
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Advanced Software Techniques for Emerging Memory Technologies

Permalink
https://escholarship.org/uc/item/6g48430x

Author
Kim, Juno

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g48430x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Advanced Software Techniques for Emerging Memory Technologies

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Juno Kim

Committee in charge:

Professor Steven Swanson, Chair
Professor Paul H. Siegel
Professor Geoffrey Voelker
Professor Jishen Zhao

2023

Copyright

Juno Kim, 2023

All rights reserved.

The Dissertation of Juno Kim is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To my wife Jun Hee, who has been there with me since the beginning of this journey.
And to my beloved daughter Bomi whose birth was the most fabulous graduation
present from God and the most influential encouragement to me.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1

Chapter 2 Background and Motivation . 5
2.1 Persistent Memory . 5
2.2 Evolution of SSDs . 6
2.3 Challenges of Using Emerging Memories . 7

2.3.1 As Persistent Storage . 7
2.3.2 As Volatile Memory . 8

Chapter 3 Finding and Fixing Performance Pathologies in Persistent Memory
Software Stacks . 10

3.1 Background . 12
3.1.1 NVMM File Systems and DAX . 13
3.1.2 NVMM programming . 15

3.2 Adapting applications to NVMM . 16
3.2.1 SQLite . 16
3.2.2 Kyoto Cabinet and LMDB . 19
3.2.3 RocksDB and Redis . 21
3.2.4 Evaluating FLEX . 24
3.2.5 Best Practices . 27
3.2.6 Reducing journaling overhead . 28

3.3 File System Scalability . 31
3.3.1 FxMark scalability test suite . 32
3.3.2 Concurrent file read/write . 32
3.3.3 Directory Accesses . 34
3.3.4 NUMA Scalability . 36

3.4 Summary . 37

v

Chapter 4 SubZero: Zero-Copy IO for Persistent Main Memory File Systems . . 39
4.1 Motivation . 41
4.2 SUBZERO IO . 42

4.2.1 The SUBZERO Interface . 44
4.2.2 Using SUBZERO . 46

4.3 Implementing SUBZERO . 47
4.3.1 NOVA file system . 47
4.3.2 XFS-DAX file system . 49

4.4 Evaluation . 49
4.4.1 Micro-benchmarks . 50
4.4.2 Applications . 54

4.5 Related Work . 55
4.6 Summary . 56

Chapter 5 Blaze: Fast Graph Processing on Fast SSDs . 58
5.1 Background and Motivation . 60

5.1.1 Out-of-core Graph Processing . 60
5.1.2 Target Datasets . 62
5.1.3 Issues with Current Out-of-core Systems . 62

5.2 Reasons of Low IO Utilization in Current Systems . 64
5.2.1 Skewed Computation . 64
5.2.2 Skewed IO . 65
5.2.3 Fast IO, Slow Computation . 68

5.3 Blaze Framework . 69
5.3.1 Online Binning . 70
5.3.2 Programming API . 71
5.3.3 Out-of-core EDGEMAP Execution . 73
5.3.4 Examples . 74
5.3.5 Balanced IO . 76
5.3.6 Memory Usage . 79

5.4 Evaluation . 80
5.4.1 Experimental Setting . 80
5.4.2 Comparison with Other Systems . 81
5.4.3 IO Utilization . 81
5.4.4 Scalability . 84
5.4.5 Impact of Online Binning Configurations . 85
5.4.6 Memory Usage . 87

5.5 Related Work . 88
5.6 Summary . 90

Chapter 6 TOSS: Tiering of Serverless Snapshots for Low Cost Serverless Com-
puting . 91

6.1 Background and Motivation . 92
6.1.1 Serverless Computing . 92

vi

6.1.2 Firecracker as Function Instance . 93
6.1.3 Memory Tiering . 94
6.1.4 Motivation . 94

6.2 TOSS . 94
6.2.1 Overview . 95
6.2.2 Memory Access Profiling . 96
6.2.3 Performance-driven Snapshot Tiering . 98
6.2.4 Function Execution on Tiered Snapshot . 100

6.3 Evaluation . 101
6.4 Summary . 103

Chapter 7 Conclusion . 104

Bibliography . 108

vii

LIST OF FIGURES

Figure 3.1. SQLite SET throughput with different journaling modes. Preal-
locating space for the log file using falloc avoids allocation over-
heads and makes write ahead logging (WAL) the clearly superior
logging mode for SQLite running on NVMM file systems. 17

Figure 3.2. Kyoto Cabinet (KC) and LMDB SET throughput. Applications
that use mmap can improve performance by performing msync in
userspace. 19

Figure 3.3. Redis MSET throughput. Making Redis’ core data structure per-
sistent in NVMM (P-Redis) improves performance by 27% to 2.6×.
. 21

Figure 3.4. RocksDB SET throughput. 23

Figure 3.5. The Impact of FLEX File Operations. Emulating file accesses in
user space can improve performance for a wide range of access
patterns. Note that the Y axes have different scales. “-2 MB” and
“-4 MB” denote different fallocate() sizes. 25

Figure 3.6. JDD performance. Fine-grained, DAX-optimized journaling on
NVMM improves performance for metadata-intensive applications. 28

Figure 3.7. Latency break for 4KB append and RocksDB SET. JDD signifi-
cantly reduces journaling overhead by eliminating JBD2 transaction
commit, but still has higher latency than NOVA’s metadata update
mechanism. 29

Figure 3.8. Concurrent 4KB read and write throughput. By default, Linux uses
a non-scalable reader/writer lock to coordinate access to files. Using
finer-grain, more scalable locks improves read and write scalability. 33

Figure 3.9. Concurrent create and unlink throughput. 35

Figure 3.10. NUMA-awareness in the file system. Since NVMM is memory,
NUMA effects impact performance. Providing simple controls over
where the file system allocates NVMM for a file lets application run
threads near the data they operate on, leading to higher performance. 36

Figure 4.1. Memory copy overhead in Kyoto Cabinet. Memory copy over-
heads are significant when updating large key-value pairs in Kyoto
Cabinet. “others” means application and file system level overheads
except for the memory copy. 41

viii

Figure 4.2. Computation between two PMEM files without any copies using
SUBZERO. 46

Figure 4.3. Read operation latency. All latencies are normalized to read la-
tency. Lower is better. 52

Figure 4.4. Write operation latency. All latencies are normalized to write
latency. Lower is better. 52

Figure 4.5. Boosted computation between PMEM files. Combining peek()
and patch() allows computation between PMEM files without any
copies, therefore boosts the performance. 53

Figure 4.6. Application performance. SUBZERO boosts application perfor-
mance by a wide margin with small code changes. 54

Figure 5.3. Skewed IO in Graphene. y-axis: max−min IO bytes between eight
SSDs for each iteration. 67

Figure 5.4. Single-threaded graph computation speed (bars) vs. IO band-
width (lines). 69

Figure 5.5. Out-of-core EDGEMAP engine in Blaze. 70

Figure 5.6. Indirection-based graph index in Blaze. 79

Figure 5.7. Speedups over FlashGraph and Graphene. 82

Figure 5.9. Thread scaling . 84

Figure 5.10. Impact of binning space. 85

Figure 5.11. Impact of binning configurations. 86

Figure 5.12. Memory footprint relative to the input graph size. 87

Figure 6.2. Memory stall ratio of target functions. The bottom and top of each
bar correspond to the minimum and maximum of memory stall
ratio, respectively, of each function based on varying inputs 97

Figure 6.3. Functions on tiered snapshots under 5% of slowdown goal. 102

Figure 6.4. Functions on tiered snapshots under 10% of slowdown goal. 102

ix

LIST OF TABLES

Table 2.1. The evolution of storage bandwidth. 6

Table 3.1. Application Optimization Summary . 27

Table 4.1. SUBZERO IO functions. The API includes replacements for con-
ventional read() and write(), in addition to ancillary functions
for allocating PMEM buffers for IO. Only peek(), unpeek(), and
patch() need to be system calls. 43

Table 5.1. Target graphs. The number of vertices (|V|) and edges (|E|) is in
millions. “Short” denotes short names for datasets. 61

Table 5.2. System comparison. Blaze avoids the root causes of low IO utiliza-
tion on FNDs. 64

Table 6.1. TOSS target functions. 101

x

ACKNOWLEDGEMENTS

I want to express my deep and sincere gratitude to my research advisor, Dr.

Steven Swanson, for giving me the chance to work with him and supporting me

throughout my Ph.D. study. I am especially thankful for his patience and kind support

under various circumstances. His mentorship has helped me in all the time of research

to grow academically. I could not have imagined having a better advisor and mentor

for my Ph.D. study.

I want to express my appreciation to my committee members, Geoffrey Voelker,

Jishen Zhao, and Paul Siegel for their constructive guidance and feedback. Your sugges-

tions have been an invaluable resource throughout this process.

I want to thank my colleagues at the Non-Volatile Systems Laboratory (NVSL).

This dissertation is an outcome of hard works with many past and present NVSL

members. I am also grateful to Joseph Izraelevitz and Terence Kelly who offered enough

time and resources to help my research throughout discussions.

Finally, I want to express my great appreciation to my family and friends. Specif-

ically, my successful end of this journey is deeply indebted to my wife Jun Hee who

has always been by my side regardless of ups and downs. I am forever indebted to my

parents and brother for their unconditional love and support.

Chapter 1, Chapter 2, and Chapter 3 contain material from “Finding and Fixing

Performance Patholo- gies in Persistent Memory Software Stacks”, by Jian Xu, Juno

Kim, Amirsaman Memaripour, and Steven Swanson, which appeared in the 24th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS 2019). The dissertation author is the primary investigator

and the co-first author of this paper.

Chapter 1, Chapter 2, and Chapter 4 contain material from “SubZero: Zero-

Copy IO for Persistent Main Memory File Systems”, by Juno Kim, Yun Joon Soh, Joseph

Izraelevitz, Jishen Zhao, and Steven Swanson, which appeared in the 11th ACM SIGOPS

xi

Asia-Pacific Workshop on Systems (APSys 2020). The dissertation author is the primary

investigator and the first author of this paper.

Chapter 1, Chapter 2, and Chapter 5 contain material from “Blaze: Fast Graph

Processing on Fast SSDs”, by Juno Kim and Steven Swanson, which appeared in the

International Conference for High Performance Computing, Networking, Storage, and

Analysis (SC 2022). The dissertation author is the primary investigator and the first

author of this paper.

Chapter 1, Chapter 2, and Chapter 6 contain material from “TOSS: Tiering of

Serverless Snapshots for Low Cost Serverless Computing”, by Juno Kim, Theodoros

Michailidis, Linsong Guo, Jishen Zhao, and Steven Swanson, which is in preparation

for submission to the European Conference on Computer Systems (EuroSys 2024). The

dissertation author is the primary investigator and the co-first author of this paper.

Permission to make digital or hard copies of part of all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage

xii

VITA

2012 Bachelor of Science in in Electrical and Computer Engineering, University
of California San Diego

2012–2014 Software Engineer, SAP Labs Korea

2017–2020 Master of Science in Computer Science, University of California San Diego

2019 Internship, IBM Research

2021 Internship, Intel

2022 Internship, Intel Labs

2017-2023 Doctor of Philosophy in Computer Science, University of California San
Diego

PUBLICATIONS

Juno Kim and Steven Swanson, “Blaze: Fast Graph Processing on Fast SSDs”, In the
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2022.

Hanxian Huang, Zixuan Wang, Juno Kim, Steven Swanson and Jishen Zhao, “Ayudante:
A Deep Reinforcement Learning Approach to Assist Persistent Memory Programming”,
In the USENIX Annual Technical Conference (ATC), 2021.

Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen Zhao and Steven Swanson, “Sub
Zero: Zero copy IO for Persistent Main Memory File Systems”, In the 11th ACM SIGOPS
Asia-Pacific Workshop on Systems (APSys), 2020 (Awarded Best Paper).

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz and Steven Swanson,
“An Empirical Guide to the Behavior and Use of Scalable Persistent Memory”, In the
18th USENIX Conference on File and Storage Technologies (FAST), 2020.

Jian Xu, Juno Kim, Amirsaman Memaripour and Steven Swanson, “Finding and Fixing
Performance Pathologies in Persistent Memory Software Stacks”, In the 24th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

Joshua Lockerman, Jose Faleiro, Juno Kim, Soham Sankaran, Daniel Abadi, James
Aspnes, Siddhartha Sen and Mahesh Balakrishnan, “The FuzzyLog: A Partially Ordered
Shared Log”, In the 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2018.

xiii

ABSTRACT OF THE DISSERTATION

Advanced Software Techniques for Emerging Memory Technologies

by

Juno Kim

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Steven Swanson, Chair

Emerging memory technologies, such as persistent memory and ultra-low-

latency SSDs, change the tradeoffs system designers must consider. As storage, they

offer considerably faster persistence than traditional SSDs and hard disks. As memory,

they expand the capacity of main memory in a single machine at a lower price than

conventional, expensive DRAM. Despite these advantages, efficiently leveraging them

remains challenging in a variety of software stacks including file systems, databases,

graph processing systems, and serverless computing.

This dissertation first presents a comprehensive study that reveals the impact of

state-of-the-art persistent memory (PMem) storage systems on IO-intensive applications

xiv

and explores how those applications can best leverage the performance of PMem. It

examines various performance problems that PMem introduces at both the file system

and application level, and suggests potential optimization paths while discussing their

different tradeoffs.

Second, the dissertation introduces SubZero, a novel file system API that allows

fast and easy access to files residing in PMem file systems. SubZero offers mmap()-like

performance for both read and write while providing similar isolation semantics as

read() and write(), taking the best of both worlds from file-oriented and memory-

oriented IO for efficient access to PMem-resident files.

Third, it presents Blaze, a new out-of-core graph processing framework op-

timized for ultra-low-latency SSDs. While current out-of-core systems cannot fully

leverage the high IOPs these devices can deliver due to the high CPU overhead, Blaze

achieves high performance on these SSDs with its novel, lightweight parallel value

propagation technique using a highly concurrent bin data structure, overcoming the

limitations of traditional parallel graph computation techniques such as synchronization

or message passing.

Finally, it introduces TOSS, our ongoing effort to support a cost-efficient server-

less offering based on memory tiering. TOSS aims to maximize the use of slow memory

(e.g., PMem, CXL memory) for the execution of serverless functions while achieving

similar performance to the executions solely backed by fast memory (e.g., DRAM). Our

evaluation shows that TOSS can offload a significant portion of guest VM memory

pages to slow memory while achieving minimal slowdown on a variety of serverless

workloads.

xv

Chapter 1

Introduction

Emerging memory technologies, such as persistent memory and ultra-low-

latency SSDs, change the tradeoffs system designers must consider. As storage, they

offer considerably faster persistence than traditional SSDs and hard disks. As memory,

they expand the capacity of main memory in a single machine at a lower price than

conventional, expensive DRAM. However, software designed with conventional design

principles in mind is likely to be a poor fit for these emerging memory technologies.

From the perspective of system designers, either memory technologies offer

the following key benefits. First, they offer fast persistence from user-space, making

unnecessary to access persistent storage from the kernel. Second, they offer fine-grained,

byte-addressable access to persistent storage unlike traditional block storage. Third,

they offer the capability of tiered memory by using them along with traditional fast

DRAM. Fourth, they offer considerably increased bandwidth with higher parallelism

than traditional block devices. Despite these advantages, efficiently leveraging them

remains challenging in a variety of software stacks including file systems, databases,

graph processing systems, and serverless computing.

This dissertation focuses on providing software techniques that best leverage

emerging memory technologies in the aforementioned software stacks. These techniques

enable data-intensive applications and system software to fully utilize the performance,

1

capacity, direct-accessibility of emerging memories with minimized burden to program-

mers. The techniques it introduces include general solutions implemented in system

software layer such as file system as well as domain-specific solutions aimed for user

applications such as databases or graph processing systems. In addition, the disser-

tation describes how emerging memories can be used to lower the cost of datacenter

applications by supporting memory tiering in the serverless computing stack.

In Chapter 3, we introduce a comprehensive study that reveals the impact of

state-of-the-art persistent memory (PMem) storage systems on IO-intensive applications

and explores how those applications can best leverage the performance of PMem. It

shows that simple techniques that move file operations into user space dramatically

improve application performance. Also, it examines the scalability of PMem file systems

in light of the rising core counts and pronounced NUMA effects in modern systems.

In Chapter 4, we present SubZero, a novel file system API that allows fast and

easy access to PMem-resident files. Unlike traditional file-oriented IO such as read()

and write() that semantically require a copy of data as buffer, SubZero allows access

to PMem files without any copies. Unlike memory-oriented IO such as mmap() that

requires developers to implement custom isolation mechanisms, SubZero ensures that

any concurrent accesses to the same file do not leave the file contents in an inconsistent

state. In short, SubZero takes the best of both worlds from file-oriented and memory-

oriented IO to offer fast and easy access to the files residing in PMem file systems.

In Chapter 5, we present Blaze, a new out-of-core graph processing framework

optimized for ultra-low-latency SSDs. Current out-of-core systems cannot fully leverage

the high IOPs these devices can deliver as they often become CPU-bound. The core

problem is that traditional value propagation techniques used in current systems – either

shared-memory synchronization or message passing – incur high CPU overhead or load

imbalance. Blaze overcomes this problem with its novel value propagation technique

called Online Binning that leverages a concurrent bin data structure for fast and efficient

2

value propagation among graph vertices, achieving significant speedups over current

systems when running various graph workloads on ultra-low-latency SSDs.

In Chapter 6, we introduce TOSS, our ongoing effort to support a cost-efficient

serverless offering based on memory tiering. TOSS aims to maximize the use of slow

memory (e.g., PMem, CXL memory) for the execution of serverless functions while

achieving similar performance to the executions solely backed by fast memory (e.g.,

DRAM). Our evaluation shows that TOSS can offload a significant portion of guest VM

memory pages to slow memory while achieving minimal slowdown on a variety of

serverless workloads.

Finally, we conclude this dissertation in Chapter 7 by summarizing its contribu-

tions including a comprehensive study of performance problems and optimizations for

persistent memory software stacks, a new file system API for persistent memory file

systems, a novel graph processing framework optimized for ultra-low-latency SSDs,

and a new serverless offering backed by tiered memories for cost-efficient executions of

serverless functions.

Acknowledgements

This chapter contains material from “Finding and Fixing Performance Patholo-

gies in Persistent Memory Software Stacks”, by Jian Xu, Juno Kim, Amirsaman

Memaripour, and Steven Swanson, which appeared in the 24th ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS 2019). The dissertation author is the primary investigator and the co-first

author of this paper.

This chapter contains material from “SubZero: Zero-Copy IO for Persistent Main

Memory File Systems”, by Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen Zhao, and

Steven Swanson, which appeared in the 11th ACM SIGOPS Asia-Pacific Workshop on

3

Systems (APSys 2020). The dissertation author is the primary investigator and the first

author of this paper.

This chapter contains material from “Blaze: Fast Graph Processing on Fast SSDs”,

by Juno Kim and Steven Swanson, which appeared in the International Conference

for High Performance Computing, Networking, Storage, and Analysis (SC 2022). The

dissertation author is the primary investigator and the first author of this paper.

This chapter contains material from “TOSS: Tiering of Serverless Snapshots

for Low Cost Serverless Computing”, by Juno Kim, Theodoros Michailidis, Linsong

Guo, Jishen Zhao, and Steven Swanson, which is in preparation for submission to the

European Conference on Computer Systems (EuroSys 2024). The dissertation author is

the primary investigator and the co-first author of this paper.

4

Chapter 2

Background and Motivation

Emerging memory technologies, such as persistent memory and ultra-low-

latency SSDs, change the tradeoffs system designers must consider. As storage, they

offer considerably faster persistence than traditional SSDs and hard disks. As memory,

they expand the capacity of main memory in a single machine at a lower price than

conventional, expensive DRAM.

The rest of this chapter provides the background of this dissertation. Section 2.1

offers a brief summary of persistent memory technologies. Section 2.2 reviews the

evolution of SSDs with a brief performance comparison. Section 2.3 describes the

challenges in leveraging these memory technologies from both persistent storage and

volatile memory perspectives.

2.1 Persistent Memory

Persistent memory is a new class of memory attached to attached to the processor

memory bus that appear as a directly-addressable, persistent region in the processor’s

address space. Modern server platforms have supported persistent memory in the form

of battery-backed NVDIMMs [75, 47] for several years, and Linux and Windows include

facilities to access these memories and build file systems on top of them.

Denser persistent memories that do not need a battery have been announced

5

Table 2.1. The evolution of storage bandwidth.

SSD Model Seq.
4 kB read

Rand.
4 kB read

NAND Intel SSD DC S3520
(2016) 386 MB/s 132 MB/s

Optane Intel Optane SSD DC
P4800X (2017) 2550 MB/s 2360 MB/s

Z-NAND Samsung 983 ZET
(2018) 3400 MB/s 3072 MB/s

V-NAND Samsung 980 Pro
(2020) 3500 MB/s 2827 MB/s

by Intel and Micron and use a technology termed “3D XPoint” [74]. There are several

potential competitors to 3D XPoint, such as spin-torque transfer RAM (STT-RAM) [58,

79], phase change memory (PCM) [22, 28, 65, 86], and resistive RAM (ReRAM) [39, 100].

Each has different strengths and weaknesses: STT-RAM can meet or surpass DRAM’s

latency and it may eventually appear in on-chip, last-level caches [120], but its large cell

size limits capacity and its feasibility as a DRAM replacement. PCM, ReRAM, and 3D

XPoint are denser than DRAM, and may enable very large, non-volatile main memories.

Their latency will be worse than DRAM, however, especially for writes. All of these

memories suffer from potential wear-out after repeated writes.

2.2 Evolution of SSDs

Recent advances in storage technology present new challenges and opportunities

for the design of modern data processing systems. The most notable performance

trend in storage device is symmetric high bandwidth. For instance, Intel Optane SSD [3]

achieves about 2.5 GB/s of read bandwidth for both sequential and random 4 kB

access while Samsung’s Z-NAND [6] and V-NAND SSD [5] show similar performance

characteristics (Table 2.1). On conventional NAND SSD, however, random 4 kB read

6

performs only 34% of sequential read bandwidth, showing a large performance gap

between random and sequential access. In addition, the absolute bandwidth of modern

SSDs has undergone a significant improvement – Optane SSD shows 6.6× and 17.9×

higher bandwidth than NAND SSD in sequential and random read, respectively. In

summary, the huge improvement in storage performance opens new challenges and

opportunities in building performant data processing systems.

2.3 Challenges of Using Emerging Memories

The problem with these new memory/storage technologies is that it is challeng-

ing to best leverage them in modern data processing systems because they introduce

new assumptions, which potentially requires a complete redesign of existing software

stacks.

