
UCLA
UCLA Electronic Theses and Dissertations

Title

Novel Implicit Discretization and Solutions for Elastic Solids and Fluids

Permalink

https://escholarship.org/uc/item/5wn0w5qh

Author

Chen, Jingyu

Publication Date

2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wn0w5qh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Novel Implicit Discretization and Solutions for Elastic Solids and Fluids

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

Jingyu Chen

2024

© Copyright by

Jingyu Chen

2024

ABSTRACT OF THE DISSERTATION

Novel Implicit Discretization and Solutions for Elastic Solids and Fluids

by

Jingyu Chen

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2024

Professor Joseph M. Teran, Co-Chair

Professor Hossein Pirouz Kavehpour, Co-Chair

Physics-based simulations are a powerful tool in both computer graphics and engineering

applications. Implicit discretization is essential for accurate, stable, and efficient simulations

of solids and fluids.

In this thesis, we first present a novel implicit Material Point Method (MPM) discretiza-

tion of spatially varying surface energies. Our discretization is based on surface energy,

enabling implicit time stepping and capturing surface gradients without explicitly resolving

them as in traction-condition-based approaches. We include an implicit discretization of

thermomechanical material coupling with novel particle-based enforcement of Robin bound-

ary conditions. Lastly, we design a particle resampling approach for perfect conservations of

linear and angular momentum with Affine-Particle-In-Cell (APIC) [JSS15].

The second part presents a novel deep-learning approach to approximate the solution

of large, sparse, symmetric, positive-definite linear systems of equations. Our method is

motivated by the conjugate gradients algorithm that iteratively selects search directions for

minimizing the matrix norm of the approximation error. We use a deep neural network to

ii

accelerate convergence via data-driven improvement of the search direction at each iteration.

We demonstrate the efficacy of our approach on discretized Poisson equations with millions

of degrees of freedom. Our algorithm can reduce the linear system residual to the target

tolerance in a small number of iterations, independent of the problem size, and generalize

effectively to various systems beyond those encountered during training.

Finally, we present improvements to Position Based Dynamics (PBD) [MHH07] and Ex-

tended Position Based Dynamics (XPBD) [MMC16] methods, which are variants of implicit

time integrator. PBD/XPBD are powerful methods for the real-time simulation of elastic

objects, but they do not always converge. We isolate the root cause in the approximate

linearization of the nonlinear backward Euler systems utilized by XPBD. We provide two

extensions to XPBD to address the non-convergence and support general hyperelastic mod-

els. The following chapter presents a novel position-based nonlinear Gauss-Seidel approach

for quasistatic simulations of elastic objects. This approach retains the essential PBD feature

of stable behavior with limited computational budgets and allows for convergent behavior

when the budgets expand.

iii

The dissertation of Jingyu Chen is approved.

Jeffrey D. Eldredge

Lihua Jin

Hossein Pirouz Kavehpour, Committee Co-Chair

Joseph M. Teran, Committee Co-Chair

University of California, Los Angeles

2024

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Material Point Method for Surface Tension 2

1.2 Deep Conjugate Direction Method . 3

1.3 Efficient Simulations of Elastic Solids . 4

1.3.1 Primal Extended Position Based Dynamics 6

1.3.2 Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity 7

1.4 Dissertation Overview . 8

2 Continuum Mechanics and Material Point Method 10

2.1 Continuum Mechanics . 10

2.1.1 Kinematic Theory . 10

2.1.2 Balance Laws . 12

2.1.3 Constitutive Relations . 14

2.2 Material Point Method . 14

2.2.1 MPM Algorithm . 15

2.2.2 Weak Form . 15

2.2.3 Discretization . 16

2.2.4 Transfer Schemes . 20

3 A Momentum-Conserving Implicit Material Point Method for Surface Ten-

sion with Spatial Gradients . 22

3.1 Governing Equations . 22

v

3.1.1 Kinematics . 23

3.1.2 Conservation of Mass and Momentum 25

3.1.3 Conservation of energy . 26

3.1.4 Variational Form of Momentum Balance 27

3.1.5 Thermomechanical Material Dependence and Phase Change 29

3.1.6 Contact Angle . 29

3.2 Discretization . 30

3.2.1 Conservative Surface Particle Resampling 30

3.2.2 Transfer: P2G . 35

3.2.3 Grid Momentum and Temperature Update 35

3.2.4 Transfer: G2P . 38

3.3 Examples . 40

3.3.1 Conservation . 40

3.3.2 Thermal Boundary Conditions . 41

3.3.3 Droplet Impact on Dry Surface . 43

3.3.4 Droplets on Ramps . 45

3.3.5 Lid-Driven Cavity . 46

3.3.6 Contact Angles . 47

3.3.7 Soap Droplet in Water . 48

3.3.8 Wine Glass . 49

3.3.9 Candles . 49

3.3.10 Droplet with Marangoni Effect . 51

3.3.11 Performance . 52

vi

3.4 Discussion and Future Work . 52

4 A Deep Conjugate Direction Method for Iteratively Solving Linear Sys-

tems . 56

4.1 Motivation: Incompressible Flow . 56

4.2 Deep Conjugate Direction Method . 58

4.3 Model Architecture, Datasets, and Training 61

4.3.1 Loss Function and Self-supervised Learning 62

4.3.2 Model Architecture . 65

4.3.3 Training . 66

4.4 Results and Analysis . 66

4.5 Conclusions . 71

5 Primal Extended Position Based Dynamics for Hyperelasticity 73

5.1 Methods . 73

5.1.1 Equations . 73

5.1.2 XPBD . 75

5.1.3 Primary residual XPBD (PXPBD) 77

5.2 Parallelism . 85

5.3 Examples . 86

5.3.1 Residual Comparison . 87

5.3.2 Equal Budget Comparison . 87

5.3.3 XPBD Hyperelastic . 88

5.3.4 XPBD Neohookean . 88

5.3.5 Grid-Based B-PXPBD Examples . 90

vii

5.4 Discussion and Limitations . 91

6 Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity . 93

6.1 Equations . 94

6.1.1 Constitutive Models . 95

6.2 Discretization . 96

6.2.1 Weak Constraints . 98

6.3 Gauss-Seidel Notation . 98

6.4 Position-Based Dynamics: Constraint-Based Nonlinear Gauss-Seidel 99

6.4.1 Quasistatics . 100

6.4.2 XPBD Convergence . 102

6.5 Position-Based Nonlinear Gauss-Seidel . 102

6.5.1 Modified Hessian . 104

6.5.2 Acceleration Techniques . 105

6.6 Lamé Coefficients . 106

6.7 Coloring and Parallelism . 109

6.7.1 Collision Coloring . 109

6.8 Examples . 110

6.8.1 Stretching Block . 111

6.8.2 Collisions . 114

6.8.3 Varying Stiffness . 116

6.8.4 PBD . 117

6.8.5 XPBD . 118

6.8.6 PBNG vs. PBD and Limited Newton 119

viii

6.9 Discussion and Limitations . 119

A Supplementary Material for Surface Tension 121

A.1 Preliminaries . 121

A.2 Conservative Splitting . 124

A.3 Conservative Merging . 126

B Supplementary Material for DCDM . 129

B.1 Conjugate Gradients Method . 129

B.2 Choice of α . 131

B.3 Additional Convergence Results . 132

B.4 Ablation Study and Runtime Analysis . 133

B.5 Model training . 135

C Supplementary Material for XPBD . 137

C.1 First Piola-Kirchhoff XPBD System . 137

C.1.1 Mass Term Computation . 139

C.1.2 Quasi-Newton . 140

C.1.3 Corotated Fiber Term . 140

C.2 Parallel Gauss-Seidel . 141

D Supplementary Material for Nonlinear Gauss-Seidel 143

D.1 Linear Elasticity . 143

D.1.1 Potential . 143

D.1.2 First-Piola-Kirchhoff Stress . 143

ix

D.1.3 Hessian . 143

D.1.4 General Isotropic Elasticity Modified Hessian 144

D.2 Neo-Hookean . 145

D.2.1 Neo-Hookean Potential . 145

D.2.2 First-Piola-Kirchhoff Stress . 145

D.2.3 Hessian . 145

D.2.4 Lamé Coefficients . 147

References . 148

x

LIST OF FIGURES

2.1 The object at time t = 0 is considered as the reference configuration. The refer-

ence configuration is the object at time t, which can be mapped from the reference

configuration. 10

3.1 Our method enables the simulation of a wide variety of thermomechanical and

surface-tension-driven effects. (Top) Letter-shaped candles melt and interact.

(Bottom) A large melting candle; soap spreading on a water surface; water

droplets falling and streaking on ramps; partial rebound of a water droplet im-

pact; wine settling in a glass; a water droplet settling on a hydrophobic surface. 22

3.2 A portion of an MPM fluid in the simulation domain. Surface particles (yellow)

are sampled on faces of the zero isocontour of the level set formed by unioning

spherical level sets around each MPM particle. Each surface particle generates

an associated balance particle (red) such that the closest MPM particle (blue) to

a boundary particle lies on the midpoint of a line segment between the surface

particle and balance particle. A single blue particle at xp may be paired with

multiple surface particles and balance particles, and they are considered to be

in a particle group Πp. MPM particles that are not associated with any surface

tension particles are marked as black. 31

3.3 Isocontour and sampled boundary particles for an ellipsoid. (Left) Using the

method of Hyde et al. [HGM20]. Note how low-quality triangles are undersampled

and how sample points often clump near triangle centers. (Right) The present

method, which does not suffer from similar issues. 32

xi

3.4 Splitting. After surface particles (yellow) are created, the mass and momentum

of the interior MPM particles (blue) that are closest to the surface particles are

immediately distributed. Particles in each particle group are assigned equal mass.

MPM particles (black) that are not paired with any surface particles remain intact

for the splitting process. Surface particles (yellow) and balance particles (red)

are assigned the same linear velocity and affine velocity of the original particle

(blue). 34

3.5 Merging. The merging process is a modified version of G2P. For the particles

that are not associated with surface particles (black), a regular G2P is performed.

Among each particle group, we calculate each particle’s contribution to the grid

momentum and the generalized affine moments of their summed momenta about

their center of mass. Then, we restore the mass of the original particle associated

with the group prior to the split and compute its generalized affine inertia tensor

from its grid mass distribution. Using the affine inertia tensor of the original

particle, we compute generalized velocity of the particle after the merging from

the generalized moments of the group. 38

3.6 The present method (blue) conserves total mass, total linear and angular mo-

mentum, and center of mass, unlike the method of Hyde et al. [HGM20] (red). . 41

3.7 An elliptical droplet oscillates under surface tension. The black dot indicates the

initial location of the particles’ center of mass, while the red dot is the position of

the current center of mass. The drops in (a) are after 6 oscillation cycles, and the

drops in (b) are after 18 cycles. The method of Hyde et al. [HGM20] does not

conserve the momentum, so the center of mass drifts. Our method is conservative

and preserves the center of mass even over a long period of time. 42

xii

3.8 Heat transfer in two discs. The discs initially have linear temperature distribution.

Simulation A has the Robin boundary condition applied, while simulation B

has only internal thermal conduction. The temperature in each disc reaches

equilibrium over time. With the Robin boundary condition, the temperature of

each disc approaches the ambient temperature. 43

3.9 Constant heat flux is applied to a small section of the disc boundary. The location

of the heat flux rotates about the center of the disc at a constant speed. Robin

boundary condition is enabled in simulation A and disabled in simulation B. . . 44

3.10 (a) Spherical droplets with different surface tension coefficients free fall from the

same height. In the top figure, from left to right, the surface tension coefficients

are kσ = 20, 5, 1, 0.1, 0.05N/m. (b) full rebound of the droplet (initial height:

3.5m and kσ = 15N/m). (c) partial rebound of the droplet (initial height: 2.5m

and kσ = 5N/m). 45

3.11 Liquid drops fall on a ramp with varying ratios between the solid-liquid and

liquid-air surface tension coefficients. From left to right: ratios of 1.0, 0.6, 0.3,

0.05. (Left) Frame 60. (Right) Frame 100. 46

3.12 Frame 500 of a two-dimensional lid-driven cavity simulation. The simulation is

initially stationary, but velocity streamlines (red) show the flow pattern charac-

teristic of Marangoni convection that develops due to a temperature-dependent

surface tension coefficient. The contour plot shows the evolving temperature field

(initially a linear horizontal distribution). 47

3.13 As our droplets settle, we are able to obtain contact angles of approximately

45, 90, 135 and 180 degrees, using a kσSL/k
σ
LG ratio of −

√
2/2, 0,

√
2/2 and 1,

respectively. 48

xiii

3.14 The soap in the center of the pool surface reduces the surface tension. The surface

tension gradient drives the markers towards the walls of the container. Frames 0,

10, 20, 40 are shown in this footage. 49

3.15 Wine is initialized in a glass with part of the interior pre-wetted. The falling

wine forms tears and ridges, and the tears eventually connect with the bulk fluid.

Frames 30 and 90 are shown. 50

3.16 Various kσ values (0.05, 0.1, 0.2, 0.4N/m) are simulated in the case of a melting

candle. Frame 1202 is shown. 51

3.17 Letter-shaped candles melt inside a container. (Top) Frame 1, before flames are

lit. (Middle) Frame 60, in the middle of melting. (Bottom) Frame 200, as flames

are extinguished and wax pools resolidify. 54

3.18 A liquid metal droplet subjected to heating on one side. The surface tension

coefficient increases as the temperature increases. (Top) the liquid metal at frame

45 and frame 130. (Bottom) the particle view of temperature distribution at frame

45 and frame 130. The red color indicates higher temperature. 55

4.1 (a) We illustrate a sample flow domain Ω ⊂ (0, 1)2 (in 2D for ease of illustration)

with internal boundaries (blue lines). (b) We voxelize the domain with a reg-

ular grid: white cells represent interior/fluid, and blue cells represent boundary

conditions. (c) We train using the matrix Atrain from a discretized domain with

no interior boundary conditions, where d is the dimension. This creates linear

system with n = (nc+1)d unknowns, where nc is the number of grid cells on each

direction. (d) We illustrate the non-zero entries in an example matrix AΩ from

the voxelized and labeled (white vs. blue) grid for three example interior cells

(green, magenta, and brown). Each case illustrates the non-zero entries in the

row associated with the example cell. All entries of AΩ in rows corresponding to

boundary/blue cells are zero. 59

xiv

4.2 Architecture for training with Atrain on a 1283 grid. 64

4.3 DCDM for simulating a variety of incompressible flow examples. Left: smoke

plume at t = 6.67, 13.33, 20 seconds. Middle: smoke passing a bunny at t =

5, 10, 15 seconds. Right: smoke passing a spinning box (time-dependent Neumann

boundary conditions) at t = 2.67, 6, 9.33 seconds. 67

4.4 Convergence data for the bunny example (see also Table 4.1). (a) Mean and std.

dev. (over all 400 frames in the simulation) of residual reduction during linear

solves (with 1283 and 2563 grids) using FluidNet (FN) and DCDM. (b) Residual

plots with ICPCG, CG, FN, DCDM, and Deflated CG at frame 150. Dashed

and solid lines represent results for 1283 and 2563, respectively. (c) Decrease

in residuals with varying degrees of A-orthogonalization (is = istart) in the 1283

case. (d) Reduction in residuals when the network is trained with a 643 or 1283

grid for the 2563 grid simulation shown in Figure 4.3 Middle. 69

5.1 30 Objects Dropping (left). Our Blended PXPBD (B-PXPBD) approach ro-

bustly handles large elastic deformations. FEM Residual Comparison (right).

B-PXPBD and FP-PXPBD reduce the backward Euler residual while XPBD

stagnate in a representative step of a hyperelsaticity simulation. 73

5.2 (a) Primal Residual Comparison: Stagnation. While XPBD reliably re-

duces the secondary residual, its omission of the primary residual in the lineariza-

tion causes its primary residual to stagnate, making its true (Newton) residual

stagnate as well. (b) Primal Residual Inclusion: Instability. XPBD is

unstable when the primal residual term is not omitted. 78

5.3 Muscle Box Activation. A rectangular bar with both ends clamped falls under

gravity. Two seconds later, the muscle box is activated and contracts along the

horizontal direction. The level of activation is shown on the right side of the

images. t = 0.0333, 1.2, 2.9 seconds are shown in the footage. 80

xv

5.4 Equal Budget Comparison. From left to right: Newton (converged), Newton,

FP-PXPBD, B-PXPBD, XPBD. With a limited budget, XPBD-style methods

are stable, whereas the Newton’s method suffers from instability. Frame 0, 10,

60 are shown in the figure. 87

5.5 XPBD Hyperelastic. Defining the XPBD constraint as the square root of the

hyperelastic potential is not stable (top). Results at frame 0, 10, 30 are shown. . 88

5.6 XPBD Neohookean. XPBD is less volume-conserving than FP-PXPBD when

the cube is squeezed. Results at frame 1, 25, 52 are shown. 89

5.7 (a) Grid-Based Residual vs. Iterations. Newton’s method and B-PXPBD

reliably reduce the residual, but XPBD stagnates. (b) Grid-based Residual

vs. Runtime. Grid-based B-PXPBD and grid-based XPBD take an extra 1

second at the beginning of each timestep to compute preprocessing data. Note

that B-PXPBD achieves faster convergence than Newton’s method. 89

5.8 Four Bars Twisting. Grid-based B-PXPBD is capable of handling large defor-

mation and complex collisions. 90

5.9 Muscle. Large-scale muscle simulation using grid-based B-PXPBD. Frames 30,

60, 140 are shown. ©2023 Epic Games, Inc . 90

5.10 Dropping Dragons. Grid-based simulation with B-PXPBD exhibits many

collision-driven large deformations. 91

6.1 Quasistatic Muscle Simulation with Collisions. Our method (PBNG) pro-

duces high-quality results visually comparable to Newton’s method but with a

6x speedup. In this hyperelastic simulation of muscles, we use weak constraints

to bind muscles together and resolve collisions. The rightmost image visualizes

these constraints. Red indicates a vertex involved in a contact constraint. Blue

indicates a vertex is bound with connective tissues. PBD (lower left) becomes

unstable with this quasistatic example after a few iterations. 93

xvi

6.2 Different Constitutive Models. PBNG works with various constitutive mod-

els. We showcase the corotated, Neo-Hookean, and stable Neo-Hoookean models

through a block twisting and stretching example. 96

6.3 Bar under Gravity. A quasistatic simulation of a bar bending under grav-

ity using different methods. The effect of external forcing vanishes in the PBD

example as the number of iterations increases. More local iterations of XPBD-

QS produces better results. PBNG converges to visually plausible results within

fewer iterations than XPBD-QS. 101

6.4 Top. Clamped blocks under gravity. The green block is XPBD, and the yel-

low one is PBNG. (a) Primary Residual Comparison: Stagnation. While

XPBD reliably reduces the secondary residual, its omission of the primary resid-

ual in the linearization causes its primary residual to stagnate, making its true

(Newton) residual stagnate as well. (b) Convergence. PBNG is able to reduce

the Newton residual to the tolerance, whereas XPBD’s residual stagnates. . . . 103

6.5 Acceleration Techniques. The convergence rate of PBNG may slow down as

the iteration count increases. Chebyshev semi-iterative method and SOR effec-

tively accelerate the Newton residual reduction. 106

6.6 PBNG Muscle Simulation. The top row shows simulation results while the

bottom row visualizes the vertex constraint status. Red indicates a vertex in-

volved in contact, weak constraints are dynamically built to resolve the collisions.

Blue represents the vertex positions of connective tissue bindings. 107

xvii

6.7 (a) Dual Coloring . Node based coloring (top) is contrasted with constraint

based coloring (bottom). When a node is colored as red, its incident elements

register red as used colors. When a constraint is colored yellow, its incident

particles register yellow as used colors. (b) Constraints-Based Coloring. A

step-by-step constraint mesh coloring scheme is shown. The dotted line indicates

two weak constraints between the elements. The first constraint is colored red,

all its incident points will register red as a used color. Other constraints incident

to the first constraint have to choose other colors. (c) Node-Based Coloring.

A step-by-step node coloring scheme is shown. The constraint register the colors

used by its incident particles. The first particle is colored red, so all its incident

constraints will register red as used. Other particles incident to the constraints

have to choose other colors. 110

6.8 Comparisons with Different Computational Budget. A block is stretched/compressed

while being twisted. With a sufficiently large computational budget, Newton’s

method is stable, but it becomes unstable when the computational budget is

small. PBD and XPBD-QS do not significantly reduce the residual in the given

computational time, resulting in noisy artifacts on the mesh. PBNG maintains

relatively small residuals and generates visually plausible results of the deformable

block even if the budget is limited. 112

6.9 Different Mesh Resolution. PBNG produces consistent results when the mesh

is spatially refined. The highest resolution mesh in this comparison has over 2M

vertices and only requires 40 iterations to produce visually plausible results. . . 113

6.10 Two Blocks Colliding. Two blocks collide with each other with one face

clamped. Red particles indicate that dynamic weak constraints have been built

to resolve the collision of corresponding mesh vertices. 115

xviii

6.11 PBNG vs XPBD. Muscle simulation demonstrates iteration-order-dependent

behavior with XPBD and quasistatics. A zoom-in view under the right armpit

region is provided. Each method is run 130 iterations. PBNG converges to the

desired solution, binding the muscles closely together. XPBD-QS and XPBD-QS

(Flipped) fail to converge, leaving either artifacts or gaps between the muscles. . 116

6.12 Objects Dropping. A variety of objects drop under gravity. Our method is able

to robustly handle collisions between deformable objects through weak constraints.117

6.13 Two Blocks Hanging. Two identical blocks are bound together through weak

constraints. Green line segments in iteration 0 indicate weak constraint springs.

PBNG is able to reduce the residual by a few orders of magnitude and con-

verges quickly. XPBD-QS methods demonstrate iteration-order-dependent be-

havior. Residuals oscillate and produce visually incorrect results. 118

6.14 Deformation Propagation Visualization. A square block is initially stretched

on its sides. Top row: visual results of the blocks after certain iterations. Black

points are the initial positions. Red points are positions at the current iteration.

