c
2 memcached valid variable in pslab pool t struct in pslab.c
3 memcached id variable in pslab t struct in pslab.c
4 memcached it flags variable in item chunk struct in memcached.h
5 memcached cas variable in item struct in memcached.h

Table 5.2 and Table 5.3 report the variables that cause persistency race in each benchmark.

As mentioned in Section 5.1, store tearing is not the only way the compiler can introduce
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problems. The compiler can invent stores to locations that are guaranteed to be written

to [79]. Thus a persistency race on byte-size fields such as #14 in Table 5.2 and #2 - #4 in

Table 5.3 are not safe. This bug report containing information for each problematic store

is very beneficial to the developers to reason about different buggy scenarios. To fix these

bugs, the developers need to replace racing non-atomic stores with atomic ones (in C++

change int to atomic<int> or in C change int to atomic int. On x86 this incurs no overhead

if one uses atomic stores with the memory order release memory ordering, because they are

implemented with normal move instructions. But it ensures that compiler optimizations will

not tear the store.

5.6.3 Optimization & Performance

Persistency races have a narrow window for detection and this can make detecting persistency

races rather challenging. To understand the importance of searching for persistency races

in prefixes of available executions, we injected crashes before every fence in the execution

of Fast Fair, CCEH, and the RECIPE benchmarks. We ran Yashme with this optimization

(prefix) and without this optimization (baseline) to compare their bug finding capabilities.

Table 5.4 reports persistency races detected by these two techniques. For each technique, we

report numbers for running a single randomly generated execution. Yashme finds 5× more

persistency races. This demonstrates that the prefix-based approach can find many more

persistency races because prefixes generalize executions—many of the derived executions

would otherwise be hard to reach. Table 5.4 also reports the times taken to run one random

execution on both Yashme and Jaaru, the underlying infrastructure. They have comparable

running times because the race checks introduce minimal overheads.

Note that persistency races were not known before and hence there does not exist any other

tool with which we can compare Yashme directly.
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Table 5.4: # races detected w/ and w/o prefix-based expansion for a single execution on
RECIPE, PMDK, Memcached, and Redis benchmarks, as well as execution times for both
Yashme and Jaaru (the underlying checking infrastructure). Yashme incurs minimal overhead
compared to Jaaru.

Benchmark Prefix Baseline Yashme Time Jaaru Time
CCEH 2 0 0.043s 0.041s

Fast Fair 2 1 0.039s 0.039s
P-ART 0 0 0.046s 0.044s

P-BwTree 0 0 0.034s 0.033s
P-CLHT 0 0 0.159s 0.157s

P-Masstree 2 0 0.037s 0.038s
Btree 1 0 2.541s 2.095s
Ctree 1 0 2.544s 2.099s
RBtree 1 0 2.552s 2.100s

hashmap-atomic 1 0 2.298s 1.896s
hashmap-tx 1 0 2.294s 1.892s

Redis 0 0 5.623s 5.361s
Memcached 4 2 8.032s 8.035s

5.6.4 Bug Reporting and Confirmation

We contacted the authors of these programs to obtain their feedback on the bugs found by

Yashme. As of the time of writing this dissertation, we have heard back from the authors

of PMDK, Memcached-pmem, and the RECIPE benchmarks. For RECIPE, the authors

confirmed that the bugs 9-11 and 19-21 are real bugs. For the persistency races 12-18, they are

related to the code of a memory allocator that is known to be crash inconsistent—the RECIPE

benchmark suite did not attempt to correctly implement a crash-consistent memory allocator.

To be clear, these are all real persistency races, but the code for the memory allocator needs

to be replaced anyways and hence they would not fix the bugs 12-18. Furthermore, we

reported the bugs 2-5 in Memcached-pmem to its developers. They confirmed that all of

these bugs are real. After our bug report, both developers of RECIPE and Memcached-pmem

immediately fixed the reported persistency races. These fixes are publicly available on their

github repositories. For PMDK, the developers confirmed bug 1.
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5.6.5 Discussion

Analyzing Bugs. The current version of the code was compiled with gcc v7.5 and

clang v11.0 for x86. We manually investigated the the assembly generated by this compiler

and there were many cases of using memory operations (i.e., memset and memcpy) in object

initializations which can lead to store tearing and persistency bugs (e.g., bug #8 in Fast Fair).

For other cases, while these particular compilers may not tear the racing stores, the fact

that it can mean that compiler upgrades, architectural changes, or even unrelated changes

to the code (e.g., adding new fields to struct/class and breaking variable’s alignments) can

cause optimizations to generate problematic assembly code. Leaving a persistency race

in mission-critical code (e.g., storage systems, self-driving cars, airplane control systems,

etc.) can lead to catastrophic failures and even disasters from library/compiler/hardware

upgrades. Although these bugs may or may not manifest in today’s code, it can suddenly

break tomorrow’s executions even if user code is not changed at all. As confirmed by PMDK

developers, “making sure their code does not depend on compiler/library behaviors” is their

daily routine and ”they do extensive validation to that end”.

Although the developer can manually inspect the assembly code on every compiler, architec-

tural, and code change, this approach is very time-consuming and not practically possible for

large source code bases. Yashme automatically flags out such bugs caused by miscompiling

that can corrupt a large data store. We believe it is strictly necessary to fix such bugs in

mission-critical code that cannot afford to break.

Benign Issues. Programs can access inconsistent data in the post-crash execution.

However, these program accesses are not necessarily followed by sensitive operations that

use this data. For examples, programs can use customized fault tolerance techniques to

detect data inconsistency and ignore the inconsistent data. For example, PMDK, Redis, and

Memcached use a checksum-based strategy to verify that data is consistent. This strategy
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computes a checksum on the data and writes the checksum. Before using the data, the

program first verifies the checksum to validate data integrity. Even if these programs read

from partially-persistent data, such data are not used as they fail the checksum validation.

In addition to the 24 persistency races, Yashme found 10 bugs that are benign issues due

to checksums (although these are still true persistency races by definition). Yashme did

not report any other types of benign issues other than the ones from checksums.

A future implementation of Yashme could use annotations to suppress race warnings from

stores that are read by the checksum validation procedure.

As with any dynamic tool, Yashme can only find bugs in the executions it explores. As such,

Yashme may miss bugs in unexplored executions.

Persistency Races on eADR CPUs. Persistency races are still possible on eADR

systems [73] where flushing is not required. The absence of races on a non-eADR system

implies the absence of races on eADR systems, but the opposite is not true. Thus, Yashme

can be used as is to guarantee the absence of races on the eADR systems. However, Yashme

could be adapted to only detect races that are possible on eADR systems by adding support

to handle the slightly different persistency semantics.
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Chapter 6

Related Work

6.1 Programming Models for Persistent Memory

There is a great deal of work on building programming systems that allow developers

to use PM in a reliable way without knowing the details of PM. For example, a line of

work [18, 30, 161, 51, 53, 104] proposes to use (software or hardware) transactions to provide

(failure and thread) atomicity. Another line of work [9, 10, 20, 68, 77, 105] advocates use of

locks or synchronization-free regions [59]. Jaaru, PSan, and Yashme are complementary to

these approaches, it can be used to check the correctness of their implementation.

6.2 Crash Consistency Detection

There exists a large body of work on testing [87, 95, 120, 160], checking [119, 139, 162, 163],

and formally verifying [23, 24, 146] file system implementations to find and eliminate crash

consistency bugs. Fuzzing techniques such as Janus [160] and Hydra [87] mutate disk

images and file operations to explore states of file system code. Using heuristics, B3 [120]
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employs a bounded testing technique to explore states in a bounded space. EXPLODE [162],

FiSC [163], and SAMC [99] use model checkers to systematically explore states of a file system

implementation. There is much work on torn writes in disk where only part of a multi-sector

write completes. File systems use a variety of techniques to ensure consistency, such as shadow

updates [11, 138], journaling [142], soft updates [116], and post-reboot checking [134, 117].

Although crash consistency bugs in file systems bear similarities with bugs in PM programs,

they are fundamentally different in the access granularity as well as how writes are performed.

6.2.1 Model Checking

Model checking has been extensively studied. Stateless model checking techniques do not

explicitly track which program states have been visited and instead focus on enumerating

schedules [54, 55, 56, 121, 122]. To make model checking more efficient, researchers propose

dynamic partial order reduction techniques [21, 46, 96, 140, 143, 144, 147] that exploit state

equivalence to reduce search space.