Then what are the new assumptions that emerging memories introduce? First,

storage is now byte-addressable thanks to the persistent memory technology. Before

persistent memory, storage has always been block-based. Second, storage can be

accessed directly from user-space without going through the kernel. Third, storage

performance is now quite close to memory. For instance, the performance gap between

DRAM and PMem, a commercially available persistent memory product from Intel,

is no longer orders of magnitude, and their performance numbers are in the same

order. Finally, different memory devices with different performance/price tradeoffs can

constitute a multi-tier memory hierarchy, opening new opportunities to lower the cost

of memory from a single tier, expensive DRAM.

2.3.1 As Persistent Storage

Based on the new assumtions, the most interesting and innovative challenge is to

use persistent memory as persistent storage. Along this path, the first question is how

system software such as file systems, or more broadly operating systems, must evolve to

7

accommodate the capabilities of persistent memory. There have been significant efforts

to build PMem-aware file systems, either by adapting conventional, disk-based file

systems such as Ext4 or XFS, or by designing new file systems tailored for PMem, but

the question remains as to which approach is a better solution in terms of performance,

reliability, and maintainability going forward.

Another question is how storage applications can be further optimized for persis-

tent memory to best serve their demands. This is a unique challenge in that persistent

memory allows applications to access it directly from user space using load/store in-

structions (so-called DAX capability) unlike conventional storage devices that always

require the intervention of file systems to access persistent data. With DAX, application

developers can design custom, crash-consistent PMem data structures that fit their

needs.

2.3.2 As Volatile Memory

Using emerging memories as volatile memory helps expand the capacity of

memory while lowering the cost of it. This dissertation explores the capacity expansion

aspect of emering memories in two directions. The first direction is to use fast SSDs to

expand the memory capacity. The key challenge in this direction is to optimize IO for

accessing data residing in SSDs. The second direction is to slow tier of memories (e.g.,

PMem, CXL memory) to expand the memory capacity. Unlike using SSD as memory,

using slow memories allows more seamless integration with fast memory as most

memory vendors provide a rich set of software ecosystems (e.g., OS drivers, userspace

libraries) to ease the use of slow memory in existing software stacks. Nevertheless, the

key challenge is to identify the memory access pattern of given workloads and optimize

the placement of pages in the right tier of memory.

8

Acknowledgements

This chapter contains material from “Finding and Fixing Performance Patholo-

gies in Persistent Memory Software Stacks”, by Jian Xu, Juno Kim, Amirsaman

Memaripour, and Steven Swanson, which appeared in the 24th ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS 2019). The dissertation author is the primary investigator and the co-first

author of this paper.

This chapter contains material from “SubZero: Zero-Copy IO for Persistent Main

Memory File Systems”, by Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen Zhao, and

Steven Swanson, which appeared in the 11th ACM SIGOPS Asia-Pacific Workshop on

Systems (APSys 2020). The dissertation author is the primary investigator and the first

author of this paper.

This chapter contains material from “Blaze: Fast Graph Processing on Fast SSDs”,

by Juno Kim and Steven Swanson, which appeared in the International Conference

for High Performance Computing, Networking, Storage, and Analysis (SC 2022). The

dissertation author is the primary investigator and the first author of this paper.

This chapter contains material from “TOSS: Tiering of Serverless Snapshots

for Low Cost Serverless Computing”, by Juno Kim, Theodoros Michailidis, Linsong

Guo, Jishen Zhao, and Steven Swanson, which is in preparation for submission to the

European Conference on Computer Systems (EuroSys 2024). The dissertation author is

the primary investigator and the co-first author of this paper.

9

Chapter 3

Finding and Fixing Performance
Pathologies in Persistent Memory Soft-
ware Stacks

Non-volatile main memory (NVMM) technologies like 3D XPoint [74] promise

vast improvements in storage performance, but they also upend conventional design

principles for the storage stack and the applications that use them. Software designed

with conventional design principles in mind is likely to be a poor fit for NVMM due

to its extremely low latency (compared to block devices) and its ability to support an

enormous number of fine-grained, parallel accesses.

The process of adapting existing storage systems to NVMMs is in its early days,

but important progress has been made: Researchers, companies, and open-source

communities have built native NVMM file systems specifically for NVMMs[31, 36, 106,

112, 113, 63], both Linux and Windows have created adapted NVMM file systems by

adding support for NVMM to existing file systems (e.g., ext4-DAX, xfs-DAX and

NTFS), and some commercial applications have begun to leverage NVMMs to improve

performance [10].

System support for NVMM brings a host of potential benefits. The most obvious

of these is faster file access via conventional file system interfaces (e.g., open, read,

write, and fsync). These interfaces should make leveraging NVMM performance

10

easy, and several papers [112, 113, 34, 63] have shown significant performance gains

without changing applications, demonstrating the benefits of specialized NVMM file

systems.

A second, oft-cited benefit of NVMM is direct access (DAX) mmap, which allows

an application to map the pages of an NVMM-backed file into its address space and

then access it via load and store instructions. DAX removes all of the system software

overhead for common-case accesses enabling the fastest-possible access to persistent

data. Using DAX requires applications to adopt an mmap-based interface to storage,

and recent research shows that performance gains can be significant [30, 107, 85, 73].

Despite this early progress, several important questions remain about how appli-

cations can best exploit NVMMs and how file systems can best support those applica-

tions. These questions include:

1. How much effort is required to adapt legacy applications to exploit NVMMs?

What best practices should developers follow?

2. Are sophisticated NVMM-based data structures necessary to exploit NVMM

performance?

3. How effectively can legacy files systems evolve to accommodate NVMMs? What

trade-offs are involved?

4. How effectively can current NVMM file systems scale to many-core, multi-socket

systems? How can we improve scalability?

This paper offers insight into all of these questions by analyzing the performance

and behavior of benchmark suites and full-scale applications on multiple NVMM-aware

file systems on a many-core machine. We identify bottlenecks caused by application

design, file system algorithms, generic kernel interfaces, and basic limitations of NVMM

11

performance. In each case, we either apply well-known techniques or propose solu-

tions that aim to boost performance while minimizing the burden on the application

programmer, thereby easing the transition to NVMM.

Our results offer a broad view of the current landscape of NVMM-optimized

system software. Our findings include the following:

• For the applications we examined, FiLe Emulation with DAX (FLEX) provides

almost as much benefit as building complex crash-consistent data structures in

NVMM.

• Block-based journaling mechanisms are a bottleneck for adapted NVMM file sys-

tems. Adding DAX-aware journaling improves performance on many operations.

• The block-based compatibility requirements of adapted NVMM file systems limit

their performance on NVMM in some cases, suggesting that native NVMM file

systems are likely to maintain a performance advantage.

• Poor performance in accessing non-local memory (NUMA effects) can significantly

impact NVMM file system performance. Adding NUMA-aware interfaces to

NVMM file systems can relieve these problems.

The remainder of the paper is organized as follows. Section 6.1 describes

NVMMs, NVMM file system design issues, and the challenges that NVMM storage

stacks face. Section 3.2 evaluates applications on NVMM and recounts the lessons we

learned in porting them to NVMMs. Section 3.3 describes the scalability bottlenecks of

NVMM file systems and how to fix them, and Section 6.4 concludes.

3.1 Background

This section provides a brief survey of the current state of NVMM-aware file

systems, and the challenges of accessing NVMM directly with DAX.

12

3.1.1 NVMM File Systems and DAX

NVMMs’ low latency makes software efficiency much more important than in

block-based storage systems [23, 17, 109, 116]. This difference has driven the develop-

ment of several NVMM-aware file systems [31, 36, 111, 106, 34, 112, 113, 63].

NVMM-aware file systems share two key characteristics: First, they implement

direct access (DAX) features. DAX lets the file system avoid using the operating system

buffer cache: There is no need to copy data from “disk” into memory since file data

is always in memory (i.e., in NVMM). As a side effect, the mmap() system call maps

the pages that make up a file directly into the application’s address space, allowing

direct access via loads and stores. We refer to this capability as DAX-mmap. One crucial

advantage of DAX-mmap is that it allows msync() to be implemented in user space

by flushing the affected cachelines and issuing a memory barrier. In addition, the

fdatasync() system call becomes a noop.

One small caveat is that the call to mmap must include the recently-added

MAP SYNC flag that ensures that the file is fully allocated and its metadata has been

flushed to media. This is necessary because, without MAP SYNC, in the disk-optimized

implementations of msync and mmap that ext4 and xfs provide, msync can sometimes

require metadata updates (e.g., to lazily allocate a page).

The second characteristic is that they make different assumptions about the

atomicity of updates to storage. Current processors provide 8-byte atomicity for stores

to NVMM instead of the sector atomicity that block devices provide.

We divide NVMM file systems into two groups. Native NVMM filesystems (or

just “native file system”) are designed especially for NVMMs. They exploit the byte-

addressability of NVMM storage and can dispense with many of the optimizations

(and associated complexity) that block-based file systems implement to hide the poor

performance of disks.

13

The first native file system we are aware of is BPFS [31], a copy-on-write file sys-

tem that introduced short-circuit shadow paging and proposed processor architecture

extensions to make NVMM programming more efficient. Intel’s PMFS [36], the first

NVMM file system released publicly, has scalability issues with large directories and

metadata operations.

NOVA [112, 113] is a log-structured file system designed for NVMM. It gives

each inode a separate log to ensure scalability, and combines logging, light-weight

journaling and copy-on-write to provide strong atomicity guarantees to both metadata

and data. NOVA also includes snapshot and fault-tolerance features. NOVA is the only

native DAX file system that is publicly available and supported by recent kernels (Intel

has deprecated PMFS). It outperforms PMFS on all the workloads for which we have

compared them.

Strata [63] is a “cross media” file system that runs partly in userspace. It provides

strong atomicity and high performance, but does not support DAX1.

Adapted NVMM file systems (or just “adapted file systems”) are block-based

file systems extended to implement NVMM features, like DAX and DAX-mmap. Xfs-

DAX [27], ext4-DAX [111] and NTFS [45] all have modes in which they become adapted

file systems. Xfs-DAX and ext4-DAX are the state-of-the-art adapted NVMM file systems

in the Linux kernel. They add DAX support to the original file systems so that data

page accesses bypass the page cache, but metadata updates still go through the old

block-based journaling mechanism [25, 26].

So far, adapted file systems have been built subject to constraints that limit how

much they can change to support NVMM. For instance, they use the same on-“disk”

format in both block-based and DAX modes, and they must continue to implement (or

1We have been working to include a quantitative comparison to Strata in this study, but we have
run into several bugs and limitations. For example, it has trouble with multi-threaded workloads [62]
and many of the workloads we use do not run successfully. Until we can resolve these issues, we have
included qualitative discussion of Strata where appropriate.

14

at least remain compatible with) disk-centric optimizations.

Adapted file systems also often give up some features in DAX mode. For instance,

ext4 does not support data journaling in DAX mode, so it cannot provide strong

consistency guarantees on file data. Xfs disables many of its data integrity features in

DAX mode.

3.1.2 NVMM programming

DAX-mmap gives applications the fastest possible access to stored data and

allows them to build complex, persistent, pointer-based data structures. This usage

model has the application create a large file in a NVMM file system, use mmap() to map

it into its address space, and then rely on a userspace persistent object library [30, 107, 85]

to manage it.

These libraries generally provide persistent memory allocators, an object model,

and support for transactions on persistent objects. To ensure persistence and consis-

tency, these libraries use instructions such as clflushopt and clwb to flush the dirty

cachelines [48, 124] to NVMM, and non-temporal store instructions like movntq to

bypass the CPU caches and write directly to NVMM. Enforcing ordering between stores

requires memory barriers such as mfence.

Using mapped NVMM to build complex data structures is a daunting challenge.

Programmers must manage concurrency, consistency, and memory allocation all while

ensuring that the program can recover from an ill-timed system crash. Even worse, data

structure corruption and memory leaks are persistent, so rebooting, the always-reliable

solution to volatile data structure corruption and DRAM leaks, will not help. Addressing

these challenges is the subject of a growing body of research [30, 107, 85, 105, 117, 73, 12].

15

3.2 Adapting applications to NVMM

The first applications to use NVMM in production are likely to be legacy appli-

cations originally built for block-based storage. Blithely running that code on a new,

faster storage system will yield some gains, but fully exploiting NVMM’s potential will

require some tuning and modification. The amount, kind, and complexity of tuning

required will help determine how quickly and how effectively applications can adapt.

We gathered the first-hand experience with porting legacy applications to

NVMM-based storage systems by modifying five lightweight databases and key-value

stores to better utilize NVMMs. The techniques we applied for each application depend

on how it accesses the underlying storage. Below, we detail our experience and iden-

tify some best practices for NVMM programmers. Then, based on these findings, we

propose a DAX-aware journaling scheme for ext4 that eliminates block IO overheads.

We use a quad-socket prototype HPE Scalable Persistent Memory server [46]

to evaluate these applications. The server combines DRAM with NVMe SSDs and an

integrated battery backup unit to create NVMM. The server hosts four Xeon Gold 6148

processors (a total of 80 cores), 300 GB of DRAM, and 300 GB of NVMM. We evaluate

all the applications on Linux kernel 4.13.

3.2.1 SQLite

SQLite [98] is a lightweight embedded relational database that is popular in

mobile systems. SQLite stores data in a B+tree contained in a single file.

To ensure consistency, SQLite uses one of four different techniques to log opera-

tions to a separate log file. Three of the techniques, DELETE, TRUNCATE and PERSIST,

store undo logs while the last, WAL stores redo logs.

The undo logging modes invalidate the log after every operation. DELETE and

TRUNCATE, respectively, delete the log file or truncate it. PERSISTS issues a write to

16

DELETE TRUNCATE PERSIST WAL WAL
falloc

WAL
FLEX

0
20
40
60
80

100
120
140

Th
ro

ug
hp

ut
(k

op
s/

s) xfs-DAX
ext4-DAX
NOVA

Figure 3.1. SQLite SET throughput with different journaling modes. Preallocating
space for the log file using falloc avoids allocation overheads and makes write ahead
logging (WAL) the clearly superior logging mode for SQLite running on NVMM file
systems.

set an “invalid” flag in log file header.

WAL appends redo log entries to a log file and takes periodic checkpoints after

which it deletes the log and starts again.

We use Mobibench [50] to test the SET performance of SQLite in each journaling

mode. The workload inserts 100 byte long values into a table. Figure 3.1 shows the

result. DELETE and TRUNCATE incur significant file system journaling overhead with

ext4-DAX and xfs-DAX. NOVA performs better because it does not need to journal

operations that affect a single file. PERSIST mode performs equally on all three file

systems.

WAL avoids file creation and deletion, but it does require allocating new space

for each log entry. Ext4-DAX and xfs-DAX keep their allocator state in NVMM and

keep it consistent at all times, so the allocation is expensive. Persistent allocator state is

necessary in block-based file systems to avoid a time-consuming (on disk) media scan

after a crash.

Scanning NVMM after crash is much less costly, so NOVA keeps allocator state

17

in DRAM and only writes it to NVMM on a clean unmount. As a result, the allocation

is much faster.

This difference in allocation overhead limits WAL’s performance advantage

compared to PERSIST to 9% for ext4-DAX, reduces performance by 53% for xfs-DAX,

but improves NOVA’s performance by 107%.

We modified SQLite to avoid allocation overhead by using fallocate to pre-

allocate the WAL file. This is a common optimization for disk-based file systems, and it

works here as well: The change closes the gap between the three file systems.

To improve performance further, we use a technique we call FiLe Emulation with

DAX (FLEX) to avoid the kernel completely for writes to the WAL file. To implement

FLEX, SQLite DAX-mmaps the WAL file into its address space and uses non-temporal

stores and clwb to ensure the log entries are reliably stored in NVMM. We study FLEX

in detail in Section 3.2.4. Implementing these changes required changing just 266 lines

of code but improved performance by between 15% and 38%, and further narrows the

performance gap between the three file systems.

This final DAX-aware version of SQLite outperforms the PERSIST version by

between 2.5× and 2.8×.

Other groups have adapted SQLite to solid-states storage as well. Jeong et al. [51]

and WALDIO [66] investigate SQLite I/O access patterns and implement optimizations

in ext4’s journaling system or SQLite itself to reduce the cost of write-ahead logging. Our

approach is similar, but it leverages DAX to avoid the file system and leverage NVMM.

SQLite/PPL [80], NVWAL [60] use slotted paging [92] to make SQLite run efficiently on

NVMM. A comparison to these systems would be interesting, but unfortunately, none

of them is publicly available.

18

WAL
msync

WAL-FLEX
msync

WAL-FLEX
clwb

WAL-FLEX
clwb +
falloc +
mremap

0

50

100

150

200

250
Th

ro
ug

hp
ut

(k
op

s/
s)

(a) Kyoto Cabinet

xfs-DAX
ext4-DAX
NOVA

msync clwb
0

100

200

300

400

500

600

700
(b) LMDB

Figure 3.2. Kyoto Cabinet (KC) and LMDB SET throughput. Applications that use
mmap can improve performance by performing msync in userspace.

3.2.2 Kyoto Cabinet and LMDB

Even without DAX, some applications access files via mmap, and this makes them

a natural match for DAX file systems. However, maximizing the benefits of DAX still

requires some changes. We select two applications to explore what is required: Kyoto

Cabinet and LMDB.

Kyoto Cabinet Kyoto Cabinet [40] (KC) is a high performance database library. It

stores the database in a single file with database metadata at the head. Kyoto Cabinet

memory maps the metadata region, uses load/store instructions to access and update

it, and calls msync to persist the changes. Kyoto Cabinet uses write-ahead logging to

provide failure atomicity for SET operations.

Figure 3.2 shows the impact of applying optimizations to KC’s database file

and its write-ahead log. First, we change KC to use FLEX writes to update the log

(“WAL-FLEX msync” in the figure). The left two sets of bars in Figure 3.2 (a) show

the impact of these changes. The graph plots throughput for SET operation on Kyoto

19

Cabinet HashDB. The key size is 8 bytes and value size is 1024 bytes. FLEX write

improves performance by 40% for NOVA, 20% for ext4-DAX, and 84% for xfs-DAX.

Kyoto Cabinet calls msync frequently on its data file to ensure that updates to

memory-mapped data are persistent. DAX-mmap allows userspace to provide these

guarantees using a series of clwb instructions followed by a memory fence. Flushing in

userspace is also more precise since msync operates on pages rather than cache lines.

Avoiding msync improves performance further by 3.4× for NOVA, 7.2× for ext4-DAX,

and 7.7× for xfs-DAX (“WAL-FLEX clwb”).

By default, Kyoto Cabinet only mmaps the first 64 MB of the file, which includes

the header and ∼63 MB of data. It uses write to append new records to the file. Our

final optimization uses fallocate and mremap to resize the file (“WAL-FLEX clwb +

falloc + mremap”). It boosts the throughput for all the file systems by between 7× to

25×, compared to the baseline implementation that issued msync system calls without

WAL optimization.

Implementing all of these optimizations for both files required changing just 181

lines of code.

LMDB Lightning Memory-Mapped Database Manager (LMDB) [101] is a Btree-based

lightweight database management library. LMDB memory-maps the entire database,

so that all data accesses directly load and store the mapped memory region. LMDB

performs copy-on-write on data pages to provide atomicity, a technique that requires

frequent msync calls.

For LMDB, using clwb instead of msync improves the throughput by between

11× to 14× (Figure 3.2 (b)). Ext4-DAX out-performs xfs-DAX and NOVA by about 11%

because ext4-DAX supports super-page (2 MB) mmap which reduces the number of page

faults. These changes entailed changes to 101 lines of code.

20

AOF
sync

No AOF P-Redis
0

20
40
60
80

100
120
140

Th
ro

ug
hp

ut
(k

op
s/

s)
xfs-DAX ext4-DAX NOVA

Figure 3.3. Redis MSET throughput. Making Redis’ core data structure persistent in
NVMM (P-Redis) improves performance by 27% to 2.6×.

3.2.3 RocksDB and Redis

Since disk is slow, many disk-based applications keep data structures in DRAM

and flush them to disk only when necessary. To provide persistence, they also record

updates in a persistent log, since sequential access is most efficient for disks. We consider

two such applications, Redis and RocksDB, to understand how this technique can be

adapted to NVMM.

Redis Redis [87] is an in-memory key-value store widely used in web site develop-

ment as a caching layer and for message queue applications. Redis uses an “append

only file” (AOF) to log all the write operations to the storage device. At recovery, it

replays the log. The frequency at which Redis flushes the AOF to persistent storage

allows the administrator to trade-off between performance and consistency.

Figure 3.3 measures Redis MSET (multiple set) performance. As we have seen

with other applications, xfs-DAX’s journaling overheads hurt append performance. The

graph also shows the potential benefit of eliminating AOF (and giving up persistence):

It improves throughput by 2.8×, 59%, and 38% for xfs-DAX, ext4-DAX, and NOVA,

21

respectively.

The hash table Redis uses internally is an attractive target for NVMM conversion,

since making it persistent would eliminate the need for the AOF. We created a fully-

functional persistent version of the hash table in NVMM using PMDK [85] by adopting

a copy-on-write mechanism for atomic updates: To insert/update a key-value pair, we

allocate a new pair to store the data, and replace the old data by atomically updating the

pointer in the hashtable. We refer to the resulting system as Persistent Redis (P-Redis).

The throughput with our persistent hash table is 27% to 2.6× better than using

synchronous writes to the AOF, and ∼9% worse than skipping persistence altogether.

Implementing the persistent version of the hash table took 1529 lines of code.

Although Redis is highly-optimized for DRAM, porting it to NVMM is not

straightforward and requires large engineering effort. First, Redis represents and stores

different objects with different encodings and formats, and P-Redis has to be able to

interpret and handle the various types of objects properly. Second, Redis stores virtual

addresses in the hashtable, and P-Redis needs to either adjust the addresses upon restart

if the virtual address of the mmap’d hashtable file has changed, or change the internal

hashtable implementation to use offset instead of absolute addresses [?]. Neither option

is satisfying, and we choose the former solution for simplicity. Third, whenever Redis

starts, it uses a random seed for its hashing functions, and P-Redis must make the

seeds constant. Fourth, Redis updates the hashtable entry before updating the value,

and P-Redis must persist the key-value pair before updating the hashtable entry for

consistency. Finally, P-Redis hashtable does not support resizing as it requires journaling

mechanism to guarantee consistency.

RocksDB RocksDB [38] is a high-performance embedded key-value store based on

log-structured merge trees (LSM-trees). When applications write data to a LSM-tree,

RocksDB inserts the data to a skip-list in DRAM, and appends the data to a write-ahead

22

WAL WAL-FLEX Persistent
memtable

0

100

200

300

400

500

600
Th

ro
ug

hp
ut

(k
op

s/
s) xfs-DAX

ext4-DAX
NOVA

Figure 3.4. RocksDB SET throughput. Appends to the write-ahead log (WAL) file limit
RocksDB throughput on NVMM file systems. Using FLEX writes improves performance
by 2.2× to 18.7×. Replacing the skip-list and the log with a crash-consistent, persistent
skip-list improves throughput by another 19% on average.

log (WAL) file. When the skip-list is full, RocksDB writes it to disk and discards the log

file.