Yellow line segments indicate the displacement of each node. Each method is color

coded - purple is Newton, orange is PBNG, and green is PBD. Each row shows the

results of large, medium, and small deformations respectively. PBNG converges to

a visually plausible result in fewer iterations than one Newton step with increasing

CG iterations. PBD fails to shrink in the transverse direction. Bottom row:

2-norm of the Newton residual vector. PBNG outperforms Newton’s method and

PBD. 120

A.1 Splitting algorithm demonstration. The blue particle xp is the center of mass

of the particle group. Center of mass particles have their linear and angular

velocities assigned to the rest of the particles in the group. 124

A.2 Merging algorithm demonstration. 127

xix

B.1 Convergence of different methods on the 3D bunny example for N = 64, 128, 256;

summary results, as well as timings, are reported in Table 4.1. DCDM-{64,128}

calls a model whose parameters are trained over a {643, 1283} grid. 132

B.2 Residual plot for the bunny example at N = 64 with each trained model. The

dashed line represents a four-orders-of-magnitude reduction in residual, which is

the convergence criterion we use throughout our examples. 134

B.3 Training and validation loss for the networks used in DCDM at resolutions N =

64 and N = 128. 135

B.4 Network architectures considered for our ablation study. 136

C.1 Tetrahedron Mesh Coloring. A step-by-step tetrahedron mesh coloring scheme

is shown. After the first element is colored red, all its incident points will register

red as used color. Other elements incident to the first element have to choose

other colors. 142

C.2 Grid-Based Mesh Coloring. A step-by-step grid-based tetrahedron mesh col-

oring scheme for 2D is shown. The grid uses linear interpolation here, so each

particle on the mesh is interpolated by the 4 grid nodes on the cell containing it.

An element can have at maximum 12 incident grid nodes. After the first element

is colored green, 9 grid nodes that are incident will register green as a used color,

so that other elements incident to those nodes won’t use it. 142

xx

LIST OF TABLES

3.1 Summary of the simulation parameters. Example-specific variable kσLG can be

found in the corresponding section. The unit for the thermal conductivity K is

W/(m · K); the convective heat transfer coefficient h has a unit of W/(m2 · K);

the unit of the boundary heating rate is W/m2. The number of particles/cells

used in each example is listed in Table 3.2. 40

3.2 Performance measurements for one time step of several of our 3D examples, bro-

ken down by (1) sampling: generating surface and balance particles and con-

servative momentum splitting, (2) conservative momentum merging, (3) single

particle-to-grid transfer, (4) single grid-to-particle transfer, (5) total time of the

linear solve, (6) total time of one time step. Note that each linear solve involves

several particle-to-grid and grid-to-particle transfers, and each time step requires

several linear solves. All times are in milliseconds. 53

4.1 Timing and iteration comparison for different methods on the bunny example.

tr, nr and tpr represents time, iteration and time per iteration. DCDM-{64,128}

calls a model whose parameters are trained over a {643, 1283} grid. All com-

putations are done using only CPUs; model inference does not use GPUs. All

implementation is done in Python. See Appendix B.3 for convergence plots. . . 71

5.1 Timing Comparisons: runtime is measured for each frame (averaged over the

course of the simulation). Each frame is run after advancing time .033. 86

6.1 Number of Colors Comparison: runtime is measured per iteration (averaged over

the first 200 iterations). PBNG does more work per-iteration than PBD, but has

comparable speed due to improved scaling resulting from a smaller number of

colors. 111

xxi

6.2 Methods Comparisons: We show runtime per frame for different methods for

some of the examples. Each frame is run after advancing time .033. 111

6.3 Performance Table of PBNG: runtime is measured for each frame (averaged over

the course of the simulation). Each frame is written after advancing time .033. 119

B.1 Number of parameters for each network architecture considered in the ablation

study. 133

xxii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Joseph Teran, for his

continuous guidance and support of my study at UCLA. Working with Joey in the past years

has been the most wonderful adventure I have ever had. His insight and knowledge of this

research area have truly helped me grow as a researcher. I would also like to thank him for

providing me with many great opportunities which paved the way for my future career.

I would like to thank Professor Pirouz Kavehpour for serving as the co-chair of my thesis

committee. I really appreciate his help and support over the past few years, which makes

it possible for me to freely explore my research interests and pursue industry experience. I

would also like to thank Professor Lihua Jin and Professor Jeffrey Eldredge for serving as

members of my thesis committee. Taking classes with them many years ago has laid a solid

foundation for my research. I would also like to thank all my committee members for their

valuable advice for improving my work.

I would like to thank my colleagues and members of Joey’s research group, David Hyde,

Steven Gagniere, Alan Marquez-Razon, Elias Gueidon, Victoria Kala, Yizhou Chen, Yushan

Han, Ayano Kaneda, and Osman Akar for their collaboration and help.

I would like to express gratitude to my mentors Miguel Otaduy, Guo Qi, and Chuyuan Fu

for sharing their knowledge and experience with me during my internships at Meta Reality

Labs, Amazon, and Everyday Robots.

I would like to thank my friends and family for all the joys and support they have given

me in the past years. Special thanks go to my parents, who have always been supporting

me on the other side of the Pacific Ocean.

My deepest gratitude goes to my partner, Tian Qiu, for her persistent love and compan-

ionship. Without her understanding and support, I wouldn’t be able to finish this thesis.

xxiii

VITA

2017 B.S. (Mechanical Engineering), Rensselaer Polytechnic Institute

2019 M.S. (Mechanical Engineering), UCLA

2019 - 2024 Research Assistant, UCLA

2021 - 2023 Teaching Assistant, UCLA

2021 Resident at Everyday Robot, X - The Moonshot Factory

2022 Summer Applied Scientist Intern, Amazon

2023 Summer Research Scientist Intern, Meta Reality Labs Research

PUBLICATIONS

Jingyu Chen, Victoria Kala, Alan Marquez-Razon, Elias Gueidon, David A. B. Hyde, and

Joseph Teran. 2021. A momentum-conserving implicit material point method for surface

tension with contact angles and spatial gradients. ACM Trans. Graph. 40, 4, Article 111

(August 2021), 16 pages. https://doi.org/10.1145/3450626.3459874

Ayano Kaneda, Osman Akar, Jingyu Chen, Victoria A. T. Kala, David Hyde, Joseph Teran.

2023. A Deep Conjugate Direction Method for Iteratively Solving Linear Systems. Proceed-

ings of the 40th International Conference on Machine Learning, in Proceedings of Machine

Learning Research 202:15720-15736

xxiv

Yizhou Chen, Yushan Han, Jingyu Chen, Shiqian Ma, Ronald Fedkiw, and Joseph Teran.

2023. Primal Extended Position Based Dynamics for Hyperelasticity. In Proceedings of the

16th ACM SIGGRAPH Conference on Motion, Interaction and Games (MIG ’23). Associa-

tion for Computing Machinery, New York, NY, USA, Article 21, 1-10.

Yizhou Chen, Yushan Han, Jingyu Chen, and Joseph Teran. 2023. Position-Based Nonlinear

Gauss-Seidel for Quasistatic Hyperelasticity. arXiv preprint arXiv:2306.09021.

xxv

CHAPTER 1

Introduction

Physics-based simulations are ubiquitous in engineering and computer graphics applications.

The advances in computing power have enabled industry and research laboratories to create

new methodologies to understand the physics and attack complex problems in various en-

gineering analyses. Simulations have demonstrated the strength in creating dramatic visual

effects in film productions, generating realistic animations in video games, and achieving

natural interactions in virtual reality.

To accurately reproduce the physical phenomena, these simulations are usually based on

the numerical solutions of partial differential equations (PDEs) that describe the correspond-

ing physics. The demands for efficient, robust, and realistic simulations have been increasing

over the years. Among many simulation algorithms, implicit time stepping schemes have

been widely used because of the accuracy, stability, and efficiency. Examples include but are

not limited to computational fluid dynamics for studying the flow physics [Cho67, FPS19],

nonlinear finite element analysis for computer-aided design [BLM13], computer animations

of cloth and garments [BW98], smoke and fire simulations for visual effects [Sta99, FSJ01].

In this dissertation, we develop a novel implicit Material Point Method for simulating

spatially varying surface tension phenomena, a deep learning-based preconditioning strategy

for solving large sparse linear systems, and improvements to the family of Position-Based

Dynamics methods [MHH07] for simulating the dynamics of elastic objects.

1

1.1 Material Point Method for Surface Tension

Surface tension driven flows like those in milk crowns [ZZK15], droplet coalescence [TWG10,

WTG10, DHB16, YHW16, LLD20] and bubble formation [ZQC14, DBW15, HIK20] comprise

some of the most visually compelling fluid motions. Indeed surface tension effects have been

well examined in the computer graphics and broader computational physics literature. We

design a novel approach for simulating surface tension driven phenomena that arise from

spatial variations in cohesion and adhesion forces at the interface between two liquids. This

is often called the Marangoni effect [SS60, VS15] and perhaps the most famous example is

the tears of wine phenomenon [Tho55]. Other notable examples of the Marangoni effect

include repulsive flows induced by a soap droplet on a water surface as well as the dynamics

of molten waxes and metals [Lan02, FPF04].

We build on the work of Hyde et al. [HGM20] and show that efficient implicit time

stepping with Marangoni effects is achievable with PIC. As in [HGM20] we observe that

similarities with hyperelasticity suggest that the Material Point Method (MPM) [SCS94] is

the appropriate version of PIC.

We generalize the MPM technique in [HGM20] and improve on its core functionality.

Their method introduces temporary massless surface tension particles to represent the liquid

interface Γ and its weighted boundary normals. However, this approach disrupts the perfect

conservation of grid linear and angular momentum, particularly when surface tension forces

act on nodes with no mass. To overcome this, we propose a novel mass and momentum

resampling technique, introducing two new types of temporary particles that restore ideal

conservation.

Since variations in surface energy are typically based on temperature and/or concen-

tration gradients, we couple our surface tension coefficients with thermodynamically driven

quantities. Furthermore, we resolve solid to liquid and liquid to solid phase changes as a

function of temperature since many Marangoni effects arise from melting and cooling. No-

2

tably, we show that our novel conservative resampling naturally improves discretization of

Robin and Neumann boundary conditions on the interface Γ needed for convection/diffusion

of temperature and concentration.

In summary, our primary contributions are:

• A novel implicit MPM discretization of spatially varying surface tension forces.

• A momentum-conserving particle resampling technique for particles near the surface

tension liquid interface.

• An implicit MPM discretization of the convection/diffusion evolution of tempera-

ture/concentration coupled to the surface tension coefficient including a novel particle-

based Robin boundary condition.

1.2 Deep Conjugate Direction Method

The solution of large, sparse systems of linear equations is ubiquitous when partial differential

equations (PDEs) are discretized to computationally simulate complex natural phenomena.

We use the notation

Ax = b, (1.1)

where the dimension n of the matrix A ∈ Rn×n and the vector b ∈ Rn correlates with spatial

fidelity of the computational domain. The quality and realism of a simulation are propor-

tional to this spatial fidelity; typical modern applications of numerical PDEs require solving

linear systems with millions of unknowns. In such applications, numerical approximation to

the solution of these linear systems is typically the bottleneck in overall performance; ac-

cordingly, practitioners have spent decades devising specialized algorithms for their efficient

solution [GL12, Saa03].

In the present work, we consider sparse linear systems that arise from discrete Poisson

3

equations in incompressible flow applications [Cho67, FSJ01, Bri08]. These equations yield

discrete elliptic operators that are typically symmetric positive (semi) definite, which means

that the preconditioned conjugate gradients method (PCG) can be used to minimize iteration

counts [Saa03, HS52, Sti52].

Recently, data-driven approaches that leverage deep learning techniques have shown

promise for solving linear systems. Various researchers have investigated machine learn-

ing estimation of multigrid parameters [GGB19, GSK16, LGM20]. Others have developed

machine learning methods to estimate preconditioners [GA18, Sta20, IFH20] and initial

guesses for iterative methods [LKB21, UBF20, ADP20]. [TSS17] and [YYX16] develop non-

iterative machine learning approximations of the inverse of discrete Poisson equations from

incompressible flow.

We develop a novel conjugate gradients-style iterative method, enabled by deep learning,

for approximating the solution of SPD linear systems, which we call the deep conjugate

direction method (DCDM).

We highlight the features of our method:

• We use a convolutional neural network (CNN) as an approximation of the inverse of

the matrix in order to generate more efficient search directions.

• Our approach allows for efficient training and generalization to problems unseen (new

matrices A and new right-hand sides b).

• As an iterative method, our method can reduce the linear system residuals to the

designated tolerance.

1.3 Efficient Simulations of Elastic Solids

When simulating large strain hyperelastic solids, the governing equations are commonly dis-

cretized in space with the finite element method (FEM) [SB12] and in time with implicit

4

backward Euler [BW98] or quasistatics [TSI05, BW08, ZBK18, RPP17, SA07]. Hyperelastic

solid models define continuum stresses from a notion of elastic potential. In graphics applica-

tions, these models are commonly used for simulation-based enhancement of character flesh

and musculature animation [MZS11, WZB20, SGK18, FLP14, MFJ21, TSB05]. In these

applications, the constitutive control enabled by continuum models is essential for realism.

Various methods have been proposed for solving the FEM-discretized equations of motions for

these materials [LGL19, NOB16, BML14, TSI05, GSS15, MMC16, KYT06, ZBK18, ZLB16].

These equations are nonlinear, and an iterative solver must be used to improve the accuracy

of an initial guess by reducing the magnitude of the system residual.

While Newton’s method [NW06] generally requires the fewest iterations to reach a de-

sired tolerance (often achieving quadratic convergence), each iteration can be costly and a

line search is typically required for stability [GSS15]. However, it is not always necessary

to reduce the residual beyond a few orders of magnitude for satisfactory visual accuracy

[LBO13, BML14, ZBK18]. Real-time applications have very modest computational budgets

and this restricts which techniques can be used. In these cases, Newton’s method is often

outperformed by alternative techniques.

The Position Based Dynamics (PBD) approach of Müller et al. [MHH07] is remarkably

powerful due to its robust and stable behavior in applications with minimal computational

budgets. PBD has gained wide adoption since there are often no other methods that can

provide comparably reliable behavior under extreme computation budgets. For elastic ma-

terials, PBD uses a constraint view of the material resistance to deformation and is similar

to strain limiting [Pro95] and shape matching [MHT05] techniques. However, constitutive

control over PBD behavior is challenging because the effective material stiffness varies with

iteration count and time step size. The Extended Position Based Dynamics (XPBD) ap-

proach of Macklin et al. [MMC16] addresses these issues by reformulating the original PBD

approach in terms of a Gauss-Seidel technique for discretizing a total Lagrange multiplier

formulation of the backward Euler system for implicit time stepping. In this case, the La-

5

grange multiplier terms can be interpreted as stress-like and associated with enforcing the

constraints.

1.3.1 Primal Extended Position Based Dynamics

XPBD can only discretize hyperelastic models that are quadratic in some notion of strain

constraint [MMC16, MM21], which prevents the adoption of many models from the compu-

tational mechanics literature, e.g., for many biomechanical soft tissues. Furthermore, while

XPBD is based on a Gauss-Seidel procedure for the Lagrange multiplier formulation of the

backward Euler equations, it simplifies the system by omitting the Hessian of the constraints

and the residual of the primary (position) equations. The omission of the primary equations

is perfectly accurate in the first iteration, but as Macklin et al. [MMC16] point out, less so

in latter iterations when constraint gradients vary significantly. We observe that this rapid

variation occurs for many hyperelastic formulations and that its omission degrades residual

reduction. However, the inclusion of this term introduces instabilities into XPBD.

We provide a modification to the XPBD position update that more accurately guarantees

that the primary residual is zero and may be omitted. We call our approach Primal Extended

Position Based Dynamics (PXPBD). It can be done in two ways. The first (B-PXPBD)

uses fixed-point iteration to zero the primary residual after the Gauss-Seidel update of the

Lagrange multiplier. The second (FP-PXPBD) is a reformulation of XPBD that allows for

arbitrary hyperelastic models. Each formulation have relative strengths and weaknesses in

their resolution of the primary residual omission in XPBD. B-PXPBD can be done with a

simple modification to an existing XPBD code, however it requires the use of a blending

parameter (see Section 5.1.3.1) since accurate fixed-point iteration is too costly. FP-PXPBD

is a larger modification to an existing XPBD code and requires element-wise Newton solves,

but it exactly resolves the the issues with both Hessian and residual omission in XPBD.

We summarize our contributions as:

6

• B-PXPBD: A modification to the XPBD position update that improves residual re-

duction with hyperelasticity.

• FP-PXPBD: A first Piola-Kirchhoff formulation of the XPBD auxiliary variables that

both guarantees zero primal residual for improved total residual reduction and gener-

alizes XPBD to arbitrary hyperelastic models.

• A local affine transformation that decouples strain and translation variables in each

FEM element for added efficiency with FP-PXPBD.

• A Sherman-Morrison rank-one quasi-Newton technique for each first Piola-Kirchhoff

stress in FP-PXPBD.

1.3.2 Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity

Despite its many strengths, PBD/XPBD has a few limitations that hinder its use in qua-

sistatic applications. First, PBD/XPBD is designed for backward Euler, and omitting the

inertial terms for quasistatics is not possible (it would require dividing by zero). Addition-

ally, when PBD is viewed as the limit of infinite stiffness in XPBD, this limit incorrectly

and irrevocably removes the external forcing terms. Lastly, the constraint-centric iteration

in PBD/XPBD solves the positions involved in a single constraint at a time, ignoring the

effects of adjacent constraints, which causes artifacts near vertices that appear in different

types of constraints.

We present a position-based (rather than constraint-based) nonlinear Gauss-Seidel method

that resolves the key issues with PBD/XPBD and hyperelastic quasistatic time stepping. In

our approach, we iteratively adjust the position of each simulation node to minimize the po-

tential energy (with all other coupled nodes fixed) in a Gauss-Seidel fashion. Our approach

maintains the essential efficiency and robustness features of PBD and has an accuracy that

rivals Newton’s method for the first few orders of magnitude in residual reduction. Further-

more, unlike Newton’s method, our approach is stable when the computational budget is

7

extremely limited.

We summarize our contributions as:

• A position-based, rather than constraint-based, nonlinear Gauss-Seidel technique for

hyperelastic implicit time stepping.

• A hyperelastic energy density Hessian projection to efficiently guarantee definiteness of

linearized equations that does not require a singular value decomposition or symmetric

eigen solves.

• A node coloring technique that allows for efficient parallel performance of our Gauss-

Seidel updates.

1.4 Dissertation Overview

Chapter 2 provides a brief overview of continuum mechanics theories and the governing

equations derivations. A brief review of the material point method is also included.

Chapter 3 presents a novel implicit Material Point Method (MPM) discretization of sur-

face tension forces that arise from spatially varying surface energies. With our particle

resampling approach, perfect conservation of linear and angular momentum is achieved with

Affine-Particle-In-Cell (APIC) [JSS15]. This chapter is based on [CKM21].

Chapter 4 presents a deep learning method for approximating solutions to large, sparse,

symmetric, positive-definite linear systems, common in numerical solutions of partial differ-

ential equations. Inspired by the conjugate gradients algorithm, the approach uses a deep

neural network to enhance convergence by improving search directions through data-driven

techniques. This chapter is based on [KAC23].

8

Chapter 5 discusses the root causes of the non-convergent behavior of the popular XPBD

method for simulating elastic objects. To address this issue, we present B-PXPBD and FP-

PXPBD. The former is a small modification to existing models addressable by the original

XPBD. The latter is a more general formulation that extends XPBD to arbitrary hyperelas-

ticity. This chapter is based on [CHC23a].

Chapter 6 presents a position-based nonlinear Gauss-Seidel (PBNG) method for robust

and efficient quasistatic simulations of elastic objects. Compared to standard Newton’s

method, this approach maintains stability within constrained budgets. When compared to

a constraint-based nonlinear Gauss-Seidel method, such as PBD [MHH07], PBNG achieves

convergent behavior with expanded budgets. This chapter is based on [CHC23b].

9

CHAPTER 2

Continuum Mechanics and Material Point Method

2.1 Continuum Mechanics

In this section, we review three fundamental elements of continuum mechanics - kinematic

theory, balance laws, and constitutive relations. The derivations are primarily based on

[GS08, BW08, BLM13, MH94].

2.1.1 Kinematic Theory

Figure 2.1: The object at time t = 0 is considered as the reference configuration. The

reference configuration is the object at time t, which can be mapped from the reference

configuration.

Continuum Motion Consider a body moving in space as in Figure 2.1. The domain of

the body in the initial state is denoted as Ω0 ⊂ Rd with Rd being d-dimension Euclidean

space. The domain of the body at time t is denoted as Ωt ⊂ Rd. Each particle in a

10

continuum body can be expressed using two sets of coordinates: the material coordinates X

in Ω0 and the spatial coordinates x in Ωt. The material motion can be described by a map

ϕ(·, t) : Ω0 → Ωt. For a point X in the reference configuration Ω0, under the deformation

map ϕ, the point X is mapped to x in the deformed configuration Ωt

x = x(X, t) = ϕ(X, t). (2.1)

The displacement of a particle is given by

u(X, t) = ϕ(X, t)− ϕ(X, 0) = x(X, t)−X (2.2)

When describing the motion of a continuum body, we can either track the motion of a

fixed particle, i.e., in the Lagrangian perspective, or measure the motion in a fixed spatial

location, i.e., in the Eulerian perspective. For the velocity of a material point, if we compute

the time rate of change of the position with X held constant, we have the Lagrangian velocity

definition

V(X, t) =
∂ϕ

∂t
(X, t) =

∂u

∂t
(X, t) (2.3)

The Lagrangian acceleration is

A(X, t) =
∂2ϕ

∂t2
(X, t) =

∂V

∂t
(X, t) (2.4)

In Eulerian perspective, the velocity and acceleration are

v(x, t) = V(ϕ−1(x, t), t) (2.5)

a(x, t) =
∂V

∂t
(X, t) =

∂v

∂t
(x, t) +

∂v

∂x
(x, t) · v(x, t) (2.6)

where D(·)
Dt

= ∂(·)
∂t

+ v · ∂(·)
∂x

is the material derivatives.