Recent work model-checks multi-threaded programs against the TSO and PSO memory

models [2, 71, 168] and the release-acquire fragment of C/C++ [3, 15, 38, 88].

Model checking is also widely used to find bugs in systems code. Model checkers such as

EXPLODE [162], FiSC [163], and SAMC [99] check file system code. However, directly

applying these techniques would dictate enumerating all possible PM states, which is not

feasible given that PM is byte-addressable and has orders of magnitude more states than a

disk.

Model checking [95, 126] has been used to find bugs in persistent memory programs.

Yat [95] is an attempt to model check persistent memory. It injects failures before fence

operations and eagerly enumerates all post-failure states to detect potential bugs.
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Agamotto [126] finds bugs in persistent memory programs by using symbolic execution. It

tracks the state of persistent memory objects and their corresponding cache lines in the

program, i.e., whether the cache line is modified. Agamotto updates constraints on these

states as the program runs and uses them to identify different types of persistency bugs

including correctness, performance, and custom user-defined bugs. It uses a priority-based

static analysis to steer program execution to program states that frequently modify PM. This

approach can miss bugs because it only reasons about whether stores are made persistent and

does not reason about the order that stores are made persistent. Persistency races result from

the interaction between the pre-crash and post-crash executions. Agamotto only explores the

pre-crash execution and thus cannot be easily extended to find persistency races.

6.2.2 Persistent Memory Testing Tools

There is a recent line of work on checking/testing PM programs to find bugs. Pmemcheck [85]

checks how many stores were not made persistent and detects memory overwrites using binary

rewriting. PMTest [108] lets developers annotate a program with checking rules to infer

the persistency status of writes and ordering constraints between writes. XFDetector [107]

uses a finite state machine to track the consistency and persistency of persistent data by

implementing a shadow PM, and with the help of user-provided annotations to identify

commit variables. Although these tools are able to find many bugs, none of these tools can

systematically explore the state space. In particular, they simply check whether data is

persisted appropriately. However, buggy data structures can have windows of vulnerability

when crashes can cause failures even if all data is persisted and ordered. This motivates

us to develop Jaaru, a model checker that can thoroughly explore states to find bugs.

Agamotto [126] finds bugs in persistent memory programs by using symbolic execution. It

tracks the state of persistent memory objects and their corresponding cache lines in the

program, i.e., whether the cache line is modified. Jaaru [62] takes a constraint-based approach
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to enumerating executions that can drastically reduce the number of post-failure executions.

PMDebugger [39] is a debugger developed on top of Valgrind that tracks operations to

find persistency bugs. PMDebugger relies on programmers to explicitly annotate ordering

constraints. Although these tools are able to find many bugs, they all face limitations such as

requiring user annotations, not catching bugs with invisible symptoms, or leaving developers

with long traces that they must manually analyze. On the contrary, PSan can detect and

localize bugs without user annotations. PMFuzz [106] is an automatic test case generator for

persistent memory program. It fuzzes different inputs to incrementally generates test cases

that produce different memory image. PSan can be used along with PMFuzz to check the

executions explored by generated test cases. Hippocrates [125] is a tool for automatically

fixing persistency bugs by analyzing crash information.

Yashme is built on Jaaru’s constraint-based execution engine that enables Yashme to observe

many possible stores that a load can read from (depending on when the cache line was

evicted) and checks for persistency races in all of them. Although all existing tools are able

to find many bugs, they all effectively treat writes to persistent memory as atomic or cannot

distinguish if a source-level store operation is torn at the binary level. Thus, the current

implementations of all previous tools are unable to detect persistency races.

6.2.3 Relation of Robustness to Prior Work

Robustness to weak persistency models builds on a rich literature of defining the correctness

of concurrent code by relating concurrent executions to other executions. In the context of

weak memory models, a program is robust [13, 128, 94, 118] against a weak memory model

if all of the program’s executions under the weak memory model are permitted under the

sequential consistency model.

Robustness provides a rigorous foundation that subsumes prior work that relied on heuristics

112



Table 6.1: Comparison with other tools; robustness subsumes ordering heuristics/conditions
used in existing tools.

Tool Persistent Order
PSan Robustness
Witcher [49] Dependence heuristic
PMDebugger [39] User annotations
PMTest [108] User annotations
XFDetector [107] Commit store annotations
Jaaru [62] Crash/assertion failure
Yat [95] Crash/assertion failure
Agamotto [126] Does not check order
Pmemcheck [85] Does not check order
PMFuzz [106] Just fuzzes input, uses Pmemcheck

or XFDetector for checking
Hippocrates [125] Does not repair ordering bugs

or annotations to check whether stores are persisted in the correct order. Note that in the

comparison with prior work and throughout this dissertation, we only focus on ordering

bugs that are result of missing/misplaced flush and fence instructions. Prior tools

are able to identify other types of bugs such as performance bugs and the bugs resulting from

stores being issued in an improper order. PSan does not attempt to find those types of bugs,

and our comparison does not focus on them. Table 6.1 summarizes the approaches other

tools take to checking the order of PM stores. All these conditions are essentially instances

of robustness violations. Witcher [49] relies on heuristic inference rules that use control and

data dependencies to detect stores that are not made persistent in the correct order due

to missing flushes and fences. PMTest [108] and PMDebugger [39] rely on programmers

to explicitly annotate ordering constraints, e.g., that store x=1 is persisted before store

y=1. PMDebugger also has some built-in oracles that can find some bugs without heavy

annotations. XFDetector [107] requires that ordering constraints are specified implicitly by

annotating a set of commit variables, otherwise it can report false positive. Jaaru [62] and

Yat [95] only detect ordering bugs when the program crashes or asserts, and developers must

manually localize the bug. Pmemcheck [85] and Agamotto [126] only check that stores are

flushed and do not check the order they are flushed in. Our comparison with prior work is

based on set of benchmarks that overlap between their evaluation and PSan’s evaluation.
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6.3 Constructive Approaches

In addition to these general-purpose debugging tools, there is a rich literature on systematic

transforms for lock-free data structures to use persistent memory [149, 9, 78, 34, 48, 36].

Most of these constructive approaches leverage different techniques to deduce flush and fence

instructions for lock-free programs. More recently, Mirror [48] keeps two copies of the data in

both DRAM and persistent memory. Load operations in Mirror only access DRAM, but store

operations update both DRAM and persistent memory. While this design enables Mirror to

not require persistency barriers after load operations, it incurs substantial memory overhead.

Israelavitz et al. [78] introduce the notion of durable linearazibility to data-race-free programs

to become crash consistent. Durable linearazibility is implemented as a set of transformation

rules, which preserve the original happens-before ordering for persistent memory. While these

constructive approaches suffice to ensure robustness, they may inject unnecessary fence and

flush instructions. PSan can determine that weaker transformations also preserve robustness

in several cases: (1) To avoid reasoning about the challenging corners of weak memory

models, many implementations might follow the standard advice to use only release/acquire

or SC atomics even when weaker atomics would suffice. But with stronger atomics, prior

work [78, 34] would generate unnecessary fence instructions. (2) These transformations do

not consider that consecutive writes to the same cache line eliminate the need for flush/fence

operations between the writes. (3) If there are multiple relaxed stores to the same cache

line, some of these techniques will cause a flush to be generated after each store. (4) If some

persistent memory locations are used as temporary storage and are never read from after a

crash, prior approaches would force stores to those locations to have flushes. (5) An existing

RMW operation may suffice to serve as the needed fence instruction. In Section 4.1, we

describe the notion of robustness as a sufficient requirement to guarantee crash consistency

in lock-free frameworks.
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6.4 Fix Suggestion

PSan can save significant manual effort compared to repairing bugs without a tool. While

Hippocrates [125] automatically implements bug fixes, PSan can suggest bug fixes to

developers, for example, where there needs to be a flush inserted for a specific store and it

must be done before another specific store is executed. However, Hippocrates only detects and

corrects bugs where a flush is missing and cannot fix bugs in which stores may be persisted

in an incorrect order. Such bugs commonly happen when developers delay flushes until the

end of an update, overlooking the possibility that the stores could persist in the wrong order.