Figure 3.4 measures RocksDB SET throughput with 20-byte keys and 100-byte

values. RocksDB’s default settings perform poorly on xfs-DAX and ext4-DAX, because

each append requires journaling for those file systems. NOVA performs better because

it avoids this cost.

RocksDB benefits from FLEX as well. It improves throughput by 2.2× - 18.7×

and eliminates the performance gap between file systems.

Since the skip-list contains the same information as the WAL file, we eliminate

the WAL file by making the skip-list a persistent data structure, similar to NoveLSM [?]

based on LevelDB. The final bars in Figure 3.4 measure the performance of RocksDB

with a crash-consistent skip-list in NVMM. Performance improves by 11× compared to

the RocksDB baseline but just 19% compared to optimizing WAL with FLEX.

23

3.2.4 Evaluating FLEX

In general, FLEX involves replacing conventional file operations with similar

DAX-based operations to avoid entering the kernel. We have applied FLEX techniques

by hand to the SQLite, RocksDB, and Kyoto Cabinet, but they could easily be encapsu-

lated in a simple library.

FLEX replaces open() with open() followed by DAX-mmap() to map the file

into the application’s address space. Then, the application can replace read() and

write() system calls with userspace operations.

A FLEX write first checks if the file will grow as a result of the write. If so,

the application can expand the file using fallocate() and mmap() or mremap() to

expand the mapping. To amortize the cost of fallocate(), the application can extend

the file by more than the write requires.

Once space is available, a FLEX write uses non-temporal stores to copy data

into the file. If the write needs to be synchronous the application issues an sfence

instruction to ensure the stores have completed. FLEX also uses an sfence instruction

to replace fsync().

FLEX reads are simpler: They simply translate to memcpy().

FLEX requires the application to track a small amount of extra state about the

file, including its location in memory, its current write point, and its current allocated

size.

FLEX operations provide semantics that are similar to POSIX, but there are

important and potentially subtle differences. First, operations are not atomic. Second,

POSIX semantics for shared file descriptors are lost. We have not found these differences

to be relevant for the performance-critical file operations in the workloads we have

studied. We elaborate this point in Section 3.2.4.

To understand when FLEX improves performance, we constructed a simple

24

64 256 1024 4096
Append size (bytes)

0

5

10

15

20

A
ve

ra
ge

la
te

nc
y

(m
ic

ro
se

co
nd

) (a) Append and extend

64 256 1024 4096
Write size (bytes)

0.5

1.0

1.5

2.0

2.5

3.0

(b) Circular append

FLEX - 2MB
FLEX - 4MB
POSIX

Figure 3.5. The Impact of FLEX File Operations. Emulating file accesses in user space
can improve performance for a wide range of access patterns. Note that the Y axes have
different scales. “-2 MB” and “-4 MB” denote different fallocate() sizes.

microbenchmark that opens a file, and performs a series of reads or writes each followed

by fsync(). We vary the size and number of operations and the amount of file space

we pre-allocate with fallocate(). Figure 3.5 shows results for two different cases:

“Append and extend” uses FLEX to emulate append operations that always cause

the file to grow. “Circular append” reuses the same file area and avoids the need to

allocate more space. The applications we studied use both models to implement logging:

RocksDB uses “append and extend” whereas SQLite and Kyoto Cabinet use “circular

append.”

The data show that FLEX outperforms normal write operations by up to 61× for

append and extend and up to 11× for circular append. The larger speedup for append

and extend is due to the NVMM allocation overhead. Performance gains are especially

large for small writes, a common case in the applications we studied.

For use cases that must extend the file, minimizing the cost of space allocation is

critical. The results in the figure use 2 MB pages to minimize paging overheads. With

4 KB pages, FLEX only provides speedups for transfers under 4 KB.

25

Our experience with applying FLEX to RocksDB, SQLite, and Kyoto Cabinet

shows that it can provide substantial performance benefits for very little effort. In

contrast to re-implementing data structures to be crash-consistent, FLEX requires little to

no changes to application logic and requires no additional logging or locking protocols.

The only subtleties lie in determining that strict POSIX semantics are not necessary.

These results show that FLEX can provide an easy, incremental, and high-value

path for developers creating new applications for NVMM or migrating existing code.

It also reduces the importance of using a native NVMM file system, further easing

migration, since FLEX performance depends little on the underlying file system.

The Strata file system [63] provides some of the same advantages as FLEX

through userspace logging through a library that communicates with the in-kernel

file system. Their results show that coupling the user space interface to the under-

lying file system leads to good performance. Their interface makes strong atomicity

guarantees while FLEX lets the application enforce the semantics it requires.

Correctness

Since FLEX is not atomic, applying it to applications that assume atomic writes is

likely to cause a correctness problem. To our knowledge, SQLite, RocksDB, and Kyoto

Cabinet do not assume the atomicity of write system calls [84], thereby applying FLEX

does not break their application logic. Only LMDB assumes that 512 bytes sector writes

are atomic [?]. Therefore, running it on NVMM file systems introduces the correctness

problem since only 8 bytes are atomic on NVMM. To solve this problem, we added a

checksum for the LMDB metadata: When a checksum error is detected, LMDB falls

back to the previous header.

26

Table 3.1. Application Optimization Summary The applications we studied used a
variety of techniques to reliably store persistent state. All the optimizations we applied
improved performance, but the amount of programmer effort varied widely. The
data Figures 3.1, 3.2, 3.3, and 3.4 show that programmer effort does not correlate with
performance gains.

Native techniques Optimizations (Lines changed)
WAL mmap+msync FLEX CLWB+fence Persistent Objects

SQLite × - 266 - -
Kyoto Cabinet × × 133 48 -
LMDB - × - 101 -
Redis × - - - 1326
RocksDB × - 56 - 380

3.2.5 Best Practices

Based on our experiences with these five applications, we can draw some useful

conclusions about how applications can profitably exploit NVMMs.

Use FLEX Emulating file operations in user space provides large performance gains

for very little programmer effort.

Use fine-grained cache flushing instead of msync Applications that already use

mmap and msync to access data and ensure consistency, can improve performance

significantly by flushing cache lines rather than msync’ing pages. However, ensuring

that all updated cache lines are flushed correctly can be a challenge.

Use complex persistent data structure judiciously For both of the DRAM data

structures we made persistent, the programming effort required was significant and

likely performance gains were relatively small relative to FLEX. This finding leads us to

two conclusions: First, it is critical to make building persistent data structures in NVMM

as easy as possible. Second, it is wise to estimate the potential performance impact the

persistent data structure will have before investing a large amount of programmer effort

27

Append
4KB

Varmail SQLite
WAL

Redis RocksDB
0

1

2

3

4

5

6
N

or
m

al
iz

ed
th

ro
ug

hp
ut ext4-DAX

JDD
NOVA

Figure 3.6. JDD performance. Fine-grained, DAX-optimized journaling on NVMM
improves performance for metadata-intensive applications.

in developing it [70].

Preallocate files on adapted NVMM file systems Several of the performance prob-

lems we found with adapted NVMM file systems stemmed from storage allocation

overheads. Using fallocate to pre-allocate file space eliminated them.

Avoid meta-data operations Directory operations (e.g., deleting files) and storage

allocation incurred journaling overheads in both xfs and ext4. Avoiding them improves

performance, but this is not always possible.

3.2.6 Reducing journaling overhead

Several of the best practices we identify above focus on avoiding metadata oper-

ations since they are often slow. This can be awkward and some metadata operations

are unavoidable, so improving their performance would make adapting to NVMMs

easier and improve performance.

NOVA’s mechanism for performing consistent metadata updates is tailored

specifically for NVMMs, but ext4 and xfs’ journaling mechanisms were built for disk,

and this legacy is evident in their poorer metadata performance.

28

0 5 10 15 20
Latency (microsecond)

NOVA RocksDB

ext4-DAX-JDD RocksDB

ext4-DAX-jbd2 RocksDB

NOVA append

ext4-DAX-JDD append

ext4-DAX-jbd2 append

jbd2 commit
fsync

memcpy
ext4 map blocks

ext4 zeroout
nova append entry

nova update tree
MemTable insert

JDD log cleaner

Figure 3.7. Latency break for 4KB append and RocksDB SET. JDD significantly reduces
journaling overhead by eliminating JBD2 transaction commit, but still has higher latency
than NOVA’s metadata update mechanism.

Ext4 uses the journaling block device (JBD2) to perform consistent metadata

updates. To ensure atomicity, it always writes entire 4 KB pages, even if the metadata

change affects a single byte. Transactions often involve multiple metadata pages. For

instance, appending 4 KB data to a file and then calling fsync writes one data page

and eight journal pages: a header, a commit block, and up to six pages for inode, inode

bitmap, and allocator.

JDB2 also allows no concurrency between journaled operations, so concurrent

threads must synchronize to join the same running transaction, making the journaling

a scalability bottleneck [97]. Son et al. [97] and iJournaling [83] have tried to fix ext4’s

scalability issues by reducing lock contention and adding per-core journal areas to JBD2.

Previous works [25, 26] has identified the inefficiencies of coarse-grain logging

and proposed solutions in the context of block-based file systems. FSMAC [26] maintains

data in disk/SSD and metadata in NVMM, and uses undo log journaling for metadata

consistency. The work in [25] journals redo log records of individual metadata fields to

NVMM during transaction commit, and applies them to storage during checkpointing.

To understand how much of ext4’s poor metadata performance is due to coarse-

29

grain logging, we apply these fine-grain logging techniques to develop a journaling DAX

device (JDD) for ext4 which performs DAX-style journaling on NVMM and provides

improved scalability.

JDD makes three key improvements to JBD2. First, it journals individual meta-

data fields rather than entire pages. Second, it provides pre-allocated, per-CPU jour-

naling areas so CPUs can perform journaled operations in parallel. Third, it uses undo

logging in the journals: It copies the old values into the journal and performs updates

directly to the metadata structures in NVMM. To commit an update it marks the journal

as invalid. During recovery from a crash, the file system rolls back partial updates using

the journaled data. These changes provide for very lightweight transaction commit and

make checkpointing unnecessary.

JDD differs from the previous works by focusing on NVMM file systems. FS-

MAC aims to accelerate metadata updates for disk-based file systems by putting the

metadata separately in NVMM. To handle the performance gap between NVMM and

disk, FSMAC maintains multiple versions of metadata. The work in [25] optimizes

ext4 using fine-grained redo logging on NVMM journal. We built JDD to improve the

performance of adapted NVMM file systems using fine-grained undo logging, avoid-

ing the complexity of previous works – managing versions in FSMAC or transaction

committing and checkpointing in [25].

Strata [63] and Aerie [106] take a more aggressive approach and log updates in

userspace under the control of file system-specific libraries. Metadata updates occur

later and off the critical path. This approach should offer better performance than the

techniques described above since it avoids entering the kernel for metadata updates.

However, it also involves more extensive changes to the application.

Figure 3.6 shows JDD’s impact on a microbenchmark that performs random 4 KB

writes followed by fsync, Filebench [102] Varmail (which is metadata-intensive), and

the three databases and key value stores we evaluated earlier that perform frequent

30

metadata operations as part of WAL. The JDD improves the microbenchmark perfor-

mance by 3.7× and varmail by 40%. For applications that use write-ahead logging, the

benefits range from 11% to 2.6×.

We further analyze the latency of JDD for 4 KB appends and RocksDB SET

operation and show the latency breakdown in Figure 3.7. In ext4-DAX, JBD2 transaction

commit (jbd2 commit) occupies 50% of the total latency. JDD eliminates this overhead

by performing undo logging. JDD also reduces ext4 overheads such as block allocation

(ext4 map blocks). The remaining performance gap between ext4 and NOVA (46%) is

due to ext4’s more complex design and its need to keep more persistent states in storage

media. In particular (as discussed in Section 3.2.1) ext4 keeps its data block and inode

allocator state continually up-to-date on disk.

The performance improvement on Redis and SQLite are smaller, because they

have higher internal overheads. Redis spends most of its time on TCP transfers be-

tween the Redis server and the benchmark application, and SQLite spends over 40% of

execution time parsing SQL and performing B-tree operations.

3.3 File System Scalability

We expect NVMM file systems to be subject to more onerous scalability demands

than block-based filesystems due to the higher performance of the underlying media

and the large amount of parallelism that modern memory hierarchies can support [18].

Further, since NVMMs attach to the CPU memory bus, the capacity of NVMM file

systems will tend to scale with the number sockets (and cores) in the systems.

Many-core scalability is also a concern for conventional block-based file systems,

and researchers have proposed potential solutions. SpanFS [55] shards file and directo-

ries across cores at a coarse granularity, requiring developers to distribute the files and

directories carefully. ScaleFS [18] decouples the in-memory file system from the on-disk

31

file system, and uses per-core operation logs to achieve high concurrency. ScaleFS

was built on xv6, a research prototype kernel, which makes impossible to perform a

good head-to-head comparison with our changes. However, we expect that applying

its techniques and the Scalable Commutativity Rule [29] systematically to NVMM file

systems (and the VFS layer) might yield further scaling improvements.

This section first describes the FxMark [76] benchmark suite. Then, we identify

several operations that have scalability limitations and propose solutions.

3.3.1 FxMark scalability test suite

Min et al. [76] built a file system scalability test suite called FxMark and used

it to identify many scalability problems in both file systems and Linux’s VFS layer. It

includes nineteen tests of performance for data and metadata operations under varying

levels of contention.

Min et al. use FxMark to identify scalability bottlenecks across many file systems.

Interestingly, it is their analysis of tmpfs, a DRAM-based pseudo-file system that reveals

the bottlenecks that are most critical for ext4-DAX, xfs-DAX, and/or NOVA.

We repeat their experiments and then develop solutions to improve scalability.

The solutions we identify are sufficient to give good scalability with NVMM, but would

probably also help disk-based file systems too.

FxMark includes nineteen workloads. Below, we only discuss those that show

poor scalability for at least one the NVMM file systems we consider.

3.3.2 Concurrent file read/write

Concurrent read and write operations to a shared file are a well-known sore

spot in file system performance. Figure 3.8 shows scalability problems for both reads and

writes across ext4-DAX, xfs-DAX, and NOVA. The root cause of this poor performance is

Linux’s read/write semaphore implementation [19, 20, 57, 68]: It is not scalable because

32

1 10 20 30 40 50 60 70 80
Threads

0
25
50
75

100
125
150
175
200

Th
ro

ug
hp

ut
(M

op
/s

)
(a) Read

1 10 20 30 40 50 60 70 80
Threads

0

1

2

3

4

5

(b) Write

xfs-DAX
ext4-DAX
ext4-CSTlock
NOVA
NOVA-lockfree

Figure 3.8. Concurrent 4KB read and write throughput. By default, Linux uses a
non-scalable reader/writer lock to coordinate access to files. Using finer-grain, more
scalable locks improves read and write scalability.

of the atomic update required to acquire and release it.

The semaphore protects two things: The file data and the metadata that describes

the file layout. To remove this bottleneck in NOVA, we use separate mechanisms to

protect the data and metadata.

To protect file data, we leverage NOVA’s logs. NOVA maintains one log per

inode. Many of the log entries correspond to write operations and hold pointers to

the file pages that contain the data for the write. Rather than locking the whole inode,

we use reader/writer locks on each log entry to protect the pages to which it links.

Although this lock resides in NVMM, its state is not necessary for recovery and is

cleared before use after a restart, so hot locks will reside in processor caches and not

usually be subject to NVMM access latency.

NOVA’s approach to tracking file layout makes protecting it simple. NOVA uses

an in-DRAM radix tree to map file offsets to write entries in the log. Write operations

update the tree and both reads and writes query it. Instead of using a lock we leverage

the Linux radix tree implementation that uses read-copy update [71] to provide more

33

scalable, concurrent access to a file.

Figure 3.8 shows the results (labeled “NOVA-lockfree”) on our 80-core machine.

4 KB read performance scales from 2.9 Mops/s for one thread to 183 Mops/s with 80

threads (63×). The changes improve write performance as well, but write bandwidth

saturates at twenty threads because our NVMM is attached to one of four NUMA nodes

and each node has twenty threads.

Adding fine-grain locking for ranges of a file is possible for ext4-DAX and xfs-

DAX, and it would improve performance when running on any storage device.

Using the radix tree to store file layout information would be more challenging

since ext4 and xfs make updates to file layout information immediately persistent in the

file’s inode and indirect blocks. This is necessary to avoid reading the data from disk

when the file is opened, which would be slow on block device. Since NVMM is much

faster, NOVA can afford to scan the inode’s log on open to construct the radix tree in

DRAM.

An alternative solution for ext4 and xfs would be to replace VFS’s per-inode

reader/write semaphore with a CST semaphore [57] (or some other more scalable

semaphore). The ext4-CSTlock line in the figure shows the impact on ext4-DAX: Perfor-

mance scales from 2.1 Mops/s for one thread to 45 Mops/s for eighty threads (21×).

The gains are not as large as the approach we implemented in NOVA, and they only

apply to reads. Both of these approaches could coexist.

3.3.3 Directory Accesses

Scalable directory operations are critical in multi-program, data intensive work-

loads. Figure 3.9 shows that creating files in private directories only scales to twenty

cores. Min et al. identify the root cause, but do not offer a solution: VFS takes a spinlock

to add the new inode to the superblock’s inode list and a global inode cache. The inode

list includes all live inodes, and the inode cache provides a mapping from inode number

34

1 10 20 30 40 50 60 70 80
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
(M

op
/s

)
(a) create

1 10 20 30 40 50 60 70 80
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
(b) unlink

xfs-DAX ext4-DAX NOVA NOVA + scalable inode

Figure 3.9. Concurrent create and unlink throughput. The create and unlink
operations are not scalable even if performed in isolated directories, because Linux
protects the global inode lists and inode cache with a single spinlock. Moving to per-cpu
structures and fine-grain locks improves scalability above 20 cores.

to inode addresses.

We solve this problem and improve scalability for the inode list by breaking it

into per-CPU lists and protecting each with a private lock. The global inode cache is

an open-chaining hash table with 1,048,576 slots. We modify NOVA to use a per-core

inode cache table. The table is distributed across the cores, each core maintains a radix

tree that provides lock-free lookups, and threads on different cores can perform inserts

concurrently. In Figure 3.9, the “NOVA + scalable inode” line shows the resulting

improvements in scaling.

Updates to shared directories also scale poorly due to VFS locking. For every

directory operation, VFS takes the inode mutexes of all the affected inodes, so operations

in the shared directories are serialized. The rename operation is globally serialized at

a system level in the Linux kernel for consistent updates of the dentry cache. Fixing

these problems is beyond the scope of this paper, but recent work has addressed

35

File-
Server

Var-
Mail

Web-
Server

Web-
Proxy

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Th
ro

ug
hp

ut
(M

op
s/

s)
Filebench

NOVA NOVA NUMA-aware

RocksDB
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

MongoDB
0

25
50
75

100
125
150
175

Th
ro

ug
hp

ut
(K

op
s/

s)

Figure 3.10. NUMA-awareness in the file system. Since NVMM is memory, NUMA
effects impact performance. Providing simple controls over where the file system
allocates NVMM for a file lets application run threads near the data they operate on,
leading to higher performance.

them [103, 18].

3.3.4 NUMA Scalability

Intelligently allocating memory in NUMA systems is critical to maximizing

performance. Since a key task of NVMM file systems is allocating memory, these file

systems should be NUMA-aware. Otherwise, poor data placement decisions will lead

to poor performance [35].

We have added NUMA-aware features to NOVA to understand the impact they

can have. We created a new ioctl that can set and query the preferred NUMA node

for the file. A NUMA node represents a set of processors and memory regions that are

close to one another in terms of memory access latency. The file system will try to use

that node to allocate all the metadata and data pages for that file. A thread can use this

ioctl along with Linux’s CPU affinity mechanism to bind itself to the NUMA node

where the file’s data and metadata reside.

36

Figure 3.10(left) shows the result of Filebench workloads running with fifty

threads. The NVMM is attached to NUMA node 0. Without the new mechanism,

threads are spread across all the NUMA nodes, and some of them are accessing NVMM

remotely. Binding threads to the NUMA node that holds the file they are accessing

improves performance by 2.6× on average.

The other two graphs in Figure 3.10 measure the impact on RocksDB and Mon-

goDB [77]. We modified RocksDB to schedule threads on the same NUMA node as

the SSTable files using our ioctl, and ran db bench readrandom benchmark with

twenty threads. Similarly, we modified MongoDB to enable NUMA-aware thread

scheduling, and ran read-intensive (95% read, 5% update) YCSB benchmark [32] with

twenty threads. For both workloads, the data set size is 30 GB. The graphs show the

result: NUMA-aware scheduling improves RocksDB and MongoDB performance by

68% and 21%, respectively.

3.4 Summary

We have examined the performance of NVMM storage software stacks to identify

the bottlenecks and understand how both applications and the operating system should

adapt to exploit NVMM performance.

We examined several applications and identified several simple techniques that

provide significant gains. The most widely applicable of these use FLEX to move

writes to user space, but implementing msync in userspace and assiduously avoiding

metadata operations also help, especially on adapted NVMM file systems. Notably, our

results show that FLEX can deliver nearly the same level of performance as building

crash-consistent data structures in NVMM but with much less effort.

On the file system side, we evaluated solutions to the problems of inefficient

logging in adapted NVMM file systems, multicore scaling limitations in file systems

37

and the Linux’s VFS layer, and the novel challenge of dealing with NUMA effects in the

context of NVMM storage.

Overall, we find that although there are many opportunities for further improve-

ment, the efforts of systems designers over the last several years to prepare systems for

NVMM have been largely successful. As a result, there are a range of attractive paths

for legacy applications to follow as they migrate to NVMM.

Acknowledgements

This chapter contains material from “Finding and Fixing Performance Patholo-

gies in Persistent Memory Software Stacks”, by Jian Xu, Juno Kim, Amirsaman

Memaripour, and Steven Swanson, which appeared in the 24th ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS 2019). The dissertation author is the primary investigator and the co-first

author of this paper.

38

Chapter 4

SubZero: Zero-Copy IO for Persistent
Main Memory File Systems

POSIX read() and write() have been the most common interface for accessing

file contents for many years and across many generations of storage hardware. The

semantics of these system calls rely crucially on copying data between (volatile) memory

and a storage medium (e.g., a disk).

Copy-based semantics are a natural fit for both the performance characteristics

and hardware interface of conventional storage technologies. Disks are slow enough

that the overhead of the copy is not significant. And even if disks were fast, processors

cannot operate directly on the data they hold, because they are not memory.

The copy-based, atomic semantics that read() and write() provide are also

convenient for the programmer. The copy that read() creates will not change if the

file it reads is overwritten, and write() atomically transfers a fully-prepared buffer of

data into the file.

The appearance of fast, persistent memory (PMEM) that resides on the proces-

sor’s memory bus, however, upends both of these long-standing assumptions: PMEM

is fast enough that the overhead of a copy is detrimental to performance and the copy is

not necessary since the data is already directly-accessible to the processor.