Measures of Deformation In finite deformation theory, the deformation gradient F re-

lates the quantities in the reference configuration and those after the deformation. The

deformation gradient is defined as the Jacobian of the deformation mapping

F(X, t) =
∂ϕ

∂X
(X, t) =

∂x

∂X
(X, t) (2.7)

11

F ∈ Rd×d can be decomposed using polar decomposition

F = RU = VR (2.8)

where R is a rotation tensor. U and V are the right and left stretch tensor. C = FTF = U2

is called the right Cauchy-Green strain tensor. b = FFT = V2 is the left Cauchy-Green

strain tensor. In computer graphics, the Green-Lagrange strain tensor E = 1
2
(C− I) is also

commonly used for defining elastic deformation.

The volume and area changes can be related to the deformation gradient. Consider an

infinitesimal element in the reference configuration, dV = dL1dL2dL3. In the deformed

configuration, dv = dl1dl2dl3. Each vector follows dli = FdLi. Then, the volume follows the

following relation.

dv = det(F)dV = JdV (2.9)

It can also be shown that the infinitesimal area element can be related.

nds = JF−TNdS (2.10)

where N, n are the surface normal before and after the deformation, and dS, ds are the

corresponding surface areas. This relation is also known as Nanson’s relation [BLM13].

2.1.2 Balance Laws

The conservation laws are the foundation of continuum mechanics. The conservation of mass,

momentum, and energy can be derived from the Reynolds’ Transport Theorem [BLM13]. For

any quantity f (either scalar or vector), we have

D

Dt

∫

Ωt

f(x, t)dx =

∫

Ωt

(
Df(x, t)

Dt
+ f∇ · v

)
dx (2.11)

For simulations that do not involve temperature change, usually, only the mass and

momentum conservation are considered. Here, we derive the conservation laws from the

Eulerian perspective.

12

Conservation of Mass The total mass m of the continuum must conserve throughout

time.
Dm

Dt
=

D

Dt

∫

Ωt

ρ(x, t)dx = 0 (2.12)

Apply Reynolds’ transport theorem to obtain the integral form of the mass balance equations.
∫

Ωt

(
Dρ(x, t)

Dt
+ ρ∇ · v

)
dx = 0 (2.13)

The differential form of the mass balance can be obtained.

Dρ

Dt
+ ρ∇ · v = 0 (2.14)

Conservation of Linear Momemtum The linear momentum obeys the Newton’s second

law
Dp(t)

Dt
= f(t) (2.15)

where p(t) =
∫
Ωt ρv(x, t)dx and f(t) =

∫
Ωt ρb(x, t)dx +

∫
∂Ωt t(x, t)ds. b is the body force

and t is the surface traction. Then, apply the Reynolds’ transport theorem and simplify by

using the continuity equation (mass balance) (2.14).

D

Dt

∫

Ωt

ρv(x, t)dx =

∫

Ωt

(
D(ρv)

Dt
+ ρv(∇ · v)

)
dx (2.16a)

=

∫

Ωt

[
ρ
Dv

Dt
+ v

(
Dρ

Dt
+ ρ∇ · v

)]
dx (2.16b)

=

∫

Ωt

ρ
Dv

Dt
dx (2.16c)

The momentum balance can be written as
∫

Ωt

ρ
Dv

Dt
=

∫

Ωt

ρb(x, t)dx+

∫

∂Ωt

t(x, t)ds(x) (2.17)

Use Cauchy’s relation and divergence theorem, the surface traction term can be written as
∫

∂Ωt

tds =

∫

∂Ωt

σ · nds =
∫

Ωt

∇ · σdx (2.18)

The differential form of the momentum balance is

ρ
Dv

Dt
= ρb+∇ · σ (2.19)

Here, σ is the Cauchy stress tensor.

13

2.1.3 Constitutive Relations

Hyperelastic Solids In computer graphics, hyperelastic solids are commonly used for

simulating deformable bodies. The work done by the stress only depends on the initial

and final configurations. A strain energy density function Ψ is defined for the hyperelastic

material. Instead of using the Cauchy stress σ, the first Piola-Kirchhoff (PK1) stress P =

JσF−T is used

P =
∂Ψ

∂F
(2.20)

Newtonian Fluids For Newtonian fluids, the viscous stress is linear to the strain rate ∇v

[CMM90]. The Cauchy stress now becomes

σ = −
(
p+

2

3
µ∇ · v

)
I+ 2µ

(
∇v + (∇v)T

)
(2.21)

where p is the hydrostatic pressure and µ is the dynamic viscosity. For incompressible

Newtonian fluid, ∇ · v = 0. The momentum balance equation (2.19) becomes

ρ
Dv

Dt
= −∇p+ µ∇2v + ρb (2.22)

In computer graphics, for smoke and fire simulations, we usually ignore the viscosity term

[FSJ01]. The incompressible Navier-Stokes equation (2.22) becomes the incompressible Euler

equation

ρ
Dv

Dt
= −∇p+ ρb (2.23)

2.2 Material Point Method

In this section, we derive first provide a brief review of the material point method. Then, we

derive the equations for implementing the material point method simulations. The deriva-

tions are based on [JST16].

14

2.2.1 MPM Algorithm

Material point method (MPM) is an extension of the Particle-In-Cell (PIC) method [Har64]

and the FLuid-Implicit-Particle (FLIP) method [BR86], which allows particles to carry

history-dependent information [SCS94]. In MPM, the continuum is discretized as parti-

cles. Both Lagrangian particles and Eulerian background grids are used in MPM. At each

time step of MPM, each particle needs to transfer its mass and momentum to the background

Eulerian grid nodes and retrieve the data after the grid solves. Each material point can carry

history-dependent information. A MPM simulation step can be summarized as:

1. transferring the particle information to grid,

2. solving for the updated grid information,

3. transferring the grid information to particle,

4. updating particle information and advect particles.

2.2.2 Weak Form

Similar to the finite element method, MPM also formulates based on the weak form of the

PDEs. Start from strong form (2.19).

ρ
Dv

Dt
= ρa = ρb+∇ · σ (2.24)

Apply an arbitrary test function q(·, t) and write the weak form of the force balance in index

notation. ∫

Ωt

ρaiqidx =

∫

Ωt

ρbiqidx+

∫

Ωt

σij,jqidx (2.25)

Use integration by parts and divergence theorem
∫

Ωt

σij,jqidx =

∫

Ωt

(σijqi),jdx−
∫

Ωt

σijqi,jdx (2.26a)

=

∫

∂Ωt

σijqinjds−
∫

Ωt

σijqi,jdx (2.26b)

15

Again, use Cauchy’s relation for the traction boundary condition, and we have the weak

form of the force balance.
∫

Ωt

ρaiqidx =

∫

Ωt

ρbiqidx−
∫

Ωt

σijqi,jdx+

∫

∂ΩN
t

tiqids (2.27)

2.2.3 Discretization

Interpolation Function Similar to the shape function of the finite element method

[Hug00] or the kernel function of the smooth particle hydrodynamics (SPH) [Mon92], MPM

uses a set of B-spline interpolation functions to determine how much information each grid

node will receive from a particle depending on the relative distance. In the finite element

perspective, the MPM particles are the quadrature points, while the background grid is the

mesh [JST16].

Usually, MPM requires C1 continuity for the interpolation function to avoid cell-crossing

instability. Considering the computational cost, the following quadratic B-spline kernel is

usually the preferred choice in practice.

N(x) =





3
4
− |x|2 0 ≤ |x| < 1

2

1
2

(
3
2
− |x|

)2 1
2
≤ x < 3

2

0 3
2
≤ |x|

(2.28)

In 3D, for a grid node with index i = (i, j, k) and p-th particle, the interpolation function is

defined as [SKB08].

Ni(xp) = N(
1

h
(xp − xi))N(

1

h
(yp − yi))N(

1

h
(zp − zi)) (2.29)

For simplicity, denote wip = Ni(xp) and ∇wip = ∇Ni(xp).

Eulerian/Lagrangian Mass and Momentum In discretized formulation, the total mass

of the particles and those transferred to the grid should match.
∑

i

mi =
∑

p

mp (2.30)

16

The same rule applies to the momentum.

∑

i

mivi =
∑

p

mpvp (2.31)

Deformation Gradient Update As shown in (2.7), F(X, t) = ∂x
∂X

(X, t). Time derivative

of F is
∂F

∂t
(X, t) =

∂v

∂x
(ϕ(X, t), t)F(X, t) (2.32)

The Eulerian velocity vn+1 at time tn+1 is only a function of x. Then, we can write

vn+1(x) = V(ϕ−1(x, tn), tn+1) or vn+1(ϕ(X, tn)) = V(X, tn+1). The time derivative can

be approximated as

∂F

∂t
(Xp, t

n+1) =
∂vn+1

∂x
(ϕ(Xp, t

n))F(Xp, t
n) ≈

Fn+1
p − Fn

p

∆t
(2.33)

Use the interpolation function, and the velocity gradient can be calculated by

∂vn+1

∂x
(xn

p) =
∑

i

vn+1
i

(
∂Ni

∂x
(x)

)T

=
∑

i

vn+1
i (∇wip)

T (2.34)

Then, the deformation gradient can be update as

Fn+1
p =

(
I+∆t

∑

i

vn+1
i (∇wip)

T

)
Fn

p (2.35)

2.2.3.1 Explicit Formulation

The weak form balance equation (2.27) needs to be discretized both in time and space. Here,

we first consider the explicit formulation (symplectic Euler) and write the spatially discretized

equation, following [JST16]. Note that instead of using a single index i, a composite index

is used. By convention, i, j,k denote the grid node index and Greek letters denote the

components.
∫

Ωt∆x
ρqαaαdx =

∫

Ωt∆x
ρqαbαdx−

∫

Ωt∆x
σαβqα,βdx+

∫

∂Ω∆x,N
t

qαtαds (2.36)

17

The acceleration term can be approximated as
∫

Ωt∆x
ρqαaαdx =

1

∆t

∫

Ωt∆x
ρqα(v

n+1
α − vnα)dx (2.37)

Plug in the interpolation function Ni = Ni(x
n)

1

∆t

∫

Ωt∆x
ρnqniαNi(v

n+1
jα − vnjα)Njdx =

∫

Ωt∆x
ρnqniαNib

n
jαNjdx

−
∫

Ωt∆x
σn
αβq

n
iαNi,βdx+

∫

∂Ω∆x,N
t

qniαNit
n
αds

(2.38)

Since qniα is arbitrary, (2.38) must holds for any qniα. The following equation must hold.

∫

Ωt∆x
ρnNi

(vn+1
jα − vnjα)

∆t
Njdx =

∫

Ωt∆x
ρnNib

n
jαNjdx

−
∫

Ωt∆x
σn
αβNi,βdx+

∫

∂Ω∆x,N
t

Nit
n
αds

(2.39)

Use the lumped mass, and LHS can be approximated as follows. Note that in lumped mass

approximation, mij ̸= 0 if and only if i = j. Therefore, we abbreviate mijvjα as (mv)iα.

∫

Ωt∆x
ρnNi

(vn+1
jα − vnjα)

∆t
Njdx ≈ (mv)n+1

iα − (mv)niα
∆t

(2.40)

The stress is estimated as σp = σ(xn
p , t

n) at each particle
∫

Ωt∆x
σn
αβNi,βdx ≈

∑

p

σn
pαβ
Ni,β(x

n
p)V

n
p (2.41)

The particle volume can be determined by

V n
p = Jn

p V
0
p (2.42)

Usually, the first Piola-Kirchhoff (PK1) stress is used in MPM because it is simply the

derivative of the energy density ψ function with respect to the deformation gradient F. The

Cauchy stress can be related to PK1 through the following [BW08].

σ =
1

J
PFT (2.43)

18

Plug (2.42) and (2.43) into (2.41)

∑

p

σn
pαβ
Ni,β(x

n
p)V

n
p =

∑

p

Pn
pαγ

Fn
pβγ
Ni,β(x

n
p)V

0
p (2.44)

Therefore, the discretized force balance can be written as

(mv)n+1
iα − (mv)niα

∆t
=

∫

Ωt∆x
ρnNib

n
jαNjdx+

∫

∂Ω∆x,N
t

Nit
n
αds−

∑

p

Pn
pαγ

Fn
pβγ
Ni,β(x

n
p)V

0
p (2.45)

Now, consider the cases without the Neumann boundary condition, and the only body

force is gravity. (2.45) can be simplified.

(mv)n+1
iα − (mv)niα

∆t
= mn

i gα −
∑

p

Pn
pαγ

Fn
pβγ
Ni,β(x

n
p)V

0
p (2.46)

This can also be rewritten in a format that updates the momentum.

(mv)n+1
iα = (mv)niα +∆tfiα(x

n
i) (2.47)

where the force term is fiα(x
n
i) = mn

i gα −
∑

pP
n
pαγ

Fn
pβγ
Ni,β(x

n
p)V

0
p . For simplicity, the sym-

pletic Euler update scheme with single index i is

xn+1
i = xn

i +∆tvn+1
i (2.48a)

vn+1
i = vn

i +∆t
fi(x

n
i)

mi

(2.48b)

2.2.3.2 Implicit Formulation

Similar to the sympletic Euler update (2.48), the backward Euler update scheme is

xn+1
i = xn

i +∆tvn+1
i (2.49a)

vn+1
i = vn

i +∆t
fi(x

n+1
i)

mi

(2.49b)

To obtain the update of the velocity, a nonlinear system of equations needs to be solved.

Newton’s method is a common strategy to solve these equations.

19

2.2.4 Transfer Schemes

PIC and FLIP Transfer schemes are essential to ensure minimum information loss during

the momentum transfers and maintain the stability of the simulations. While PIC transfer

is too dissipative and FLIP transfer tends to be unstable, [ZB05] use the interpolated PIC

and FLIP to control the amount of damping for the particles. The velocity update is

vn+1
p = (1− α)vn+1

pPIC
+ αvn+1

pFLIP
(2.50)

The PIC and FLIP velocities are

vn+1
pPIC

=
∑

i

vn+1
i wn

ip (2.51)

vn+1
pFLIP

= vn
p +

∑

i

(vn+1
i − vn

i)w
n
ip (2.52)

APIC/PolyPIC The affine particle-in-cell (APIC) is an angular momentum-conserving

transfer scheme. Details of proofs can be found in [JST17]. As in [JSS15, JST16], P2G

transfer for APIC is

mi =
∑

p

wipmp (2.53)

(mv)i =
∑

p

wipmp(vp +Cp(xi − xp)) (2.54)

G2P transfer is

vp =
∑

i

wipvi (2.55)

Cp =
∑

i

vi

(
∂Ni

∂x
(xp)

)T

(2.56)

Matrix Cn
p = Bn

p (D
n
p)

−1 is called affine velocity, where

Dn
p =

∑

i

wn
ipmp(xi − xn

p)(xi − xn
p)

T (2.57)

Bn+1
p =

∑

i

wn
ipṽ

n+1
i (xi − xn

p)
T (2.58)

20

For quadratic interpolation function, Dn
p = 1

4
∆x2I.

APIC greatly extends PIC by allowing each particle to have degrees of freedom in rotation,

dilation, and shearing. These types of motion are usually called velocity modes. In PIC,

there are only 3 modes of translation. Rigid particle-in-cell (RPIC) has 6 and APIC has 12

[JST17].

PolyPIC [FGG17] is a natural extension of APIC by adding more velocity modes, which

allows better energy conservation. Despite the great properties of PolyPIC, considering

the computational cost, it is primarily used in smoke simulation which needs to achieve

highly turbulent behaviors. For elastoplastic solids and water, the small damping that APIC

provides is desired to obtain a natural appearance.

21

CHAPTER 3

A Momentum-Conserving Implicit Material Point

Method for Surface Tension with Spatial Gradients

Figure 3.1: Our method enables the simulation of a wide variety of thermomechanical and

surface-tension-driven effects. (Top) Letter-shaped candles melt and interact. (Bottom) A

large melting candle; soap spreading on a water surface; water droplets falling and streaking

on ramps; partial rebound of a water droplet impact; wine settling in a glass; a water droplet

settling on a hydrophobic surface.

3.1 Governing Equations

We build on the work of Hyde et al. [HGM20] and use a energy-based formulation to model

the surface tension. The spatial variation in the surface forces can be characterized in terms

of the potential energy Ψs associated with surface tension:

Ψs =

∫

Γ

kσ(x)ds(x). (3.1)

22

Here the surface tension coefficient kσ is proportionate to the relative cohesion and adhesion

at the interface between the two fluids. Typically this coefficient is constant across the multi-

material interface Γ, however with the Marangoni effect the coefficient varies with x ∈ Γ.

These variations are typically driven by temperature or concentration gradients and give

rise to many subtle, but important visual behaviors where the variation typically causes

fluid to flow away from low surface energy regions towards high surface energy regions. To

capture the Marangoni effect, most approaches do not work with the potential energy Ψs

in Equation (3.1) but instead base their discretization on its first variation. This variation

results in the interfacial traction condition

t = kσκn+∇Skσ. (3.2)

Here t is the force per unit area due to surface tension at the interface Γ, ∇S is the surface

gradient operator at the interface and κ and n are the interfacial mean curvature and normal,

respectively.

In this section, we first define the governing equations for thermomechanically driven

phase change of hyperelastic solids and liquids with variable surface energy. As in [HGM20]

we also cover the updated Lagrangian kinematics. Lastly, we provide the variational form

of the governing equations for use in MPM discretization. We note that throughout the

document Greek subscripts are assumed to run from 0, 1, . . . , d−1 for the dimension d = 2, 3

of the problem. Repeated Greek subscripts imply summation, while sums are explicitly

indicated for Latin subscripts. Also, Latin subscripts in bold are used for multi-indices.

3.1.1 Kinematics

We adopt the continuum assumption [GS08] and updated Lagrangian kinematics [BLM13]

used by Hyde et al. [HGM20]. At time t we associate our material with subsets Ωt ⊂ Rd,

d = 2, 3. We use Ω0 to denote the initial configuration of material with X ∈ Ω0 used to

denote particles of material at time t = 0. A flow map ϕ : Ω0 × [0, T] → Rd defines the

23

material motion of particles X ∈ Ω0 to their time t locations x ∈ Ωt as ϕ(X, t) = x. The

Lagrangian velocity is defined by differentiating the flow map in time V(X, t) = ∂ϕ
∂t
(X, t).

3.1.1.1 Eulerian and Updated Lagrangian Representations

The Lagrangian velocity can be difficult to work with in practice since real world observations

of material are made in Ωt not Ω0. The Eulerian velocity v : Ωt → Rd is what we observe in

practice. The Eulerian velocity is defined in terms of the inverse flow map ϕ−1(·, t) : Ωt → Ω0

as v(x, t) = V(ϕ−1(x, t), t) where ϕ−1(x, t) = X. In general, we can use the flow map and

its inverse to pullback quantities defined over Ωt and pushforward quantities defined over

Ω0, respectively. For example, given G : Ω0 → R, its pushforward g : Ωt → R is defined as

g(x) = G(ϕ−1(x, t)). This process is related to the material derivative operator D
Dt

where
Dg
Dt

(x, t) = ∂G
∂t
(ϕ−1(x, t)) = ∂g

∂t
(x, t)+

∑d−1
α=0

∂g
∂xα

(x, t)vα(x, t) (see e.g., [GS08] for more detail).

In the updated Lagrangian formalism [BLM13] we write quantities over an intermediate

configuration of material Ωs with 0 ≤ s < t. For example, we can define ĝ(·, s) : Ωs → R as

ĝ(x̃, s) = G(ϕ−1(x̃, s)) for x̃ ∈ Ωs. As shown in [HGM20], this is particularly useful when

discretizing momentum balance using its variational form. The key observation is that the

updated Lagrangian velocity can be written as v̂(x̃, s, t) = V(ϕ−1(x̃, s), t) = v(ϕ̂(x̃, s, t), t)

with ϕ̂(x̃, s, t) = ϕ(ϕ−1(x̃, s), t) for x̃ ∈ Ωs. Intuitively, ϕ̂(·, s, t) : Ωs → Ωt is the mapping

from the time s configuration to the time t configuration induced by the flow map. This has a

simple relation to the material derivative as ∂v̂
∂t
(x̃, s, t) = ∂V

∂t
(ϕ−1(x̃, s), t) = Dv

Dt
(ϕ̂(x̃, s, t), t).

As in [HGM20] we will generally use upper case for Lagrangian quantities, lower case for

Eulerian quantities and hat superscripts for updated Lagrangian quantities.

3.1.1.2 Deformation Gradient

The deformation gradient F = ∂ϕ
∂X

is defined by differentiating the flow map in space and

can be used to quantify the amount of deformation local to a material point. We use

24

J = det(F) to denote the deformation gradient determinant. J represents the amount of

volumetric dilation at a material point. Furthermore, it is used when changing variables

with integration. We also make use of similar notation for the ϕ̂ mapping from Ωs to Ωt, i.e.

F̂ = ∂ϕ̂
∂x̃

, Ĵ = det
(
F̂
)
.

3.1.2 Conservation of Mass and Momentum

Our governing equations primarily consist of conservation of mass and momentum which can

be expressed as

ρ
Dv

Dt
= ∇ · σ + ρg,

Dρ

Dt
= −ρ∇ · v, x ∈ Ωt (3.3)

where ρ is the Eulerian mass density, v is the Eulerian material velocity, σ is the Cauchy

stress and g is gravitational acceleration. Boundary conditions for these equations are as-

sociated with a free surface for solid material, surface tension for liquids and/or prescribed

velocity conditions. We use ∂Ωt
N to denote the portion of the time t boundary subject to

free surface or surface tension conditions and ∂Ωt
D to denote the portion of the boundary

with Dirichlet velocity boundary conditions. Free surface conditions and surface tension

boundary conditions are expressed as

σn = t,x ∈ ∂Ωt
N (3.4)

where t = 0 for free surface conditions and t = kσκn+∇Skσ from Equation (3.2) for surface

tension conditions. Velocity boundary conditions may be written as

v · n = vnbc,x ∈ ∂Ωt
D. (3.5)

25

3.1.2.1 Constitutive Models

Each material point is either a solid or liquid depending on the thermomechanical evolution.