PSan’s bug fixes ensure that stores are persisted and that they are persisted in the same

order as the happens-before relation. There are also inter-thread persistency bugs in which

a thread performs a store and stops before its flush instruction, but another thread reads

from that store, performs another store based on the read value and then persists the later

store (e.g., the execution in Figure 4.5). PSan is the only tool to our knowledge that will

suggest the correct fix of fixing this bug in the second thread. PSan largely complements

the work on Hippocrates of implementing interprocedural fixes. PSan requires no ordering

annotations, reducing developer burden and eliminating the potential for missed bugs or

false alarms due to incorrect annotations. Moreover, robustness is sufficient to guarantee the

absence of missing flush or drain operations. As shown in our evaluation, PSan found 17

new bugs that were previously unknown.

115



Chapter 7

Conclusion

7.1 Summary

Assuring the correctness of persistent memory programs with respect to failure is very

challenging. This is because exposing a bug requires the machine to fail at a specific

instruction and also it depends on the state of the cache. Prior tools and techniques had

shortcomings including requiring annotations by the users, not testing the recovery code, or

requiring a complete test suite to fully check the program. This dissertation presents Jaaru

as the first efficient model checker for persistent memory programs. Jaaru uses a constraint

refinement-based approach that drastically reduces the number of executions that must be

explored. Jaaru is the first tool to fully model the TSO persistent memory model. Our

evaluation shows that Jaaru effectively finds bugs in our benchmark applications and that

Jaaru reduces the number of executions that must be explored by several orders of magnitude.

Jaaru and prior testing tools require developers to manually inspect long execution traces

to fix persistency bugs. These tools only can report bugs that have visible symptoms

such as assertion failure or segmentation fault. The issue is that not all bugs have visible
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manifestations such as silent data corruption bugs. This dissertation presents robustness,

a sufficient correctness condition for the use of flush and drain operations in persistent

memory programs. We implemented the first tool that leverages this condition to localize

persistency bugs in the program and suggests fixes for the stores that are missing flush or fence

instructions. PSan found 48 bugs (including 17 new bugs) in 13 popular PM benchmarks

ranging from DRAM indexes to real-world applications. This shows the effectiveness and

usefulness of PSan in detecting and fixing persistency bugs in these programs.

All prior testing tools focused on detecting bugs that originated from developers’ errors

in inserting correct flush and fence instructions. This dissertation formally defines a new

class of bugs in PM programs, persistency races, and presents Yashme, the first tool to

detect persistency races. This dissertation describes basic approaches in detecting persistency

races and the challenges in using them in practice. To resolve these challenges, Yashme

builds on a novel technique that improves persistency race detection by checking prefixes of

the pre-crash execution. This technique enables Yashme to detect persistency races in the

executions without exploring them. Our evaluation on a collection of persistent memory data

structures and three real-world applications and libraries shows that Yashme has found 24

real persistency races in our applications.

7.2 Limitations and Future Directions

Jaaru has its limitations and can be extended in several directions. First, the existing

implementation only supports X86 architecture. Persistent memory can be beneficial in

programs developed for ARM64 architecture. Jaaru can be extended to support ARM

persistency semantics and model check these programs. Second, Jaaru can only detect bugs

that can cause the program to crash. However, Jaaru controls concurrent schedule and fully

simulates TSO memory model, as future work, it can be extended to support different types
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of bugs such as performance bugs, concurrency bugs with respect to persistent memory,

and etc.. Third, The existing implementation of Jaaru systematically simulates crashes

and explores executions. However, for some big-data programs using only the constraint

refinement technique may not be sufficient. As an extension, Jaaru could benefit from different

fuzzing techniques to improve the search space exploration algorithm.

PSan presents robustness as a sufficient correctness condition. Some persistent memory

programs are tolerant to reading stale values and use different techniques such as checksum

computation. The existing implementation of PSan reports false positives for such techniques.

PSan requires developers to annotate the usage of checksum to not report false positives

which incurs a burden on users. PSan can benefit from static analysis to identify the code

locations that the program can read from unflushed stores and discard them in order to not

report false positives to the user. In addition, robustness provides a great foundation to

assure the correct usage of flush and fence instructions in the program. The existing version of

PSan only suggests which stores are missing the flush and fence instructions in the program.

PSan can be extended to apply fixes automatically to the source code instead of suggesting

the fixes to the users. The ideal case is to run a non-persistent memory program with PSan

and PSan automatically insert flush and fence operations in the program. This would yield

to automatically transforming any generic program to a correctly persisted version that can

run on persistent memory without having any crash consistency bugs.

Programs can access inconsistent data in the postcrash execution. However, these program

accesses are not necessarily followed by sensitive operations that use this data. For example,

programs can use customized fault tolerance techniques to detect data inconsistency and

ignore the inconsistent data. The existing version of Yashme reports false positives for such

cases. As future work, Yashme can benefit from annotations or static analysis to identify

code sections that use these customized fault tolerance techniques. The existing version of

Yashme only reports variables that are causing persistency races to the users. However, the
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user is responsible to make that variable atomic and propagate this change throughout the

entire code base. Yashme can be extended to automatically apply these fixes to the code

base without any manual efforts by the user.

This section provided the limitations and directions on how the presented tools can be

extended. We only provided the high-level ideas and the design, implementation, and

evaluation of them remain as future work.
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[68] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster. NVthreads: Practical
Persistence for Multi-threaded Applications. In Proceedings of the 12th European
Conference on Computer Systems, EuroSys ’17, pages 468–482, 2017.

[69] H. Huang, K. Huang, L. You, and L. Huang. Forca: Fast and atomic remote direct
access to persistent memory. In 2018 IEEE 36th International Conference on Computer
Design (ICCD), pages 246–249, Orlando, FL, USA, 2018. Institute of Electrical and
Electronics Engineers.

[70] J. Huang, P. Meredith, and G. Rosu. Maximal sound predictive race detection with
control flow abstraction. In Proceedings of the 35th annual ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI’14), pages 337–348, New
York, NY, USA, June 2014. Association for Computing Machinery.

[71] S. Huang and J. Huang. Maximal causality reduction for TSO and PSO. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’16, pages 447–461, 2016.

[72] D. Hwang, W.-H. Kim, Y. Won, and B. Nam. Endurable transient inconsistency in
byte-addressable persistent B+-Tree. In Proceedings of the 16th USENIX Conference
on File and Storage Technologies, FAST ’18, pages 187–200, USA, 2018. USENIX
Association.

[73] Intel. Third generation intel xeon processor scalable family technical
overview. https://software.intel.com/content/www/us/en/develop/articles/

intel-xeon-processor-scalable-family-overview.html?wapkw=clwb, June 2020.

[74] Intel. Memory optimized for data-centeric workloads. https:

//www.intel.com/content/www/us/en/architecture-and-technology/

optane-dc-persistent-memory.html, 2021.

[75] Intel. Revolutionizing memory and storage. https://www.intel.com/content/www/
us/en/architecture-and-technology/intel-optane-technology.html, 2021.

[76] Intel Corporation. Intel inspector. https://software.intel.com/content/www/us/en/develop/tools/oneapi/
components/inspector.html, 2021.

[77] J. Izraelevitz, T. Kelly, and A. Kolli. Failure-Atomic Persistent Memory Updates via
JUSTDO Logging. In Proceedings of the 21st International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’16, pages
427–442, 2016.

[78] J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent memory
objects under a full-system-crash failure model. In C. Gavoille and D. Ilcinkas, edi-
tors, Distributed Computing, pages 313–327, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

126

https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html?wapkw=clwb
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html?wapkw=clwb
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html


[79] Jade Alglave, Will Deacon, Boqun Feng, David Howells, Daniel Lustig, Luc Maranget,
Paul E. McKenney, Andrea Parri, Nicholas Piggin, Alan Stern, Akira Yokosawa, and
Peter Zijlstra. Who’s afraid of a big bad optimizing compiler?, 2019.

[80] J. Jeong and C. Jung. Pmem-spec: Persistent memory speculation (strict persistency can
trump relaxed persistency). In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
2021, pages 517–529, New York, NY, USA, 2021. Association for Computing Machinery.