Despite the costs of copy-based operations and because of their convenience and

39

ubiquity, even file systems specifically designed for PMEM [31, 36, 106, 112, 113, 63, 114]

implement POSIX-compliant read() and write(). That said, PMEM file systems

generally also provide direct-access (DAX) mmap() as an alternative that dispenses

with the copy overhead. However, DAX-mmap() forces the programmer to implement

atomicity and concurrency control manually, complicating the programming model.

Moreover, its unclear interaction with read() and write() has discouraged them

from taking the potentially interesting path that leverages both interfaces in a single

program.

To bridge the gap between POSIX read() and write() and DAX mmap(), we

propose a new IO interface called SUBZERO that does not rely on copy-based semantics

for data access but still preserves the ease of use that read() and write() provide.

SUBZERO offers DAX-like speed with a simple, POSIX-like interface that interacts

cleanly with the legacy POSIX interface.

Concretely, SUBZERO provides two new system calls – peek() and patch()

– that give programs access to file data and interoperate cleanly with read() and

write() system calls. The peek() system call returns the virtual address of a memory

region holding a snapshot of requested file contents. The snapshot is atomic with respect

to other file operations and its contents do not change if the underlying file changes.

The patch() system call takes a pointer to a memory region containing new data and

atomically incorporates that region into the target file. patch() causes the memory

region to become read-only.

A PMEM file system can implement peek() by simply manipulating the pro-

gram’s page table. It can implement patch() by adjusting the file’s layout to incorpo-

rate the patched pages, as long as the pages are in persistent memory. Benefiting from

peek() and patch() requires changes to how the application accesses file data and

how it allocates and disposes of IO buffers.

We implemented SUBZERO in two of the state-of-the-art PMEM file systems,

40

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M
25

6M

Value size

0
20
40
60
80

100
R

a
ti

o
 (

%
) memcpy others

Figure 4.1. Memory copy overhead in Kyoto Cabinet. Memory copy overheads are
significant when updating large key-value pairs in Kyoto Cabinet. “others” means
application and file system level overheads except for the memory copy.

XFS-DAX and NOVA. Our measurements show that SUBZERO outperforms copy-based

read() and write() by up to 2× and 6×, respectively. At the application level,

peek() improves GET performance of the Apache Web Server by 3.6×, and patch()

boosts the SET performance of Kyoto Cabinet up to 1.3×with non-invasive changes.

The remainder of the paper is organized as follows. Section 4.1 describes the

motivation of our work. Section 4.2 describes the details of SUBZERO IO interface and

semantics. Section 4.3 discusses the key implementation details and Section 6.3 evaluates

these techniques with micro-benchmarks and applications. Section 5.5 discusses related

works and Section 6.4 concludes.

4.1 Motivation

Although conventional POSIX read() and write() interfaces have proven

easy-to-use, they become a major source of inefficiency in PMEM file systems since the

media latency of PMEM is low relative to the software overheads on top of PMEM. In

the PMEM file system software stack, the copies inherent in the semantics of read()

and write() system calls are a major source of inefficiency.

For example, a simple data copying step between the user buffer and PMEM

41

pages during write() system call takes 20 – 45% of the total execution time when

updating large key-value pairs in Kyoto Cabinet database [40] backed by the NOVA

file system (Figure 4.1). Critically, this copying overhead is a property of the interface,

not the file system — all PMEM file systems that implement POSIX IO incur this

performance penalty.

PMEM file systems provide DAX-mmap() as an alternative to avoid this over-

head. However, this interface jettisons the good with the bad. Although it eliminates

all common-case file system overheads for data access, it also forces the application

to manage crash consistency and concurrency control on its own, complicating the

programming model and inviting bugs.

As a solution, SUBZERO bridges the gap between POSIX IO and DAX IO by

combining the advantages of both, offering DAX-like speed with a simple, POSIX-like

interface that interacts cleanly with itself and the legacy POSIX interface.

4.2 SUBZERO IO

SUBZERO IO (or just SUBZERO) is a suite of new system calls that avoids copy-

based semantics and allows for more efficient data access and modification in PMEM-

based file systems. SUBZERO strives to provide simple semantics that are easy for

programmers to reason about when building sophisticated applications. To these ends,

SUBZERO has the following design goals:

• Zero data movement SUBZERO should not require costly data movements to im-

plement read and write operations. In particular, SUBZERO performs no data move-

ment while the conventional “zero-copy” IO (i.e., conducting IO with O DIRECT)

in disk-based file systems still requires one data movement between the storage

media and memory.

• Atomicity SUBZERO should provide atomicity guarantees similar to those for

42

Table 4.1. SUBZERO IO functions. The API includes replacements for conventional
read() and write(), in addition to ancillary functions for allocating PMEM buffers
for IO. Only peek(), unpeek(), and patch() need to be system calls.

Fu
nc

ti
on

Se
m

an
ti

cs

Read

v
o
i
d
∗
p
e
e
k
(
i
n
t
f
d
,
o
f
f
t
p
o
s
,
s
i
z
e
t
l
e
n
)

O
pe

n
a

re
ad

-o
nl

y
m

ap
pi

ng
to

th
e

ta
rg

et
ra

ng
e

of
a

PM
EM

fil
e.

i
n
t
u
n
p
e
e
k
(
v
o
i
d
∗ a
d
d
r
)

C
lo

se
a

m
ap

pi
ng

op
en

ed
by

p
e
e
k(
)

.

Write

i
n
t
p
a
t
c
h
(
i
n
t
f
d
,
v
o
i
d
*
b
u
f
,
s
i
z
e
t
l
e
n
,
o
f
f
t
p
o
s
)

U
pd

at
e

a
ta

rg
et

fil
e

w
it

h
a

PM
EM

bu
ff

er
.

p
a
t
c
h(
)

re
tu

rn
s

an
er

ro
r

w
he

n
b
u
f

is
m

is
al

ig
ne

d
w

it
h
p
o
s

or
th

e
bu

ff
er

an
d

th
e

ta
rg

et
fil

e
do

no
tb

el
on

g
to

th
e

sa
m

e
fil

e
sy

st
em

.
i
n
t
c
r
e
a
t
e
p
m
e
m
p
o
o
l
(
c
h
a
r
*
p
a
t
h
,
s
i
z
e
t
s
i
z
e
)

C
re

at
e

a
PM

EM
po

ol
fr

om
w

hi
ch

PM
EM

pa
ge

s
ar

e
al

lo
ca

te
d

an
d

re
tu

rn
a

un
iq

ue
po

ol
id

.
v
o
i
d
d
e
l
e
t
e
p
m
e
m
p
o
o
l
(
i
n
t
p
o
o
l
i
d
)

D
el

et
e

a
PM

EM
po

ol
.

v
o
i
d
*
a
l
l
o
c
p
m
e
m
(
i
n
t
p
o
o
l
i
d
,
o
f
f
t
p
o
s
,
s
i
z
e
t
l
e
n
)

A
llo

ca
te

a
PM

EM
bu

ff
er

.p
o
s

is
th

e
ta

rg
et

lo
ca

ti
on

w
he

re
th

e
bu

ff
er

w
ill

be
pa

tc
he

d.
v
o
i
d
f
r
e
e
p
m
e
m
(
v
o
i
d
*

b
u
f
)

R
ec

la
im

an
d

un
m

ap
a

PM
EM

bu
ff

er
.

PM
EM

pa
ge

s
ar

e
re

cl
ai

m
ed

to
th

e
al

lo
ca

to
r

on
ly

w
he

n
th

ey
do

no
tb

el
on

g
to

fil
es

.

43

POSIX read() and write(), since those guarantees have proven useful in build-

ing IO-intensive applications.

• Clean integration with POSIX Combined with their atomicity, SUBZERO should

integrate cleanly with POSIX read() and write() operations. This allows pro-

grammers to freely intermingle those conventional IO operations with SUBZERO

operations.

Below, we describe the SUBZERO IO interface at a high level and discuss its

semantics in more detail. Then we present an example of its use and discuss the changes

it requires to existing programs.

4.2.1 The SUBZERO Interface

SUBZERO introduces two new IO operations: peek() and patch(). Table 4.1

summarizes the SUBZERO interface, which includes these two and several ancillary

functions. Below we describe the interface in detail.

peek() The peek() system call returns a pointer to a memory region that contains

the contents of a file at a particular file offset. The region reflects a snapshot of the file

contents at the time peek() is executed. The snapshot is atomic with respect to file

modifications (e.g., write() or patch()). The snapshot is immutable, so attempts to

alter its contents result in a segmentation fault. There are no alignment restrictions (or

guarantees) on the file offset or the returned pointer.

Since peek() allocates the memory region containing the snapshot, the applica-

tion must eventually release the memory by passing the snapshot address to unpeek().

Lines 1–3 in Figure 4.2 illustrate how to peek() an entire file. Line 9 deallocates

the resulting buffer with unpeek().

The peek() system call resembles DAX-mmap(), since both map file contents

into the user address space. However, there are two key differences. First, peek()

44

does not impose any alignment restrictions on the file offset of the region to be peeked,

while mmap() requires the offset to a multiple of the file system page size. Similarly,

unpeek() relaxes munmap()’s alignment restriction. Second, peek() is easier to use

than mmap(), since the snapshot is explicitly atomic relative to other file modifications

and immutable.

patch() The patch() system call modifies a file by merging the contents of a buffer

into a file at the given offset. In essence, the buffer becomes part of the file rather than

being copied into it. After the patch(), the buffer becomes immutable. The state of

the patch()’d buffer is identical to the state of a peek()’d buffer: both are immutable

mappings of a file’s contents. The patch()’d buffer is closed by calling free pmem().

The change that patch() makes to the file is atomic with respect to other

patch() and write() operations. Like write(), its effects are not guaranteed to

be permanent until the program calls fsync() or fdatasync().

The benefit of patch() is realized when two conditions are satisfied. First, the

buffer should comprise PMEM that is managed by the same file system instance as

the file being written to. A program can acquire such PMEM by creating a temporary

file in the same file system and mmap()ing it. Second, the buffer should be access-

aligned. Intuitively, this means the page boundaries of the buffer must align with

the page boundaries in the file. That is, for a patch() operation using a buffer B

and a file offset off on a file system with page size S, the patch() is access-aligned

if B % S == off % S. The requirement is similar to the alignment requirement

imposed by opening a file with O DIRECT.

To make it easy for a program to satisfy these criteria, we have implemented a

simple allocator to allocate and deallocate access-aligned buffers. Program can create a

pool in a file system and use it to allocate buffers for patch() operations.

Lines 4-8 of Figure 4.2 demonstrate how patch() can work with peek() to

45

1 int in_fd = open("/mnt/in.uu", O_RDONLY); // Open the
input file

2 int input_length = lseek(in_fd, 0L, SEEK_END); // Find its
length

3 char *in_buf = peek(in_fd, 0, input_length); // Peek its
contents

4 int pool_id = create_pmem_pool("/mnt", 1073741824); // Create a
pool

5 void *out_buf = alloc_pmem(pool_id, 0, input_length); // Allocate an
access-aligned buffer

6 int output_length = uudecode(in_buf, out_buf, input_length); // Construct
uudecoded output in the buffer

7 int out_fd = open("/mnt/out.dat", O_WRONLY); // Open the
output file

8 patch(out_fd, out_buf, output_length, 0); // Patch the
uudecoded output into the file

9 unpeek(in_buf); // Unpeek the
input

10 free_pmem(out_buf); // Unmap the
output buffer

11 delete_pmem_pool(pool_id); // Delete the
pool

Figure 4.2. Computation between two PMEM files without any copies using
SUBZERO. An application can use peek() and patch() to access and update files
without any copies. Here, uudecode() reads directly from the input file’s pages and
writes its result directly to the physical pages that will become the output file.

avoid any unnecessary copies. The code allocates a PMEM buffer and calls uudecode()

to populate it by processing the peek()’d contents of the input. The patch() on line 8

causes the output buffer to become the contents of the file, and therefore no copies are

necessary.

4.2.2 Using SUBZERO

SUBZERO removes the implicit copy from the semantics of accessing and modi-

fying a file’s contents. Realizing its benefits will require changes to how applications

perform IO.

The most significant changes affect how the program allocates and manages

IO buffers. First, the program can no longer pre-allocate read buffers, since peek()

46

allocates and returns a populated buffer. The program will also need to call unpeek()

when it is finished with the buffer. Second, the application needs to allocate write

buffers from PMEM.

How invasive this change is will depend on how the application performs writes.

High-performance applications that maintain their own page-aligned buffer pools and

leverage O DIRECT will have less trouble since page-aligned buffers are automatically

access-aligned. Applications that perform more ad-hoc writes will need to allocate an

access-aligned buffer for each write.

4.3 Implementing SUBZERO

To illustrate its potential, we implemented SUBZERO in two state-of-the-art, in-

kernel PMEM file systems: NOVA [112], a file system built from scratch for PMEM, and

XFS-DAX, a linux file system adapted to accomodate direct access to PMEM. SUBZERO

can be implemented without invasive changes if the file system has the ability to 1)

allow multiple files to share data pages and 2) support copy-on-write updates when a

write modifies shared pages.

4.3.1 NOVA file system

NOVA [112] is a log-structured file system for persistent memory. It manages a

contiguous region of PMEM and presents a POSIX-compatible file system interface. It

supports DAX-style mmap(), and all file and directory operations are atomic.

NOVA stores per-inode log that contains write entries pointing to data pages and

describing the file’s layout. To perform a write, NOVA allocates new pages, populates

them, and then appends a write entry to the log incorporating the pages into the file.

Some old pages may become obsolete as a result — NOVA reclaims these during

garbage collection. Log append is atomic, so writes are atomic as well. On file open,

NOVA scans the log and builds an in-DRAM index that maps file offsets to physical

47

pages.

peek() in NOVA The implementation of peek() in NOVA mirrors its implemen-

tation of mmap() with a few additions. Since peek() maps the target pages of the

file into the application’s address space, the implementation must protect against two

types of unexpected changes to the peek()’d data. First, it must prevent stores by the

application from altering the underlying file. Second, it must prevent changes to the file

from altering the data visible to the program.

To address the first, NOVA maps the pages as read-only so that attempts to alter

the contents from the peek()’d address will see the segmentation fault.

To address the second, NOVA does not modify data in place, so the PMEM pages

that peek() mapped remain unchanged even if the file’s contents change. NOVA must

take care, however, to prevent the mapped pages from being reclaimed by garbage

collection until they are unpeek()’d.

patch() in NOVA Patch allows programs to insert populated buffers of data directly

into a file. This requires solving two problems.

The first is implementing alloc pmem() to allocate buffers in PMEM that are

suitable for being patch()’d into the file. We solve this by building a userspace library

that creates temporary files in PMEM and maps them with DAX-mmap() to return

pointers to programs that call alloc pmem().

The second is performing the patch() itself. In NOVA, patch() is a special

case of a normal write(): write() allocates PMEM pages, initializes them, and

appends a write log entry to add the new pages to the file. A patch() uses the pages

provided by the application, skips the allocation and initialization, and appends the

write entry.

Implementing alloc pmem() and patch() this way means the pages used

by patch() belong to two files – the temporary file used to allocate the buffer and

48

the target file. Similar to peek(), the shared pages should be protected from updates

occurring either by modifying the buffer with stores or by modifying the target file

with write(). To support this, NOVA sets the pages as read-only after they are used

by patch(), and always performs copy-on-write on modification by write(). For

non-page aligned accesses and patch sizes, it may be required to overwrite an additional

page before and/or after the patched pages. This is easily done by appending additional

log entries describing these overwrites.

4.3.2 XFS-DAX file system

XFS is a widely-deployed, high-performance journaling file system. It organizes

files with variable-sized extents and maintains a B+tree for each inode to map file offsets

to those extents. As an additional mode, XFS-DAX allows direct access to the extents in

PMEM, bypassing the page cache layer.

Although XFS-DAX, by default, updates data in-place, it also has facilities to

support out-of-place data updates as part of its implementation of “reflink”, a feature

that allows multiple files to share data pages [49, 88, 11]. Reflink allows sharing pages

between files and supports copy-on-write updates when the shared pages are modified,

the same mechanisms required by SUBZERO. Therefore, implementing SUBZERO in

XFS-DAX mainly involved enabling the reflink to work with DAX mode in addition to

the page table manipulations to mark PMEM pages as read-only.

4.4 Evaluation

We evaluate the performance of SUBZERO against copy-based read() and

write(), as well as DAX-mmap(), on two PMEM file systems, NOVA [112] and XFS-

DAX [49] under Linux kernel 4.19. We answer the following questions:

• How much speedup do peek() and patch() achieve?

49

• How much effort is required to modify applications to use SUBZERO?

• How much does SUBZERO improve performance on real applications?

We performed experiments on a dual-socket machine provided by Intel Corpora-

tion. The CPUs are 24-core Cascade Lake engineering samples with a similar spec as the

previous-generation Xeon Platform 8160. Each core has exclusive 32 kB L1 instruction

and data caches, and 1 MB L2 caches. All cores share a 33 MB L3 cache. Each CPU has

two iMCs and six memory channels (three channels per each iMC), and each memory

channel is attached with a 32 GB Micron DDR4 DIMM and a 256 GB Intel Optane

DC Persistent Memory Module (Optane DCPMM). Overall, the system has 384 GB of

DRAM and 3 TB of PMEM. Every experiment is configured to access the DRAM and

PMEM in the same socket.

4.4.1 Micro-benchmarks

To understand how SUBZERO performs compared to other legacy IO operations,

we compare the performance of SUBZERO operations against that of read(), write(),

and DAX-mmap()-based IO methods. To calculate the latency, we read or write a large

number of files with each IO method while varying the IO size from 4 kB to 4 MB. We

repeated this single-thread benchmark 100 times and report the average latency.

Most importantly, understanding the performance benefit of SUBZERO requires

investigating not only the cost of IO system calls themselves, but also that of their

related operations – memory allocation, population, consumption, etc. For this, the

latency in all IO methods in our experiments includes the time to allocate/free the

buffer (if applicable). In case of read, the latency also includes the time to load all bytes

from the target file after each IO method. In case of write, the latency also includes the

time to persist all bytes to the target file.

Read Latency Figure 4.3 compares the latency of peek() against read() and DAX-

50

mmap()-based load. Here, we differentiate two different read() cases: read denotes

cases where the DRAM buffer is not reused for subsequent read() operations whereas

read-opt represents cases where the buffer is reused either by the application or the

glibc malloc().

As a result, the relative speedup of peek() largely depends on whether the

buffer is reused in using read(): peek() outperforms read by 1.6–2× and 1.6–1.7×

in NOVA and XFS-DAX, respectively while the speedup of peek() over read-opt

reduces to 6–17% in both file systems. The reduction in speedup mainly comes from

the operating system overheads avoided by the buffer reuse in read(). Otherwise, any

new buffer allocation normally requires a system call (i.e., mmap() or sbrk()) and page

fault overheads. Overall, the result indicates that replacing read() with peek() is

mostly beneficial when the target program does not reuse the DRAM buffer frequently

or it is hard to do so due to the memory allocation pattern in the program.

Compared to mmap(), peek() shows comparable performance (-5–10%) since

the underlying page table mapping mechanism is fundamentally identical.

Write Latency Figure 4.4 compares the latency of patch() against write() and

DAX-mmap()-based store. As with read, write-opt denotes the buffer reuse case.

For patch(), -a and -ua indicate page-aligned and unaligned access, respectively.

After write() and patch(), we call fdatasync() to ensure the written data is made

durable.

Of note, aligned patch() (patch-a) outperforms write() up to 2.8× and

2.2× in NOVA and XFS-DAX, respectively. The speedup is small when the access

size is small, but it starts increasing as the access size increases. When the buffer is

reused during write(), aligned patch() performs 10–30% slower for 4 kB, but starts

outperforming from 16 kB, and achieves up to 1.7× in both file systems. Unaligned

patch() (patch-ua) performs slower than aligned patch() due to the additional

51

4KB 16KB 64KB 1MB
Access size

0.0

0.5

1.0

No
rm

al
ize

d
la

te
nc

y NOVA

4KB 16KB 64KB 1MB
Access size

0.0

0.5

1.0

XFS-DAX

read read-opt mmap peek

Figure 4.3. Read operation latency. All latencies are normalized to read latency. Lower
is better.

4KB 16KB 64KB 1MB
Access size

0
0.5

1
1.5

No
rm

al
ize

d
la

te
nc

y NOVA

4KB 16KB 64KB 1MB
Access size

0
0.5

1
1.5

XFS-DAX

write
write-opt

mmap
patch-a

patch-ua

Figure 4.4. Write operation latency. All latencies are normalized to write latency.
Lower is better.

52

4KB 64KB 1MB 16MB256MB
Input file size

0

1

2

Sp
ee

du
p

NOVA

read + write
peek + patch

4KB 64KB 1MB 16MB256MB
Input file size

0

1

2

XFS-DAX

Figure 4.5. Boosted computation between PMEM files. Combining peek() and
patch() allows computation between PMEM files without any copies, therefore boosts
the performance.

overheads from copying head and tail pages. The gap reduces to close to zero as the

access size grows. 4 kB unaligned patch() falls back to the copy-based write()

operation since there is no page to share.

Compared to mmap(), aligned patch() underperforms 1.8× and 4.3× for 4 kB

in NOVA and XFS-DAX, respectively, but the gap reduces as the access size grows.

Beyond 64 kB, aligned patch() outperforms mmap(). The main reason is that patch()

saves the page fault cost by using pre-faulted buffer pages whereas mmap() includes the

cost in the critical path. Also, despite its higher speed on the smaller accesses, mmap()

only provides the atomicity for 8 bytes while patch() provides the crash-consistency

of each IO operation.

Uudecoding files We evaluate the example code seen in Figure 4.2 where a combined

use of peek() and patch() can boost the performance of computation between differ-

ent PMEM files. We used the same code in Figure 4.2 with base64 encoding schemes

with results in Figure 4.5. As a result, using peek() and patch() over read() and

write() achieved up to 1.6× and 2× speedups on NOVA and XFS-DAX, respectively.

53

4K 64
K 1M 4M 64

M

File size

0
1
2
3
4
5
6

Sp
ee

du
p

(a) Apache Web Server GET

read
read-full

peek

32
KB

64
KB

12
8K

B
51

2K
B

4M
B

Value size

0

1

2
(b) KyotoCabinet SET

write patch

Figure 4.6. Application performance. SUBZERO boosts application performance by a
wide margin with small code changes.

4.4.2 Applications

We explored the impact of SUBZERO on real applications with two examples,

Apache Web Server and Kyoto Cabinet.

Apache Web Server To apply SUBZERO to Apache Web Server, we modified the

Apache Portable Runtime library, a supporting library for the web server, to use peek().

We measured the performance of HTTP GET request serving static files using a built-in

web performance benchmark, ApacheBench [1], on our modified NOVA. When reading

file contents with read(), Apache Web Server uses an 8 kB buffer by default. For

peek(), we set the access size to be the same as the file size since it performs the best.