For liquids, the Cauchy stress σ is defined in terms of pressure and viscous stress:

σ = −pI+ µ

(
∂v

∂x
+
∂v

∂x

T)
, p = −∂ψ

p

∂J
,

with ψp(J) = λl

2
(J − 1)2. Here λl is the bulk modulus of the liquid and µl is its viscosity.

For solids, the Cauchy stress is defined in terms of a hyperelastic potential energy density

ψs as

σ =
1

j

∂ψs

∂F
fT

where f(x, t) = F(ϕ−1(x, t), t) and j(x, t) = J(ϕ−1(x, t), t) are the Eulerian deformation

gradient and its determinant, respectively. We use the fixed-corotated constitutive model

from [SHS12] for ψh. This model is defined in terms of the polar SVD [ITF04] of the

deformation gradient F = UΣVT with

ψh(F) = µh

d−1∑

α=0

(σα − 1)2 +
λh

2
(J − 1)2,

where the σα are the diagonal entries of Σ and µh, λh are the hyperelastic Lamé coefficients.

3.1.3 Conservation of energy

We assume the internal energy of our materials consists of potential energy associated with

surface tension, liquid pressure and hyperelasticity and thermal energy associated with ma-

terial temperature. Conservation of energy together with thermodynamic considerations

requires convection/diffusion of the material temperature [GS08] subject to Robin boundary

conditions associated with convective heating by ambient material:

ρcp
DT

Dt
= K∇2T +H

K∇T · n = −h(T − T̄) + b.

(3.6)

26

Here cp is specific heat capacity, T is temperature, K is thermal conductivity, H is a source

function, T̄ is the temperature of ambient material, and n is the surface boundary normal.

h controls the rate of convective heating to the ambient temperature, and b represents the

rate of boundary heating independent of the ambient material temperature T̄ .

The total potential energy Ψ in our material is as in [HGM20], however we include the

spatial variation of the surface energy density in Equation (3.1) and the hyperelastic potential

for solid regions:

Ψ(ϕ(·, t)) = Ψσ(ϕ(·, t)) + Ψl(ϕ(·, t)) + Ψh(ϕ(·, t)) + Ψg(ϕ(·, t)).

Here Ψσ is the potential from surface tension, Ψl is the potential from liquid pressure, Ψh is

the potential from solid hyperelasticity, and Ψg is the potential from gravity. As in typical

MPM discretizations, our approach is designed in terms of these energies:

Ψσ(ϕ(·, t)) =
∫

∂Ωt

kσ(x, t)ds(x), Ψg(ϕ(·, t) =
∫

Ω0

Rg · ϕJdX,

Ψl(ϕ(·, t)) =
∫

Ω0

λl

2
(J − 1)2 dX, Ψh(ϕ(·, t)) =

∫

Ω0

ψh(F)dX.

Here R is the pullback (see Section 3.1.1) of the mass density ρ. Note that in the expression

for the surface tension potential it is useful to change variables using the updated Lagrangian

view as in [HGM20]:

Ψσ(ϕ(·, t)) =
∫

∂Ωt

kσ(x, t)ds(x) =

∫

∂Ωs

kσ(ϕ̂(x̃, s, t), t)|ĴF̂−T ñ|ds(x̃). (3.7)

Here ñ is the outward unit normal at a point on the boundary of Ωs and the expression

ds(x) = |ĴF̂−T ñ|ds(x̃) arises by a change of variables from an integral over ∂Ωt to one over

∂Ωs. Notably, the spatial variation in kσ is a natural extension of the Hyde et al. [HGM20]

approach.

3.1.4 Variational Form of Momentum Balance

The strong form of momentum balance in Equation (3.3), together with the traction (Equa-

tion (3.4)) and Dirichlet velocity boundary conditions (Equation (3.5)), is equivalent to a

27

variational form that is useful when discretizing our governing equations using MPM. To

derive the variational form, we take the dot product of Equation (3.3) with an arbitrary

function w : Ωt → Rd satisfying w · n = 0 for x ∈ ∂Ωt
D and integrate over the domain Ωt,

applying integration by parts where appropriate. Requiring that the Dirichlet velocity con-

ditions in Equation (3.4) hold together with the following integral equations for all functions

w is equivalent to the strong form, assuming sufficient solution regularity:
∫

Ωt

ρ
Dvα
Dt

wαdx = − d

dϵ
PE(0;w)− µl

∫

Ωt

ϵvαβϵ
w
αβdx. (3.8)

Here ϵw = 1
2

(
∂wα

∂xβ
+

∂wβ

∂xα

)
and ϵv = 1

2

(
∂vα
∂xβ

+
∂vβ
∂xα

)
and

PE(ϵ;w) = Ψ(ϕ(·, t) + ϵW).

Here W is the pullback of w (see Section 3.1.1). Note that this notation is rather subtle for

the surface tension potential energy. For clarification,

Ψσ(ϕ(·, t) + ϵW) =

∫

∂Ωs

kσ(ϕ̂+ ϵŵ)|Ĵϵ,ŵF̂−T
ϵ,ŵ ñ|ds(x̃),

where ŵ(x̃, s, t) = w(ϕ̂(x̃, s, t)) is the updated Lagrangian pullback of w, F̂ϵ,ŵ = ∂ϕ̂+ϵŵ
∂x̃

is

the deformation gradient of the mapping ϕ̂ + ϵŵ and Ĵϵ,ŵ = det
(
F̂ϵ,ŵ

)
is its determinant.

Lastly, for discretization purposes, in practice we change variables in the viscosity term

µl

∫

Ωt

ϵvαβϵ
w
αβdx = µl

∫

Ωs

ϵ̂vαβ ϵ̂
w
αβĴdx̃. (3.9)

We can similarly derive a variational form of the temperature evolution in Equation (3.6) by

requiring ∫

Ωt

ρcp
DT

Dt
qdx =−

∫

∂Ωt

qhTdS(x) +

∫

∂Ωt

q
(
hT̄ + b

)
dS(x)

+

∫

Ωt

Hqdx−
∫

Ωt

∇q ·K∇Tdx
(3.10)

for all functions q : Ωt → R.

28

3.1.5 Thermomechanical Material Dependence and Phase Change

The thermomechanical material dependence is modeled by allowing the surface tension co-

efficient kσ, the liquid bulk modulus λl, the liquid viscosity µl and the hyperelastic Lamé

coefficients µh, λh to vary with temperature. When T exceeds a user-specified melting point

Tmelt, the solid phase is changed to liquid and the deformation gradient determinant J is

set to 1. Similarly, if the liquid temperature drops below Tmelt, the phase is updated to be

hyperelastic solid, and the deformation gradient F is set to the identity matrix. In practice,

resetting the deformation gradient and its determinant helps to prevent nonphysical popping

when the material changes from solid to liquid and vice versa. We remark that incorporating

a more sophisticated phase change model, such as a latent heat buffer, is potentially useful

in future work [SSJ14].

3.1.6 Contact Angle

The contact angle between a liquid, a solid boundary and the ambient air is governed by the

Young equation [You05]. This expression relates the resting angle θ (measured through the

liquid) of a liquid in contact with a solid surface to the surface tension coefficients between

the liquid, solid and air phases:

kσSG = kσSL + kσLG cos(θ). (3.11)

The surface tension coefficients are between the solid and gas phases, solid and liquid phases,

and liquid and gas phases, respectively. As in [CWS13], we assume kσSG is negligible since we

are using a free surface assumption and do not explicitly model the air. Under this assump-

tion, the solid-liquid contact angle is determined by the surface tension ratio −kσSL/kσLG. We

note that, while one would expect surface tension coefficients/energies to be positive, this

ratio can be negative under the assumption of zero solid-gas surface tension. Furthermore,

we note that utilizing this expression requires piecewise constant surface tension coefficients

where the variation along the liquid boundary is based on which portion is in contact with

29

the air and which is in contact with the solid. The distinct surface tension coefficients on

different interfaces provide controllability of the spreading behavior of the liquid on the solid

surface.

3.2 Discretization

As in [HGM20], we use MPM [SCS94] and APIC [JSS15] to discretize the governing equa-

tions. The domain Ωtn at time tn is sampled using material points xn
p . These points also store

approximations of the deformation gradient determinant Jn
p , constant velocity vn

p , affine ve-

locity An
p , volume V 0

p , mass mp = ρ(x0
p, t

0)V 0
p , temperature T n

p , and temperature gradient

∇T n
p . We also make use of a uniform background grid with spacing ∆x when discretizing

momentum updates. To advance our state to time tn+1, we use the following steps:

1. Resample particle boundary for surface tension and Robin boundary temperature con-

ditions.

2. P2G: Conservative transfer of momentum and temperature from particles to grid.

3. Update of grid momentum and temperature.

4. G2P: Conservative transfer of momentum and temperature from grid to particles.

3.2.1 Conservative Surface Particle Resampling

The integrals associated with the surface tension energy in Equation (3.7) and the Robin

temperature condition in Equation (3.10) are done over the boundary of the domain. We

follow Hyde et al. [HGM20] and introduce special particles to cover the boundary in order to

serve as quadrature points for these integrals. As in [HGM20] these particles are temporary

and are removed at the end of the time step. However, while Hyde et al. [HGM20] used

massless surface particles, we design a novel conservative mass and momentum resampling

30

Particle Group

Πp

bnr xn
p

snr

Figure 3.2: A portion of an MPM fluid in the simulation domain. Surface particles (yellow)

are sampled on faces of the zero isocontour of the level set formed by unioning spherical

level sets around each MPM particle. Each surface particle generates an associated balance

particle (red) such that the closest MPM particle (blue) to a boundary particle lies on the

midpoint of a line segment between the surface particle and balance particle. A single blue

particle at xp may be paired with multiple surface particles and balance particles, and they

are considered to be in a particle group Πp. MPM particles that are not associated with any

surface tension particles are marked as black.

for surface particles. Massless particles easily allow for momentum conserving transfers from

particles to the grid and vice versa; however, they can lead to loss of conservation in the

grid momentum update step. This occurs when there is a grid cell containing only massless

particles. In this case, there are grid nodes with no mass that receive surface tension forces.

These force components are then effectively thrown out since only grid nodes with mass will

affect the end of time step particle momentum state (see Section 3.3.1).

We resolve this issue by assigning mass to each of the surface particles. However, to con-

serve total mass, some mass must be subtracted from interior MPM particles. Furthermore,

changing the mass of existing particles also changes their momentum, which may lead to

31

violation of conservation. In order to conserve mass, linear momentum and angular momen-

tum, we introduce a new particle for each surface particle. We call these balance particles,

and like surface particles they are temporary and will be removed at the end of the time step.

We show that the introduction of these balance particles naturally allows for conservation

both when they are created at the beginning of the time step and when they are removed at

the end of the time step.

Figure 3.3: Isocontour and sampled boundary particles for an ellipsoid. (Left) Using the

method of Hyde et al. [HGM20]. Note how low-quality triangles are undersampled and how

sample points often clump near triangle centers. (Right) The present method, which does

not suffer from similar issues.

3.2.1.1 Surface Particle Sampling

We first introduce surface particles using the approach in [HGM20]. A level set enclosing

the interior MPM particles is defined as the union of spherical level sets defined around each

interior MPM particle. Unlike Hyde et al. [HGM20], we do not smooth or shift the unioned

level set. We compute the zero isocontour of the level set using marching cubes [Che95] and

randomly sample surface particles along this explicit representation. In [HGM20], three-

32

dimensional boundaries were sampled using a number of sample points proportional to the

surface area of each triangle. Sample points were computed using uniform random barycen-

tric weights, which leads to a non-uniform distribution of points in each triangle. Instead,

we employ a strategy of per-triangle Monte Carlo sampling using a robust Poisson distribu-

tion, as described in Figure 1 of [CCS12] (not their blue noise algorithm); uniform triangle

sample points are generated as in [OFC02]. We found that this gave better coverage of

the boundary without generating particles in a biased, mesh-dependent fashion (see Figure

3.3). We note that radii for the particle level sets are taken to be 0.73∆x (slightly larger

than
√
2
2
∆x) in 2D and 0.867∆x (slightly larger than

√
3
2
∆x) in 3D, where ∆x is the MPM

grid spacing. This guarantees that even a single particle in isolation will always generate a

level set zero isocontour that intersects the grid and will therefore always generate boundary

sample points. Note also that as in [HGM20], we use the explicit marching cubes mesh of

the zero isocontour to easily and accurately generate samples of area weighted normals dAn
r

where
∑

|dAn
r | ≈

∫
∂Ωtn ds are chosen with direction from the triangle normal and magnitude

based on the number of samples in a given triangle and the triangle area.

3.2.1.2 Balance Particle Sampling

For each surface particle snr , we additionally generate a balance particle bn
r . First, we compute

the closest interior MPM particle for each surface particle xn
p(snr)

. Then we introduce the

corresponding balance particle as

bn
r = snr + 2

(
xn
p(snr)

− snr
)
. (3.12)

3.2.1.3 Mass and Momentum Splitting

After introducing the surface snr and balance bn
r particles, we assign them mass and momen-

tum (see Figure 3.4). To achieve this in a conservative manner, we first partition the surface

33

P2GSplitBoundary
Sampling

Active GridsParticle Group

xp

An
q

An
p

mp

mq

xn
p

xn
q

vn
p

vn
q xn

p

mp An
p

vn
p

xn
q

An
q

mq

vn
q

mp

3

mp

3

mp

3

An
p

An
p

vn
p

vn
p

vn
p

snr

bnr

snr An
p

bnr

mq
vn
q

An
qxn

q

Figure 3.4: Splitting. After surface particles (yellow) are created, the mass and momentum

of the interior MPM particles (blue) that are closest to the surface particles are immediately

distributed. Particles in each particle group are assigned equal mass. MPM particles (black)

that are not paired with any surface particles remain intact for the splitting process. Surface

particles (yellow) and balance particles (red) are assigned the same linear velocity and affine

velocity of the original particle (blue).

particles into particle groups Πp defined as the set of surface particle indices r such that xn
p

is the closest interior MPM particle to snr (see Figure 3.2). We assign the mass mp of the

particle xn
p to the collection of xn

p , snr and bn
r for r ∈ Πp uniformly by defining a mass of

m̃p =
mp

2|Πp|+1
to each surface and balance point as well as to xn

p . Here |Πp| is the number of

elements in the set. This operation is effectively a split of the original particle xn
p with mass

mp into a new collection of particles xn
p , s

n
r ,b

n
r , r ∈ Πp with masses m̃p. This split trivially

conserves the mass. Importantly, by construction of the balance particles (Equation (3.12))

we ensure that the center of mass of the collection is equal to the original particle xn
p :

1

mp


m̃px

n
p +

∑

r∈Πp

m̃ps
n
r + m̃pb

n
r


 = xn

p . (3.13)

With this particle distribution, conservation of linear and angular momentum can be achieved

by simply assigning each new particle in the collection the velocity vn
p and affine velocity

An
p of the original particle xn

p . We note that the conservation of the center of mass (Equa-

tion (3.13)) is essential for this simple constant velocity split to conserve linear and angular

34

momentum (see Appendix A).

3.2.2 Transfer: P2G

After the addition of the surface and balance particles, we transfer mass and momentum to

the grid in the standard APIC [JSS15] way using their conservatively remapped mass and

velocity state

mn
i =

∑

p

m̃p


Ni(x

n
p) +

∑

r∈Πp

Ni(s
n
r) +Ni(b

n
r)


 ,

mn
i v

n
i =

∑

p

m̃pNi(x
n
p)
(
vn
p +An

p (xi − xn
p)
)

+
∑

p

m̃p

∑

r∈Πp

Ni(s
n
r)
(
vn
p +An

p (xi − snr)
)

+
∑

p

m̃p

∑

r∈Πp

Ni(b
n
r)
(
vn
p +An

p (xi − bn
r)
)
.

Here Ni(x) = N(x−xi) are quadratic B-splines defined over the uniform grid with xi living

at cell centers [SSC13]. Note that for interior MPM particles far enough from the boundary

that Πp = ∅. This reduces to the standard APIC [JSS15] splat since m̃p = mn
p . We also

transfer temperature from particles to grid using

T n
i =

∑

p

mpNi(x
n
p)(T

n
p + (xiα − xnpα)∇T n

pα).

Note that for the temperature transfer, we only use surface particles to properly apply the

thermal boundary conditions, and we do not use these particles to transfer mass-weighted

temperature to the grid.

3.2.3 Grid Momentum and Temperature Update

We discretize the governing equations in the standard MPM manner by using the particles

as quadrature points in the variational forms. The interior MPM particles xn
p are used

35

for volume integrals and the surface particles snr are used for surface integrals. By choosing

s = tn, t = tn+1 and by using grid discretized versions of ŵ(x̃) =
∑

j wjNj(x̃), v̂(x̃, tn, tn+1) =
∑

i v̂
n+1
i Ni(x̃), q̂(x̃) =

∑
j qjNj(x̃) and T̂ (x̃) =

∑
i T̂iNi(x̃).

3.2.3.1 Momentum Update

As in [HGM20], the grid momentum update is derived from Equation (3.8):

mn
i

v̂n+1
i − vn

i

∆t
= fi(x+∆tq̂) +mn

i g, (3.14)

fi(x̂) = − ∂e

∂x̂i

(x̂)− µl
∑

p

ϵv(x̂;xn
p)

(
∂Ni

∂x
(xn

p)

)T

V n
p , (3.15)

where fi is the force on grid node i from potential energy and viscosity, ϵv(x̂;xn
p) =

1
2

(∑
j x̂j

∂Nj

∂x
(xn

p) +
(
x̂j

∂Nj

∂x
(xn

p)
)T)

is the strain rate at xn
p , g is gravity, and q̂ is either

0 (for explicit time integration) or v̂n+1 (for backward Euler time integration). x represents

the vector of all unmoved grid node positions xi. We use e(y) to denote the discrete potential

energy Ψ where MPM and surface particles are used as quadrature points:

e(y) =
∑

p

(
ψh(Fp(ŷ)) +

λl

2
(Jp(ŷ)− 1)2

)
V 0
p

+
∑

r

kσ(snr)|Ĵr(ŷ)F̂−T
r (ŷ)dAn

r |,

where, as in [SSC13], Fp(ŷ) =
∑

i yi
∂Ni

∂x
(xn

p)F
n
p and as in [HGM20], Jp(ŷ) =(

1− d+ yα
∂Ni

∂xα
(xn

p)
)
Jn
p and F̂p(y) =

∑
i yi

∂Ni

∂x
(xn

p). With these conventions, the α com-

ponent of the energy-based force on grid node i is of the form

− ∂e

∂xiα
(y) =−

∑

p

∂ψh

∂Fαδ

(Fp(ŷ))F
n
pγδ

∂Ni

∂xγ
(xn

p)V
0
p

−
∑

p

λl(Jp(y)− 1)
∂Ni

∂xα
(xn

p)J
n
p V

0
p

−
∑

r

kσ(snr)
∂| det(F̂r)F̂

−T
r dAn

r |
∂F̂αδ

(F̂r(ŷ))
∂Ni

∂xδ
(xn

p).

(3.16)

36

We note that the viscous contribution to the force in Equation (3.15) is the same as in

[RGJ15]. We would expect V n+1
p in this term when deriving from Equation (3.9), however we

approximate it as V n
p . This is advantageous since it makes the term linear; and since Ĵp(x̂) ≈

1 from the liquid pressure and hyperelastic stress, it is not a poor approximation. Lastly, we

note that the surface tension coefficient kσ(snr) will typically get its spatial dependence from

composition with a function of temperature kσ(snr) = k̃σ(T̂ (snr)) = k̃σ(Ts,n
r).

In the case of implicit time stepping with backward Euler (q̂ = v̂n+1), we use Newton’s

method to solve the nonlinear systems of equations. This requires linearization of the grid

forces associated with potential energy in Equation (3.16). We refer the reader to [SSC13]

and [HGM20] for the expressions for these terms, as well as the definiteness fix used for

surface tension contributions.

3.2.3.2 Temperature Update

We discretize Equation (3.10) in a similar manner which results in the following equations

for the grid temperatures Ti:

cpmi
T̂ n+1
i − T n

i

∆t
=−

∑

p

K
∂Ni

∂xα
(xn

p)T̂
n+1
j

∂Nj

∂xα
(xn

p)V
n
p

−
∑

r

hNi(s
n
r)T̂

n+1
j Nj(s

n
r)|dAn

r |

+
∑

r

Ni(s
n
r)
[
hT̄ (snr) + b(snr)

]
|dAn

r |

+
∑

p

hNi(x
n
p)H(xn

p)V
n
p .

Note that by using the surface particles snr as quadrature points in the variational form, the

Robin boundary condition can be discretized naturally with minimal modification to the

Laplacian and time derivative terms. Also, note that the inclusion of this term modifies

both the matrix and the right side in the linear system for T̂ n+1
i . We found that performing

constant extrapolation of interior particle temperatures to the surface particles provided

37

better initial guesses for the linear solver.

3.2.4 Transfer: G2P

G2PMerge

Particle Contributions
to the Grid Momentum

mp

mq

xn
p

xn
q

An+1
p

vn+1
p

vn+1
q

An+1
q

psiαr = m̃pNi(s
n
r)v̂

n+1
iα

piαp = m̃pNi(x
n
p)v̂

n+1
iα

pbiαr = m̃pNi(b
n
r)v̂

n+1
iα

G2P

∑

r∈Πp

∑

i

Qiαβγp
s
iαr +

∑

i

Qiαβγpiαp+

∑

r∈Πp

∑

i

Qiαβγp
b
iαr =

∑

i

QiαβγmpNi(x
n
p)QiαδεG

n+1
δεp

xn
p
xn
q

bnr

snr

Figure 3.5: Merging. The merging process is a modified version of G2P. For the particles

that are not associated with surface particles (black), a regular G2P is performed. Among

each particle group, we calculate each particle’s contribution to the grid momentum and the

generalized affine moments of their summed momenta about their center of mass. Then,

we restore the mass of the original particle associated with the group prior to the split and

compute its generalized affine inertia tensor from its grid mass distribution. Using the affine

inertia tensor of the original particle, we compute generalized velocity of the particle after

the merging from the generalized moments of the group.