[81] J. Jeong, C. H. Park, J. Huh, and S. Maeng. Efficient hardware-assisted logging
with asynchronous and direct-update for persistent memory. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 520–532,
Fukuoka, Japan, 2018. Institute of Electrical and Electronics Engineers.

[82] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated atomicity-violation fixing.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, page 389–400, New York, NY, USA, 2011.
Association for Computing Machinery.

[83] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chidambaram. Splitfs:
Reducing software overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, pages 494–508,
New York, NY, USA, 2019. Association for Computing Machinery.

[84] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y. ri Choi. Slm-db: Single-level
key-value store with persistent memory. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 191–205, Boston, MA, Feb. 2019. USENIX
Association.

[85] T. Kapela. An introduction to pmemcheck (part 1) - basics. https://pmem.io/2015/
07/17/pmemcheck-basic.html, July 2015.

[86] A. Khyzha and O. Lahav. Taming x86-tso persistency. Proc. ACM Program. Lang.,
5(POPL), Jan. 2021.

[87] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim. Finding semantic bugs in
file systems with an extensible fuzzing framework. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19, pages 147–161, 2019.

[88] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis. Effective stateless model
checking for C/C++ concurrency. Proceedings of the ACM on Programming Languages,
2(POPL), December 2017.

[89] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch. High-performance
transactions for persistent memories. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’16, pages 399–411, New York, NY, USA, 2016. Association for Computing
Machinery.

127

https://pmem.io/2015/07/17/pmemcheck-basic.html
https://pmem.io/2015/07/17/pmemcheck-basic.html


[90] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating STT-RAM
as an energy-efficient main memory alternative. In IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS ’13, pages 256–267, 2013.

[91] H. Kumar, Y. Patel, R. Kesavan, and S. Makam. High performance metadata integrity
protection in the WAFL copy-on-write file system. In 15th USENIX Conference on
File and Storage Technologies (FAST 17), pages 197–212, Santa Clara, CA, Feb. 2017.
USENIX Association.

[92] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson. Strata: A
cross media file system. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 460–477, New York, NY, USA, 2017. Association for
Computing Machinery.

[93] R. Labs. Redis. https://github.com/pmem/redis, August 2020.

[94] O. Lahav and R. Margalit. Robustness against release/acquire semantics. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, pages 126–141, New York, NY, USA, 2019. Association
for Computing Machinery.

[95] P. Lantz, S. Dulloor, S. Kumar, R. Sankaran, and J. Jackson. Yat: A validation
framework for persistent memory software. In Proceedings of the 2014 USENIX Annual
Technical Conference, pages 433–438, Philadelphia, PA, June 2014. USENIX Association.

[96] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha. Evaluating ordering heuris-
tics for dynamic partial-order reduction techniques. In International Conference on
Fundamental Approaches to Software Engineering, pages 308–322. Springer, 2010.

[97] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a
scalable DRAM alternative. In Proceedings of the 36th Annual International Symposium
on Computer Architecture, ISCA ’09, pages 2–13, 2009.

[98] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram. Recipe: Converting
concurrent DRAM indexes to persistent-memory indexes. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP ’19, pages 462–477, New
York, NY, USA, 2019. Association for Computing Machinery.

[99] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S. Gunawi. SAMC:
Semantic-aware model checking for fast discovery of deep bugs in cloud systems.
In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’14, pages 399–414, USA, 2014. USENIX Association.

[100] G. Li, I. Ghosh, and S. P. Rajan. Klover: A symbolic execution and automatic test
generation tool for c++ programs. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification, pages 609–615, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

128

https://github.com/pmem/redis


[101] N. Li and W. Golab. Brief announcement: Detectable sequential specifications for
recoverable shared objects. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, PODC’21, pages 557–560, New York, NY, USA, 2021.
Association for Computing Machinery.

[102] S. Li and L. Huang. Lospem: A novel log-structured framework for persistent memory.
J. Emerg. Technol. Comput. Syst., 16(3), May 2020.

[103] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren. Dudetm: Building
durable transactions with decoupling for persistent memory. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’17, pages 329–343, New York, NY, USA,
2017. Association for Computing Machinery.

[104] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren. DudeTM: Building
Durable Transactions with Decoupling for Persistent Memory. In Proceedings of the
22nd International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, pages 329–343, 2017.

[105] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung. iDO: Compiler-
Directed Failure Atomicity for Nonvolatile Memory. In Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’18, pages 258–270,
2018.

[106] S. Liu, S. Mahar, B. Ray, and S. Khan. Pmfuzz: Test case generation for persistent
memory programs. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
2021, pages 487–502, New York, NY, USA, 2021. Association for Computing Machinery.

[107] S. Liu, K. Seemakhupt, Y. Wei, T. Wenisch, A. Kolli, and S. Khan. Cross-failure bug
detection in persistent memory programs. In Proceedings of the 25th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, pages 1187–1202, New York, NY, USA, 2020. Association for Computing
Machinery.

[108] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan. PMTest: A fast and flexible testing
framework for persistent memory programs. In Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, pages 411–425, New York, NY, USA, 2019. Association for Computing
Machinery.

[109] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting atomicity violations via
access interleaving invariants. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
XII, page 37–48, New York, NY, USA, 2006. Association for Computing Machinery.

129



[110] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: an rdma-enabled distributed persistent
memory file system. In 2017 USENIX Annual Technical Conference (USENIX ATC
17), pages 773–785, Santa Clara, CA, July 2017. USENIX Association.

[111] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H. Boehm. Conflict exceptions: Simplifying
concurrent language semantics with precise hardware exceptions for data-races. In
Proceedings of the 37th Annual International Symposium on Computer Architecture,
pages 210–221, New York, NY, USA, 2010. Association for Computing Machinery.

[112] P. Mahapatra, M. D. Hill, and M. M. Swift. Don’t persist all: Efficient persistent data
structures. arXiv preprint arXiv:1905.13011, 2019.

[113] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris. Persistent memcached: Bringing
legacy code to byte-addressable persistent memory. In Proceedings of the 9th USENIX
Conference on Hot Topics in Storage and File Systems, HotStorage’17, page 4, USA,
2017. USENIX Association.

[114] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris. Persistent memcached: Bringing
legacy code to byte-addressable persistent memory. In Proceedings of the 9th USENIX
Conference on Hot Topics in Storage and File Systems, HotStorage’17, page 4, USA,
2017. USENIX Association.

[115] L. Marmol, M. Chowdhury, and R. Rangaswami. Libpm: Simplifying application usage
of persistent memory. ACM Trans. Storage, 14(4), Dec. 2018.

[116] M. K. McKusick and G. R. Ganger. Soft updates: A technique for eliminating most
synchronous writes in the fast filesystem. In 1999 USENIX Annual Technical Conference
(USENIX ATC 99), Monterey, CA, June 1999. USENIX Association.

[117] M. K. Mckusick and T. J. Kowalski. Fsck - the unix file system check program, 1994.

[118] Y. Meshman, N. Rinetzky, and E. Yahav. Pattern-based synthesis of synchronization
for the c++ memory model. In Proceedings of the 15th Conference on Formal Methods
in Computer-Aided Design, FMCAD ’15, pages 120–127, Austin, Texas, 2015. FMCAD
Inc.

[119] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking semantic correctness:
The case of finding file system bugs. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, pages 361–377, 2015.

[120] J. Mohan, A. Martinez, S. Ponnapalli, P. Raju, and V. Chidambaram. Finding crash-
consistency bugs with bounded black-box crash testing. In Proceedings of the 13th
USENIX Conference on Operating Systems Design and Implementation, OSDI ’18,
pages 33–50, 2018.

[121] M. Musuvathi, S. Qadeer, and T. Ball. CHESS: A systematic testing tool for concurrent
software. Logic-Based Program Synthesis and Transformation, page 16, November 2007.

130



[122] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding
and reproducing Heisenbugs in concurrent programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI ’08, pages 267–280,
2008.

[123] M. Nam, H. Cha, Y.-R. Choi, S. H. Noh, and B. Nam. Write-optimized dynamic
hashing for persistent memory. In Proceedings of the 17th USENIX Conference on File
and Storage Technologies, FAST ’19, pages 31–44, USA, 2019. USENIX Association.

[124] D. Narayanan and O. Hodson. Whole-system persistence. In Proceedings of the Seven-
teenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 401–410, New York, NY, USA, 2012.
Association for Computing Machinery.