Figure 4.6 (a) plots the throughput of GET requests normalized to the read()-based

method. As a result, peek() outperforms read() from 1 MB (1.7×) and achieves up

to 3.6× better throughput. Since the default read() suffers the overhead of frequent

system calls, we increased the read()’s buffer size to be the same as the file size

(read-full). On this setting, peek() still offers up to 1.9× speedup.

54

To benefit from these speedups, peek() required 48 LOC changes.

Kyoto Cabinet Kyoto Cabinet [40] (KC) is a high performance database library that

stores variable-sized key-value records in a single file. KC supports fast access to the

records via hash table or B+tree, and makes every operation transactional using write-

ahead logging (WAL) to a separate log file. By default, KC updates the database and

the WAL file using the write() operation. To demonstrate the benefit of SUBZERO,

we applied patch() to the hash table-based HashDB database to speed up updating

key-value records in the underlying database file and measured the throughput of

transactional SET operations. Note that our modified KC performs unaligned patches

to the database file as each record is padded with preceding metadata fields. In Fig-

ure 4.6 (b), patch() performs similar to the write()-based operation for value sizes

32, 64 kB, but after the 128 kB value, it begins to outperform write() and the speedup

monotonically increases up to 1.3×.

To experience these speedups with SUBZERO, we required 57 LOC changes.

4.5 Related Work

Avoiding data movement in storage systems The techniques to avoid data movement

have been explored in a variety of systems, ranging from persistent storage to DRAM.

For file systems, Ext4 supports an ioctl operation, EXT4 IOC MOVE EXT, to allow

swapping extents between files by modifying inodes [7, 2]. A recent system SplitFS [53]

extended this feature in Ext4-DAX but still requires the data movement that SUBZERO

avoids since it supports copy-based read(), write() semantics. Other file systems [49,

88, 11] have similar functionality called “reflink” that could be a useful facility to

implement SUBZERO. The technique to remap pages to avoid data movements has also

been explored for flash drives [110, 81, 54]. For DRAM, operating systems, such as OSX,

that inherit the Mach [8] support memory copy via vm copy that remaps the regions as

55

copy-on-write pages [4].

PMEM allocator For fast and efficient PMEM allocation, several schemes have been

proposed from both industry and academia. PMDK [85] is an open-source, PMEM

library bundle from Intel. It offers large virtual address pools by memory-mapping

to PMEM files. Schewalb et al. [91] proposed a general-purpose memory allocator

for PMEM that combines both DRAM and PMEM for fast allocation and recovery.

Makalu [16] offers an integrated allocator and garbage collector that avoids memory

leaks on failures while offering better integration with existing PMEM libraries [24].

Pallocator [82] improves defragmentation by maintaining multiple PMEM regions

instead of having a single large pool. Compared to these allocators, our allocator

focuses on highly fast allocations (by pre-faulting pages and partitioning) and the

correct recovery of both buffer and regular files. The SUBZERO allocator is currently

very simple; it could be improved by incorporating techniques from these projects.

4.6 Summary

We have described and implemented SUBZERO, a new IO mechanism that avoids

most or all data movement for reads and writes to PMEM-backed files. In addition to

minimizing movement, our implementation of SUBZERO provides both fast read access

and strongly consistent updates. Our evaluation shows that SUBZERO outperforms

copy-based read() and write() by a wide margin. In summary, SUBZERO IO is a

straight-forward way for programmers to improve their applications’ performance on

PMEM file systems.

Acknowledgements

This chapter contains material from “SubZero: Zero-Copy IO for Persistent Main

Memory File Systems”, by Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen Zhao, and

56

Steven Swanson, which appeared in the 11th ACM SIGOPS Asia-Pacific Workshop on

Systems (APSys 2020). The dissertation author is the primary investigator and the first

author of this paper.

57

Chapter 5

Blaze: Fast Graph Processing on Fast
SSDs

Out-of-core graph processing enables the processing of large graphs that do

not fit in the available main memory of a single machine by judiciously moving data

between memory and storage. The design of out-of-core graph processing systems

has evolved for nearly a decade [64, 89, 44, 123, 121, 67, 52] with a strong focus on

optimizing IO performance to minimize the overhead of slow storage access. With

significant improvements in storage technology, the design of these systems has also

been tailored to benefit from the improved performance of more advanced devices.

Well-optimized, out-of-core graph processing systems have shown that they provide

attractive performance with lower cost and complexity compared to the complex dis-

tributed graph processing solutions that spread the graph in the memories of multiple

machines [43, 56, 69, 118].

The design of out-of-core graph processing systems now faces new challenges

and opportunities as more performant storage technologies emerge. For example,

modern SSDs like Intel Optane SSD or Samsung’s Z-NAND offer an order-of-magnitude

higher bandwidth compared to conventional SSDs. The most critical aspect of these

new devices is their improved bandwidth and their symmetric performance between

sequential and random IO. We refer to these modern SSDs as Fast NVMe Drives (FNDs),

58

the same terminology used by previous literature [61].

In this work, we present Blaze, an open-source, out-of-core graph processing

system optimized for FNDs.1 Specifically, Blaze aims to keep the FNDs constantly

saturated to achieve high performance. For this, Blaze introduces a novel scatter-gather

scheme called online binning that propagates values among graph vertices without the

synchronization overhead while achieving good load balance, the goal previous tech-

niques like synchronization and message passing cannot achieve simultaneously. For

balanced IO, Blaze uses page-interleaved Compressed-Sparse Row (CSR) format which

helps increase IO utilization from multiple SSDs while minimizing IO amplification.

Finally, Blaze allows the programming of efficient out-of-core graph algorithms under

the well-known API, EDGEMAP and VERTEXMAP, first introduced in Ligra [96]. We

extend them to be efficiently used in out-of-core graph processing.

We evaluate Blaze against two state-of-the-art, open-sourced, out-of-core graph

processing systems, FlashGraph [121] and Graphene [67]. These systems are also

designed for random IO unlike early-generation out-of-core graph processing sys-

tems [64, 89, 123]. Compared to FlashGraph and Graphene, Blaze offers substantial

speedups (up to 13.6×) in a wide variety of workloads as we describe in Section 5.4.

Overall, we make the following contributions in this paper.

• An analysis of two recent out-of-core systems, FlashGraph [121] and

Graphene [67], revealing their performance problems on FNDs

• A novel atomic-free, scatter-gather scheme called online binning that applies graph

algorithms on disk-resident graphs with low CPU overhead and high load balance

• An extension of EDGEMAP API to the out-of-core graph processing stack

• An open-sourced implementation of Blaze

1The code is available at https://github.com/NVSL/blaze.

59

https://github.com/NVSL/blaze

This paper is organized as follows. Section 6.1 describes the background and

motivation of this work. Section 5.2 discusses the root cause of the low performance

of existing systems on FNDs. Section 5.3 describes the design and implementation of

Blaze. Section 5.4 describes the experimental setup and results. Section 5.5 discusses

related works and Section 6.4 concludes.

5.1 Background and Motivation

In this section, we describe the background on out-of-core graph processing

and the performance characteristics of modern FNDs. Then we further discuss the

performance problems of current out-of-core graph processing systems when they run

on FNDs, motivating our work.

5.1.1 Out-of-core Graph Processing

Out-of-core graph processing enables the processing of very large graphs that

do not fit in the main memory of a single machine – by placing the graph on the

secondary storage and conducting frequent IO to process graph algorithms on storage-

resident graphs. Compared to the distributed graph processing that places graphs

on an aggregated memory of multiple machines, out-of-core processing offers similar

or better performance without the need to deal with the complexity of distributed

computing [64, 89, 123, 121, 67, 72].

Current systems The design of out-of-core graph processing systems have evolved in

step with advances in storage performance. For instance, out-of-core systems designed

around the early 2010s were optimized for sequential disks [64, 89]. To maximize

the IO performance, these systems access disk-resident graphs sequentially at the cost

of accessing more data than necessary. Even with this potential access amplification,

they benefit from sequential access due to the significant performance gap between

sequential and random access on early-generation disks.

60

Table 5.1. Target graphs. The number of vertices (|V|) and edges (|E|) is in millions.
“Short” denotes short names for datasets.

Dataset Short |V| |E| Distribution Diameter Type
rmat27 r2 134 2147 power 10 synthetic
rmat30 r3 1074 17180 power 11 synthetic
uran27 ur 134 2147 uniform 10 synthetic
twitter tw 61 1468 power 75 real
sk2005 sk 51 1949 power 205 real
friendster fr 124 1806 power 56 real
hyperlink14 hy 1727 64422 power 790 real

However, more recent systems [121, 67] make a different tradeoff since storage

devices started offering fast random access with little performance gap with sequential

access. These systems do not place a high priority on issuing large sequential IO,

achieving lower IO amplification than prior systems. Blaze follows the same principle

but further optimizes for FNDs to maximize the benefit of fast random IO that existing

systems fail to leverage.

Processing models Out-of-core graph processing systems are classified into two

models based on where they keep the vertex data. The first model is the fully-external

model where the vertex data is kept on storage along with the edges. The second model

is the semi-external model where the vertex data is kept fully in DRAM.

The choice between two models is determined by the available memory budget

for a machine and the size of target graphs. Performance-wise, the systems with the

semi-external model often outperform the ones with fully-external model as less IO is

required for the former.

Blaze adopts the semi-external model for better performance while minimizing

the use of DRAM.

61

5.1.2 Target Datasets

Table 5.1 shows our target datasets throughout this paper. We chose these input

graphs as they are topologically diverse and different in size. The rmat27, rmat30, and

uran27 graphs are synthetic while twitter, sk2005, friendster, hyperlink2014 are from real-

world. Six graphs except uran27 follow a power-law degree distribution while uran27

follows a normal degree distribution. The uran27 is the most adversarial graph [14] as

it has no locality – there are no popular vertices (no temporal locality) and neighbors are

not close to each other (no spatial locality), so it well represents the other extreme in our

choice of input graphs.

5.1.3 Issues with Current Out-of-core Systems

Current out-of-core graph systems cannot efficiently utilize the FND’s bandwidth.

FlashGraph [121] and Graphene [67], two recent out-of-core graph processing systems

optimized for random IO, illustrate this problem – they fail to utilize the high throughput

of FNDs, leading to a suboptimal performance on representative workloads.

We confirm this by measuring the average IO bandwidth utilization of both

systems on an Intel Optane SSD with various graph workloads (Figure 5.1). We used

six graph inputs (r2, r3, ur, tw, sk, fr) from Table 5.1 and ran five queries – Breadth-First

Search (BFS), PageRank (PR), Weakly-Connected Components (WCC), Sparse Matrix

Vector Multiplication (SpMV), and Betweenness Centrality (BC). For all measurements,

we used 16 threads for a fair comparison.

In both FlashGraph and Graphene, IO utilization significantly varies by input

graph and query. Both systems achieve high IO bandwidth regardless of the input

graph for BFS. However, for PR, WCC, SpMV – more complex queries than BFS – both

systems show low IO bandwidth depending on the underlying graph. In the worst case,

FlashGraph achieves only 23% of the device bandwidth for PageRank on rmat30 graph

62

r2 r3 u
r

tw sk fr

0

1

2

3

R
ea

d
B

W
(G

B
/

s)

BFS

r2 r3 u
r

tw sk fr

PR

r2 r3 u
r

tw sk fr

WCC

r2 r3 u
r

tw sk fr

SpMV

(a) FlashGraph

r2 r3 u
r

tw sk fr

0

1

2

3

R
ea

d
B

W
(G

B
/

s)

BFS

r2 r3 u
r

tw sk fr

PR

r2 r3 u
r

tw sk fr

WCC

r2 r3 u
r

tw sk fr

SpMV

(b) Graphene

Figure 5.1. Underutilized IO in FlashGraph and Graphene. Red line: the maximum
read bandwidth of Optane SSD.

63

Table 5.2. System comparison. Blaze avoids the root causes of low IO utilization on
FNDs.

Systems Skewed
computation Skewed IO Fast IO &

slow computation

FlashGraph [121] Yes No No
Graphene [67] No Yes Yes

Blaze No No No

while Graphene achieves 30% of it for PageRank and SpMV on various graphs.

In the following section, we investigate the root cause of why FlashGraph and

Graphene suffer such low IO utilization on FNDs.

5.2 Reasons of Low IO Utilization in Current Systems

The root cause of low IO utilization in FlashGraph and Graphene on FNDs are

skewed computation, skewed IO, and fast IO, slow computation. We elaborate on each case

in more detail.

5.2.1 Skewed Computation

Parallel graph processing requires synchronization to avoid data races when

updating the algorithm-specific vertex data concurrently with multiple threads [78, 96].

However, synchronization primitives like compare-and-swap incur high CPU over-

head, which potentially leads to low IO utilization of FNDs in out-of-core processing.

A well-known alternative that does not require synchronization for each update is

message passing technique. FlashGraph [121] adopts message passing by assigning

a message queue to each vertex, and assigning each vertex to one of the computation

threads based on the vertex ID. FlashGraph processes these messages at the end of

each iteration to update the algorithm-specific vertex data and generate a set of vertices

which will be activated in the next iteration.

64

The problem with the message passing scheme in FlashGraph is the potential

risk of skewed computation on power-law graphs – some threads need to process more

messages than others because certain vertices have much higher number of neighbors

than other vertices on these graphs. In out-of-core graph processing, all activities

including IO must wait until the straggler thread finishes the processing of messages

in each iteration. Crucially, FND can potentially finish all IO requests faster than the

straggler thread so it may frequently remain idle over iterations.

We observe this phenomenon on Optane SSD as shown in Figure 5.2. On NAND

SSD (Figure 5.2 (a)), FlashGraph fully utilizes the device’s read bandwidth on three

queries, PR, WCC, and SpMV. However, for the same queries, it fails to issue any IO

to the Optane SSD at the end of each iteration (the period where the read bandwidth

remains zero) due to the straggler thread still processing a large volume of messages

(Figure 5.2 (b)).

Mitigating this problem requires balancing the workload – the messages passed

among vertices – between threads but achieving this without synchronization is not

straightforward. We solve this problem in Blaze with a synchronization-free, online

binning technique we describe in Section 5.3.1.

5.2.2 Skewed IO

Another problem that leads to low IO utilization is skewed IO. We observe this

problem in Graphene.

Skewed load of IO across multiple disks is another source of low IO utilization.

In synchronous graph processing where edges are distributed in multiple disks, the

maximum aggregate IO bandwidth is achieved when all disks are kept busy at all

times. When IO is not balanced, however, it leaves some disks to wait until other disks

complete their requests. We find that Graphene suffers this skewed IO problem due to its

topology-aware partitioning scheme.

65

Time
0

1

2

3

R
ea

d
B

W
(G

B
/

s)

PR

Time
0

1

2

3

WCC

Time
0

1

2

3

SpMV

(a) FlashGraph on NAND SSD

Time
0

1

2

3

R
ea

d
B

W
(G

B
/

s)

PR

Time
0

1

2

3

WCC

Time
0

1

2

3

SpMV

(b) FlashGraph on Optane SSD

Figure 5.2. Idle IO periods in FlashGraph on Optane SSD. Red line: the maximum
read bandwidth of Optane SSD. Input graph: rmat30.

66

Iteration

1MB
10MB

100MB
1GB

D
iff

IO
b

yt
es

rmat27

Iteration

1MB
10MB

100MB
1GB

rmat30

Iteration

1MB
10MB

100MB
1GB

uran27

Iteration

1MB
10MB

100MB
1GB

D
iff

IO
b

yt
es

twitter

Iteration

1MB
10MB

100MB
1GB

sk2005

Iteration

1MB
10MB

100MB
1GB

friendster

Figure 5.3. Skewed IO in Graphene. y-axis: max−min IO bytes between eight SSDs for
each iteration.

Graphene adopts 2-D partitioning of a graph with the goal of producing parti-

tions with the same number of edges. Then it distributes these partitions on multiple

disks in a way that each disk has the same number of partitions, making each disk have

an equal number of edges.

Despite having a balanced partition distribution, Graphene suffers highly skewed

IO on algorithms that employ selective scheduling of edges. Selective scheduling means

that only a subset of the total edges are traversed in a given iteration, a common

technique to increase algorithm efficiency by only accessing the necessary edges for a

given algorithm goal. In Graphene, these algorithms end up accessing edges on certain

disks more than those on others, leading to skewed IO.

Figure 5.3 shows the skewed IO of Graphene on BFS that employs selective

scheduling over iterations. On the y-axis, the figures show the maximum difference

between 8 disks in terms of the IO bytes each disk must process in a given iteration. For

example, a bar with 10 MB of height means that the disk with the largest amount of IO

67

tasks has to do 10 MB of more IO than the disk with the smallest amount of IO, so the

higher bar means IO is more skewed. We observe that Graphene suffers the skewed

IO on all power-law graphs. On the uran27 graph with uniform degree distribution,

the difference in IO is less than 1 MB. However, on other graphs that follow power-law,

the maximum IO difference goes up to more than 100 MB. The impact is more dramatic

when considering the ratio, not just the absolute bytes – A disk has to conduct up to

1.7–2.1× (depending on the input graph except uran27) more IO than another disk.

Based on these results, we conclude that the topology-aware graph partitioning

adopted by Graphene incurs the skewed IO problem when running algorithms with se-

lective scheduling. We mitigate this problem with topology-agnostic graph partitioning

based on the page interleaving as we describe in Section 5.3.5.

5.2.3 Fast IO, Slow Computation

Graphene’s low IO utilization also stems from its thread assignment policy which

leads to the fast producer and slow consumer problem. Graphene equally devides cores

across IO and computation – a pair of cores are assigned to each SSD, one for IO and

one for computation. For slow SSDs, this scheme still helps maximize the IO bandwidth

by assigning a dedicated thread for each SSD.

However, two threads strictly assigned for each SSD are not sufficient for FNDs

because they cannot saturate the bandwidth of FNDs. When the producer (IO thread)

sends IO buffers filled with on-disk pages faster than the consumer (computation thread)

can process, the free IO buffers soon become unavailable, which in turn blocks the IO

thread from issuing more IO requests.

We measure the impact of this problem by comparing the speed of various

single-threaded graph computations with the read bandwidth of various storage de-

vices (Figure 5.4). Compared to slow storage like NAND SSD, single-threaded graph

computation is fast enough on a set of workloads. However, it does not keep up with

68

BFS BC PR

0

1

2

3
B

a
n

d
w

id
th

(G
B

/
s)

Optane SSD

NAND SSD

rmat27

uran27

twitter

sk2005

Figure 5.4. Single-threaded graph computation speed (bars) vs. IO bandwidth (lines).

the speed of Optane SSD on all workloads we measured. The result implies that enough

threads must be assigned for computation to constantly saturate the underlying FND in

out-of-core graph processing.

5.3 Blaze Framework

Blaze supports high-performance graph analytics on FNDs by constantly saturat-

ing the underlying IO bandwidth, a challenge that was not achieved by current systems.

The key to achieving this goal is the low overhead, scatter-gather scheme called online

binning that processes user-provided graph computations without synchronization

while achieving load balance among threads. In addition, Blaze achieves balanced IO

among multiple SSDs by partitioning the input graph with page interleaving (RAID

0) that balances IO well on a variety of workloads. Blaze abstracts these mechanisms

in the well-known, in-core graph processing API, EDGEMAP and VERTEXMAP [96], to

enable the programming of efficient out-of-core graph algorithms without the need to

handle complex IO executions.

69

Figure 5.5. Out-of-core EDGEMAP engine in Blaze.

5.3.1 Online Binning

An IO-efficient execution of EDGEMAP relies on low-overhead graph compu-

tation which we enable with the technique we call online binning. The idea of using

bin data structure in graph processing is inspired by propagation blocking [13] but we

adapt this idea to out-of-core graph processing.

A bin is a struct kept in DRAM that holds multiple bin records where each

bin record is a 〈vertex id,value〉 pair. During execution, Blaze creates a bin record for

each algorithm-specific scatter function with the destination vertex id and the value

returned by the scatter function. Then Blaze appends the record to the corresponding

bin (bin id = vertex id mod bin count). Once a bin becomes full, Blaze pushes it to a

concurrent queue called full bins to allow gather threads to process the records in

the full bins. Each gather thread processes one full bin in its entirety. Most importantly,

Blaze ensures that no two gather threads process the same bin at the same time and this avoids

the need to synchronize between gather threads.

To maximize the performance of online binning, Blaze adopts several optimiza-

tion techniques. First, Blaze uses a small fixed size, per-CPU buffer [13] to reduce the

synchronization overhead while binning, where the buffer allocates memory space for

each bin. Blaze first appends the bin record to this buffer, and once it becomes full,

Blaze copies the records in the buffer to the corresponding bin in batch. Second, Blaze

uses MPMC queue for full bins for highly concurrent push/pull of full bins between

70

scatter and gather threads. Third, Blaze implements each bin as a pair of bins to ensure

the forward progress of both scatter and gather threads. Once one of the pair becomes

full, its pointer is appended to the full bins queue for gather threads while the other

bin serves scatter threads. A scatter thread is blocked until a gather thread finishes the

processing of the full bin and returns it to the empty state.

Online binning has several configuration parameters including bin count, bin

size, and the ratio between scatter and gather threads. Data in Section 5.4.5 shows that

performance is robust across a wide range of values, so precise tuning is not required.

In particular, our data show that one thousand bins, 0.05× of the input graph size for bin

space, and an equal number of scatter and gather threads will provide good performance in

general and that more careful tuning improves performance by, at most, 5%.

5.3.2 Programming API

To support the programming of efficient out-of-core graph algorithms, Blaze

provides two key APIs, EDGEMAP and VERTEXMAP. The APIs were first introduced by

Ligra [96] in-core graph processing framework and have shown that they can be used to

express a broad range of efficient, parallel graph algorithms [96, 95, 33] for in-memory

graph processing. We extend them to enable efficient out-of-core graph processing

while hiding the binning-based execution entirely from the user.

71

EDGEMAP(graph : Graph,

f rontier : VertexSubset,

fs : (vertex× vertex)→ value type,

fg : (vertex× value type)→ bool,

cond : vertex→ bool,

out put : bool) : VertexSubset

Executes two edge functions, fs and fg, to the edges whose source vertices are

in the given f rontier. Users provide the scatter function fs that returns an algorithm-

specific value to scatter it to neighboring vertices. The value is scattered to the gather

threads only when cond returns true with the destination vertex ID as argument.

Users also provide the gather function fg that accumulates the scattered values to

the algorithm-specific data array. When the out put is true, EDGEMAP creates an output

frontier and pushes the destination vertex ID to the frontier if fg returns true.

The scatter and gather functions communicate intermediate data via bin data

structure provided by the online binning mechanism. This ensures that scatter and

gather steps are executed without synchronization overhead while achieving load

balance among worker threads.

VERTEXMAP(f rontier : VertexSubset,

f : vertex→ bool) : VertexSubset

Applies a vertex function f to each vertex in the f rontier. It conditionally filters

72

out the vertices from the frontier when f returns true, and returns a new frontier. In

Blaze, VERTEXMAP executes entirely in memory as all vertex-related data is placed in

memory. In most algorithms, VERTEXMAP is used along with EDGEMAP alternatively

in an iteration to update vertex values and reduce the next frontier size. In Section 5.3.4,

we describe how BFS, PageRank, and WCC algorithms use both EDGEMAP and VER-

TEXMAP functions together in more detail.