Once grid momentum and temperature have been updated, we transfer velocity and

temperature back to the particles. For interior MPM particles with no associated surface or

balance particles (Πp = ∅), we transfer velocity, affine velocity and temperature from the

grid to particles in the standard APIC [JSS15] way:

vn+1
p =

∑

i

Ni(x
n
p)v̂

n+1
i , An+1

p =
4

∆x2

∑

i

Ni(x
n
p)v̂

n+1
i (xi − xn

p)
T .

For interior MPM particles that were split with a collection of surface and balance particles

(Πp ̸= ∅), more care must be taken since surface and balance particles will be deleted

38

at the end of the time step. First, the particle is reassigned its initial mass mp. Then we

compute the portion of the grid momentum associated with each surface and balance particle

associated with p as

ps
ir = m̃pNi(s

n
r)v̂

n+1
i , pb

ir = m̃pNi(b
n
r)v̂

n+1
i , r ∈ Πp.

We then sum this with the split particle’s share of the grid momentum to define the merged

particle’s share of the grid momentum

pip = m̃pNi(x
n
p)v̂

n+1
i +

∑

r∈Πp

ps
ir + pb

ir.

Note that the pip may be nonzero for more grid nodes than the particle would normally splat

to (see Figure 3.5). We define the particle velocity from the total momentum by dividing

by the mass vn+1
p = 1

mp

∑
i pip. To define the affine particle velocity, we use a generalization

of [FGG17] and first compute the generalized affine moments tpβγ =
∑

iQiαβγpipα of the

momentum distribution pipα where Qiαβγ = ripγδαβ is the α component of the βγ linear

mode at grid node i. Here rip = xi − xn
p is the displacement from the center of mass of

the distribution to the grid node xi. We note that these moments are the generalizations

of angular momentum to affine motion, as was observed in [JSS15], however in our case

we compute the moments from a potentially wider distribution of momenta pipα. Lastly,

to conserve angular momenta (see Appendix A for details), we define the affine velocity by

inverting the generalized affine inertia tensor
∑

iQiαγδmpNi(x
n
p)Qiαϵτ of the point xn

p using

its merged mass distribution mpNi(x
n
p). However, as noted in [JSS15], the generalized inertia

tensor mp∆x2

4
I is constant diagonal when using quadratic B-splines for Ni(x

n
p) and therefore

the final affine velocity is An+1
p = 4

mp∆x2 tp.

Temperature and temperature gradients are transferred in the same way whether or not

a MPM particle was split or not:

T n+1
p =

∑

i

T̂ n+1
i N(xi), ∇T n+1

p =
∑

i

T̂ n+1
i ∇N(xi).

39

Table 3.1: Summary of the simulation parameters. Example-specific variable kσLG can be

found in the corresponding section. The unit for the thermal conductivity K is W/(m · K);

the convective heat transfer coefficient h has a unit of W/(m2 ·K); the unit of the boundary

heating rate is W/m2. The number of particles/cells used in each example is listed in Table

3.2.

Example ∆t [s] CFL ∆x [m] Bulk Modulus [Pa] Density [kg/m3] kσ [N/m] kσ Variation Heat Transfer Coefficients

Conservation (2D, Explicit) 1× 10−5 0.6 1/63 4166.67 10 0.1 constant N/A

Two Spheres (2D) 1× 10−2 to 5× 10−5 0.6 1/127 833333.33 1 0.1 constant K = 0.0025/h = 10, 0/b = 0

Rotating Heat Flux (2D) 1× 10−2 to 5× 10−5 0.6 1/127 833333.33 1 0.1 constant K = 0.01/h = 0.1, 0/h = 5

Droplet Impact 1× 10−2 to 5× 10−5 0.3, 0.6 1/127 83333.33 10 20, 15, 5, 1, 0.1, 0.05 constant N/A

Droplets on Ramps 1× 10−2 to 1× 10−4 0.6 1/63 16666.67 10 1.0(kσSL), k
σ
LG varies piecewise-constant N/A

Contact Angles 0.0333 to 1× 10−4 0.6 1/127 83333.33 1 2.0(kσSL), k
σ
LG varies piecewise-constant N/A

Soap Droplet in Water 1× 10−2 to 5× 10−5 0.6 1/127 16666.67 1 0.5 (water), 0.01 (soap) piecewise-constant N/A

Wine Glass 1× 10−2 to 1× 10−5 0.6 1/127 16666.67 1 0.05(kσSL), 0.015(k
σ
LG) piecewise-constant N/A

Candles 1× 10−2 to 1× 10−4 0.6 1/127 833333.33 10 0.05, 0.1, 0.2, 0.4 constant K = 0.1/h = 0.5/b = 50

Candles (Letters) 1× 10−2 to 1× 10−4 0.6 1/127 83333.33 10 0.05 constant K = 0.1/h = 2.5/b = 100

Lid-Driven Cavity (2D) 1× 10−3 0.6 1/63 416.67 10 1.0 temperature-dependent K = 0.1/h = 0/b = 0

Droplet with Marangoni Effect 1× 10−2 to 5× 10−5 0.6 1/127 83333.33 1 0.5 ∼ 2.0 temperature-dependent K = 0.1/h = 0.1/b = 50

3.3 Examples

3.3.1 Conservation

To demonstrate our method’s ability to fully conserve momentum and center of mass, we

simulate a two-dimensional ellipse that oscillates under zero gravity due to surface tension

forces in a 1m× 1m domain. The ellipse has semiaxes of 0.3m and 0.1m. We compare these

results to those obtained using the method of Hyde et al. [HGM20].

The total linear momentum
∑

imivi and the total angular momentum about the origin
∑

i xi ×mivi are calculated on the grid. We also compute the center of mass velocity error∑
i mivi∑
p mp

and the center of mass drift relative to the domain size. As shown in Figure 3.6 and 3.7,

the present technique perfectly conserves total linear momentum, total angular momentum,

and the center of mass of the ellipse, unlike the approach of Hyde et al. [HGM20].

40

0 200 400 600

0

10

20
10

-3

Hyde(x) Hyde(y) Ours(x) Ours(y)

0 200 400 600
-5

0

5
10

-3

Hyde Ours

0 200 400 600

0

10

20
10

-3

Hyde(x) Hyde(y) Ours(x) Ours(y)

0 200 400 600
0

0.05

0.1

0.15

Hyde(x) Hyde(y) Ours(x) Ours(y)

Figure 3.6: The present method (blue) conserves total mass, total linear and angular mo-

mentum, and center of mass, unlike the method of Hyde et al. [HGM20] (red).

3.3.2 Thermal Boundary Conditions

The Robin boundary condition allows for the realistic convective heat transfer between the

object and the environment. While such effects may be approximated by a simplified Dirich-

let or Neumann boundary condition, the Robin boundary condition simplifies the process,

and it is crucial for simulating temperature-dependent effects, such as the resolidification of

the liquid wax in Section 3.3.9.

To demonstrate this effect, we initialize two discs side-by-side with radii of 0.15m. The

domain size is 1m×1m, and the ambient temperature is 295K. The center of the left disc is at

(0.3, 0.5), and the temperature increases linearly from 265K at x = 0.15 to 295K at x = 0.45.

41

(a) t = 6.53 s (b) t = 18.9 s

Figure 3.7: An elliptical droplet oscillates under surface tension. The black dot indicates

the initial location of the particles’ center of mass, while the red dot is the position of the

current center of mass. The drops in (a) are after 6 oscillation cycles, and the drops in (b)

are after 18 cycles. The method of Hyde et al. [HGM20] does not conserve the momentum,

so the center of mass drifts. Our method is conservative and preserves the center of mass

even over a long period of time.

The center of the right one is at (0.7, 0.5), and the temperature increases linearly from 295K

at x = 0.55 to 325K at x = 0.85. The thermal conductivity for both simulation A and B is

0.0025W/(m · K). Simulation A has h = 10W/(m2 · K), while h = 0 for simulation B. As

shown in Figure 3.8, the Robin boundary condition equilibrates the temperature of the discs

in simulation A to the ambient temperature, while in simulation B, only the temperature in

each disc reaches equilibrium.

Our method allows complex time-dependent boundary conditions to be applied. We

simulate in Figure 3.9 a solid disc with a radius of 0.15m with a heat flux of b = 5W/m2

applied on a section of its boundary. The disc is in a 1m × 1m domain with the ambient

temperature of 295K. The location heat flux rotates about the center of the disc at 2π rad/s.

Simulation A has the Robin boundary condition h = 0.1W/(m · K) applied, so the region

42

(a) t = 0 s (b) t = 0.333 s

(c) t = 1 s (d) t = 8 s

Figure 3.8: Heat transfer in two discs. The discs initially have linear temperature distribu-

tion. Simulation A has the Robin boundary condition applied, while simulation B has only

internal thermal conduction. The temperature in each disc reaches equilibrium over time.

With the Robin boundary condition, the temperature of each disc approaches the ambient

temperature.

without heat flux applied cools the disc to the ambient temperature. Simulation B does not

have the Robin boundary condition, and the heat accumulates inside the disc.

3.3.3 Droplet Impact on Dry Surface

Our method is able to handle highly dynamic simulations with a wide range of surface

tension strengths. We simulate several inviscid spherical droplets with radii of 0.15m free

fall and impact a dry, frictionless, hydrophobic surface. In the top comparison of Figure

3.10, droplets with different surface tension coefficients drop from a height of 2.5m. The size

of the simulation domain is 1m × 3m × 1m. With different surface tension coefficients kσ,

43

(a) t = 0.667 s (b) t = 1.667 s

(c) t = 4 s (d) t = 5.333 s

Figure 3.9: Constant heat flux is applied to a small section of the disc boundary. The

location of the heat flux rotates about the center of the disc at a constant speed. Robin

boundary condition is enabled in simulation A and disabled in simulation B.

the droplets display distinct behaviors upon impact, as shown in Figure 3.10.

We also capture the partial rebound and the full rebound behaviors of the droplet after

the impact. The middle and bottom rows of Figure 3.10 show the footage of a droplet with

kσ = 15N/m dropped from a height of 3.5m (in 1m × 4m × 1m domain) and a droplet with

kσ = 5N/m dropped from a height of 2.5m (in 1m× 3m× 1m domain), respectively. With a

higher surface tension coefficient and a higher impact speed, the droplet is able to completely

leave the surface after the impact. Our results qualitatively match the experiment outcomes

from [RTM01].

44

(a)

(b) (c)

Figure 3.10: (a) Spherical droplets with different surface tension coefficients free fall from

the same height. In the top figure, from left to right, the surface tension coefficients are

kσ = 20, 5, 1, 0.1, 0.05N/m. (b) full rebound of the droplet (initial height: 3.5m and kσ =

15N/m). (c) partial rebound of the droplet (initial height: 2.5m and kσ = 5N/m).

3.3.4 Droplets on Ramps

As discussed in Section 3.1.6, our method allows for distinct kσ values at solid-liquid and

liquid-air interfaces. Tuning the ratio between kσ at these interfaces allows simulating differ-

ent levels of hydrophilicity/hydrophobicity. Figure 3.11 shows an example of several liquid

drops with different kσ ratios falling on ramps of 5.5◦ angle. The length of the ramp is 3m,

45

and the domain size is 3m×0.5m×1m. Coulomb friction with a friction coefficient of 0.2 was

used for the ramp surface, and the drop has no viscosity. When there is a larger difference

between solid-liquid and liquid-air surface tension coefficients (i.e., a smaller kσ ratio), the

liquid tends to drag more on the surface and undergo more separation and sticking. The

leftmost example, with a kσ ratio of 1.0, exhibits hydrophobic behavior.

Figure 3.11: Liquid drops fall on a ramp with varying ratios between the solid-liquid and

liquid-air surface tension coefficients. From left to right: ratios of 1.0, 0.6, 0.3, 0.05. (Left)

Frame 60. (Right) Frame 100.

3.3.5 Lid-Driven Cavity

The two-dimensional lid-driven cavity is a classic example in the engineering literature of

the Marangoni effect [FSK06, HSN18]. Inspired by works like these, we simulate a square

unit domain and fill the domain with particles up to height 1 − 4∆x (∆x = 1/63), which

results in a free surface near the top of the domain. A linear temperature gradient from 1

on the left to 0 on the right is initialized on the particles. To achieve the Marangoni effect,

the surface tension coefficient kσ is set to depend linearly on temperature: kσ = 1− Tp. kσ

is clamped to be in [0, 1] to avoid artifacts due to numerical precision. Gravity is set to zero,

dynamic viscosity is set to 1× 10−6Pa ·m and implicit MPM is used with a maximum ∆t of

0.001. Results are shown in Figure 3.12. We note that the center of the circulation drifts to

the right over the course of the simulation due to uneven particle distribution resulting from

46

Figure 3.12: Frame 500 of a two-dimensional lid-driven cavity simulation. The simulation

is initially stationary, but velocity streamlines (red) show the flow pattern characteristic of

Marangoni convection that develops due to a temperature-dependent surface tension coef-

ficient. The contour plot shows the evolving temperature field (initially a linear horizontal

distribution).

the circulation of the particles; this drifting behavior is not observed in works like [FSK06] or

[HSN18]. Investigating particle reseeding strategies to stabilize the flow is interesting future

work.

3.3.6 Contact Angles

Figure 3.13 shows that our method enables simulation of various contact angles, emulating

various degrees of hydrophobic or hydrophilic behavior as a droplet settles on a surface. We

adjust the contact angles by assigning one surface tension coefficient, kσLG, to the surface par-

ticles on the liquid-gas interface, and another one, kσSL, to those on the solid-liquid interface.

Following the Young equation (Equation (3.11)) and our assumption that kσSG is negligible,

the contact angle is given by θ = arccos
(
− kσSL/k

σ
LG

)
. Note that the effect of gravity will

47

result in contact angles slightly smaller than targeted.

Figure 3.13: As our droplets settle, we are able to obtain contact angles of approximately

45, 90, 135 and 180 degrees, using a kσSL/kσLG ratio of −
√
2/2, 0,

√
2/2 and 1, respectively.

A droplet of radius 0.1m is placed right above the ground in a 0.5m × 0.5m × 0.5m

domain. Each droplet is discretized using 230k interior particles and 250k surface particles.

The surface tension kσLG is set to 2N/m, and we approximate kσSL based on the desired contact

angle θ. A dynamic viscosity of 0.075Pa · s is used to stabilize the simulations.

3.3.7 Soap Droplet in Water

We demonstrate a surface tension driven flow by simulating soap reducing the surface tension

of the water. We initialize a 1m × 0.05m × 1m rectangular water pool, set a 0.075m-radius

and 0.025m-height cylindrical region at the center of the pool to be liquid soap and identify

particles in this region to be soap particles. We set the surface tension coefficients for the

surface particles based on the type of its closest MPM particles. Surface particles associated

with the water particles have higher surface tension than those associated with the soap

particles. The viscosity is set to 0 in this example.

In order to visualize the effect of the surface tension driven flow, we randomly selected

marker particles on the top surface of the pool. Due to the presence of the soap, the center of

the pool has lower surface tension than the area near the edge of the container. The surface

tension gradient drives the particles to flow from the center to the edge. Figure 3.14 shows

footage of this process.

48

Figure 3.14: The soap in the center of the pool surface reduces the surface tension. The

surface tension gradient drives the markers towards the walls of the container. Frames 0, 10,

20, 40 are shown in this footage.

3.3.8 Wine Glass

We consider an example of wine flowing on the surface of a pre-wetted glass. The glass is an

ellipsoid centered at (0.5m, 0.7m, 0.5m) with characteristic dimensions a = 0.4m, b = 0.6m,

and c = 0.4m. We initialize a thin band of particles with the thickness of 2∆xm on the surface

of the wine glass and observe the formation of ridges and fingers as the particles settle toward

the bulk fluid in the glass. We set the surface tension coefficient on the liquid-gas interface

to be kσLG = 0.05N/m and the one on the solid-liquid interface to be kσSL = 0.015N/m. The

piecewise constant surface tension leads to a more prominent streaking behavior of the liquid

on the glass wall. The results are shown in Figure 3.15.

3.3.9 Candles

We simulate several scenarios with wax candles. The height of the candle is 0.6m and the

radius is 0.1m. The domain size is 1m × 1m × 1m. In these examples, wax melts due to

a heat source (candle flame) and resolidifies when it flows away from the flame. Ambient

temperature T̂ is taken to be 298K, and the melting point is 303K. Thermal conductivity

K is taken to be 0.1W/m · K, and specific heat capacity cp is set to 1J/K. No internal

heat source is used (H = 0); instead, heating and cooling are applied only via the boundary

conditions.

49

Figure 3.15: Wine is initialized in a glass with part of the interior pre-wetted. The falling

wine forms tears and ridges, and the tears eventually connect with the bulk fluid. Frames

30 and 90 are shown.

To simulate the candle wicks, we manually construct and sample points on cubic splines.

As the simulation progresses, we delete particles from the wick that are too far above the

highest (y-direction) liquid particle within a neighborhood of the wick. The flames are

created by running a separate FLIP simulation as a postprocess and anchoring the result

to the exposed portion of each wick. We rendered these scenes using Arnold [GIF18] and

postprocessed the renders using the NVIDIA OptiX denoiser (based on [CKS17]).

We consider the effect of varying kσ on the overall behavior of the flow. Figure 3.16 com-

pares kσ values of 0.05N/m, 0.1N/m, 0.2N/m, and 0.4N/m. In these examples, a grid resolu-

tion of ∆x = 1/127m was used, along with boundary condition parameters h = 0.5W/m2 ·K

and b = 50W/m2. The figure demonstrates that as surface tension increases, the molten

wax spreads significantly less. As the wax cools and resolidifies, visually interesting layering

behavior is observed.

Figure 3.17 shows an example of several candle letters melting in a container. Wicks follow

generally curved paths inside the letters. Melt pools from the different letters seamlessly

interact. This simulation used a surface tension coefficient kσ = 0.05N/m, h = 2.5W/m2 ·K,

50

Figure 3.16: Various kσ values (0.05, 0.1, 0.2, 0.4N/m) are simulated in the case of a melting

candle. Frame 1202 is shown.

b = 100W/m2, dynamic viscosity of 0.01Pa · s, ∆x = 1/127m, and a bulk modulus of

83333.33Pa for liquid and solid phases.

3.3.10 Droplet with Marangoni Effect

We simulate an inviscid liquid metal droplet that moves under the Marangoni effect, i.e.,

due to a temperature-induced surface tension gradient. A spherical drop with radius of

0.1m is initialized at position (0.5m, (0.1 + 3.5∆x)m, 0.5m) inside a 2m × 1m × 1m domain.

We then turn on the heating 1 second after the simulation starts (while the droplet is still

spreading). The Neumann boundary condition is applied to heat the particles in the region

with x ≤ 0.5m. The thermal conductivity K is set to be 0.1W/(m · K), and the convective

51

heat transfer coefficient h is 0.1W/(m2 ·K). The boundary heating rate b = 50W/m2 is much

higher than the conduction and convection, so the heat transfer inside the droplet and the

heat exchange between the droplet and the environment are less prominent.

We define the surface tension coefficient as a function of temperature: kσ = min(0.09(T−

T̄) + 0.5, 2)N/m, where T̄ = 50K is the ambient temperature. At its original temperature,

the surface tension coefficient kσ of the droplet is 0.5N/m. As the temperature increases, kσ

increases linearly with the temperature. The maximum allowable surface tension strength

is 2N/m. After the heating, surface particles on the hotter side of the droplet have higher

surface tension. The stronger surface tension penalizes the area changes and drives the

particles to flow to the colder side, as shown in Figure 3.18. This surface tension gradient

results in an interesting self-propelled behavior of the liquid metal droplet.

3.3.11 Performance

Table 3.2 shows average per-timestep runtime details for several of our examples. For this

table, all experiments were run on a workstation equipped with 128GB RAM and with dual

Intel® Xeon® E5-2687W v4 CPUs at 3.00Ghz.

3.4 Discussion and Future Work

Our method allows for simulation of surface tension energies with spatial gradients, including

those driven by variation in temperature. Our MPM approach to the problem resolves many

interesting characteristic phenomena associated with these variations. However, while we

provide perfect conservation of linear and angular momentum, our approach to the thermal

transfers is not perfectly conservative. Developing a thermally conservative transfer strategy

is interesting future work. Also, although we simulate tears of wine on the walls of a glass,

we did not simulate the effect of alcohol evaporation on the surface energy variation. Adding

in a mixture model as in [DHW19] would be interesting future work. Lastly, although our

52

Table 3.2: Performance measurements for one time step of several of our 3D examples, broken

down by (1) sampling: generating surface and balance particles and conservative momentum

splitting, (2) conservative momentum merging, (3) single particle-to-grid transfer, (4) single

grid-to-particle transfer, (5) total time of the linear solve, (6) total time of one time step.

Note that each linear solve involves several particle-to-grid and grid-to-particle transfers, and

each time step requires several linear solves. All times are in milliseconds.

Example # Cells # Int. Part. # Surf. Part. Sampling Merging Part.→Grid Grid→Part. Linear Solve Time Step

Droplet Impact (kσ = 5) 2M 794K 100K 2224 20 95 39 1422 10065

Droplets on Ramps (kσSL/kσLG = 0.05) 1.5M 70K 100K 258 6 28 9 199 1434

Contact Angles (kσSL/kσLG = 0) 256K 230K 250K 492 17 73 38 647 4286

Soap Droplet in Water 1M 4M 200K 2166 33 575 257 5599 35304

Wine Glass 2M 1.6M 500K 1549 52 163 91 2030 12440

Candle (kσ = 0.1) 2M 618K 50K 1420 7 122 44 2646 29162

Candle Letters 256K 3.1M 100K 4601 15 574 187 8445 172787

Droplet with Marangoni Effect 4.1M 235K 200K 2991 18 82 51 1636 12056

approach was designed for MPM, SPH is more commonly used for the simulation of liquids.

However, SPH and MPM have many similarities, as recently shown by the work of Gissler

et al. [GHB20], and it would be interesting future work to generalize our approach to SPH.

53

Figure 3.17: Letter-shaped candles melt inside a container. (Top) Frame 1, before flames

are lit. (Middle) Frame 60, in the middle of melting. (Bottom) Frame 200, as flames are

extinguished and wax pools resolidify.