[125] I. Neal, A. Quinn, and B. Kasikci. Hippocrates: Healing persistent memory bugs
without doing any harm. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
2021, pages 401–414, New York, NY, USA, 2021. Association for Computing Machinery.

[126] I. Neal, B. Reeves, B. Stoler, A. Quinn, Y. Kwon, S. Peter, and B. Kasikci. AGAMOTTO:
How persistent is your persistent memory application? In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation, OSDI ’20, 2020.

[127] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum. Fast
crash recovery in ramcloud. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 29–41, New York, NY, USA, 2011.
Association for Computing Machinery.

[128] P. Ou and B. Demsky. Automo: Automatic inference of memory order parameters for
c/c++11. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 221–240, New York, NY, USA, 2015. Association for Computing Machinery.

[129] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. Fptree: A hybrid scm-dram
persistent and concurrent b-tree for storage class memory. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16, pages 371–386, New
York, NY, USA, 2016. Association for Computing Machinery.

[130] S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing atomicity violation bugs from their
hiding places. In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XIV, page 25–36,
New York, NY, USA, 2009. Association for Computing Machinery.

[131] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), pages 265–276, Min-
neapolis, MN, USA, 2014. Institute of Electrical and Electronics Engineers.

131



[132] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency: Semantics for byte-
addressable nonvolatile memory technologies. IEEE Micro, 35(3):125–131, 2015.

[133] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage management in the nvram
era. Proc. VLDB Endow., 7(2):121–132, Oct. 2013.

[134] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Iron file systems. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05, page 206–220, New York,
NY, USA, 2005. Association for Computing Machinery.

[135] C. S. Pundefinedsundefinedreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic execution and
system-level concrete execution for testing nasa software. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08, pages 15–26,
New York, NY, USA, 2008. Association for Computing Machinery.

[136] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis. Persistency semantics of the
Intel-X86 architecture. Proceedings of the ACM on Programming Languages, 4(POPL),
December 2019.

[137] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu. Thynvm: Enabling software-
transparent crash consistency in persistent memory systems. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 672–685,
Waikiki, HI, USA, 2015. Institute of Electrical and Electronics Engineers.

[138] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. ACM Trans. Comput. Syst., 10(1):26–52, feb 1992.
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Appendix A

Jaaru Artifact Evaluation

A.1 Abstract

This artifact contains a vagrant repository that downloads and compiles the source code

for Jaaru, its companion compiler pass, and benchmarks. The artifact enables users to

reproduce the bugs that are found by Jaaru in PMDK (i.e., Figure 3.11 of the dissertation)

and RECIPE (i.e., Figure 3.12) as well as the performance results to compare Jaaru with

Yat (i.e., Figure 3.13).

A.2 Artifact Check-List (Meta-Information)

• Algorithm: Lazy exhaustive model-checking

• Program: Jaaru

• Compilation: GCC 7.5.0 and Clang

• Binary: Instrumentation LLVM pass
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• Data set: RECIPE and PMDK benchmarks

• Run-time environment: Any system that can run Vagrant

• Hardware: One 6 core 3.7 GHz Intel i7 machine with 32 GB DDR4 memory

• Run-time state: Managed by our x86 simulator

• Execution: Automated by our tooling system

• Metrics: Crashing the program under test

• Output: Program crash for bugs. Logging performance measurement for executions.

• Experiments: Regenerating all bugs found by Jaaru. Reproducing performance results

and comparing them with Yat (fully automated by our custom tooling)

• How much disk space required (approximately)?: 80G

• How much time is needed to prepare workflow (approximately)?: 1 hour

• How much time is needed to complete experiments (approximately)?: About 20

mins

• Publicly available?: Yes. Open-source on GitHub

• Code licenses (if publicly available)?: GNU GENERAL PUBLIC LICENSE Version 2

• Data licenses (if publicly available)?: BSD-3-Clause and Apache License 2.0.

• Workflow framework used?: Vagrant.

• Archived (provide DOI)?:

https://doi.org/10.6084/m9.figshare.13392338
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A.3 Description

Our workflow has four primary parts: (1) creating a virtual machine and installing depen-

dencies needed to reproduce our results, (2) downloading the source code of Jaaru and the

benchmarks and building them, (3) providing the parameters corresponding to each bug

to reproduce the bugs, and (4) running the benchmarks to compare Jaaru with the naive

exhaustive approach (i.e., Yat). After the experiment, the corresponding output files are

generated for each bug and each performance measurement.

How to Access

All source code is open-source and available on GitHub. Our packaging requires cloning the

vagrant system repository from https://github.com/uci-plrg/jaaru-vagrant. As described

in the README.md file of the repository, you will need to install a VirtualBox VM and

Vagrant on your machine. Then, the vagrant setup will install the required dependencies and

download the source code of the tools from our git repository. Next, it builds each tool on

the virtual machine.

Hardware Dependencies

Our tooling system and Jaaru have no special hardware dependencies and it can be running

on any x86 machine with at least 32GB RAM and 4 cores.

Software Dependencies

To run our system, the following should be installed on the local machine:
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• Linux (we tested on Ubuntu)

• Vagrant

• VirtualBox

• Vagrant-disksize plugin

Data Sets

To evaluate Jaaru, our tooling system downloads the source code of RECIPE and PMDK

from our git repository. We forked a branch from the original source code of these benchmarks

that don’t contain our bug fixes. The tooling system automatically sets up and builds these

benchmarks and runs them under Jaaru to identify bugs in them.

A.4 Installation

Please see the README.md file of the https://github.com/uci-plrg/jaaru-vagrant repository,

which contains a detailed step-by-step guide to setup Jaaru on a virtual machine. Then, our

scripts automatically do the following:

1. Install all the dependencies needed to install and evaluate Jaaru on different benchmarks.

2. Check out the source code for LLVM, Jaaru, Jaaru’s LLVM pass, RECIPE, and PMDK.

3. Include Jaaru’s LLVM pass to LLVM and building it

4. Set up and build Jaaru with two different configurations (One for RECIPE that uses

libvmemmalloc, and one for PMDK that uses libpmem APIs).
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5. Set up and building RECIPE (including CCEH, FAST FAIR, P-ART, P-BwTree,

P-CLHT, and P-Masstree benchmarks) and PMDK benchmarks.

6. Generate three scripts in the home (or ∼/) directory of the virtual machine to generate

the results.

Once the scripts are finished setting up the virtual machine and benchmarks, the user can

use Jaaru on the virtual machine to further evaluate different benchmarks or regenerate our

evaluation results.

A.5 Experiment Workflow

After setting up the virtual machine, the user can use ’vagrant ssh’ to connect to the VM

and use Jaaru. The detailed instructions to run the suggested workflow is included in the

README.md file of https://github.com/uci-plrg/jaaru-vagrant repository. There are three

scripts in the home directory of the virtual machine that user can run:

recipe-perf.sh : It runs the RECIPE benchmarks using Jaaru and gathers measurements

to compare Jaaru against Yat. For each benchmark, the corresponding log file is generated

in ∼/results/recipe-performance.

recipe-bugs.sh : It runs the RECIPE benchmarks using Jaaru and sets the corresponding

parameters to reproduce each bug. For each bug, the corresponding log file is generated in

∼/results/recipe-bugs.

pmdk-bugs.sh : It runs PMDK benchmarks by using Jaaru and set the corresponding

parameters to reproduce each bug. For each bug, the corresponding log file is generated in

∼/results/pmdk-bugs.
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In our tooling system, the timeout is used in both recipe-bugs.sh and pmdk-bugs.sh scripts to

recover from segmentation fault. The timeout needs to be adjusted if the user uses a slower

machine.

A.6 Evaluation and Expected Result

After successfully running the experiment using our scripts, the results directory is generated

in the home directory. This directory contains the following results:

RECIPE

Performance Results: For each RECIPE benchmark, there is a -Performance file in

the ∼/results/recipe-performance directory (for a total of 6 files). These files contain the

performance information corresponding to Figure 3.13.

Bugs: There are 18 files in ∼/results/recipe-bugs directory. Each file contains the

corresponding logs for the bug that Jaaru found. Figure A.1 contains information about how

Jaaru identified each bug correspond to Figure 3.12.