5.3.3 Out-of-core EDGEMAP Execution

Figure 5.5 shows the architecture of Blaze’s EDGEMAP engine and how an

EDGEMAP function is executed in an out-of-core fashion along with online binning.

With the frontier as input, an EDGEMAP function starts execution by first trans-

forming the given frontier into the page f rontier, a data structure that contains the disk

page IDs that contains the target vertex IDs in the frontier (step 1). Blaze uses all

available threads to accelerate this transformation before starting issuing IO requests.

Once the page frontier is ready, IO threads start fetching the page IDs from it and send

IO requests to the underlying SSDs (step 2) with the free IO buffers (step 3). Blaze

uses one thread for each SSD and maintains the page frontier for each SSD. Once the

corresponding disk pages are fetched into the buffers (step 4), online binning comes

into play – the scatter threads get these fill buffers (step 5), append the records to the

corresponding bins (step 6), and return the IO buffers back to the free IO buffer pool

(step 7). Concurrently, the gather threads fetch the full bins (step 8) and apply the

records in the bins into the algorithm-specific, vertex data (step 9). Finally, the gather

threads returns a new frontier if required by the caller of EDGEMAP.

To support the fast communication of IO buffers between IO threads and compu-

tation threads (scatter, gather threads), Blaze uses a concurrent MPMC (multi-producer,

multi-consumer) queue. Blaze maintains two queues, one for free IO buffers, and the

other for filled IO buffers, each of which contains the address of the buffer page.

73

Blaze uses two types of frontier, VertexSubset and PageSubset for the vertex fron-

tier and page frontier, respectively. Both types abstract the sparse and dense format and

switch between them internally depending on the density of the members. Both types

use concurrent set data structure when the members are sparse and use bitmap when

the members are dense, similarly in Ligra [96]. PageSubset is only used internally for IO

and not exposed to the users.

For IO execution, Blaze issues IO requests based on the page IDs contained in the

page frontier. For continuous pages, Blaze issues only small contiguous IO unlike Flash-

Graph [121] and Graphene [67]. Concretely, Blaze merges up to four contiguous 4 kB

pages as larger IO request is not beneficial on FND. Rather, it is studied in Graphene [67]

that the large IO significantly increases the Asynchronous IO submission time. Also,

Blaze does not attempt to merge non-consecutive pages even if they are within a certain

threshold [67] – On FNDs, 4 kB random IO is already fast enough such that there is little

incentive to issue large IO requests at the cost of accessing non-target pages.

5.3.4 Examples

BFS Algorithm 1 shows a parallel out-of-core BFS algorithm written in Blaze’s API.

The user provides two edge functions, SCATTER and GATHER. Leveraging the online

binning internally, they cooperatively update the Parent array without synchronization

overhead. Specifically, SCATTER function examines input edges and returns the source

vertex ID. To reduce unnecessary propagation of values, the user also provides COND

function – SCATTER is executed only when the destination vertex has not been visited

yet by checking if COND returns true. Then GATHER function receives the value (v)

along with the associated destination ID (d). If the destination vertex has not been

visited (Parent[d] ==−1), GATHER updates the parent array with the source vertex ID

and returns 1, activating the current destination vertex in the next iteration. Finally,

these functions are used in the main BFS function as arguments to the EDGEMAP that

74

Algorithm 1. Breadth-First Search
1: Parent = {−1, ...,−1} . initialize all to -1’s
2:
3: procedure SCATTER(s, d) . scatter function
4: return s
5: end procedure
6:
7: procedure GATHER(d, v) . gather function
8: if Parent[d] ==−1 then
9: Parent[d] = v

10: return 1
11: end if
12: return 0
13: end procedure
14:
15: procedure COND(d) . conditional function
16: return Parent[d] ==−1
17: end procedure
18:
19: procedure BFS(G, s) . s is the root
20: Parent[s] = s
21: F = {s}
22: while ¬F.empty() do
23: F = EDGEMAP(G,F,SCATTER,GATHER,COND, true)
24: end while
25: end procedure

75

iteratively runs until the frontier F becomes empty.

PageRank Algorithm 2 shows an example of PageRank that implements PageRank-

delta algorithm [96, 69], a variant of PageRank in which vertices are active in an iteration

only if they have accumulated enough change in their page rank values. In our imple-

mentation, EDGEMAP propagates the delta value of each vertex, normalized with its

out-degree, to the out-going neighbors in SCATTER and accumulates those values in

GATHER without synchronization. Then VERTEXMAP applies the accumulated delta

values kept in ngh sum to the delta array and filters out vertices whose change in the

page rank value in p is less than a given threshold e, as implemented in APPLYFILTER.

The EDGEMAP and VERTEXMAP alternately run until no vertex is active in the frontier.

WCC Algorithm 3 shows the shortcutting label propagation algorithm running on an

undirected graph [99] implemented in Blaze API. While SCATTER and GATHER updates

the destination vertex value with the smaller vertex ID (normally as in original label

propagation), the shortcutting mechanism in APPLYFILTER conducts pointer jumping to

accelerate the label propagation. In addition, it activates only the vertices that suffered

the value change from the previous iteration. With Blaze API, our WCC implementation

executes EDGEMAP for both CSR (outG) and a transpose of it (inG) to propagate vertex

values on an undirected graph. The algorithm finishes when no further propagation is

required.

5.3.5 Balanced IO

In addition to the low-overhead, balanced computation powered by online

binning, Blaze also achieves balanced IO with page-interleaved, Compressed Sparse Row

(CSR) format – Blaze stripes a CSR graph into multiple SSDs in 4 kB granularity. Page

interleaving (RAID 0) is a well-known technique used in various HPC domains to

maximize the aggregate bandwidth of underlying devices. We find that it is also

effective in out-of-core graph analytics. We reject other topology-aware partitioning

76

Algorithm 2. PageRank
1: G← Input graph
2: p = {0, ...,0}
3: ngh sum = {0, ...,0}
4: delta = { 1

V , ...,
1
V }

5: D← 0.85,e← threshold
6:
7: procedure SCATTER(s, d) . scatter function
8: return delta[s]/G.get degree(s)
9: end procedure

10:
11: procedure GATHER(d, v) . gather function
12: ngh sum[d]+ = v
13: return 1
14: end procedure
15:
16: procedure COND(d) . conditional function
17: return 1
18: end procedure
19:
20: procedure APPLYFILTER(i) . vertex function
21: delta[i] = ngh sum[i]∗D
22: ngh sum[i] = 0
23: if |delta[i]|> e∗ p[i] then
24: p[i]+ = delta[i]
25: return 1
26: else
27: return 0
28: end if
29: end procedure
30:
31: procedure PAGERANK(G)
32: F = {1, ...,1} . activate all vertices
33: while ¬F.empty() do
34: EDGEMAP(G,F,SCATTER,GATHER,COND, f alse)
35: F = VERTEXMAP(F,APPLYFILTER)
36: end while
37: end procedure

77

Algorithm 3. WCC
1: Ids = {0, ...,V −1} . initialize all to node ids
2: PrevIds = {0, ...,V −1} . initialize all to node ids
3:
4: procedure SCATTER(s, d) . scatter function
5: return Ids[s]
6: end procedure
7:
8: procedure GATHER(d, v) . gather function
9: orig id = Ids[d]

10: if v < orig id then
11: Ids[d] = v
12: end if
13: return 1
14: end procedure
15:
16: procedure COND(d) . conditional function
17: return 1
18: end procedure
19:
20: procedure APPLYFILTER(i) . vertex function
21: id = Ids[Ids[i]]
22: if Ids[i]! = id then
23: Ids[i] = id
24: end if
25: if PrevIds[i]! = Ids[i] then
26: PrevIds[i] = Ids[i]
27: return 1
28: else
29: return 0
30: end if
31: end procedure
32:
33: procedure WCC(outG, inG)
34: F = {1, ...,1} . activate all vertices
35: while ¬F.empty() do
36: EDGEMAP(outG,F,SCATTER,GATHER,COND, f alse)
37: EDGEMAP(inG,F,SCATTER,GATHER,COND, f alse)
38: F = VERTEXMAP(F,APPLYFILTER)
39: end while
40: end procedure

78

Figure 5.6. Indirection-based graph index in Blaze.

schemes such as 2-D partitioning used in Graphene [67] as they incur imbalanced load

across multiple disks when only a subset of edges need to be accessed in each iteration.

5.3.6 Memory Usage

Blaze requires the memory space as follows except the algorithm-specific data.

System-level Regardless of any given workload, Blaze requires a static memory space

to allocate IO buffers from. In Blaze, large memory space is not required for IO buffers

as scatter threads return the IO buffers quickly enough for IO threads to re-use those

buffers. Accordingly, we set the memory space relatively small (64 MB in all workloads)

compared to the input graph size we tested.

In addition, Blaze requires a memory space to maintain bins for online binning.

We experimentally decide the proper bin size based on our study in Section 5.4.5.

Graph metadata For a given input graph, Blaze maintains an index array and a

key-value map in memory for efficient graph access. To keep the graph index array

compact, Blaze uses indirection as in Figure 5.6 – Blaze groups sixteen 4 bytes-sized

degrees into a single cache-line in the degrees region and only keeps the location of the

cache-lines in the offsets region. With indirection, the offset is retrieved by first looking

up the offsets region with vertex id / 16 as key then adding degrees up to vertex id % 16

in the corresponding cache-line in degrees region. This indirection-based index array in

Blaze requires about 4 bytes×|V | of memory.

In addition to the index, Blaze keeps an additional map page-to-vertex map

79

to accelerate access to vertex data given a page number. The map returns a

〈begin vertex id,end vertex id〉 pair given an on-disk page number as key. The size

of this structure is small as it only requires 8 bytes for each disk page.

5.4 Evaluation

We evaluate Blaze with a variety of workloads, comparing it against two state-

of-the-art, open-sourced out-of-core graph processing systems, FlashGraph [121] and

Graphene [67]. In addition, we study how Blaze scales with more hardware resources,

and how it performs with different binning configurations.

5.4.1 Experimental Setting

Target queries We use the following graph algorithms to evaluate Blaze.

• Breadth-First Search (BFS)

• PageRank (PR) using the delta variant algorithm [69].

• Weakly Connected Components (WCC) using Label propagation [122].

• Sparse Matrix-Vector Multiplication (SpMV)

• Betweenness Centrality (BC) using Brandes’s algorithm [21].

We implement these queries based on the implementations in Ligra [96] as both

systems share the same API. The difference is that Blaze algorithms require the scatter

and gather functions as input to the EDGEMAP function while Ligra requires providing

only a single, synchronization-based edge function to the EDGEMAP. Also, Ligra’s

EDGEMAP is executed purely in memory while Blaze newly introduces the execution of

EDGEMAP in an out-of-core fashion.

System configuration Our testbed is a single socket, Intel Xeon Gold 6230 processor

(2.1 GHz) with 20 physical cores (no hyperthreading). The machine is equipped with

80

96 GB of DRAM; one 1.9 TB Intel NAND SSD (DC S3520) and one 960 GB Intel Optane

SSD (DC P4800X).

5.4.2 Comparison with Other Systems

We compare the performance of Blaze with FlashGraph and Graphene on six

input graphs stored on an Intel Optane SSD. Among the five target queries – BFS, PR,

WCC, SpMV, and BC, we could not compare the result of BC with Graphene since

Graphene does not implement BC. For all experiments, we used 16 threads from a single

socket for fair comparison.

Figure 5.7 shows the speedup of Blaze over FlashGraph (left) and Graphene

(right). Except on sk2005, Blaze generally outperforms FlashGraph, achieving up to

13.6× speedup when running PageRank on rmat30 graph. On sk2005, Blaze performs

12–20% slower than FlashGraph because the sk2005 graph has a high locality [14] such

that storage access is minimized by hitting the page cache implemented in FlashGraph

with LRU policy. Blaze only implements the random eviction of IO buffer pages, and

we leave implementing more advanced eviction policies as future work.

On the other hand, Blaze consistently outperforms Graphene with 1.6–7.9× of

speedups on our target workloads. In case of PR, we compare the execution time of 1

PR iteration as Graphene does not implement PR with selective scheduling.

5.4.3 IO Utilization

Blaze achieves high IO bandwidth close to the FND’s device bandwidth. In

Figure 5.8, we report the average IO bandwidth of our target workloads measured on

Optane SSD. We calculate the average bandwidth as the total read IO bytes divided by

the total query execution time. To see the impact of online binning on IO utilization,

we compare Blaze with a synchronization-based variant of Blaze that uses atomic

operations like compare-and-swap to synchronize parallel updates.

81

BFS
PR

W
CC

SpM
V BC

r2

r3

ur

tw

sk

fr

1.24 7.74 3.92 1.85 2.18

1.29 13.59 6.22 2.69 2.91

1.23 1.64 7.24 2.42 1.42

1.17 1.44 3.06 1.28 1.11

0.81 0.88 3.52 0.85 0.81

1.41 0.92 7.88 1.61 1.49

vs. FlashGraph

BFS
PR

W
CC

SpM
V

r2

r3

ur

tw

sk

fr

3.28 2.58 2.39 3.27

3.57 1.64 2.35 1.63

3.54 1.97 2.16 2.56

4.05 2.09 5.25 1.62

3.21 2.73 5.17 4.45

4.41 2.22 7.95 2.19

vs. Graphene

Figure 5.7. Speedups over FlashGraph and Graphene.

82

r2 r3 u
r

tw sk fr h
y

0

1

2

3

B
a

n
d

w
id

th
(G

B
/

s) BFS
r2 r3 u

r
tw sk fr h

y

PR

r2 r3 u
r

tw sk fr h
y

WCC

r2 r3 u
r

tw sk fr h
y

SpMV

r2 r3 u
r

tw sk fr h
y

O
O

M

BC

(a) Blaze

r2 r3 u
r

tw sk fr h
y

0

1

2

3

B
a

n
d

w
id

th
(G

B
/

s) BFS

r2 r3 u
r

tw sk fr h
y

PR

r2 r3 u
r

tw sk fr h
y

WCC
r2 r3 u

r
tw sk fr h

y

SpMV

r2 r3 u
r

tw sk fr h
y

O
O

M

BC

(b) Synchronization-based variant

Figure 5.8. Average read bandwidth on Optane SSD

83

2 4 8 16

2
4
8

16
32
64

128

P
ro

ce
ss

in
g

ti
m

e
(s

ec
) rmat27

BFS PageRank WCC SpMV BC

2 4 8 16

16
32
64

128
256
512

1024

rmat30

2 4 8 16

2
4
8

16
32
64

128

uran27

2 4 8 16

Threads

2
4
8

16
32
64

128

P
ro

ce
ss

in
g

ti
m

e
(s

ec
) twitter

2 4 8 16

Threads

2
4
8

16
32
64

128

sk2005

2 4 8 16

Threads

2
4
8

16
32
64

128

frienster

Figure 5.9. Thread scaling

Unlike FlashGraph and Graphene which underutilize an Optane SSD’s band-

width as reported in Figure 5.1, Blaze almost fully utilizes the bandwidth on all our

workloads. On computation-heavy workloads like PageRank and SpMV, the high

IO bandwidth is only achieved with online binning. Otherwise, the synchronization-

based Blaze achieves only 38–85% of the Optane’s device bandwidth on both queries

depending on the workload.

5.4.4 Scalability

Blaze scales with increasing core count as long as the underlying storage is not

saturated. Figure 5.9 (with both axes in log scale) shows how Blaze’s performance scales

when running our workloads on a single Optane SSD. Performance almost linearly

84

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

0

1

2

3
R

ea
d

B
W

(G
B

/
s)

rmat27

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

0

1

2

3

rmat30

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

0

1

2

3

uran27

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

Bin size (MB)

0

1

2

3

R
ea

d
B

W
(G

B
/

s)

twitter

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

Bin size (MB)

0

1

2

3

sk2005

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

Bin size (MB)

0

1

2

3

frienster

Figure 5.10. Impact of binning space.

scales with more cores on most of the workloads. On a certain set of workloads (e.g., BFS

on sk2005), using one scatter and one gather thread (therefore two cores) is sufficient

to saturate the IO bandwidth as the graph has high locality and thus causes less CPU

overhead with processor cache hits. In these cases, Blaze does not scale with more

threads as the IO bandwidth becomes the bottleneck.

5.4.5 Impact of Online Binning Configurations

Online binning in Blaze requires users to set up a few parameters to perform as

expected.

Bin size The total bin size must be set large enough not to slow down the performance

of Blaze. To understand the right bin size, we measured the average read bandwidth of

85

4

1
6

6
4

2
5

6

1
k

4
k

1
6

k

6
4

k

Bin count

0

20

40

60

P
ro

ce
ss

in
g

ti
m

e
(s

ec
)

rmat27, 16 threads

BFS

PageRank

WCC

SpMV

BC

1
:1

5

3
:1

3

5
:1

1

7
:9

9
:7

1
1

:5

1
3

:3

1
5

:1

Threads (scatter:gather)

0

20

40

60

rmat27, 16 threads

Figure 5.11. Impact of binning configurations.

SpMV query on all input graphs while varying the total bin size from 16 MB to 1 GB.

Based on the result in Figure 5.10, we find that a good heuristic value for the bin size is

roughly 1
20 |E|×4 bytes for each graph but using smaller values is also viable on some

graphs.

Bin count We also study how different bin counts can impact the performance of

online binning. For this, we measure the processing time of all queries on rmat27 graph

with 256 MB of bin space while doubling the bin count from 4 to 131072. Figure 5.11

shows that the processing time is relatively stable for a large range of bin counts but

increases significantly when the value is too large or too small.

Scatter, gather thread ratio An intuition in choosing the right ratio between the

number of scatter and gather threads is to consider the relative computation load

between scatter and gather in each algorithm. If the load is similar, a good choice is to

use an equal number of threads for both tasks. The result in Figure 5.11 reflects this

intuition – The execution time remains constantly low when a similar amount of threads

86

r2 r3 ur tw sk fr hy

0
25
50
75

100
M

em
or

y
us

ag
e

(%
) BFS

r2 r3 ur tw sk fr hy

PR

r2 r3 ur tw sk fr hy

WCC

r2 r3 ur tw sk fr hy

SpMV

r2 r3 ur tw sk fr hy
OO

M

BC

Figure 5.12. Memory footprint relative to the input graph size.

are used for scatter and gather but sharply increases as more threads are assigned for

one task than the other.

5.4.6 Memory Usage

Under the semi-external model, Blaze aims to minimize the memory consump-

tion while supporting high-performance out-of-core graph processing on FNDs. Fig-

ure 5.12 shows the memory consumption of Blaze on our target workloads. The figure

depicts the ratio of memory footprint to input graph size in each workload.

Depending on the workload, Blaze’s memory footprint is 10–34% of the input

graph size. Concretely, memory footprint is affected by the input query and the un-

derlying graph. For BFS that requires only a single integer array to keep the parent

relationships (Algorithm 1), the ratio is 10–20% throughout different input graphs.

However, certain queries require more memory due to the nature of their al-

gorithms. For instance, in case of our PageRank implementation, the ratio goes up

to 16–33% as PageRank-delta requires three floating point arrays to implement (Algo-

rithm 2). In addition, we were not able to run BC on hyperlink2014 graph because

Brandes’s algorithm [21] requires more than 96 GB of memory to run on 512 GB of

undirected hyperlink2014 graph. We expect mitigating these problems require more

memory-efficient algorithms.

87

Except for BC, Blaze can successfully run other queries on hyperlink2014 with

the limited amount of memory compared to the graph size while existing in-core

frameworks [96, 78, 119] will run into the out-of-memory issue with this dataset.

5.5 Related Work

The design of graph processing systems has been evolved mainly in three dif-

ferent ways depending on the use of secondary storage and the use of memories in

multiple machines.

In-core graph processing processes graphs entirely in the main memory of a single

machine. Galois [78] is a lightweight runtime that offers API for implementing efficient

task scheduling of various graph algorithms. GAP [15] offers a benchmark suite of vari-

ous in-core graph algorithms to standardize the in-core graph processing evaluations.

GraphIt [119] introduces a new domain-specific language and runtime to help separate

the process of algorithm writing and performance optimization. Finally, Ligra [96]

is an in-core graph processing framework that offers simple APIs for writing graph

algorithms and optimizes the execution of those algorithms by automatically switching

between push and pull-based operations based on a user-provided threshold. Blaze

extends the Ligra’s APIs but adapts them to support efficient out-of-core execution.

Out-of-core graph processing uses storage devices to hold the large graphs that do

not fit in a single machine’s memory and process those graphs by judiciously moving

pages between the storage and the memory. To minimize the overhead of expensive

IO, the design of out-of-core systems has evolved in step with the performance charac-

teristics of underlying storage devices. GraphChi [64] was the first out-of-core graph

processing system designed for sequential disks. XStream [89] explored a new tradeoff

that fully exploits the benefit of sequential access at the cost of more IO. More out-of-core

systems have been further developed to leverage the sequentiality of disks [123, 52, 108].

88

On the other hand, systems like FlashGraph [121] and Graphene [67] explored

the ways to utilize fast random IO that early-generation SSDs offer, achieving significant

performance improvement over prior systems as less IO is required. Blaze makes a

similar design choice but further optimizes software mechanisms to constantly saturate

the high IO bandwidth of modern FNDs. A more recent work by Elyasi et al. [37]

explored a new graph partitioning technique to leverage the fast random IO of FNDs in

the fully-external processing style. However, this work makes a different tradeoff from

Blaze – it places only a subset of vertex data in memory to achieve smaller memory

footprint but potentially at the cost of performance. Unfortunately, we could not

compare this work with Blaze as it is not public.

Distributed graph processing is another way to process large graphs by holding

them in the memories of multiple machines and processing them via network commu-

nications. Systems like PowerGraph [43], Pegasus [56], and GraphLab [69] have been

developed to ease the programming of distributed graph algorithms while offering

high performance on highly-skewed graphs. Nonetheless, distributed graph processing

systems often lack efficiency with low per-CPU performance [72] and do not neces-

sarily outperform out-of-core systems despite using more resources from a cluster of

machines [64, 123, 121, 67].

For higher scalability in terms of both CPU and storage, Blaze could be further

scaled out on multiple machines where each machine is equipped with one or more

FNDs. One potential way to scale out Blaze is to partition the input graph based on the

destination vertex and place each partition in each machine. This allows a single machine

to process only a subset of edges and vertex-related values, and, more importantly, to

propagate values between scatter and gather threads locally, avoiding the costly network

communications during EDGEMAP execution. We leave scaling out Blaze in this manner

as future work.

89

5.6 Summary

We present Blaze, a new out-of-core graph processing system optimized for

FNDs. Blaze offers high-performance graph analytics by constantly saturating FNDs

with a novel scatter-gather technique called online binning while previous techniques

like synchronization or message passing fail to achieve this goal. Blaze offers succinct

APIs for writing efficient, out-of-core graph algorithms without the burden to deal with

complex IO executions.