54

Figure 3.18: A liquid metal droplet subjected to heating on one side. The surface tension

coefficient increases as the temperature increases. (Top) the liquid metal at frame 45 and

frame 130. (Bottom) the particle view of temperature distribution at frame 45 and frame

130. The red color indicates higher temperature.

55

CHAPTER 4

A Deep Conjugate Direction Method for Iteratively

Solving Linear Systems

4.1 Motivation: Incompressible Flow

We demonstrate the efficacy of our approach with the linear systems that arise in incom-

pressible flow applications. Specifically, we use our algorithm to solve the Poisson equation

discretized on a regular grid, following the pressure projection equations that arise in Chorin’s

splitting technique [Cho67] for the inviscid, incompressible Euler equations. These equations

are

ρ

(
∂u

∂t
+
∂u

∂x
u

)
+∇p = f ext, ∇ · u = 0 (4.1)

where u is fluid velocity, p is pressure, ρ is density, and f ext accounts for external forces like

gravity. The equations are assumed at all positions x in the spatial fluid flow domain Ω and

for time t > 0. The first equation in Equation 4.1 enforces conservation of momentum in

the absence of viscosity, and the second enforces incompressibility and conservation of mass.

These equations are subject to initial conditions ρ(x, 0) = ρ0 and u(x, 0) = u0(x), as well

as boundary conditions u(x, t) · n(x) = u∂Ω(x, t) on the boundary of the domain x ∈ ∂Ω

(where n is the unit outward pointing normal at position x on the boundary).

Equation 4.1 is discretized in both time and space. Temporally, we split the advection
∂u

∂t
+
∂u

∂x
u = 0 and body forces terms ρ

∂u

∂t
= f ext, and finally enforce incompressibility via

the pressure projection
∂u

∂t
+

1

ρ
∇p = 0 such that ∇ · u = 0; this is the standard advection-

56

projection scheme proposed by [Cho67]. Using finite differences in time, we can summarize

this as

ρ0
(
u∗ − un

∆t
+
∂un

∂x
un

)
= f ext (4.2)

−∇ · 1

ρ0
∇pn+1 = −∇ · u∗ (4.3)

− 1

ρ0
∇pn+1 · n =

1

∆t

(
u∂Ω − u∗ · n

)
. (4.4)

For the spatial discretization, we use a regular marker-and-cell (MAC) grid [HW65] with

cubic voxels whereby velocity components are stored on the face of voxel cells, and scalar

quantities (e.g., pressure p or density ρ) are stored at voxel centers. We use backward semi-

Lagrangian advection [Sta99, FSJ01, GHM20] for Equation 4.2. All spatial partial derivatives

are approximated using finite differences. Equations 4.3 and 4.4 describe the pressure Poisson

equation with Neumann conditions on the boundary of the flow domain. We discretize the

left-hand side of Equation 4.3 using a standard 7-point finite difference stencil. The right-

hand side is discretized using the MAC grid discrete divergence finite difference stencils as

well as contributions from the boundary condition terms in Equation 4.4. We refer the

reader to [Bri08] for more in-depth implementation details. Equation 4.4 is discretized by

modifying the Poisson stencil to enforce Neumann boundary conditions. We do this using

a simple labeling of the voxels in the domain. For simplicity, we assume Ω ⊂ (0, 1)3 is a

subset of the unit cube, potentially with internal boundaries. We label cells in the domain as

either liquid or boundary. This simple classification is enough to define the discrete Poisson

operators (with appropriate Neumann boundary conditions at domain boundaries) that we

focus on in the present work; we illustrate the details in Figure 4.1.

We use the following notation to denote the discrete Poisson equations associated with

Equations 4.3–4.4:

AΩx = b∇·u∗
+ bu∂Ω

, (4.5)

where AΩ is the discrete Poisson matrix associated with the voxelized domain, x is the vector

of unknown pressure, and b∇·u∗ and bu∂Ω are the right-hand side terms from Equations 4.3

57

and 4.4, respectively. AΩ in Equation 4.5, is a large, sparse, SPD linear system. The

computational complexity of solving Equation 4.5 strongly depends on data (e.g., internal

boundary conditions in the flow domain, see Figure 4.1).

We define a special case of the matrix involved in this discretization to be the Poisson

matrix Atrain associated with Ω = (0, 1)3, i.e., a full fluid domain with no internal boundaries.

We use this matrix for training, yet demonstrate that our network generalizes to all other

matrices arising from more complicated flow domains. To be clear, the implication of this

is that by training DCDM one time—which we have already done, and we release our pre-

trained models and source code along with this paper—practitioners can immediately apply

DCDM to any Poisson system (regardless of internal boundary conditions, etc.). Although

there is a clear limitation that we only train our network to solve Poisson problems, this

is a major advantage over state-of-the-art methods like FluidNet [TSS17], which require

highly diverse training data (matrices from many fluid simulations, all with different types of

obstacles and boundary conditions) in order to train a network with sufficient generalization;

we only ever leverage a single training matrix (i.e., a single set of boundary conditions) Atrain.

4.2 Deep Conjugate Direction Method

We present our method for the deep learning acceleration of iterative approximations to the

solution of linear systems of the form seen in Equation 4.5. We first briefly discuss relevant

details of search direction methods, particularly the choice of line search directions1. We

then present a deep learning technique for improving the quality of these search directions

that ultimately reduces iteration counts required to achieve satisfactory residual reduction.

Lastly, we outline the training procedures for our deep CNN.

Our approach iteratively improves approximations to the solution x of Equation 4.5. We

build on the method of CG, which requires the matrix AΩ in Equation 4.5 to be SPD. SPD

1For a comprehensive background on CG, see Appendix B.1.

58

 -1

 -1 4 -1

 -1

 -1

 2 -1 -1

 -1 3 -1𝑨! 𝑨"#$%&

𝒂 𝒃 𝒄 𝒅

object

boundary

Figure 4.1: (a) We illustrate a sample flow domain Ω ⊂ (0, 1)2 (in 2D for ease of illustration)

with internal boundaries (blue lines). (b) We voxelize the domain with a regular grid: white

cells represent interior/fluid, and blue cells represent boundary conditions. (c) We train using

the matrix Atrain from a discretized domain with no interior boundary conditions, where d

is the dimension. This creates linear system with n = (nc + 1)d unknowns, where nc is the

number of grid cells on each direction. (d) We illustrate the non-zero entries in an example

matrix AΩ from the voxelized and labeled (white vs. blue) grid for three example interior

cells (green, magenta, and brown). Each case illustrates the non-zero entries in the row

associated with the example cell. All entries of AΩ in rows corresponding to boundary/blue

cells are zero.

matrices AΩ give rise to the matrix norm ∥y∥AΩ =
√
yTAΩy. CG can be derived in terms

of iterative line search improvement based on optimality in this norm. That is, an iterate

xk−1 ≈ x is updated along search direction dk by a step size αk that is chosen to minimize

the matrix norm of the error between the updated iterate and x:

αk = argmin
α

1

2
∥x− (xk−1 + αdk)∥2AΩ

=
rTk−1dk

dT
kA

Ωdk

, (4.6)

where rk−1 = b−AΩxk−1 is the (k − 1)th residual (see Appendix B.2 for details). Different

search directions dk result in different algorithms. A natural choice is the negative gradient of

the matrix norm of the error (evaluated at the current iterate), dk = −1
2
∇∥xk−1∥2AΩ = rk−1,

since this will point in the direction of steepest decrease. This is the gradient descent method

59

(GD). Unfortunately, this approach requires many iterations in practice. CG modifies GD

into a more effective strategy by instead choosing directions that are A-orthogonal (i.e.,

dT
i A

Ωdj = 0 for i ̸= j). More precisely, the search direction dk is chosen as follows:

dk = rk−1 −
k−1∑

i=1

hikdi, hik =
dT
i A

Ωrk−1

dT
i A

Ωdi

,

which guarantees A-orthogonality. The magic of CG is that hik = 0 for i < k− 1, hence this

iteration can be performed without the need to store all previous search directions di and

without the need for computing all previous hik.

While the residual is a natural choice for generating A-orthogonal search directions (since

it points in the direction of the steepest local decrease), it is not the optimal search direction.

Optimality is achieved when dk is parallel to (AΩ)−1rk−1, whereby xk will be equal to x

since αk (computed from Equation 4.6) will step directly to the solution. We can see this by

considering the residual and its relation to the search direction:

rk = b−AΩxk = b−AΩxk−1 − αkA
Ωdk

= rk−1 − αkA
Ωdk.

In light of this, we use deep learning to create an approximation f(c, r) to (AΩ)−1r, where

c denotes the network weights and biases. This is analogous to using a preconditioner in

PCG; however, our network is not SPD (nor even a linear function). We simply use this

data-driven approach as our means of generating better search directions dk. Furthermore,

we only need to approximate a vector parallel to (AΩ)−1r since the step size αk will account

for any scaling in practice. In other words, f(c, r) ≈ sr(A
Ω)−1r, where the scalar sr is not

defined globally; it only depends on r, and the model does not learn it. Lastly, as with CG,

we enforce A-orthogonality, yielding search directions

dk = f(c, rk−1)−
k−1∑

i=1

hikdi, hik =
f(c, rk−1)

TAΩdi

dT
i A

Ωdi

.

We summarize our approach in Algorithm 1. Note that we introduce the variable istart. To

guarantee A-orthogonality between all search directions, we must have istart = 1. However,

60

this requires storing all prior search directions, which can be costly. We found that using

istart = k − 2 worked nearly as well as istart = 1 in practice (in terms of our ability to

iteratively reduce the residual of the system). We demonstrate this in Figure 4.4c.

Algorithm 1: DCDM

1 r0 = b−AΩx0;

2 k = 1;

3 while ∥rk−1∥ ≥ ϵ do

4 dk = f(c, rk−1

∥rk−1∥
);

5 for istart ≤ i < k do

6 hik =
dT
k AΩdi

dT
i AΩdi

;

7 dk-=hikdi;

8 end

9 αk =
rTk−1dk

dT
k AΩdk

;

10 xk = xk−1 + αkdk;

11 rk = b−AΩxk;

12 k = k + 1;

13 end

4.3 Model Architecture, Datasets, and Training

Efficient performance of our method requires effective training of our deep convolutional

network for weights and biases c such that f(c, r) ≈ sr(A
Ω)−1r (for arbitrary scalar sr). We

design a model architecture, loss function, and self-supervised training approach to achieve

this. Our approach has modest training requirements and allows for effective residual reduc-

tion while generalizing well to problems not seen in the training data.

61

4.3.1 Loss Function and Self-supervised Learning

Although we generalize to arbitrary matrices AΩ from Equation 4.5 that correspond to

domains Ω ⊂ (0, 1)3 that have internal boundaries (see Figure 4.1), we train using just the

matrix Atrain from the full cube domain (0, 1)3. “the full cube domain (0, 1)3” is just the unit

cube discretized on regular intervals, see e.g. Figure 4.1(c).

In contrast, other similar approaches [TSS17, YYX16] train using matrices AΩ and right-

hand sides b∇·u∗
+ bu∂Ω that arise from flow in many domains with internal boundaries.

We train our network by minimizing the L2 difference ∥r − αAtrainf(c, r)∥2, where α =

rT f(c,r)
f(c,r)TAtrainf(c,r)

from Equation 4.6. This choice of α accounts for the unknown scaling in the

approximation of f(c, r) to
(
Atrain

)−1
r. We use a self-supervised approach and train the

model by minimizing

Loss(f , c,D) =
1

|D|
∑

r∈D

∥r− rT f(c, r)

f(c, r)TAtrainf(c, r)
Atrainf(c, r)∥2

for a given dataset D consisting of training vectors bi. In Algorithm 1, the normalized

residuals rk
∥rk∥

are passed as inputs to the model. Unlike in e.g. FluidNet [TSS17], only the first

residual r0
∥r0∥ is directly related to the problem-dependent original right-hand side b. Hence

we consider a broader range of training vectors than those expected in a given problem of

interest, e.g., incompressible flows. We observe that generally the residuals rk in Algorithm 1

are skewed to the lower end of the spectrum of the matrix AΩ. Since AΩ is a discretized

elliptic operator, lower end modes are of lower frequency of spatial oscillation. We create our

training vectors bi ∈ D using m≪ n approximate eigenvectors of the training matrix Atrain.

We use the Rayleigh-Ritz method to create approximate eigenvectors qi, 0 ≤ i < m. This

approach allows us to effectively approximate the full spectrum of Atrain without computing

the full eigendecomposition, which can be expensive (O(n3)) at high resolution. Note that

generating the dataset has O(m2N) complexity, N being the resolution (e.g., 643 or 1283),

due to reorthogonalization of Lanczos vectors (see Appendix B.4). Hence we tried values like

m = 1K, 5K, 10K, and 20K, and chose the smallest value (m = 10,000) that gave a viable

62

model after training.

The Rayleigh-Ritz vectors are orthonormal and satisfy QT
mA

trainQm = Λm, where Λm is

a diagonal matrix with nondecreasing diagonal entries λi referred to as Ritz values (approx-

imate eigenvalues) and Qm = [q0,q1, . . . ,qm−1] ∈ Rn×m. We pick bi =
∑m−1

j=0 cijqj

∥∑m−1
j=0 cijqj∥ , where

the coefficients cij are picked from a standard normal distribution

cij =




9 · N (0, 1) if j̃ ≤ j ≤ m

2
+ θ

N (0, 1) otherwise

where θ is a small number (we used θ = 500), and j̃ is the first index that λj̃ > 0. This

choice creates 90% of bi from the lower end of the spectrum, with the remaining 10% from

the higher end. The Riemann-Lebesgue Lemma states the Fourier spectrum of a continuous

function will decay at infinity, so this specific choice of bi’s is reasonable for the training

set. In practice, we also observed that the right-hand sides of the pressure system that arose

in flow problems (in the empty domain) tended to be at the lower end of the spectrum.

Notably, even though this dataset only uses Rayleigh-Ritz vectors from the training matrix

Atrain, our network can be effectively generalized to flows in irregular domains, e.g., smoke

flowing past a rotating box and flow past a bunny (see Figure 4.3).

We generate the Rayleigh-Ritz vectors by first tridiagonalizing the training matrix Atrain

with m Lanczos iterations [Lan50] to form Tm = QL
m

T
AtrainQL

m ∈ Rm×m. We then diagonal-

ize Tm = Q̂TΛmQ̂. While asymptotically costly, we note that this algorithm is performed on

the comparably small m×m matrix Tm (rather than on the Atrain ∈ Rn×n). This yields the

Rayleigh-Ritz vectors as the columns of Qm = QL
mQ̂. The Lanczos vectors are the columns

of the matrix QL
m and satisfy a three-term recurrence whereby the next Lanczos vector can

be iteratively computed from previous two as

βjq
L
j+1 = AtrainqL

j − βj−1q
L
j−1 − αjq

L
j ,

where αj and βj are diagonal and subdiagonal entries of Tk. βj is computed so that qL
j+1

is a unit vector, and αj+1 = qT
j+1A

trainqj+1. We initialize the iteration with a random

63

16 x 1283 16 x 1283 16 x 1283 16 x 128316 x 1283

1 Residual Block

2K+1 Conv Layers

K Residual Blocks (K-RB)

16 x 1283 16 x 1283

1 x 1283
16 x 1283 16 x 1283

2-RB

16 x 1283 16 x 1283

5-RB

16 x 643 16 x 643

2x2x2 AveragePooling
 2x2x2 UpScale

3-RB

16 x 1283 16 x 1283 1 x 1283

: 3x3x3 Conv, ReLU
: Addition
: 3x3x3 Conv, Linear
: Dense, Linear

Figure 4.2: Architecture for training with Atrain on a 1283 grid.

qL
0 ∈ span(Atrain). The Lanczos algorithm can be viewed as a modified Gram-Schmidt

technique to create an orthonormal basis for the Krylov space associated with qL
0 and Atrain,

and it therefore suffers from rounding error sensitivities manifested as loss of orthonormality

with vectors that do not appear in the recurrence. We found that the simple strategy

described in [Pai71] of orthogonalizing each iterate with respect to all previous Lanczos

vectors to be sufficient for our training purposes. Dataset creation takes 5–7 hours for a 643

computational grid, and 2–2.5 days for a 1283 grid (see Appendix B.4 for more detail).

We reiterate that since DCDM generalizes to various Poisson systems (see Sections 4.3.2

and 4.4) despite only using data corresponding to an empty fluid domain, practitioners

do not need to generate new data in order to apply our method. Moreover, we show in

the examples that it is possible to use trained model weights from a lower-resolution grid

for higher-resolution problems, so practitioners may not need to generate new data even if

running problems at different resolutions than what we consider.

64

4.3.2 Model Architecture

The internal structure of our CNN architecture for a 1283 grid is shown in Figure 4.2. It

consists of a series of convolutional layers with residual connections. The upper left of

Figure 4.2 (K Residual Blocks) shows our use of multiple blocks of residually connected

layers. Notably, within each block, the first layer directly affects the last layer with an

addition operator. All non-input or output convolutions use a 3× 3× 3 filter, and all layers

consist of 16 feature maps. In the middle of the first level, a layer is downsampled (via the

average pooling operator with (2× 2× 2) pool size) and another set of convolutional layers

is applied with residual connection blocks. The last layer in the second level is upscaled

and added to the layer that is downsampled. The last layer in the network is dense with a

identity function. The activation functions in all convolutional layers are ReLU, except for

the first convolution, which uses a linear activation function.

Initially we tried a simple deep feedforward convolutional network with residual con-

nections (motivated by [HZR16]). Although such a simple model works well for DCDM, it

requires a high number of layers, which results in higher training and inference times. We

found that creating parallel layers of CNNs with downsampling reduced the number of layers

required. In summary, our goal was to first identify the simplest network architecture that

provided adequate accuracy for our target problems, and subsequently, we sought to make

architectural changes to minimize training and inference time. We are interested in a more

thorough investigation of potential network architectures, filter sizes, etc., to better charac-

terize the tradeoff curves between accuracy and efficiency; as a first step in this direction,

we included a brief ablation study in Appendix B.4.

Differing resolutions use differing numbers of convolutions, but the fundamental structure

remains the same. More precisely, the number of residual connections is changed for different

resolutions. For example, a 643 grid uses one residual block on the left, two on the right on

the upper level, and three on the lower level. Furthermore, the weights trained on a lower

65

resolution grid can be used effectively with higher resolutions. Figure 4.4d shows convergence

results for a 2563 grid, using a model trained for a 643 grid and a 1283 grid. The model that

we use for 2563 grids in our final examples was trained on a 1283 grid; however, as the shown

in the figure, even training with a 643 grid allows for efficient residual reduction. Table 4.1

shows results for three different resolutions, where DCDM uses 643 and 1283 trained models.

Since we can use the same weights trained over a 64d domain and/or 128d domain, the

number of parameters does not depend on the spatial fidelity. It depends on d for the kernel

size.

4.3.3 Training

Using the procedure explained in Section 4.3.1, we create the training dataset D ∈

span(Atrain) ∩ Sn−1 of size 20,000 generated from 10,000 Rayleigh-Ritz vectors. Sn−1 is the

unit sphere, i.e., all training vectors are scaled to have unit length. We train our model with

TensorFlow [AAB15] on a single NVIDIA RTX A6000 GPU with 48GB memory. Training

is done with standard deep learning techniques—more precisely, back-propagation and the

ADAM optimizer [KB15] (with starting learning rate 0.0001). Training takes approximately

10 minutes and 1 hour per epoch for grid resolutions 643 and 1283, respectively. We trained

our model for 50 epochs; however, the model from the thirty-first epoch was optimal for 643,

and the model from the third epoch was optimal for 1283.

4.4 Results and Analysis

We demonstrate DCDM on three increasingly difficult examples and provide numerical evi-

dence for the efficient convergence of our method. All examples were run on a workstation

with dual stock AMD EPYC 75F3 processors, and an NVIDIA RTX A6000 GPU with

48GB memory. The grid resolutions we evaluate are the same as used in e.g. [TSS17] and

are common for graphics papers.

66

Figure 4.3: DCDM for simulating a variety of incompressible flow examples. Left: smoke

plume at t = 6.67, 13.33, 20 seconds. Middle: smoke passing a bunny at t = 5, 10, 15 seconds.

Right: smoke passing a spinning box (time-dependent Neumann boundary conditions) at

t = 2.67, 6, 9.33 seconds.

Figure 4.3 showcases DCDM for incompressible smoke simulations. In each simulation,

inlet boundary conditions are set in a circular portion of the bottom of the cubic domain,

whereby smoke flows around potential obstacles and fills the domain. We show a smoke

plume (no obstacles), flow past a complex static geometry (the Stanford bunny), and flow

past a dynamic geometry (a rotating cube). Visually plausible and highly-detailed results

are achieved for each simulation (see supplementary material for larger videos). The plume

example uses a computational grid with resolution 1283, while the other two uses grids

with resolution 2563 (representing over 16 million unknowns). For each linear solve, DCDM

was run until the residual was reduced by four orders of magnitude2. In our experience,

2Computer graphics experts have found that solving Poisson equations until a four orders-of-magnitude
reduction in residual is achieved is enough for visual realism (any further computational effort does not yield
easily perceptible differences) [MST10, PGG23].

67

production-grade solvers (e.g., 3D smoke simulators for movie visual effects) use resolutions

of 1283 or more, and as computing resources improve we are seeing more problems solved at

huge scales like 5123 and above, where a learning-enhanced method like DCDM will have a

more dramatic impact.

For the bunny example, Figures 4.4a–b demonstrate how residuals decrease over the

course of a linear solve, comparing DCDM with other methods. Figure 4.4a shows the mean

results (with standard deviations) over the course of 400 simulation frames, while in Figure

4.4b, we illustrate behavior on a particular frame (frame 150). For FluidNet, we use the

optimized implementation provided by [flu22]. This implementation includes pre-trained

models that we use without modification. In both subfigures, it is evident that the FluidNet

residual never changes, since the method is not iterative; FluidNet reduces the initial residual

by no more than one order of magnitude. On the other hand, with DCDM, we can continually

reduce the residual (e.g., by four orders of magnitude) as we apply more iterations of our

method, just as with classical CG. In Figure 4.4b, we also visualize the convergence of three

other classical methods, CG, Deflated CG [SYE00], and incomplete Cholesky preconditioned

CG (ICPCG); clearly, DCDM reduces the residual in the fewest number of iterations (e.g.,

approximately one order of magnitude fewer iterations than ICPCG). Since FluidNet is not

iterative and lacks a notion of residual reduction, we treat r0 for FluidNet as though an

initial guess of zero is used (as is done in our solver).