PMDK

There are 7 files in ∼/results/pmdk-bugs directory. Each file contains the corresponding logs

for the bug that Jaaru found. Figure A.2 contains information about how Jaaru identified

each bug correspond to Figure 3.11.
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# Bug ID Cause of Bug
1 CCEH-1 Getting stuck in an infinite loop
2 CCEH-2 Segmentation fault in the program
3 CCEH-3 Segmentation fault in the program
4 FAST FAIR-1 Segmentation fault in the program
5 FAST FAIR-2 Segmentation fault in the program
6 FAST FAIR-3 Segmentation fault in the program
7 P-ART-1 Segmentation fault in the program
8 P-ART-2 Illegal memory access in the program
9 P-ART-3 Getting stuck in an infinite loop
10 P-BwTree-1 Segmentation fault in the program
11 P-BwTree-2 Segmentation fault in the program
12 P-BwTree-3 Segmentation fault in the program
13 P-BwTree-4 Segmentation fault in the program
14 P-BwTree-5 Segmentation fault in the program
15 P-CLHT-1 Illegal memory access in the program
16 P-CLHT-2 Illegal memory access in the program
17 P-CLHT-3 Getting stuck in an infinite loop
18 P-MassTree-1 Illegal memory access in the program

Figure A.1: More information about the bugs that are found by Jaaru in RECIPE benchmarks.

# Benchmark Found Symptom
1 Btree∗ Illegal memory access at btree map.c:89
2 Btree Failed to open pool error
3 Hashmap atomic∗ Assertion failure at heap.c:533
4 CTree∗ Assertion failure at obj.c:1523
5 Hashmap atomic∗ Assertion failure at pmalloc.c:270
6 Hashmap tx∗ Illegal memory access at obj.c:1528
7 RBTree∗ Assertion failure at tx.c:1678

Figure A.2: More information about the bugs that are found by Jaaru in PMDK benchmarks.

A.7 Experiment Customization

The experiment workflow can be customized to install and run everything on the local machine

instead of the virtual machine. To set up everything locally, download data/setup.sh script

from the https://github.com/uci-plrg/jaaru-vagrant repository in the home directory of your

local machine and run the script after installing the dependencies.
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A.8 Notes

Note that the performance results generated for RECIPE can be different from the numbers

that are reported in the dissertation since there is non-determinism in scheduling threads;

when stores, flushes, and fences leave the store buffer; and memory alignment in the malloc

procedure. This non-determinism can possibly impact on the type of bugs reported in

Figure A.1 and Figure A.2 for RECIPE and PMDK benchmarks. Also, for some bugs, the

segmentation fault (or assertion failure) occurs in Jaaru code. This is caused by illegal

memory access by the program under test.
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Appendix B

PSan Artifact Evaluation

B.1 Abstract

This artifact contains a vagrant repository that downloads and compiles the source code

for PSan (a plugin for Jaaru), its companion compiler pass, and benchmarks. The artifact

enables users to reproduce the bugs that are found by PSan in PMDK and RECIPE (Table 4.1

in Chapter 4) as well as comparing bug-finding capabilities and performance of PSan with

Jaaru, a persistent memory model checker (Table 4.2 in Chapter 4).

B.2 Artifact Check-List (Meta-Information)

• Algorithm: Robustness violations detector

• Program: PSan

• Compilation: GCC 7.5.0 and Clang

• Binary: Instrumentation LLVM pass

145



• Data set: CCEH, FAST FAIR, RECIPE, Redis, Memcached, and PMDK benchmarks

• Run-time environment: Any system that can run Vagrant

• Hardware: One 6 core 3.7 GHz Intel i7 machine with 32 GB DDR4 memory

• Run-time state: Managed by Jaaru’s x86 simulator

• Execution: Automated by Jaaru’s tooling system

• Metrics: Reporting robustness violations in program under test

• Output: Suggestions for robustness violations bugs. Logging performance measurement for

executions.

• Experiments: Regenerating all bugs found by PSan. Reproducing performance results

and comparing them with Jaaru (underlying open-source model checker)

• How much disk space required (approximately)?: 80G (For using our VM 200G)

• How much time is needed to prepare workflow (approximately)?: 4 hours

• How much time is needed to complete experiments (approximately)?: About 90

minutes

• Publicly available?: Yes. Open-source on GitHub

• Code licenses (if publicly available)?: GNU GENERAL PUBLIC LICENSE Version 2

• Data licenses (if publicly available)?: Lenovo, BSD-3-Clause, and Apache License 2.0.

• Workflow framework used?: Vagrant.

• Archived (provide DOI)?:

https://doi.org/10.5281/zenodo.6326792
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B.3 Description

Our workflow has four primary parts: (1) creating a virtual machine and installing depen-

dencies needed to reproduce our results, (2) downloading the source code of PSan and the

benchmarks and building them, (3) providing the parameters corresponding to each bug to

reproduce the bugs, and (4) Comparing bug-finding capabilities PSan with the Jaaru (The

underlying model checker) on how automatically PSan suggests fixes found by Jaaru. After

the experiment, the corresponding output files are generated for each bug.

To simplify the evaluation process, we created an instance of VM that includes all the source

code and corresponding binary files. This VM is fully set up and it is available on Zenodo

repository. This document also provides a guideline on how to setup the VM and use it to

reproduce PSan’s evaluation results.

How to Access

All source code is open-source and available on GitHub. Our packaging requires cloning

the vagrant system repository from https://github.com/uci-plrg/psan-vagrant. As described

in the README.md file of the repository, you will need to install a VirtualBox VM and

Vagrant on your machine. Then, the vagrant setup will install the required dependencies and

download the source code of the tools from our git repository. Next, it builds each tool on

the virtual machine.

we created an instance of VM that includes all the source code and corresponding binary

files. This VM is fully set up and it is available on Zenodo repository.
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Hardware Dependencies

Our tooling system and PSan have no special hardware dependencies and it can be running

on any x86 machine with at least 32GB RAM and 4 cores.

Using our VM: To properly import the pre-built VM instance, please verify you have

enough storage on your disk (∼ 200G) and you used the most recent version of Vagrant

(>= 2.2.19) to avoid facing any errors.

Software Dependencies

To run our system, the following should be installed on the local machine:

• Linux (we tested on Ubuntu)

• Vagrant

• VirtualBox

• Vagrant-disksize plugin

Also, In order for Vagrant to run, we should first make sure that the VT-d option for

virtualization is enabled in BIOS.

Data Sets

To evaluate PSan, our tooling system downloads the source code of RECIPE, Redis, Mem-

cached, and PMDK from our git repository. We forked a branch from the original source

code of these benchmarks that don’t contain our bug fixes. The tooling system automatically

sets up and builds these benchmarks and runs them under PSan to identify bugs in them.
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B.4 Installation

Please see the README.md file of the https://github.com/uci-plrg/psan-vagrant repository,

which contains a detailed step-by-step guide to setup PSan on a virtual machine. Then, our

scripts automatically do the following:

1. Install all the dependencies needed to install and evaluate PSan on different benchmarks.

2. Check out the source code for LLVM, PSan, PSan’s LLVM pass, RECIPE, Redis,

Memcached, and PMDK.

3. Include PSan’s LLVM pass to LLVM and building it

4. Set up and build PSan with two different configurations (One for RECIPE that uses

libvmemmalloc, and one for PMDK that uses libpmem APIs).

5. Set up and building RECIPE (including CCEH, FAST FAIR, P-ART, P-BwTree,

P-CLHT, and P-Masstree benchmarks), Redis, Memcached, and PMDK benchmarks.

6. Generate ten scripts in the home (or ∼/) directory of the virtual machine to generate

the results.

Once the scripts are finished setting up the virtual machine and benchmarks, the user can

use PSan on the virtual machine to further evaluate different benchmarks or regenerate our

evaluation results.