Acknowledgements

This chapter contains material from “Blaze: Fast Graph Processing on Fast SSDs”,

by Juno Kim and Steven Swanson, which appeared in the International Conference

for High Performance Computing, Networking, Storage, and Analysis (SC 2022). The

dissertation author is the primary investigator and the first author of this paper.

90

Chapter 6

TOSS: Tiering of Serverless Snapshots
for Low Cost Serverless Computing

Serverless computing is a new cloud computing paradigm that simplifies the

programming of cloud computing – A user defines only the desired function and

delegates its execution to the cloud by simply submitting the defined function to the

provider. Due to its simplicity and promises, serverless computing is expected to

prosper with various offerings from major cloud providers [90].

One of the key challenges about instantly executing a serverless function is

to quickly prepare a function instance (i.e., container, VM) in memory. To solve this

problem, a slew of techniques have been proposed [104, 42], all of which aim to prepare

necessary memory contents of a function instance on DRAM. However, using only a

single tier of expensive memory incurs high cost and does not expand well beyond a

certain capacity, both of which lead to low total cost of ownership (TCO) for serverless

providers.

Unfortunately, existing memory tiering approaches are not suitable for serverless

computing. First, serverless functions’ execution expose unique patterns. Second,

they are short-running, with execution times that span mostly to several seconds [94],

usually with a small memory footprint. Finaly, they are infrequently but repeatedly

invoked until removed. These characteristics impose new challenges for existing tiering

91

techniques, as the latter aim to simply evict the colder memory to the slower tiers; in a

serverless environment that would lead to significant cold-start delays for infrequently-

called serverless functions.

In this work, we propose TOSS, the first two-tier serverless system that aims

to reduce the memory costs of a serverless platform that leverages only DRAM. The

key idea is to offload each function’s certain memory pages to the slower tier, while

minimizing the target function’s slowdown and making it under a certain boundary.

To achieve this, TOSS introduces performance-driven serverless snapshot tiering where

each function’s slowdown caused by memory tiering is bounded by a user-defined

performance goal. We build the TOSS prototype on top of Firecracker’s MicroVM

snapshotting mechanism.

6.1 Background and Motivation

6.1.1 Serverless Computing

Serverless computing is a new cloud computing paradigm that allows developers

to focus on building and deploying applications on infrastructure that is managed by

cloud providers. In serverless computing, developers only pay for the resources they

use, while it is easier to scale applications, as the infrastructure provider adjusts the

load automatically to meet demand. Serverless computing helps organizations to be

more efficient, agile, and cost-effective, and is an essential part of modern cloud-native

architectures.

From the user’s perspective, serverless computing offers several benefits. First,

users only pay for the resources their code is consuming, which can lead to significant

cost savings compared to traditional cloud computing models. Second, users can quickly

and easily deploy their code without worrying about managing servers. This allows

them to be more flexible and responsive to their business needs. Third, the infrastructure

92

automatically adjusts to meet demand, making it easier to scale applications and services

as needed.

On the other hand, serverless computing greatly benefits the cloud provider as

well. First, providers can optimize the use of resources by automatically allocating them

to different customers based on demand, which can lead to improved efficiency and

utilization. Second, providers can more easily manage and maintain the infrastructure,

which can lead to improved reliability and uptime for customers. Third, providers can

offer a wide range of serverless computing options to customers, which can help to

attract and retain a larger customer base.

6.1.2 Firecracker as Function Instance

Firecracker [9] is a popular virtualization technology that supports serverless

computing and other cloud-native applications. It was developed by AWS and allows

users to run multiple lightweight virtual machines on a single host. With its microVM

having their own isolated operating system and resources, Firecracker allows fast and

efficient cloud deployment, incurring minimal overhead and small memory and disk

footprint. It is well-suited for running short-lived, stateless functions in a scalable and

cost-effective fashion. Many organizations are adopting Firecracker as a key part of their

serverless computing infrastructure to improve performance, security, and resource

utilization.

In addition, Firecracker offers the snapshotting feature [41] to allow users to

create, save, and restore the state of microVMs instantly. Snapshots are created using

copy-on-write on the root filesystem, which means they only store the differences

between the current state and the previous snapshot, which helps to keep the snapshot

size small. To restore a snapshot, Firecracker copies the snapshot data back to the

root filesystem, overwriting any changes made since the snapshot was taken. The

snapshotting mechanism is useful for managing the state of microVMs and quickly

93

booting new microVMs or reverting to previous states.

6.1.3 Memory Tiering

In a system with two memory tiers, fast memory (such as DRAM) and slow

memory (such as persistent memory or CXL memory), memory tiering can be used to

reduce the memory cost of computing. Fast memory provides a higher access speed

but it is more expensive and limited in capacity while slow memory has an opposite

tradeoff. Memory tiering allows the system to keep the most frequently accessed data

in fast memory while less frequently accessed data is offloaded to slow memory. This

helps to keep the performance fast while expanding the memory capacity with low cost.

6.1.4 Motivation

Despite recent progress for serverless computing on providing fast startup of

VMs, current serverless offerings are limited by the sole use of fast memory, which

incurs high memory cost and limits the capacity scaling of memory. While memory

tiering is an active research area to solve this problem, this idea has not been explored

in serverless computing environment. Therefore, the motivation of this work is to apply

the memory tiering idea to serverless computing to offer a more cost-efficient serverless

execution environment enabled by an active use of slow memory tier (such as CXL

memory).

6.2 TOSS

TOSS is the first serverless system that supports memory tiering for serverless

functions. It offers both fast VM startups and fast function execution, while maintaining

a low cost approach, compared to a pure-DRAM approach. TOSS creates a tiered

VM snapshot, placing pages on different memory tiers, depending on their access

count. This helps maximizing the use of slow memory, while meeting each function’s

94

Execut ion

Guest m em ory
snapshot

Execut ion Execut ion

Guest m em ory
snapshotGuest m em ory

Snapshot t iering
Mem ory
access

file
Tiered m em ory

snapshot

Execut ion

Take
snapshot

...

...

Step 1. Snapshot generat ion Step 2. Mem ory access profiling (§3.2) Step 3. Snapshot t iering (§3.3)
Step 4. Snapshot -based

Execut ion (§3.4)

Figure 6.1. VM snapshot tiering steps in TOSS

performance goal. A stricter performance goal limits TOSS from offloading more pages

to the slower memory tier. We demonstrate how different performance goals impact

memory tiering in TOSS in Section 6.3.

6.2.1 Overview

TOSS supports memory tiering of serverless functions in four steps as depicted

in Figure 6.1. First, TOSS executes a function in DRAM-only guest VM and takes a VM

snapshot after the execution finishes. This initial snapshot will later be used to create

the tiered memory snapshot that will be split in different memory tiers. Second, TOSS

enters the memory access profiling step, where it gathers memory access information for

subsequent invocations (Section 6.2.2). The information is collected for each invocation

to capture divergent memory access behavior that different invocations can exhibit.

Third, TOSS offloads snapshot pages to the slow memory tier based on the memory

access information and its performance estimation method (Section 6.2.3). We use the

term tiered snapshot to describe the multi-tier snapshot that TOSS leverages. Finally,

TOSS serves subsequent function invocations with the tiered snapshot (Section 6.2.4). If

there is a repeated violation of the user-provided performance goal, TOSS starts over

the tiering process for the function.

95

6.2.2 Memory Access Profiling

TOSS relies on two memory access metrics for snapshot tiering, namely memory

stall ratio and memory access count. Memory stall ratio is the memory stall time relative

to the total execution time of a function, gives how much memory-intensive a function

is, suggesting how much slowdown a function is likely to suffer when offloaded to slow

memory. On the other hand, memory access temperature is a list of values where each

element represents an access count of each memory page in a given function’s snapshot.

Memory access temperature helps TOSS identify cold pages – pages with low access

count – for offloading to slow memory.

To collect these counters, TOSS uses both hardware and software-based tech-

niques. To measure memory stall ratio of each function, TOSS collects the hardware

counter that gives the number of cycles spent stalling on outgoing memory load re-

quests. With the measured memory stall cycles, TOSS calculates memory stall ratio

by dividing the value with the cycles spent during the execution of the function. In

serverless environment, these cycle counters can easily be measured for each process

using Linux’s perf-kvm tool, so TOSS uses it for each Firecracker guest VM process.

TOSS uses Data Access MONitoring (DAMON) [93], an accurate, light-weight

and scalable data access monitoring framework, to measure the memory access count

of each function. DAMON leverages the Accessed bit that can be found in the Linux

page table for each associated page. It clears periodically the Accessed bit, which is set

when there is a page table walk due to a TLB miss. While this sampling approach gives

an estimation, rather than the actual access count, it gives a good approximation on the

relative access count among different pages that belong to the same process. Therefore,

TOSS uses DAMON to profile the memory accesses of each serverless function.

96

lr_s
erving_py

float_operation_py

json_load_dump_py

image_processin
g_py

linpack_py

matmul_go

matmul_py_numpy
pyaes_py

Functions

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

M
em

or
y

st
al

l r
at

io

Figure 6.2. Memory stall ratio of target functions. The bottom and top of each bar
correspond to the minimum and maximum of memory stall ratio, respectively, of each
function based on varying inputs

97

6.2.3 Performance-driven Snapshot Tiering

Based on the memory access statistics collected over invocations of a function,

TOSS distributes the function’s snapshot pages across fast and slow memories. The

goal of the tiered snapshot is to restrict the corresponding function’s execution times

under a certain slowdown to ensure that the use of slow memory does not incur too

much performance penalty. To achieve this, TOSS considers three factors – execution

statistics, target slowdown, and performance traits of different memories when selecting the

target snapshot pages to be placed in slow memory. Based on these information, the

snapshot tiering in TOSS is conducted in two steps, slow memory access estimation and

cold page selection, which we describe in detail as follows.

Slow memory access estimation The first step is estimating the slow memory access

ratio – the number of accesses to slow memory over the number of accesses to all

memories – given a user’s slowdown goal. TOSS estimates the slow memory access

ratio by using the following formula:

Rslow =
S f unc

Sdev×M f unc
(6.1)

S f unc is the slowdown threshold of a given function. A higher slowdown allows

TOSS to move memory pages more aggresively to the slower tier.

Sdev is the device-level slowdown, which depicts the slowdown of the slow memory

device related to the fast memory device. When Sdev is higher, the performance penalty

by snapshot tiering becomes higher so TOSS must restrict the number of pages residing

in the slow memory. This value depends on the type of fast and slow memory devices

used for memory tiering. For instance, when the fast memory is DRAM and the slow

memory is Optane™ DC Persistent Memory, the value of this term becomes 3, based on

relative latencies between the two devices [115].

M f unc is the memory stall ratio of a given function calculated as the fraction of

98

the memory stall cycles over the total execution cycles. When a function is more

memory-intensive (higher M f unc), it is more susceptible to performance degradation

when offloaded to the slow memory tier, implying that TOSS must move less memory

pages to slow memory. We measure this in Section 6.2.2.

Once the slow memory access ratio Rslow is calculated, it effectively becomes the

tiering goal that TOSS must achieve to satisfy the slowdown goal S f unc given by the

user.

Cold page selection TOSS selects cold pages in a way that it meets the slow memory

access ratio Rslow. To achieve this, TOSS’s cold page selection algorithm takes Rslow and

memory access temperature acc list (collected in Section 6.2.2) as input, and produces

a set of cold pages Pcold . TOSS repeats this to calculate Pcold,i from ith invocation result.

Finally, TOSS intersects Pcold,1, Pcold,2, ..., Pcold,n to get the final cold page set. The set

intersection ensures that the final result always becomes a subset of Pcold,i, ensuring that

it does not violate the performance target with any input to the function.

Listing 6.1. Cold page selection algorithm

def cold_page_selection(R_slow, acc_list):

sort by access count in ascending order

acc_list.sort(key = lambda x: x[1])

select as many pages as possible that meet R_slow

total_acc_cnt = sum([cnt for _, cnt in acc_list])

acc_cnt = 0

P_cold= []

for page, cnt in acc_list:

acc_cnt += cnt

r = float(acc_cnt) / total_acc_cnt

99

if r > R_slow:

break

P_cold.append(page)

return P_cold

The algorithm is described in Listing 6.1. TOSS first sorts the access count list

acc list, a list of ¡page number, access count¿ pairs, in ascending order based on the

access count (line 3). Then it iterates over the sorted list and adds the page to the output

set Pcold , as long as the accumulated access ratio r is slower than the given Rslow (line

6–15). By choosing the pages with the smallest access counts, TOSS maximizes the size

of Pcold while meeting the given performance goal S f unc.

6.2.4 Function Execution on Tiered Snapshot

Given the cold page set identified by the profiling results and the cold page

selection algorithm, TOSS classifies hot and cold regions of each function’s snapshot.

One region indicates a set of contiguous pages. For each hot region, TOSS creates a

file in fast memory. For each cold region, it creates a file in slow memory. In our TOSS

prototype, we use Ext4 file system in DAX mode [111] and mount it in two different

paths, one is backed by DRAM and the other is backed by PMem.

Once hot and cold files are generated, our modified Firecracker maps them into

a single guest address space which consists of multiple guest memory regions. This

is easily supported by vm-memory substrate in Rust used by the standard Firecracker

implementation. We leverage it to implement tiered memory snapshot in TOSS. Once

the guest memory space is created on top of the tiered memory regions, microVMs

loaded with that memory space run as usual while the underlying memory is now

backed by both fast and slow memory.

100

Table 6.1. TOSS target functions.

Name Description Language Guest VM
Memory Size

lr serving Logistic regression inferencing Python 1024 MB
json load dump Read-Modify-Write JSON files Python 128 MB
image processing Flips the input image Python 256 MB
linpack Solves the linear equation Ax = b Python 256 MB
matmul Generates the matrix product Python, Go 256 MB
pyaes AES Text encryption Python 128 MB
rma Synthetic random memory access Go 128 MB

6.3 Evaluation

We evaluate the performance and effectiveness of TOSS by answering the follow-

ing questions.

• How much memory TOSS can offload to slow memory while meeting the perfor-

mance goal?

• How effectively does TOSS support memory tiering under various functions?

To answer these, we use a representative set of function workloads used by prior

works [59] as specified in Table 6.1. We additionally write the matrix multiplication

function, matmul, in Go to see the impact of using a different programming language

to serve the same function. Moreover, we evaluate a synthetic function, rma, that incurs

heavy, random memory accesses to see how TOSS performs even with functions with

little memory access locality. We use different guest VM memory size to best serve each

function’s memory needs.

Under this environment, we evaluate TOSS with two different performance

target, 5% and 10%, as depicted in Figure 6.3 and Figure 6.4, respectively. The result

indicates TOSS can offload a significant amount of memory to slow memory while

achieving its performance goal. In its best case, TOSS moves more than 90% of memory

101

0 20 40 60 80 100
Slow memory ratio (%)

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Sl

ow
do

wn target

lr_serving_py
json_load_dump_py
image_processing_py
linpack_py
matmul_go
matmul_py_numpy
pyaes_py
rma_go

Figure 6.3. Functions on tiered snapshots under 5% of slowdown goal.

0 20 40 60 80 100
Slow memory ratio (%)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Sl
ow

do
wn target

lr_serving_py
json_load_dump_py
image_processing_py
linpack_py
matmul_go
matmul_py_numpy
pyaes_py
rma_go

Figure 6.4. Functions on tiered snapshots under 10% of slowdown goal.

102

to the slow tier (lr serving py, pyaes py, json load dump py) under both 5% and

10% targets. In its worst case, TOSS still moves about 65% of memory to the slow tier

(rma go) while meeting the performance goals. TOSS achieves this for various inputs

to the same function (different dots in the same color indicate different inputs to the

same function).

6.4 Summary

In this work, we present TOSS, the first platform that helps reduce the memory

cost of serverless computing by leveraging memory tiering. To support this, TOSS newly

introduces tiered snapshot mechanism that takes the best of both microVM snapshotting

and memory tiering. Our evaluation shows that TOSS is able to offload a significant

amount of memory into the slow memory tier while keeping the potential slowdown of

functions under control.

Acknowledgements

This chapter contains material from “TOSS: Tiering of Serverless Snapshots

for Low Cost Serverless Computing”, by Juno Kim, Theodoros Michailidis, Linsong

Guo, Jishen Zhao, and Steven Swanson, which is in preparation for submission to the

European Conference on Computer Systems (EuroSys 2024). The dissertation author is

the primary investigator and the co-first author of this paper.

103

Chapter 7

Conclusion

Emerging memory technologies, such as persistent memory and ultra-low-

latency SSDs, change the tradeoffs system designers must consider. As storage, they

offer considerably faster persistence than traditional SSDs and hard disks. As memory,

they expand the capacity of main memory in a single machine at a lower price than

conventional, expensive DRAM. Despite these advantages, efficiently leveraging them

remains challenging in a variety of software stacks including file systems, databases,

graph processing systems, and serverless computing.

Throughout this dissertation, we have presented software techniques that best

leverage emerging memory technologies in various software stacks. These techniques

enable data-intensive applications and system software to fully utilize the performance,

capacity, direct-accessibility of emerging memories with minimized burden to program-

mers. The techniques we introduced include general solutions implemented in system

software layer such as file system as well as domain-specific solutions aimed for user

applications such as databases or graph processing systems. In addition, the disser-

tation described how emerging memories can be used to lower the cost of datacenter

applications by supporting memory tiering in the serverless computing stack.

In Chapter 3, we have examined the performance of NVMM storage software

stacks to identify the bottlenecks and understand how both applications and the operat-

104

ing system should adapt to exploit NVMM performance.

We examined several applications and identified several simple techniques that

provide significant gains. The most widely applicable of these use FLEX to move

writes to user space, but implementing msync in userspace and assiduously avoiding

metadata operations also help, especially on adapted NVMM file systems. Notably, our

results show that FLEX can deliver nearly the same level of performance as building

crash-consistent data structures in NVMM but with much less effort.

On the file system side, we evaluated solutions to the problems of inefficient

logging in adapted NVMM file systems, multicore scaling limitations in file systems

and the Linux’s VFS layer, and the novel challenge of dealing with NUMA effects in the

context of NVMM storage.

Overall, we find that although there are many opportunities for further improve-

ment, the efforts of systems designers over the last several years to prepare systems for

NVMM have been largely successful. As a result, there are a range of attractive paths

for legacy applications to follow as they migrate to NVMM.

In Chapter 4, we have described and implemented SUBZERO, a new IO mech-

anism that avoids most or all data movement for reads and writes to PMEM-backed

files. In addition to minimizing movement, our implementation of SUBZERO pro-

vides both fast read access and strongly consistent updates. Our evaluation shows

that SUBZERO outperforms copy-based read() and write() by a wide margin. In

summary, SUBZERO IO is a straight-forward way for programmers to improve their

applications’ performance on PMEM file systems.

In Chapter 5, we present Blaze, a new out-of-core graph processing system

optimized for FNDs. Blaze offers high-performance graph analytics by constantly

saturating FNDs with a novel scatter-gather technique called online binning while

previous techniques like synchronization or message passing fail to achieve this goal.

Blaze offers succinct APIs for writing efficient, out-of-core graph algorithms without

105

the burden to deal with complex IO executions.

In Chapter 6, we have presented TOSS, the first platform that helps reduce the

memory cost of serverless computing by leveraging memory tiering. To support this,

TOSS newly introduces tiered snapshot mechanism that takes the best of both microVM

snapshotting and memory tiering. Our evaluation shows that TOSS is able to offload a

significant amount of memory into the slow memory tier while keeping the potential

slowdown of functions under control.

Acknowledgements

This chapter contains material from “Finding and Fixing Performance Patholo-

gies in Persistent Memory Software Stacks”, by Jian Xu, Juno Kim, Amirsaman

Memaripour, and Steven Swanson, which appeared in the 24th ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS 2019). The dissertation author is the primary investigator and the co-first

author of this paper.

This chapter contains material from “SubZero: Zero-Copy IO for Persistent Main

Memory File Systems”, by Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen Zhao, and

Steven Swanson, which appeared in the 11th ACM SIGOPS Asia-Pacific Workshop on

Systems (APSys 2020). The dissertation author is the primary investigator and the first

author of this paper.

This chapter contains material from “Blaze: Fast Graph Processing on Fast SSDs”,

by Juno Kim and Steven Swanson, which appeared in the International Conference

for High Performance Computing, Networking, Storage, and Analysis (SC 2022). The

dissertation author is the primary investigator and the first author of this paper.

This chapter contains material from “TOSS: Tiering of Serverless Snapshots

for Low Cost Serverless Computing”, by Juno Kim, Theodoros Michailidis, Linsong

106

Guo, Jishen Zhao, and Steven Swanson, which is in preparation for submission to the

European Conference on Computer Systems (EuroSys 2024). The dissertation author is

the primary investigator and the co-first author of this paper.

107

Bibliography

[1] Apache bench (ab) - apache http server benchmarking tool. https://httpd.apache.
org/docs/2.4/en/programs/ab.html.

[2] Extent swap in Ext4. https://www.kernel.org/doc/Documentation/filesystems/
ext4.txt.

[3] Intel optane ssd 9 series. https://www.intel.com/content/www/us/en/
products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html.

[4] A programmer’s guide to the mach system calls. http://shakthimaan.com/
downloads/hurd/A.Programmers.Guide.to.the.Mach.System.Calls.pdf.

[5] Samsung v-nand ssd. https://www.samsung.com/us/business/computing/
memory-storage/solid-state-drives/explore/.

[6] Samsung z-ssd. https://semiconductor.samsung.com/ssd/z-ssd/.

[7] CVE-2010-2066, 2010. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2010-2066.

[8] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A new kernel foundation for unix
development. pages 93–112, 1986.

[9] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight
virtualization for serverless applications. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 419–434, Santa Clara, CA,
February 2020. USENIX Association.

[10] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze, Carsten
Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian
Seifert, Surendra Vishnoi, Daniel Booss, Thomas Peh, Ivan Schreter, Werner
Thesing, Mehul Wagle, and Thomas Willhalm. SAP HANA Adoption of Non-
volatile Memory. Proc. VLDB Endow., 10(12):1754–1765, August 2017.

[11] Apple File System, 2017. https://en.wikipedia.org/wiki/Apple File System.

108

https://httpd.apache.org/docs/2.4/en/programs/ab.html
https://httpd.apache.org/docs/2.4/en/programs/ab.html
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
http://shakthimaan.com/downloads/hurd/A.Programmers.Guide.to.the.Mach.System.Calls.pdf
http://shakthimaan.com/downloads/hurd/A.Programmers.Guide.to.the.Mach.System.Calls.pdf
https://www.samsung.com/us/business/computing/memory-storage/solid-state-drives/explore/
https://www.samsung.com/us/business/computing/memory-storage/solid-state-drives/explore/
https://semiconductor.samsung.com/ssd/z-ssd/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2066
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2066
https://en.wikipedia.org/wiki/Apple_File_System

[12] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. BzTree:
A high-performance latch-free range index for non-volatile memory. Proc. VLDB
Endow., 11(5):553–565, January 2018.