To clarify these results, Table 4.1 reports convergence statistics for DCDM compared to

standard iterative techniques, namely, CG, Deflated CG, and ICPCG. For all 643, 1283, and

2563 grids with the bunny example, we measure the time tr and the number of iterations

nr required to reduce the initial residual on a particular time step of the simulation by four

orders of magnitude. DCDM achieves the desired results in by far the fewest number of it-

erations at all resolutions. At 2563, DCDM performs approximately 6 times faster than CG,

suggesting a potentially even wider performance advantage at higher resolutions. Inference is

the dominant cost in an iteration of DCDM; the other linear algebra computations in an iter-

68

iterations

lo
g

10
(k

rk
=
kr

0
k)

0 10 20 30 40
-4

-3

-2

-1

0
DCDM 128
FN 128
DCDM 256
FN 256

0 100 200 300 400 500 600 700
-4

-3

-2

-1

0
ICPCG
CG
FN
DCDM
De.atedCG

0 5 10 15 20 25 30 35
-4

-3

-2

-1

0
is = k
is = k ! 1
is = k ! 2
is = k ! 10
is = 1

0 20 40 60 80 100
-4

-3

-2

-1

0 64 trained
128 trained

Figure 4.4: Convergence data for the bunny example (see also Table 4.1). (a) Mean and std.

dev. (over all 400 frames in the simulation) of residual reduction during linear solves (with

1283 and 2563 grids) using FluidNet (FN) and DCDM. (b) Residual plots with ICPCG, CG,

FN, DCDM, and Deflated CG at frame 150. Dashed and solid lines represent results for 1283

and 2563, respectively. (c) Decrease in residuals with varying degrees of A-orthogonalization

(is = istart) in the 1283 case. (d) Reduction in residuals when the network is trained with a

643 or 1283 grid for the 2563 grid simulation shown in Figure 4.3 Middle.

ation of DCDM are comparable to those in CG. The nice result of our method is that despite

the increased time per iteration, the number of required iterations is reduced so drastically

69

that DCDM materially outperforms classical methods like CG. Although ICPCG success-

fully reduces number of iterations (Figure 4.4b), we found the runtime to scale prohibitively

with grid resolution. We used SciPy’s [VGO20] sparse.linalg.spsolve_triangular func-

tion for forward and back substitution in our ICPCG implementation, and we also used a

precomputed L that is not accounted for in the table results (though this took no more than

4 seconds at the highest resolution); Appendix B.3 includes further details on ICPCG.

Notably, even though Deflated CG and DCDM are based on approximate Ritz vectors,

DCDM performs far better, indicating the value of using a neural network.

We performed three additional sets of tests. First, we tried low resolutions, 163 and

323, which are such small problems that we would expect CG to win due to the relatively

high overhead of evaluating a neural network: indeed, DCDM and CG take 0.377sec/15iter

and 0.008sec/48iter at 163, respectively, and 0.717sec/16iter and 0.063sec/53iter at 323.

Note that we used the model (and parameters) tailored for 643 resolution to obtain these

results; a lighter model, trained specifically for 163 and 323 resolutions, would give better

timings, though likely still behind CG. Second, we tested cases where d = 2, at resolutions

2562 and 5122. For this setup, running the smoke plume test (2D analogue of 4.3 Left) at

2562, DCDM and CG take 2.18sec/64iter and 0.59sec/536iter, respectively. Again, since

the system for this resolution is much smaller than those reported in Table 4.1, we expect

CG to be more efficient. However, at 5122, the system is big enough where we actually

do outperform CG in time as well: 3.87sec/126iter for DCDM vs. 5.60sec/1146iter for CG.

Third, we performed comparisons between DCDM and a more recent work, [SSH19]. Since

[SSH19] requires many asymptotically expensive computations, we expected a significant

performance advantage with DCDM. For the 2562 smoke plume example, using matrices

from frame 10 of the simulation, [SSH19] requires 1024 iterations for convergence (15.41s),

vs. only 50 for DCDM (1.50s).

70

643 Grid 1283 Grid 2563 Grid

Method tr nr tpr tr nr tpr tr nr tpr

DCDM-64 2.71s 16 0.169s 22s 27 0.814 s 261s 58 4.50s

DCDM-128 5.37s 19 0.283 s 26s 25 1.083s 267s 44 6.07s

CG 1.77s 168 0.0105s 26s 465 0.0559s 1548s 1046 1.479s

Deflated CG 771.6s 117 6.594s 3700s 277 13.357s 21030s 489 43.00s

ICPCG 164s 43 3.813s 2877s 94 30.60s 54714s 218 250.98s

Table 4.1: Timing and iteration comparison for different methods on the bunny example. tr,

nr and tpr represents time, iteration and time per iteration. DCDM-{64,128} calls a model

whose parameters are trained over a {643, 1283} grid. All computations are done using only

CPUs; model inference does not use GPUs. All implementation is done in Python. See

Appendix B.3 for convergence plots.

4.5 Conclusions

We presented DCDM, incorporating CNNs into a CG-style algorithm that yields efficient,

convergent behavior for solving linear systems. Our method effectively acts as a precon-

ditioner, albeit a nonlinear one3. Our method is evaluated on linear systems with over 16

million degrees of freedom and converges to a desired tolerance in merely tens of iterations.

Furthermore, despite training the underlying network on a single domain (per resolution)

without obstacles, our network is able to successfully predict search directions that enable

efficient linear solves on domains with complex and dynamic geometries. Moreover, the

training data for our network does not require running fluid simulations or solving linear

systems ahead of time; our Rayleigh-Ritz vector approach enables us to quickly generate

3Algebraically, any preconditioner P is attempting to learn an inverse of AΩ, which is equivalent to
what DCDM achieves for purposes of CG (learning the action of the inverse of the matrix on a vector x).
We initially tried learning a low-rank linear preconditioner, but our explorations were not successful; the
approach was not efficient for higher resolutions because it required a large k.

71

very large training datasets, unlike other works. We release our code, data, and pre-trained

models so users can immediately apply DCDM to Poisson systems without further dataset

generation or training, especially due to the feasibility of pre-trained weights for inference

at different grid resolutions: https://github.com/ayano721/2023_DCDM.

Our network was designed for and trained exclusively using data related to the discrete

Poisson matrix, which likely limits the generalizability of our present model. However, we

believe our method is readily applicable to other classes of PDEs (or general problems with

graph structure) that give rise to large, sparse, symmetric linear systems. To that end, we

briefly applied DCDM to matrices arising from discretized heat equations (a similar class

of large, sparse matrices; hence expected to work well with DCDM). We found that we can

achieve convergence (reducing the initial residual by four orders of magnitude) using DCDM

trained only on Poisson matrices—even though our test heat equation used Dirichlet bound-

ary conditions, unlike the Neumann boundary conditions used with the Poisson equation

systems we solved before. For a heat equation matrix at N = 64, DCDM can converge

in only 14 iterations. Future work will extend this analysis. We note that our method is

unlikely to work well for matrices that have high computational cost to evaluate A ∗ x (e.g.,

dense matrices), since training relies on efficient A ∗ x evaluations. An interesting question

is how well our method and current models would apply to discrete Poisson matrices arising

from non-uniform grids, e.g., quadtrees or octrees [LGF04].

72

https://github.com/ayano721/2023_DCDM

CHAPTER 5

Primal Extended Position Based Dynamics for

Hyperelasticity

0 10 20 30 40 50
Iters

10-8

10-7

10-6

10-5

10-4

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Tolerance

Blended PXPBD
FP-PXPBD
XPBD

Figure 5.1: 30 Objects Dropping (left). Our Blended PXPBD (B-PXPBD) approach

robustly handles large elastic deformations. FEM Residual Comparison (right). B-

PXPBD and FP-PXPBD reduce the backward Euler residual while XPBD stagnate in a

representative step of a hyperelsaticity simulation.

5.1 Methods

5.1.1 Equations

We consider implicit time stepping methods for integrating the FEM-discretized partial

differential equations (PDEs) describing momentum balance with hyperelastic materials

M
∂2x

∂t2
= −∂PE

∂x
+ f ext, PE(x) =

∑

e

Ψ(Fe(x))V e. (5.1)

73

Here M ∈ R3Np×3Np is a lumped (diagonal) mass matrix, x ∈ R3Np are the deformed positions

of the FEM mesh and the potential energy PE in the system is related to the hyperelastic

potential energy density as Ψ. We use linear interpolation over tetrahedron (3D) or triangle

(2D) meshes in our FEM formulation. V e is the volume (3D) or area (2D) of the undeformed

eth element arising from the piecewise constant terms in an integrands associated with linear

interpolation. f ext are external forces (gravity etc.). The hyperelastic potential Ψ is a

function of the deformation gradient in the eth element (Fe) which is related to deformed

positions as

Fe
αβ(x) =

∑

i

xiα
∂Ni

∂Xβ

(Xe) (5.2)

where Ni are the piecewise linear interpolation functions in the FEM formulation and Xe is

the centroid of the undeformed element. We refer the reader to the Bonet and Wood [BW08]

and Barbič and Sifakis [SB12] for more details.

5.1.1.1 Hyperelastic Energy Density

The hyperelastic potential defines the constitutive response of the material. We demonstrate

our method with the fixed corotated potential from Stomakhin et al. [SHS12]

Ψcor(F) = µ|F−R(F)|2F +
λ

2
(det(F)− 1)2. (5.3)

Here R(F) is the closest rotation to F which we compute from the polar singular value

decomposition [GFJ16] and µ and λ are the Lamé coefficients. XPBD assumes that the

potential is of the form

PE(x) =
∑

c

1

2
Cc(x)

1

ac
Cc(x) (5.4)

The corotated potential Ψcor can be adapted to this from in terms of the following constraints

(in element) on the deformation gradient

Ĉ1(F) = |F−R(F)|F , Ĉ2(F) = det(F)− 1. (5.5)

74

The gradient of Ĉ1 is not defined when F = R(F) (a common occurrence) and we use the

modification C̃1 =

√
Ĉ2

1 + ϵ, where ϵ is an arbitrary positive constant to ensure that the gra-

dient is always defined. We use constraints Ce
1(x) = C̃1(F

e(x)) and Ce
2(x) = Ĉ2(F

e(x)) with

weighting µ and λ respectively (in element e). This is equivalent to using the hyperelastic

potential Ψcor + ϵ so it produces the same behavior as the corotated model.

We also demonstrate our method with an anisotropic model for muscle contraction (see

Figure 5.3). Here the potential is

Ψaniso(F) = Ψcor +
σmax

λofl
(fa + αactfp) (5.6)

where the parameter αact ∈ [0, 1] controls the degree of active contractile tension and fa and

fp are based on the anisotropic fiber terms in Blemker et al. [BPD05]. We refer the reader

to the supplemental technical document (Appendix C) for a detailed description of these

terms.

5.1.1.2 Implicit Time Stepping

We consider both backward Euler and quasistatic time stepping schemes

M

(
xn+1−xn

∆t
− vn

∆t

)
= −∂PE

∂x
(xn+1) + f ext. (5.7)

Here xn,vn represent the time tn = n∆t position and velocities. Quasistatic time stepping is

the same but with the left hand side of Equation (5.7) replaced with 0. Note that we also may

constrain some vertices xn
i , 0 ≤ i < Np in practice to enforce boundary conditions and these

equations are removed from Equation (5.7), however we omit the explicit representation of

this for concise exposition.

5.1.2 XPBD

Macklin et al. [MMC16] solve Equation (5.7) with the introduction of a Lagrange multiplier

λc associated with each constraint Cc. They assume the potential energy gradient is of the

75

form

∆t2
∂PE

∂xiα
= −

∑

c

∂Cc

∂xiα
(x)λc (5.8)

where they introduce λc = −∆t2

ac
Cc as an additional unknown which converts Equation (5.7)

into the system

g(xn+1,λ) = M
(
xn+1 − x̃

)
−
∑

c

λTc ∇Cc(x
n+1) = 0 (5.9)

h(xn+1,λ) = C(xn+1) +
A

∆t2
λ = 0. (5.10)

Here x̃ = xn+∆t(vn+M−1f ext) are the positions updated under the influence of inertia and

external forces, λ is the vector of all Lagrange multipliers and A is a diagonal matrix with

entries equal to ac. The solution is approximated iteratively with xn+1
k and λk denoting the

kth iterates. g(xn+1
k ,λk) is used to denote the residual of the position (primary) unknowns

and h(xn+1
k ,λk) to denote the residual of the Lagrange multiplier (secondary) unknowns.

XPBD uses a nonlinear Gauss-Seidel procedure based on the linearization

 M+

∑
c λck

∂2Cc
∂x2 (xn+1

k) −∇CT
c (x

n+1
k)

∇C(xn+1
k) A

∆t2




 ∆xk+1

∆λk+1


 = −


 g(xn+1

k ,λk)

h(xn+1
k ,λk)


 . (5.11)

In XPBD, the red terms are omitted to enable the update
(
CT (xn+1

k)M−1C(xn+1
k) +

A

∆t2

)
∆λk+1 = −h(xn+1

k ,λk) (5.12)

∆xk+1 = M−1∇C(xn+1
k)∆λk+1. (5.13)

Furthermore, Equation (5.12) is updated in a Gauss-Seidel fashion where the dth Lagrange

multiplier is updated via

∆λ̃k+1d =
−hd(xn+1

k , λkd)

∇CT
d (x

n+1
k)M−1∇Cd(x

n+1
k) + ad

∆t2
λkd

, λk+1d = λkd +∆λ̃k+1d. (5.14)

Note that we distinguish ∆λ̃k+1d in Equation (5.14) from from ∆λk+1d in Equation (5.12)

since only one one step of Gauss-Seidel iteration is performed on the linear system. Then

76

the positions associated with the constraint are updated via Equation (5.13) to create

xn+1
k+1 = xn+1

k +M−1∇Cd(x
n+1
k)∆λ̃k+1d. (5.15)

The system (Equations (5.9)-(5.10)) is then re-linearized (Equation (5.11)) and the process

(Equations (5.14)-(5.15)) is repeated iteratively.

5.1.3 Primary residual XPBD (PXPBD)

The motivation for the omission of the residual and constraint Hessian terms (red) in Equa-

tion (5.11) is natural. The constraint Hessian is non-diagonal and its retention would pre-

clude the decoupling of primary variables from the Lagrange multipliers in Equation (5.12).

Furthermore, the primary residual term g(xn+1
k ,λk) requires more floating point operations

and generally a gather operation for efficient parallel evaluation. As Macklin et al. [MMC16]

point out, the initial guess of λ0 = 0 and xn+1
0 = x̃ means that g(xn+1

0 ,λ0) = 0. However,

its omission is harder to justify in latter iterates, though Macklin et al. [MMC16] argue that

it is justified when the constraint gradients vary slowly and further that its omission makes

the approach similar to that of Goldenthal et al. [GHF07]. While omission of secondary

information is commonly done in quasi-Newton approaches, we observe that omission of

the primary residual terms can lead to stagnation in residual reduction (see Figure 5.2(a)).

Unfortunately, we also notice that inclusion of this term can cause XPBD to lose its favor-

able stability properties (see Figure 5.2(b)). We note though that if the global system in

Equation (5.11) is solved with sufficient accuracy (e.g. with a Krylov method and without

omission of the red terms), then stability and residual reduction can be achieved, however

this is more costly than Newton’s method for Equation (5.7) since the system size is larger

with the inclusion of the λ unknowns.

77

0 10 20 30 40 50
Iterations

10-8

10-6

10-4

10-2

100

Tolerance

Primary Residual
Secondary Residual
Newton Residual

With g XPBD

With g XPBD

With g XPBD

Figure 5.2: (a) Primal Residual Comparison: Stagnation. While XPBD reliably

reduces the secondary residual, its omission of the primary residual in the linearization

causes its primary residual to stagnate, making its true (Newton) residual stagnate as well.

(b) Primal Residual Inclusion: Instability. XPBD is unstable when the primal residual

term is not omitted.

5.1.3.1 Blended Primal XPBD (B-PXPBD)

We believe that the stability of XPBD is due to the omission of this primary residual term

g(xn+1
k ,λk). We observe that this omission can be done without any error if the position

update is chosen to guarantee that the primary residual is zero. This can be done by solving

Equation (5.9) for xn+1
k+1 with λk+1 fixed after the update (of a single Lagrange multiplier

λk+1d) in Equation (5.14). We again note that in this context, the Lagrange multipliers λk+1

are similar to stresses. Indeed as the ac are taken to infinity we can see similarities between

Equations (5.9)-(5.10) and the discretized equations for incompressible fluids and for finite

values of ac the formulation is similar to the compressible formulations in Stomakhin et al.

[SSJ14] and Kwatra et al. [KGF10]. Therefore, the process of solving Equation (5.9) for

78

xn+1
k+1 with λk+1 fixed is akin to solving for the change in positions given a fixed stress state

(that does not depend on positions).

Unfortunately, solving Equation (5.9) for xn+1
k+1 is complicated by the dependence of the

constraint gradient ∇C(xn+1
k+1) on positions and solving it accurately would be nearly as

difficult as solving the original system in Equation (5.7). Furthermore, this dependence of

the constraint gradient on positions means changing the stress in one constraint propagates

to changes in positions in adjacent constraints and therefore throughout the mesh. For

example if fixed point iteration were used to solve for xn+1
k+1 given λk+1 where the only change

to λk was in a single constraint d (as in Equation (5.14)), then first only the positions of

the vertices in the constraint would be changed, but then in the second iteration, any other

constraint gradients with dependence on these positions would change, and all positions

associated with those constraints would change, and so on. This would quickly become

computationally inefficient, however performing one iteration results in an update that only

changes the positions involved in the constraint associated with the Lagrange multiplier

update in Equation (5.14)

xn+1
k+1 = x̃+

∑

c

λkcM
−1∇Cc(x

n+1
k) +M−1∇Cd(x

n+1
k)∆λ̃k+1d. (5.16)

Note that when the residual g(xn+1
k ,λk) = 0 is zero this update coincides with that of Equa-

tion (5.13). We found that even using this first fixed point iterate was enough to improve

residual reduction, however we also found that it reduced the stability compared to Equa-

tion (5.13). We remedy this by taking a linear combination of the updates in Equations (5.13)

and (5.16)

xn+1
k+1 = ζ

(
M−1∇Cd(x

n+1
k)∆λ̃k+1d

)
+ (1− ζ)∆xfp

k+1 + xn+1
k (5.17)

∆xfp
k+1 = x̃+

∑

c

λkcM
−1∇Cc(x

n+1
k) + ∆λ̃k+1dM

−1∇Cd(x
n+1
k)− xn+1

k . (5.18)

The parameter ζ can usually chosen to be 0.5. We increase it if we observe instability and

raise it if we see residual stagnation.

79

Figure 5.3: Muscle Box Activation. A rectangular bar with both ends clamped falls under

gravity. Two seconds later, the muscle box is activated and contracts along the horizontal

direction. The level of activation is shown on the right side of the images. t = 0.0333, 1.2, 2.9

seconds are shown in the footage.

5.1.3.2 First Piola-Kirchhoff Primal XPBD (FP-PXPBD)

Noting that the auxiliary Lagrange multiplier variables are similar to stresses, we observe

some convenient properties that arise from choosing an alternative stress measure in an

analogous primary/secondary formulation of Equation 5.7. In a general FEM-discretized

hyperelastic formulation (see Barbič and Sifakis [SB12]), the potential energy gradient has

the expression

∂PE

∂xiα
(x) =

∑

e,β,γ

Pβγ(F
e(x))δαβ

∂Ni

∂Xγ

(Xe)V e (5.19)

where δαβ is the Kronecker delta tensor and P = ∂Ψ
∂F

is the gradient of the hyperelastic

potential energy density with respect to the deformation gradient. This is the first Piola-

Kirchhoff stress [BW08]. If we introduce it as an unknown (analogous to λc), then tensor

Be
iαβγ = δαβ

∂Ni

∂Xγ
(Xe)V e is analogous to the ∇Cc terms in XPBD since they convert the

auxiliary (stress) terms to force in the expression in Equation (5.8). With this formulation,

an analogous method consists of

g(xn+1,Pn+1) = M
(
xn+1 − x̃

)
+∆t2BP = 0 (5.20)

he(xn+1,Pn+1) =
∂Ψ

∂F
(Fe(xn+1))−Pe = 0. (5.21)

Note that with this expression, the tensor B does not depend on the positional unknowns

xn+1. In contrast, the analogous expression ∇C(xn+1) in Equations (5.9) does have this

80

Algorithm 2: FP-PXPBD Simulation Loop

1 while not reached maximal iterations do

2 for element e do

3 while not converged or reached maximal iterations do

4 begin Solve Newton system

5 1. Compute Newton residual via Equation (5.25);

6 2. Compute be
k+1l via Equation 5.28;

7 3. Compute δFe
k+1l via Equation 5.30 with the approximation in

Equation 5.33;

8 4. Compute δxe
k+1l as in Equation 5.26 ;

9 5. Update the nodes on the element with xn+1
iek+1l+1 = xn+1

iek+1l + δxe
iek+1l;

10 6. Update Pe
k+1l+1 =

∂Ψ
∂F

(Fe(xn+1
iek+1l+1));

11 end

12 end

13 end

14 end

dependence, and it is precisely this issue that leads to the red terms in the linearization

in Equation (5.11). Therefore, a formulation based on Equations (5.20) and (5.21) rather

than Equations (5.9) and (5.10) will automatically satisfy the constraint that g = 0 at each

Gauss-Newton iteration and will not require the omission of the constraint Hessian since it

is exactly zero. We adopt this strategy and iteratively solve Equations (5.20) and (5.21)

for primary position unknowns xn+1
k and secondary element stresses Pe

k in a Gauss-Seiedel

manner analogous to that of the original XPBD. We observe that this retains the favorable

stability properties of XPBD, while allowing for accurate residual reduction and application

to arbitrary hyperelastic constitutive models.