If you are using our VM, you need to download it from Zenodo repository. Refer to Step 3

of the Readme.md file for further details.
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B.5 Experiment Workflow

After setting up the virtual machine, the user can use ’vagrant ssh’ to connect to the VM

and use PSan. The detailed instructions to run the suggested workflow is included in the

README.md file of https://github.com/uci-plrg/psan-vagrant repository. There are seven

scripts in the home directory of the virtual machine that user can run:

perf.sh : It runs PMDK, Redis, Memcached, and RECIPE benchmarks using PSan

and gathers measurements to compare PSan against Jaaru. For each benchmark, the

corresponding log file is generated in ∼/results/performance.

recipe-bugs.sh : It runs the RECIPE benchmarks using PSan and sets the corresponding

parameters to reproduce each bug. For each benchmark, the corresponding log file is generated

in ∼/results/recipe-bugs.

compare-jaaru.sh : It runs the RECIPE benchmarks using PSan and sets the corre-

sponding parameters to reproduce each bug that Jaaru found. For each benchmark, the

corresponding log file is generated in ∼/results/recipe-jaaru-bugs.

pmdk-bugs.sh : It runs PMDK benchmarks by using PSan and set the corresponding

parameters to reproduce each bug. For each test case, the corresponding log file is generated

in ∼/results/pmdk-bugs.

B.6 Evaluation and Expected Result

After successfully running the experiment using our scripts, the results directory is generated

in the home directory. We created an online document that elaborate details of each bug and

describe the fix suggestions by PSan. You can check out this file for investigating each bug
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found by PSan and each bug fix. Regardless, the results directory contains the following

results:

RECIPE Jaaru’s Bugs

There are 14 files in ∼/results/recipe-jaaru-bugs directory with the pattern of [BENCH-

MARK NAME]-bug.log. Each file contains the robustness violations found by PSan in each

benchmark and corresponding suggestions for each of them. Figure B.1 contains information

about how PSan reports bugs with * correspond to Table 4.1.

# Bug ID PSan Fix Cause of Bug
1 CCEH-bug-1 src/CCEH LSB.cpp:175:23 Missing flush for dir. [i]
2 CCEH-bug-2 src/CCEH LSB.cpp:174:14 Missing flush for pointer dir. [i]
3 CCEH-bug-3 src/CCEH LSB.cpp:172:1 Missing flush for CCEH object
4 FAST FAIR-bug-1 btree.h:192:17 Missing flush for root of btree
5 FAST FAIR-bug-2 btree.h:1860:10 Missing flush for btree object
6 P-ART-1 memset Missing flush for deletionList
7 P-ART-2 Tree.cpp:23:61 Missing flush for Tree object
8 P-BwTree-Bug-2 bwtree.h:467:19 Missing flush for gc metadata p
8 P-BwTree-Bug-2 bwtree.h:467:19 Missing flush for gc metadata p
9 P-BwTree-Bug-3 src/bwtree.h:346:7 Missing flush for gc metadata p
10 P-BwTree-Bug-4 src/bwtree.h:2014:7 Missing flush for AllocationMeta object
11 P-BwTree-Bug-5 src/bwtree.h:3114:13 Missing flush for BwTree object
12 P-CLHT-Bug-1 src/clht lf res.c:220:21 Missing flush for clht t object
13 P-CLHT-Bug-2 src/clht lf res.c:220:21 Missing flush for Hashtable object
14 P-CLHT-Bug-3 memset Missing flush for table in hashtable object

Figure B.1: More information about the bugs found by PSan and Jaaru in CCEH, Fast Fair,
and RECIPE benchmarks. Number after ’:’ represents the line number.

RECIPE New Bugs

There are 18 files in∼/results/recipe-bugs directory with the pattern of [BENCHMARK NAME]-

races.log. Each file contains the persistency races found by PSan in each benchmark.

Figure B.2 contains information about how PSan reports bugs without * correspond to

Table 4.1.
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# Bug ID PSan Fix Cause of Bug
1 CCEH-bug-1 src/CCEH LSB.cpp:19:11 Missing flush for sema
2 CCEH-bug-3 src/CCEH LSB.cpp:37:19 Missing flush for key
3 CCEH-bug-5 src/CCEH LSB.cpp:51:11 Missing flush for sema
4 FAST FAIR-bug-1 ./btree.h:583:40 Missing flush for switch counter
5 FAST FAIR-bug-2 ./btree.h:654:36 Missing flush for last index
6 FAST FAIR-bug-3 ./btree.h:593:36 Header not fitting within the cacheline
7 FAST FAIR-bug-4 ./btree.h:603:49 Missing flush for ptr
8 P-ART-1 N.cpp:97:43 Missing flush for typeVersionLockObsolete
9 P-ART-2 N.cpp:108:37 Missing flush for typeVersionLockObsolete
10 P-ART-3 N.cpp:119:33 Missing flush for typeVersionLockObsolete
11 P-ART-4 N4.cpp:21:28 Missing flush for keys
12 P-ART-5 N4.cpp:25:32 Missing flush for children
13 P-ART-6 N16.cpp:12:28 Missing flush for keys
14 P-ART-Mem-Bugs 6 different locations Epoch not properly persisted
15 P-ART-8 N16.cpp:19:14 Missing flush for count
16 P-ART-9 Epoche.cpp:66:22 Missing flush for nodeCount
17 P-BwTree-Bug-1 src/bwtree.h:2089:23 Missing flush for next
18 P-BwTree-Mem-Bugs 3 different locations Missing flushes in memory management code

Figure B.2: More information about the bugs found by PSan in CCEH, Fast Fair, and
RECIPE benchmarks. Number after ’:’ represents the line number.

PMDK

There are 4 files in ∼/results/pmdk-bugs directory. Figure B.3 corresponds to bugs in Table 4.1

in PMDK benchmark.

# Bug ID PSan Fix Cause of Bug
1 PMDK-Bug-1 memcpy Missing flushes after memcpy
2 PMDK-Bug-2 memcpy Missing flushes after memcpy
3 PMDK-Bug-3 ulog.c:556:9 Missing flushes after write to dst
4 PMDK-Bug-4 memcpy Missing flushes after memcpy

Figure B.3: More information about the bugs that are found by PSan in PMDK benchmarks.
Number after ’:’ represents the line number.

Performance Results

Running ./perf.sh generates performance.out file in /results/performance directory. This file

contains the performance information in Table 4.2 of the dissertation.
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B.7 Experiment Customization

The experiment workflow can be customized to install and run everything on the local linux

machine instead of the virtual machine. To set up everything locally, download data/setup.sh

script from the https://github.com/uci-plrg/psan-vagrant repository in the home directory

of your local machine and run the script after installing the dependencies.

B.8 Notes

Note that the performance results generated for the benchmarks can be different from the

numbers that are reported in this dissertation since there is non-determinism in scheduling

threads; when stores, flushes, and fences leave the store buffer; and memory alignment in

the malloc procedure. This non-determinism can possibly impact on the number of bugs

reported in Table 4.1 RECIPE and PMDK benchmarks.
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Appendix C

Yashme Artifact Evaluation

C.1 Abstract

This artifact contains a vagrant repository that downloads and compiles the source code

for Yashme, its companion compiler pass, and benchmarks. The artifact enables users to

reproduce the bugs that are found by Yashme in PMDK, Memcached, and Redis (Table 5.3

of the dissertation), and RECIPE (Table 5.2) as well as the performance results to compare

Yashme with Jaaru (Table 5.4).

C.2 Artifact Check-List (Meta-Information)

• Algorithm: Persistency race detector

• Program: Yashme

• Compilation: GCC 7.5.0 and Clang

• Binary: Instrumentation LLVM pass
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• Data set: RECIPE, Redis, Memcached, and PMDK benchmarks

• Run-time environment: Any system that can run Vagrant

• Hardware: One 6 core 3.7 GHz Intel i7 machine with 32 GB DDR4 memory

• Run-time state: Managed by Jaaru’s x86 simulator

• Execution: Automated by Jaaru’s tooling system

• Metrics: Reporting persistency race in program under test

• Output: Persistency race bugs. Logging performance measurement for executions.

• Experiments: Regenerating all bugs found by Yashme. Reproducing performance results

and comparing them with Jaaru (underlying open-source model checker)

• How much disk space required (approximately)?: 80G

• How much time is needed to prepare workflow (approximately)?: 4 hours

• How much time is needed to complete experiments (approximately)?: About 90

minutes

• Publicly available?: Yes. Open-source on GitHub

• Code licenses (if publicly available)?: GNU GENERAL PUBLIC LICENSE Version 2

• Data licenses (if publicly available)?: Lenovo, BSD-3-Clause, and Apache License 2.0.