[13] S. Beamer, K. Asanović, and D. Patterson. Reducing pagerank communication via
propagation blocking. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 820–831, 2017.

[14] Scott Beamer, Krste Asanovic, and David Patterson. Locality exists in graph
processing: Workload characterization on an ivy bridge server. In Proceedings
of the 2015 IEEE International Symposium on Workload Characterization, IISWC ’15,
page 56–65, USA, 2015. IEEE Computer Society.

[15] Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP benchmark suite.
CoRR, abs/1508.03619, 2015.

[16] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. Makalu: Fast
recoverable allocation of non-volatile memory. In Proceedings of the 2016 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, pages 677–694, New York, NY, USA, 2016. ACM.

[17] Meenakshi Sundaram Bhaskaran, Jian Xu, and Steven Swanson. Bankshot:
Caching Slow Storage in Fast Non-volatile Memory. In Proceedings of the 1st
Workshop on Interactions of NVM/FLASH with Operating Systems and Workloads,
INFLOW ’13, pages 1:1–1:9, New York, NY, USA, 2013. ACM.

[18] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek, and
Nickolai Zeldovich. Scaling a File System to Many Cores Using an Operation
Log. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
pages 69–86, New York, NY, USA, 2017. ACM.

[19] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. An Analysis of
Linux Scalability to Many Cores. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, pages 1–16, Berkeley, CA,
USA, 2010. USENIX Association.

[20] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
Non-scalable locks are dangerous. In Proceedings of the Linux Symposium, pages
119–130, 2012.

[21] Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of
Mathematical Sociology, 25(2):163–177, 2001.

[22] Matthew J. Breitwisch. Phase change memory. Interconnect Technology Conference,
2008. IITC 2008. International, pages 219–221, June 2008.

109

[23] Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De, Joel Coburn, and
Steven Swanson. Providing Safe, User Space Access to Fast, Solid State Disks. In
Proceeding of the 17th international conference on Architectural support for programming
languages and operating systems. ACM, March 2012.

[24] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging
locks for non-volatile memory consistency. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 433–452. ACM, 2014.

[25] Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang, and Mingdi Xue. Opti-
mizing File Systems with Fine-grained Metadata Journaling on Byte-addressable
NVM. ACM Trans. Storage, 13(2):13:1–13:25, May 2017.

[26] Jianxi Chen, Qingsong Wei, Cheng Chen, and Lingkun Wu. FSMAC: A file system
metadata accelerator with non-volatile memory. In Mass Storage Systems and
Technologies (MSST), 2013 IEEE 29th Symposium on, pages 1–11. IEEE, 2013.

[27] Dave Chinner. xfs: updates for 4.2-rc1, 2015. http://oss.sgi.com/archives/xfs/
2015-06/msg00478.html.

[28] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan Chang,
Beakhyoung Cho, Jinyoung Kim, Younghoon Oh, Duckmin Kwon, Jung Sunwoo,
Junho Shin, Yoohwan Rho, Changsoo Lee, Min Gu Kang, Jaeyun Lee, Yongjin
Kwon, Soehee Kim, Jaehwan Kim, Yong-Jun Lee, Qi Wang, Sooho Cha, Sujin Ahn,
H. Horii, Jaewook Lee, Kisung Kim, Hansung Joo, Kwangjin Lee, Yeong-Taek
Lee, Jeihwan Yoo, and G. Jeong. A 20nm 1.8V 8Gb PRAM with 40MB/s program
bandwidth. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2012 IEEE International, pages 46–48, Feb 2012.

[29] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris,
and Eddie Kohler. The scalable commutativity rule: Designing scalable software
for multicore processors. ACM Trans. Comput. Syst., 32(4):10:1–10:47, January
2015.

[30] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast and
safe with next-generation, non-volatile memories. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’11, pages 105–118, New York, NY, USA, 2011. ACM.

[31] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable, per-
sistent memory. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 133–146, New York, NY, USA, 2009. ACM.

110

http://oss.sgi.com/archives/xfs/2015-06/msg00478.html
http://oss.sgi.com/archives/xfs/2015-06/msg00478.html

[32] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154. ACM, 2010.

[33] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch,
Phillip B. Gibbons, and Julian Shun. Sage: Parallel semi-asymmetric graph
algorithms for nvrams. Proc. VLDB Endow., 13(9):1598–1613, May 2020.

[34] Mingkai Dong and Haibo Chen. Soft updates made simple and fast on non-
volatile memory. In 2017 USENIX Annual Technical Conference (USENIX ATC 17),
pages 719–731, Santa Clara, CA, 2017. USENIX Association.

[35] Mingkai Dong, Qianqian Yu, Xiaozhou Zhou, Yang Hong, Haibo Chen, and Binyu
Zang. Rethinking benchmarking for NVM-based file systems. In Proceedings of
the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’16, pages 20:1–20:7,
New York, NY, USA, 2016. ACM.

[36] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System Software for Persistent
Memory. In Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 15:1–15:15, New York, NY, USA, 2014. ACM.

[37] Nima Elyasi, Changho Choi, and Anand Sivasubramaniam. Large-scale graph
processing on emerging storage devices. In Proceedings of the 17th USENIX Confer-
ence on File and Storage Technologies, FAST’19, page 309–316, USA, 2019. USENIX
Association.

[38] Facebook. RocksDB, 2017. http://rocksdb.org.

[39] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard,
K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush. A 16Gb ReRAM with 200MB/s
write and 1GB/s read in 27nm technology. In Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2014 IEEE International, pages 338–339, Feb 2014.

[40] FAL Labs. Kyoto Cabinet: a straightforward implementation of DBM, 2010.
http://fallabs.com/kyotocabinet/.

[41] Firecracker authors. Firecracker snapshotting. https://github.
com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/
snapshot-support.md.

[42] Alexander Fuerst and Prateek Sharma. Faascache: Keeping serverless comput-
ing alive with greedy-dual caching. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2021, page 386–400, New York, NY, USA, 2021. Association for
Computing Machinery.

111

http://rocksdb.org
http://fallabs.com/kyotocabinet/
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md

[43] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’12, page 17–30, USA, 2012. USENIX Association.

[44] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. Turbograph: A fast parallel graph engine handling
billion-scale graphs in a single pc. In Proceedings of the 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’13, page 77–85,
New York, NY, USA, 2013. Association for Computing Machinery.

[45] Robin Harris. Windows leaps into the NVM revolution, 2016. http://www.zdnet.
com/article/windows-leaps-into-the-nvm-revolution/.

[46] Hewlett Packard Enterprise. HPE Scalable Persistent Memory, 2018. https:
//www.hpe.com/us/en/servers/persistent-memory.html.

[47] Intel. NVDIMM Namespace Specification, 2015. http://pmem.io/documents/
NVDIMM Namespace Spec.pdf.

[48] Intel. Intel Architecture Instruction Set Extensions Programming Refer-
ence, 2017. https://software.intel.com/sites/default/files/managed/0d/53/
319433-022.pdf.

[49] Silicon Graphics International. XFS: A High-performance Journaling Filesystem.
http://oss.sgi.com/projects/xfs.

[50] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin Lee, and Youjip Won.
AndroStep: Android Storage Performance Analysis Tool. In Software Engineering
(Workshops), volume 13, pages 327–340, 2013.

[51] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. I/O
Stack Optimization for Smartphones. In Presented as part of the 2013 USENIX
Annual Technical Conference (USENIX ATC 13), pages 309–320, San Jose, CA, 2013.
USENIX.

[52] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. Grafboost:
Using accelerated flash storage for external graph analytics. In Proceedings of
the 45th Annual International Symposium on Computer Architecture, ISCA ’18, page
411–424. IEEE Press, 2018.

[53] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. Splitfs: Reducing software overhead in file systems
for persistent memory. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 494–508, New York, NY, USA, 2019. Association
for Computing Machinery.

112

http://www.zdnet.com/article/windows-leaps-into-the-nvm-revolution/
http://www.zdnet.com/article/windows-leaps-into-the-nvm-revolution/
https://www.hpe.com/us/en/servers/persistent-memory.html
https://www.hpe.com/us/en/servers/persistent-memory.html
http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
http://oss.sgi.com/projects/xfs

[54] Dong Hyun Kang, Gihwan Oh, Dongki Kim, In Hwan Doh, Changwoo Min,
Sang-Won Lee, and Young Ik Eom. When address remapping techniques meet
consistency guarantee mechanisms. In 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 18), Boston, MA, 2018. USENIX Association.

[55] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai Ma, and
Jinpeng Huai. SpanFS: A Scalable File System on Fast Storage Devices. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), pages 249–261, Santa
Clara, CA, 2015. USENIX Association.

[56] U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. Pegasus: A peta-
scale graph mining system implementation and observations. 2009 Ninth IEEE
International Conference on Data Mining, pages 229–238, 2009.

[57] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Scalable numa-aware
blocking synchronization primitives. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 603–615, Santa Clara, CA, 2017. USENIX Association.

[58] Takayuki Kawahara. Scalable Spin-Transfer Torque RAM Technology for
Normally-Off Computing. Design & Test of Computers, IEEE, 28(1):52–63, Jan
2011.

[59] Jeongchul Kim and Kyungyong Lee. Practical cloud workloads for serverless
faas. In Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19, page
477, New York, NY, USA, 2019. Association for Computing Machinery.

[60] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip
Won. NVWAL: Exploiting NVRAM in Write-Ahead Logging. In Proceedings of
the Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, pages 385–398, New York, NY, USA,
2016. ACM.

[61] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping the per-
formance of fast nvm storage with udepot. In Proceedings of the 17th USENIX
Conference on File and Storage Technologies, FAST’19, page 1–15, USA, 2019. USENIX
Association.

[62] Youngjin Kwon. Personal communication, 2018.

[63] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, and
Thomas Anderson. Strata: A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, pages 460–477, New York,
NY, USA, 2017. ACM.

[64] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph
computation on just a pc. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, page 31–46, USA, 2012. USENIX
Association.

113

[65] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase
change memory as a scalable DRAM alternative. In ISCA ’09: Proceedings of the
36th Annual International Symposium on Computer Architecture, pages 2–13, New
York, NY, USA, 2009. ACM.

[66] Wongun Lee, Keonwoo Lee, Hankeun Son, Wook-Hee Kim, Beomseok Nam, and
Youjip Won. WALDIO: Eliminating the Filesystem Journaling in Resolving the
Journaling of Journal Anomaly. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 235–247, Santa Clara, CA, 2015. USENIX Association.

[67] Hang Liu and H. Howie Huang. Graphene: Fine-grained IO management for
graph computing. In 15th USENIX Conference on File and Storage Technologies (FAST
17), pages 285–300, Santa Clara, CA, February 2017. USENIX Association.

[68] Ran Liu, Heng Zhang, and Haibo Chen. Scalable Read-mostly Synchronization
Using Passive Reader-Writer Locks. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 219–230, Philadelphia, PA, 2014. USENIX Association.

[69] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M. Hellerstein. Distributed graphlab: A framework for machine
learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, April
2012.

[70] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persistent
memcached: Bringing legacy code to byte-addressable persistent memory. In 9th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 17), Santa
Clara, CA, 2017. USENIX Association.

[71] Paul E McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger, Rusty Russell,
Dipankar Sarma, and Maneesh Soni. Read-copy update. In AUUG Conference
Proceedings, page 175. AUUG, Inc., 2001.

[72] Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at what
cost? In Proceedings of the 15th USENIX Conference on Hot Topics in Operating
Systems, HOTOS’15, page 14, USA, 2015. USENIX Association.

[73] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ram-
natthan Alagappan, Karin Strauss, and Steven Swanson. Atomic in-place updates
for non-volatile main memories with kamino-tx. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys ’17, pages 499–512, New York,
NY, USA, 2017. ACM.

[74] Micron. 3D XPoint Technology, 2017. http://www.micron.com/products/
advanced-solutions/3d-xpoint-technology.

[75] Micron. Hybrid Memory: Bridging the Gap Between DRAM Speed and
NAND Nonvolatility, 2017. http://www.micron.com/products/dram-modules/
nvdimm.

114

http://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://www.micron.com/products/dram-modules/nvdimm
http://www.micron.com/products/dram-modules/nvdimm

[76] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and Taesoo Kim. Under-
standing Manycore Scalability of File Systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 71–85, Denver, CO, 2016. USENIX Association.

[77] MongoDB, Inc. MongoDB, 2017. https://www.mongodb.com.

[78] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastruc-
ture for graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 456–471, New York, NY, USA, 2013.
Association for Computing Machinery.

[79] H. Noguchi, K. Ikegami, K. Kushida, K. Abe, S. Itai, S. Takaya, N. Shimomura,
J. Ito, A. Kawasumi, H. Hara, and S. Fujita. A 3.3ns-access-time 71.2uW/MHz
1Mb embedded STT-MRAM using physically eliminated read-disturb scheme
and normally-off memory architecture. In Solid-State Circuits Conference (ISSCC),
2015 IEEE International, pages 1–3, Feb 2015.

[80] Gihwan Oh, Sangchul Kim, Sang-Won Lee, and Bongki Moon. SQLite Optimiza-
tion with Phase Change Memory for Mobile Applications. Proc. VLDB Endow.,
8(12):1454–1465, August 2015.

[81] Gihwan Oh, Chiyoung Seo, Ravi Mayuram, Yang-Suk Kee, and Sang-Won Lee.
Share interface in flash storage for relational and nosql databases. In Proceedings
of the 2016 International Conference on Management of Data, SIGMOD ’16, pages
343–354, New York, NY, USA, 2016. ACM.

[82] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Will-
halm, and Grégoire Gomes. Memory management techniques for large-scale
persistent-main-memory systems. Proc. VLDB Endow., 10(11):1166–1177, August
2017.

[83] Daejun Park and Dongkun Shin. iJournaling: Fine-Grained Journaling for Improv-
ing the Latency of Fsync System Call. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 787–798, Santa Clara, CA, 2017. USENIX Association.

[84] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Ala-
gappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All File Systems Are Not Created Equal: On the Complexity of Crafting
Crash-Consistent Applications. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 433–448, Broomfield, CO, October
2014. USENIX Association.

[85] pmem.io. Persistent Memory Development Kit, 2017. http://pmem.io/pmdk.

[86] S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen, R.M. Shelby,
M. Salinga, D. Krebs, S.-H. Chen, H. L Lung, and C.H. Lam. Phase-change random
access memory: A scalable technology. IBM Journal of Research and Development,
52(4.5):465–479, July 2008.

115

https://www.mongodb.com
http://pmem.io/pmdk

[87] redislabs. Redis, 2017. https://redis.io.

[88] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-Tree Filesystem.
Trans. Storage, 9(3):9:1–9:32, August 2013.

[89] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric
graph processing using streaming partitions. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, page 472–488, New
York, NY, USA, 2013. Association for Computing Machinery.

[90] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. What serverless computing is and should become: The next
phase of cloud computing. Commun. ACM, 64(5):76–84, apr 2021.

[91] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso Plattner.
nvm malloc: Memory allocation for nvram. In ADMS@ VLDB, pages 61–72, 2015.

[92] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok Nam, and Sam H. Noh.
Failure-atomic slotted paging for persistent memory. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, pages 91–104, New York, NY, USA, 2017.
ACM.

[93] SeongJae Park. DAMON: Data Access Monitor. https://sjp38.github.io/post/
damon/.

[94] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218. USENIX Association, July 2020.

[95] Julian Shun. An Evaluation of Parallel Eccentricity Estimation Algorithms on Undi-
rected Real-World Graphs, page 1095–1104. Association for Computing Machinery,
New York, NY, USA, 2015.

[96] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing frame-
work for shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’13, page 135–146, New York,
NY, USA, 2013. Association for Computing Machinery.

[97] Yongseok Son, Sunggon Kim, Heon Y. Yeom, and Hyuck Han. High-performance
transaction processing in journaling file systems. In 16th USENIX Conference on
File and Storage Technologies (FAST 18), pages 227–240, Oakland, CA, 2018. USENIX
Association.

116

https://redis.io
https://sjp38.github.io/post/damon/
https://sjp38.github.io/post/damon/

[98] SQLite. SQLite, 2017. https://www.sqlite.org.

[99] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. Shortcutting
label propagation for distributed connected components. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, WSDM ’18,
page 540–546, New York, NY, USA, 2018. Association for Computing Machinery.

[100] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.
The missing memristor found. Nature, 453(7191):80–83, 2008.

[101] Symas. Lightning Memory-Mapped Database (LMDB), 2017. https://symas.
com/lmdb/.

[102] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible framework
for file system benchmarking. USENIX; login, 41, 2016.

[103] Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao Zhang, and Don-
ald E. Porter. How to Get More Value from Your File System Directory Cache. In
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages
441–456, New York, NY, USA, 2015. ACM.

[104] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. Benchmarking, Analysis, and Optimization of Serverless Function Snapshots,
page 559–572. Association for Computing Machinery, New York, NY, USA, 2021.

[105] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy Camp-
bell. Consistent and durable data structures for non-volatile byte-addressable
memory. In Proceedings of the 9th USENIX Conference on File and Storage Technologies,
FAST ’11, San Jose, CA, USA, February 2011. USENIX Association.

[106] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan
Varadarajan, Prashant Saxena, and Michael M. Swift. Aerie: Flexible file-system
interfaces to storage-class memory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 14:1–14:14, New York, NY, USA, 2014.
ACM.

[107] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight
persistent memory. In ASPLOS ’11: Proceeding of the 16th International Conference
on Architectural Support for Programming Languages and Operating Systems, New
York, NY, USA, 2011. ACM.

[108] Keval Vora. LUMOS: Dependency-driven disk-based graph processing. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 429–442, Renton,
WA, July 2019. USENIX Association.

[109] Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Mateescu, Filip Blagojević,
Luiz Franca-Neto, Damien Le Moal, Trevor Bunker, Jian Xu, Steven Swanson,

117

https://www.sqlite.org
https://symas.com/lmdb/
https://symas.com/lmdb/

and Zvonimir Bandić. DC Express: Shortest Latency Protocol for Reading Phase
Change Memory over PCI Express. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies, FAST ’14, pages 309–315, Santa Clara, CA, 2014.
USENIX.

[110] Zev Weiss, Sriram Subramanian, Swaminathan Sundararaman, Nisha Talagala,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Anvil: Advanced virtu-
alization for modern non-volatile memory devices. In 13th USENIX Conference
on File and Storage Technologies (FAST 15), pages 111–118, Santa Clara, CA, 2015.
USENIX Association.

[111] Matthew Wilcox. Add support for NV-DIMMs to ext4, 2014. https://lwn.net/
Articles/613384/.

[112] Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 323–338, Santa Clara, CA, February 2016.
USENIX Association.

[113] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit
Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. NOVA-Fortis:
A fault-tolerant non-volatile main memory file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, pages 478–496, New York,
NY, USA, 2017. ACM.

[114] Jian Yang, Joseph Izraelevitz, and Steven Swanson. Orion: A distributed file sys-
tem for non-volatile main memories and rdma-capable networks. In Proceedings of
the 17th USENIX Conference on File and Storage Technologies, FAST’19, page 221–234,
USA, 2019. USENIX Association.

[115] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swan-
son. An empirical guide to the behavior and use of scalable persistent memory. In
18th USENIX Conference on File and Storage Technologies (FAST 20), pages 169–182,
Santa Clara, CA, February 2020. USENIX Association.

[116] Jisoo Yang, Dave B. Minturn, and Frank Hady. When poll is better than interrupt.
In Proceedings of the 10th USENIX Conference on File and Storage Technologies, FAST
’12, pages 3–3, Berkeley, CA, USA, 2012. USENIX.

[117] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. NV-Tree: Reducing consistency cost for NVM-based single level
systems. In 13th USENIX Conference on File and Storage Technologies, FAST ’15,
pages 167–181, Santa Clara, CA, February 2015. USENIX Association.

[118] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

118

https://lwn.net/Articles/613384/
https://lwn.net/Articles/613384/

In Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, page 2, USA, 2012. USENIX Association.

[119] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. Graphit: A high-performance graph dsl. Proc. ACM
Program. Lang., 2(OOPSLA), October 2018.

[120] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln:
Closing the performance gap between systems with and without persistence
support. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, pages 421–432, New York, NY, USA, 2013. ACM.

[121] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,
and Alexander S. Szalay. Flashgraph: Processing billion-node graphs on an array
of commodity ssds. In 13th USENIX Conference on File and Storage Technologies
(FAST 15), pages 45–58, Santa Clara, CA, February 2015. USENIX Association.

[122] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data
with label propagation. Technical report, 2002.

[123] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph
processing on a single machine using 2-level hierarchical partitioning. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), pages 375–386, Santa
Clara, CA, July 2015. USENIX Association.

[124] Ross Zwisler. Add support for new persistent memory instructions. https:
//lwn.net/Articles/619851/.

119

https://lwn.net/Articles/619851/
https://lwn.net/Articles/619851/

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background and Motivation
	Persistent Memory
	Evolution of SSDs
	Challenges of Using Emerging Memories
	As Persistent Storage
	As Volatile Memory

	Finding and Fixing Performance Pathologies in Persistent Memory Software Stacks
	Background
	NVMM File Systems and DAX
	NVMM programming

	Adapting applications to NVMM
	SQLite
	Kyoto Cabinet and LMDB
	RocksDB and Redis
	Evaluating FLEX
	Best Practices
	Reducing journaling overhead

	File System Scalability
	FxMark scalability test suite
	Concurrent file read/write
	Directory Accesses
	NUMA Scalability

	Summary

	SubZero: Zero-Copy IO for Persistent Main Memory File Systems
	Motivation
	SubZero IO
	The SubZero Interface
	Using SubZero

	Implementing SubZero
	NOVA file system
	XFS-DAX file system

	Evaluation
	Micro-benchmarks
	Applications

	Related Work
	Summary

	Blaze: Fast Graph Processing on Fast SSDs
	Background and Motivation
	Out-of-core Graph Processing
	Target Datasets
	Issues with Current Out-of-core Systems

	Reasons of Low IO Utilization in Current Systems
	Skewed Computation
	Skewed IO
	Fast IO, Slow Computation

	Blaze Framework
	Online Binning
	Programming API
	Out-of-core edgeMap Execution
	Examples
	Balanced IO
	Memory Usage

	Evaluation
	Experimental Setting
	Comparison with Other Systems
	IO Utilization
	Scalability
	Impact of Online Binning Configurations
	Memory Usage

	Related Work
	Summary

	TOSS: Tiering of Serverless Snapshots for Low Cost Serverless Computing
	Background and Motivation
	Serverless Computing
	Firecracker as Function Instance
	Memory Tiering
	Motivation

	TOSS
	Overview
	Memory Access Profiling
	Performance-driven Snapshot Tiering
	Function Execution on Tiered Snapshot

	Evaluation
	Summary

	Conclusion
	Bibliography