• Workflow framework used?: Vagrant.

• Archived (provide DOI)?:

https://dl.acm.org/doi/10.1145/3462316
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C.3 Description

Our workflow has four primary parts: (1) creating a virtual machine and installing dependen-

cies needed to reproduce our results, (2) downloading the source code of Yashme and the

benchmarks and building them, (3) providing the parameters corresponding to each bug to

reproduce the bugs, and (4) running the benchmarks to compare Yashme with the Jaaru, the

underlying model-checker. After the experiment, the corresponding output files are generated

for each bug and each performance measurement.

How to Access

All source code is open-source and available on GitHub. Our packaging requires cloning the

vagrant system repository from https://github.com/uci-plrg/pmrace-vagrant. As described

in the README.md file of the repository, you will need to install a VirtualBox VM and

Vagrant on your machine. Then, the vagrant setup will install the required dependencies and

download the source code of the tools from our git repository. Next, it builds each tool on

the virtual machine.

Hardware Dependencies

Our tooling system and Yashme have no special hardware dependencies and it can be running

on any x86 machine with at least 32GB RAM and 4 cores.

Software Dependencies

To run our system, the following should be installed on the local machine:
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• Linux (we tested on Ubuntu)

• Vagrant

• VirtualBox

• Vagrant-disksize plugin

Data Sets

To evaluate Yashme, our tooling system downloads the source code of RECIPE, Redis,

Memcached, and PMDK from our git repository. We forked a branch from the original source

code of these benchmarks that don’t contain our bug fixes. The tooling system automatically

sets up and builds these benchmarks and runs them under Yashme to identify bugs in them.

C.4 Installation

Please see the README.md file of the https://github.com/uci-plrg/pmrace-vagrant repos-

itory, which contains a detailed step-by-step guide to setup Yashme on a virtual machine.

Then, our scripts automatically do the following:

1. Install all the dependencies needed to install and evaluate Yashme on different bench-

marks.

2. Check out the source code for LLVM, Yashme, Yashme’s LLVM pass, RECIPE, Redis,

Memcached, and PMDK.

3. Include Yashme’s LLVM pass to LLVM and building it

4. Set up and build Yashme with two different configurations (One for RECIPE that uses

libvmemmalloc, and one for PMDK that uses libpmem APIs).
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5. Set up and building RECIPE (including CCEH, FAST FAIR, P-ART, P-BwTree,

P-CLHT, and P-Masstree benchmarks), Redis, Memcached, and PMDK benchmarks.

6. Generate seven scripts in the home (or ∼/) directory of the virtual machine to generate

the results.

Once the scripts are finished setting up the virtual machine and benchmarks, the user can

use Yashme on the virtual machine to further evaluate different benchmarks or regenerate

our evaluation results.

C.5 Experiment Workflow

After setting up the virtual machine, the user can use ’vagrant ssh’ to connect to the VM

and use Yashme. The detailed instructions to run the suggested workflow is included in the

README.md file of https://github.com/uci-plrg/pmrace-vagrant repository. There are seven

scripts in the home directory of the virtual machine that user can run:

perf.sh : It runs PMDK, Redis, Memcached, and RECIPE benchmarks using Yashme

and gathers measurements to compare Yashme against Jaaru. For each benchmark, the

corresponding log file is generated in ∼/results/performance.

recipe-bugs.sh : It runs the RECIPE benchmarks using Yashme and sets the corresponding

parameters to reproduce each bug. For each benchmark, the corresponding log file is generated

in ∼/results/recipe.

pmdk-bugs.sh : It runs PMDK benchmarks by using Yashme and set the corresponding

parameters to reproduce each bug. For each test case, the corresponding log file is generated

in ∼/results/pmdk.
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memcached-client.sh : It runs memcached client test script to execute scenarios to

reproduce each bug in Memcached benchmark.

redis-client.sh : It runs Redis client test script to execute scenarios to reproduce each

bug in Redis benchmark.

memcached-server.sh : It runs Memcached benchmark by using Yashme and set the

corresponding parameters to reproduce each bug. The server script runs on one terminal,

and the client script runs in another terminal. The persistency races are printed out on the

server’s terminal.

redis-server.sh : It runs Redis benchmark by using Yashme and set the corresponding

parameters to reproduce each bug. The server script runs on one terminal, and the client

script runs on another terminal. The persistency races are printed out on the server’s terminal.

C.6 Evaluation and Expected Result

After successfully running the experiment using our scripts, the results directory is generated

in the home directory. This directory contains the following results:

RECIPE

There are 7 files in ∼/results/recipe directory with the pattern of [BENCHMARK NAME]-

races.log. Each file contains the persistency races found by Yashme in each benchmark.

Figure C.1 contains information about how Yashme reports each bug correspond to Table 5.2.

159



# Bug ID Cause of Bug
1 CCEH-1 Write to value in CCEH LSB.cpp:29
2 CCEH-2 Write to key in CCEH LSB.cpp:31

3 FAST FAIR-1
Write to last index in btree.h:643

and btree.h:831

4 FAST FAIR-2
Write to switch counter in btree.h:578

and btree.h:820

5 FAST FAIR-3
Write to key in btree.h:584,
btree.h:624, and btree.h:605

6 FAST FAIR-4
Write to ptr in btree.h:585,

btree.h:604, btree.h:625, and btree.h:828
7 FAST FAIR-5 Write to root in btree.h:1857
8 FAST FAIR-6 Write to sibling ptr in btree.h:824

9 P-ART-1
Write to compactCount in
N4.cpp:26 and N16.cpp:15

10 P-ART-2 Write to count in N4.cpp:27 and N16.cpp:16
11 P-ART-3 Write to deletitionListCount in Epoche.cpp:44
12 P-ART-4 Write to headDeletionList in Epoche.cpp:57
13 P-ART-5 Write to nodesCount in Epoche.cpp:60:22
14 P-ART-6 Write to added in Epoche.cpp:63
15 P-ART-7 Write to thresholdCounter in Epoche.cpp:78
16 P-BwTree-1 Write to epoch in bwtree.h:572
17 P-Masstree-1 Write to root in masstree.h:1216

18 P-Masstree-2
Write to permutation in masstree.h:1318,
masstree.h:1364, and masstree.h:1399

19 P-Masstree-3 Write to next in masstree.h:1162

Figure C.1: More information about the bugs found by Yashme in CCEH, Fast Fair, and
RECIPE benchmarks. Number after ’:’ represents the line number.

PMDK, Redis, Memcached

There are 2 files in ∼/results/pmdk directory. These two files contain the bug corresponding

to bug #1 in Figure C.2. Bug #2 - #4 are printed in the terminal output after running

memcached-server.sh and memcached-client.sh scripts. Figure C.2 corresponds to bugs in

Table 5.3.

Performance Results

Running ./perf.sh generates performance.out file in /results/performance directory. This file

contains the performance information as well as number of bugs found w/ or w/o prefix-based
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# Benchmark Found Symptom
1 PMDK Write to ulog entry in ulog.c:561
2 Memcached Write to valid in pslab.c:368
3 Memcached Write to id in pslab.c:92

4 Memcached
Write to it flags in slabs.c:543,
items.c:519, and items.c:343

5 Memcached
Write to cas in memcached.c:4290

and items.c:538

Figure C.2: More information about the bugs that are found by Yashme in PMDK,
Memcached and Redis benchmarks. Number after ’:’ represents the line number.

expansion algorithm corresponding to Table 5.4 of the dissertation. Note, since we manually

deduplicate these bugs, the numbers of bugs in performance.out could be more than the

number of bugs reported in this dissertation.

C.7 Experiment Customization

The experiment workflow can be customized to install and run everything on the local machine

instead of the virtual machine. To set up everything locally, download data/setup.sh script

from the https://github.com/uci-plrg/pmrace-vagrant repository in the home directory of

your local machine and run the script after installing the dependencies.

C.8 Notes

Note that the performance results generated for the benchmarks can be different from the

numbers that are reported in the dissertation since there is non-determinism in scheduling

threads; when stores, flushes, and fences leave the store buffer; and memory alignment in the

malloc procedure. This non-determinism can possibly impact on the number of bugs reported

in Table 5.2 and Table 5.3 for RECIPE, Redis, Memcached, and PMDK benchmarks.
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