This approach shifts the difficulty from the primary Equation (5.20) to the secondary

81

Equation (5.21). It is trivial to maintain a zero primary residual, which simply requires

plugging the current guess for the element stresses Pk into Equation (5.20) to define the

current guess for xn+1
k . We update this guess iteratively by solving for the positions in

element e that satisfy Equation (5.21). This is equivalent to solving the nonlinear system

equations for one element with the stresses in all adjacent elements held fixed, with their

dependence on the element positions ignored. We use Ωe to denote set of the mesh vertices

ie in element e and solve

Me(xn+1,e
k+1 − x̃e) + ∆t2BePe

k+1 = f e (5.22)

∂Ψ

∂F
(Fe(xn+1

k+1))−Pe
k+1 = 0 (5.23)

where f e
ieαk = ∆t2(f ext

ieα −
∑

ẽ ̸=e,γ,δ B
ẽ
ieαγδP

ẽ
kγδ), f

ext is the external force. In index notations

Equation 5.22 can be written as:

∑

je,β

miejeδαβ
(
xn+1
k+1jeβ − x̃jeβ

)
+∆t2

∑

γ,δ

Be
ieαγδP

e
k+1γδ = f e

ieαk (5.24)

Here Equation (5.23) can be satisfied trivially by setting Pe
k+1 = ∂Ψ

∂F
(Fe(xn+1

k+1)). With this

simplification, Equations (5.23)-(5.24) can be rewritten as

Me(xn+1,e
k+1 − x̃e) + ∆t2Be∂Ψ

∂F
(Fe(xn+1,e

k+1))− f e = 0 (5.25)

where M e
ieαjeβ = miejeδαβ is the element-wise mass matrix and xn+1,e

k and x̃e are extrac-

tions of element-wise positions from xn+1
k and x̃ respectively. Note that ∂Ψ

∂F
(Fe(xn+1

k+1)) =

∂Ψ
∂F

(Fe(xn+1,e
k+1)) since the element deformation gradient only depends on the nodes of the

element. Lastly, Be has entries Be
ieαγδ = δαγ

∂Ni

∂Xδ
(Xe)V e from Equation (5.19).

We use Netwon’s method to solve Equation (5.25). xn+1,e
iek+1l denotes the lth iteration of the

local Newton procedure for computing the k + 1th global iteration, which modifies the nodes

ie of element e. These nodes are updated in Newton’s method as xn+1,e
iek+1l+1 = xn+1,e

iek+1l+δx
e
iek+1l.

To solve for δxe
iek+1l, we need to solve a linear system of size 12×12 (6×6 in 2D). To reduce

the size of the system, we use an affine basis for the change in positions determined by a

82

Newton step:

δxe
iek+1l = δFe

k+1l(X
e
ie −Xe

com) + be
k+1l (5.26)

where δFe
k+1l are the distortional degrees of freedom in the element, be

k+1l are the transla-

tional degrees of freedom and Xe
com is the center of mass of the element in the undeformed

configuration. We refer the readers to the technical document [YYJ23] for details. Sim-

ilarly, Xe
ie refer to the undeformed positions of the vertices in the element. The tensor

De
ieαϵτ = δαϵ(X

e
ieτ−Xeτ

com) relates these variables with δxeieαk+1l =
∑

ϵ,τ D
e
ieαϵτδF

e
ϵτk+1l+b

e
αk+1l.

It can be shown that with this choice of basis, the translational degrees of freedom decou-

ple, reducing the dimensionality of the system to be solved. That is, by introducing the

linearization

∂Ψ

∂F
(Fe(xn+1,e

k+1l+1)) ≈
∂2Ψ

∂F2
(Fe(xn+1,e

k+1l)) : δF
e
k+1l +Pe

k+1l (5.27)

we can solve for the translational component as

be
k+1l =

−1

me

∑

ie∈Ωe

giek+1l (5.28)

gieαk+1l = mie(x
n+1
ieαk+1l − x̃ieα)− f e

ieαk +∆t2
∑

γ,δ

Be
ieαγδP

e
k+1lγδ (5.29)

where Pe
k+1l =

∂Ψ
∂F

(Fe(xn+1,e
k+1l)). Furthermore, once the translational component be

l is deter-

mined from Equation (5.28), the distortional degrees of freedom δFe
l can be determined from

the linear system
(
M̃e +∆t2V e∂

2Ψ

∂F2
(Fe(x

n+1
k+1l))

)
δFe

k+1l = −Ge
k+1l (5.30)

where

Ge
ηνk+1l =

∑

ie,α

De
ieαην

(
gieαk+1l +mieb

e
αk+1l

)
(5.31)

M̃ e
ηνϵτ =

∑

ie,je∈Ω3

De
ieαηνmiejeD

e
jeαϵτ . (5.32)

83

Note that the choice of the center of mass for the center of the translation as well as the parti-

tion of unity/reproduction of linear functions properties of the FEM interpolation functions

are the keys to this decoupling. Also note that the matrix M̃e is block diagonal with the

structure M̃ e
αβγδ = δαγM̂

e
βδ, where interestingly M̂e =

∑
ie mie(Xie −Xe

com)(Xie −Xe
com)

T is

the affine inertia tensor used in [JSS15]. Derivation details are provided in the supplemental

technical document (Appendix C).

5.1.3.3 Quasi-Newton

In general, solving Equation (5.30) for the distortional δFe
l requires the solution of a 9 × 9

linear system (4 × 4 in 2D). However, we generally know (or can compute with minimal

effort) the eigen decomposition of ∂2Ψ
∂F2 (Fe(x

n+1,e
k+1l)) [TSI05, SGK19]. Since M̃e is constant

and block diagonal, its inverse can be precomputed with minimal storage and the inverse of

M̃e + ∆t2 ∂
2Ψ

∂F2 (Fe(x
n+1
k+1l)) can be approximated using the Sherman-Morrison rank-1 update

formula [Hag89]. However, if all eigen modes are used, this computation can be costly. We

therefore use just a few modes in a quasi-Newton strategy, where the cost of the slow down

in Newton convergence must be balanced against higher computational time per iteration,

brought by using more modes in the Sherman-Morrison formula. In the case of the corotated

model, we can use

∂2Ψ

∂F2
(Fe) ≈ 2µI+ λ

∂ det(Fe)

∂Fe
⊗ ∂ det(Fe)

∂Fe
(5.33)

where I is the 9 × 9 (4 × 4 in 2D) identity matrix (see Appendix C for more detail). With

this approximation, we can use the Sherman-Morrison formula for
(
M̃e +∆t2V e∂

2Ψ

∂F2
(Fe(x

n+1
k+1l))

)−1

≈ Ze − Ze (We ⊗We)Ze

1 +We : (ZeWe)
(5.34)

where We = ∂ det(Fe)
∂Fe and Ze = (M̃e + 2V e∆t2µI)−1. Note that Ze is constant and has the

same symmetric block diagonal structure as M̃e so its inverse can be precomputed and stored

with only 6 floats (3 in 2D).

84

While the procedure outlined in Section 5.1.3.3 requires some elaborate notation, we note

that it is effectively a standard Newton’s method for FEM-discretized hyperelasticity on a

single element. The only difference is that the stresses from the neighboring elements do

not change when the element nodal positions change. This is inherent in the introduction

of the stresses Pe as additional variables in Equations (5.20)-(5.21). The stresses from

the neighboring elements just contribute forces that effect the right hand side of the Newton

procedure, but not the matrix in the linearization. We summarize the process in Algorithm 2.

In general, we run with 1-5 Newton iterations. As discussed in Section 5.1.3.3, with our

novel approximation of the Hessian, the cost of solving the linear system becomes trivial.

The major cost of the computation time for both XPBD and FP-PXPBD is computing the

singular value decomposition of Fe. As shown in Section 5.3.1, 5.3.2, 5.3.3 and 5.3.4 the

speed of FP-PXPBD is comparable to XPBD.

5.2 Parallelism

Computation of the element-wise updates must be done in parallel for optimal efficiency.

Even though we use a Gauss-Seidel (as opposed to Jacobi) approach, we can achieve this

with careful ordering of element-wise updates. This was discussed by Macklin and Müller

[MM21], however their approach is limited to tetrahedral meshes created from hexahedral

meshes. We provide a simple coloring scheme that works for all tetrahedron meshes. The

coloring is done so that elements in the same color do not share vertices and can be updated

in parallel without race conditions. For each vertex xi in the mesh we maintain a set Sxi
that

stores the colors used by its incident elements. For each mesh element e, we find the minimal

color that is not contained in the set ∪xie∈eSxie
. Then, we register the color by adding it

into Sxie
for each xie in element e. This coloring strategy does not depend on the topology

of the mesh and requires only a one-time cost at the beginning of the simulation. For the

grid-based variation mentioned in Section 5.3.5, we do a similar process as the coloring

85

scheme for the mesh, except the incident points of an element are now a subset of the grid

nodes. The grid-based variation requires coloring at the beginning of every time step. For

more detailed descriptions and illustrations we refer the readers to [YYJ23]. We note that

Fratarcangeli et al. [FVP16] develop a randomized and effective ordering technique that

could be used here as well.

Table 5.1: Timing Comparisons: runtime is measured for each frame (averaged over the

course of the simulation). Each frame is run after advancing time .033.

Example # Vertices # Elements. XPBD Runtime B-PXPBD Runtime FP-PXPBD Runtime XPBD # iter B-PXPBD # iter FP-PXPBD # iter

Residual Reduction (Figure 5.2(b)) 4K 17K 200ms 200ms 216ms 40 40 40

Equal Budget Comparison (Figure 5.4) 33K 149K 210ms 210ms 200ms 7 7 5

XPBD Hyperelastic (Figure 5.5) 4K 17K 22ms - 44ms 4 - 4

XPBD Neohookean (Figure 5.6) 4K 17K 795ms - 345ms 400 - 40

Simple Muscle (Figure 5.3) 5k 20k - - 160ms - - 4

5.3 Examples

We demonstrate our methods in a variety of representative scenarios with elastic deforma-

tion. Our approach has comparable computational complexity to XPBD, so we only provide

limited run-time statistics in Table 5.1. Examples run with the corotated model (Equa-

tion 5.3) use the algorithm from [GFJ16] for its accuracy and efficiency. All the examples

were run on an AMD Ryzen Threadripper PRO 3995WX CPU with 64 cores and 128 threads.

In each of the examples, we compute the mass mi of node xi from a user-specified density

ρ. We denote I to be the set of elements that contain node i. We define mi =
∑

e∈I
V eρ
ne

,

where ne = 4 in 3D and 3 in 2D. Then the mass matrix is set with Miαjβ = δijδαβmi. We

compute Lamé parameters µ and λ with Poisson ratio ν and Young’s modulus E. They are

computed as µ = E
2(1+ν)

, λ = Eν
(1+ν)(1−2ν)

. For all the examples in this paper we set Poisson

ratio ν = 0.3 and density ρ = 10.

86

5.3.1 Residual Comparison

Residual reduction between XPBD, B-PXPBD and FP-PXPBD is compared. Figure 1

(right) shows the residual reduction in a representative time step of a simple elasticity sim-

ulation. While B-PXBD and FP-PXBD continually reduce the nonlinear backward Euler

residual, XPBD stagnates. XPBD effectively reduces the auxiliary residual, but not the pri-

mary residual. The example setup is the same as the one shown in Figure 5.2(b). B-PXPBD

has blending parameter ζ = 0.5.

Figure 5.4: Equal Budget Comparison. From left to right: Newton (converged), Newton,

FP-PXPBD, B-PXPBD, XPBD. With a limited budget, XPBD-style methods are stable,

whereas the Newton’s method suffers from instability. Frame 0, 10, 60 are shown in the

figure.

5.3.2 Equal Budget Comparison

In Figure 5.4 we compare methods when simulated with a restricted computational budget.

At the left we show Newton’s method run to full-convergence (residual of Equation (5.7) less

than 1e−8), which is computationally expensive. Then, we compare (from left to right) New-

ton’s method, FP-PXPBD, B-PXPBD and XPBD when only allowed 200ms of computation

time per frame. Newton’s method is remarkably unstable, but the XPBD-style methods are

stable and visually plausible. Here we fix the left side of the tetrahedron mesh created from

a 32× 32× 32 grid and apply gravity. The Young’s modulus is E = 1000 and the time step

is ∆t = 0.01. B-PXPBD has blending parameter ζ = 0.1.

87

5.3.3 XPBD Hyperelastic

We demonstrate that XPBD is incapable of dealing with certain hyperelastic models. The top

bar is simulated with XPBD and the corotated model, where the constraint is reformulated

as Ce(x) =
√

Ψcor(Fe). The middle bar is simulated with FP-PXPBD and the bottom bar

XPBD as formulated in Equation (5.5). As demonstrated in Figure 5.5, the top bar becomes

unstable after a couple of time steps. The reformulation at the top is a simple means of

addressing general hyperelasticity with a XPBD formulation, however it does not behave

stably. For this example we take a rectangular mesh and clamp both ends which are then

stretched and then squeezed. We set Young’s modulus as E = 1e4 and time step ∆t = 0.01.

XPBD
Hyperelastic

FP-PXPBD

XPBD

XPBD
Hyperelastic

FP-PXPBD

XPBD

XPBD
Hyperelastic

FP-PXPBD

XPBD

Figure 5.5: XPBD Hyperelastic. Defining the XPBD constraint as the square root of the

hyperelastic potential is not stable (top). Results at frame 0, 10, 30 are shown.

5.3.4 XPBD Neohookean

In this example we compare XPBD and FP-PXPBD when used with the Neo-Hookean model

proposed in Macklin et al.[MM21]. We generalize the low-rank approximation to the Hessian

from Equation 5.33 to this model as ∂2Ψ
∂F2 (Fe) ≈ µI+ λ∂ det(Fe)

∂Fe ⊗ ∂ det(Fe)
∂Fe . Similarly, we can

approximate the Hessian inverse as in Equation 5.34 with Ze = (M̃e + V e∆t2µI)−1. The

test scenario is similar to that in Section 5.3.3. We use Young’s modulus E = 1000 and

time step ∆t = 0.01. Results are shown in Figure 5.6. The top bar is simulated with XPBD

and is run with 100 iterations per time step. However, it does not converge to the ground

88

truth run with Newton’s method, which is shown in the bottom row. It is also visibly less

volume conserving. On the other hand, FP-PXPBD converges to the ground truth with 10

iterations per time step.

XPBD

FP-PXPBD

Newton

XPBD

FP-PXPBD

Newton

XPBD

FP-PXPBD

Newton

Figure 5.6: XPBD Neohookean. XPBD is less volume-conserving than FP-PXPBD when

the cube is squeezed. Results at frame 1, 25, 52 are shown.

0 5 10 15
Iters

10-8

10-6

10-4

10-2

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Tolerance

Newton
Blended PXPBD
XPBD

(a)

0 1 2 3 4 5 6 7
Runtime(s)

10-8

10-6

10-4

10-2

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Tolerance

Newton
Blended PXPBD
XPBD

(b)

Figure 5.7: (a) Grid-Based Residual vs. Iterations. Newton’s method and B-PXPBD

reliably reduce the residual, but XPBD stagnates. (b) Grid-based Residual vs. Run-

time. Grid-based B-PXPBD and grid-based XPBD take an extra 1 second at the beginning

of each timestep to compute preprocessing data. Note that B-PXPBD achieves faster con-

vergence than Newton’s method.

89

Figure 5.8: Four Bars Twisting. Grid-based B-PXPBD is capable of handling large de-

formation and complex collisions.

5.3.5 Grid-Based B-PXPBD Examples

We showcase the versatility and the robustness of B-PXPBD through a variety of collision

intensive examples. We use the grid-based approach of Jiang et al. [JSS15] since this

approach does not require modification of the potential energy to address collision/contact

and therefore clearly demonstrates our solver performance. The backward Euler degrees of

freedom are over a regular grid where the tetrahedron mesh is embedded/interpolated from

its motion. We use B-PXPBD to solve the system of equations for implicit time stepping

outlined in Jiang et al. [JSS15], but the energy is written in the XPBD way using the

constraints Equation (5.5). This requires a modification to the coloring strategy used for

parallel implementation (see Appendix C for specifics) but is otherwise a straightforward

application of our techniques so we omit explicit detail.

Figure 5.9: Muscle. Large-scale muscle simulation using grid-based B-PXPBD. Frames 30,

60, 140 are shown. ©2023 Epic Games, Inc

90

In Figure 1, we drop 30 objects stacked on top of each other into a glass box. The objects

include bunnies, dragons, balls, boxes and tori. The bunny mesh used is obtained from

[TL94] The total vertex count of the mesh is around 800,000. We visualize the convergence

behaviors of grid-based XPBD, grid-based B-PXPBD and Newton’s method in Figure 5.7.

While the residual of grid-based XPBD stagnates, grid-based B-PXPBD continually reduces

the nonlinear residual. Though grid-based B-PXPBD has a convergence rate that is slower

than Newton’s method, it has a much lower computational budget than Newton’s method.

As the right plot in Figure 5.7 indicates, given the same computational budget, grid-based

B-PXPBD would reduce residual more than Newton’s method. On average, the grid-based

B-PXPBD takes 17.6s/frame, whereas Newton’s method takes 58.9s/frame. We demonstrate

more collision-intensive scenarios in Figures 5.8, 5.10 and Figure 5.9. For these examples,

the Young’s modulus is E = 1000 and CFL number is .4. B-PXPBD has blending parameter

ζ = 0.5.

Figure 5.10: Dropping Dragons. Grid-based simulation with B-PXPBD exhibits many

collision-driven large deformations.

5.4 Discussion and Limitations

Our framework effectively addresses XPBD convergence issues with hyperelasticity and al-

lows for generalization to arbitrary constitutive models. However, our approach does have

limitations. With B-PXPBD the blending parameter ζ can require numerous simulations to

establish a useful value. FP-PXPBD is more general, but the local step may be more costly

91

and the Sherman-Morrison formula must be applied on a case-by-case basis for different

constitutive models. It also requires a larger deviation from an existing XPBD code. In

practice, these considerations must be weighed when deciding which approach to use.

92

CHAPTER 6

Position-Based Nonlinear Gauss-Seidel for Quasistatic

Hyperelasticity

Figure 6.1: Quasistatic Muscle Simulation with Collisions. Our method (PBNG) pro-

duces high-quality results visually comparable to Newton’s method but with a 6x speedup.

In this hyperelastic simulation of muscles, we use weak constraints to bind muscles together

and resolve collisions. The rightmost image visualizes these constraints. Red indicates a

vertex involved in a contact constraint. Blue indicates a vertex is bound with connective

tissues. PBD (lower left) becomes unstable with this quasistatic example after a few itera-

tions.

93

6.1 Equations

We consider continuum mechanics conceptions of the governing physics where a flow map

ϕ : Ω0 × [0, T] → Rd, d = 2 or d = 3, describes the motion of the material. Here the time

t ∈ [0, T] location of the particle X ∈ Ω0 ⊂ Rd is given by ϕ(X, t) ∈ Ωt ⊂ Rd where Ω0 and

Ωt are the initial and time t configurations of material respectively. The flow map ϕ obeys

the partial differential equation associated with momentum balance

R0∂
2ϕ

∂t2
= ∇X ·P+ f ext (6.1)

where R0 is the initial mass density of the material, P is the first Piola-Kirchhoff stress and

f ext is external force density. This is also subject to boundary conditions

ϕ(X, t) = xD(X, t), X ∈ ∂Ω0
D (6.2)

P(X, t)N(X, t) = TN(X, t), X ∈ ∂Ω0
N (6.3)

where ∂Ω0 is split into Dirichlet (∂Ω0
D) and Neumann (∂Ω0

N) regions where the deformation

and applied traction respectively are specified. Here TN denotes externally applied traction

boundary conditions. For hyperelastic materials, the first Piola-Kirchhoff stress is related to

a notion of potential energy density Ψ : Rd×d → R as

P(X, t) =
∂Ψ

∂F
(
∂ϕ

∂X
(X, t)), PE(ϕ(·, t)) =

∫

Ω0

Ψ(
∂ϕ

∂X
)dX (6.4)

where PE(ϕ(·, t)) is the potential energy of the material when it is in the configuration

defined by the flow map at time t. Note that we will typically use F = ∂ϕ
∂X

to denote

the spatial derivative of the flow map (or deformation gradient). We refer the reader to

[GS08, BW08] for more continuum mechanics detail.

In quasistatic problems, the inertial terms in the momentum balance (Equation (6.1)) can

be neglected and the material motion is defined by a sequence of equilibrium problems

0 = ∇X ·P+ f ext (6.5)

94

subject to the boundary conditions in Equations (6.2)-(6.3). This is equivalent to the mini-

mization problems

ϕ(·, t) =
argmin

Υ ∈ W t
PE(Υ)−

∫

Ω0

f ext ·ΥdX−
∫

∂Ω0
N

TN ·Υds(X) (6.6)

where W t =
{
Υ : Ω0 → Rd |Υ(X) = xD(X, t), X ∈ ∂Ω0

D

}
.

6.1.1 Constitutive Models

We demonstrate our approach with a number of different hyperelastic potentials com-

monly used in computer graphics applications. The “corotated" or “warped stiffness" model

[MDM02, EGS03, MG04, ST08, CPS10] has been used for many years with a few variations.

We use the version with the fix to the volume term developed by Stomakhin et al. [SHS12]

Ψcor(F) = µ|F−R(F)|2F +
λ

2
(det(F)− 1)2. (6.7)

Here F = R(F)S(F) is the polar decomposition of F. Neo-Hookean models [BW08] have

also been used since they do not require polar decomposition and since recently some have

been shown to have favorable behavior with nearly incompressible materials [SGK18]. We

use the Macklin and Müeller [MM21] formulation due to its simplicity and natural use with

XPBD

Ψnh(F) =
1

2
µ|F|2F +

λ̂

2
(det(F)− 1− µ

λ̂
)2. (6.8)

Here λ̂ = µ+ λ. λ and µ are the Lamé parameters and are related to the Young’s modulus

(E) and Poisson’s ratio (ν) as

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (6.9)

Note that we distinguish between the λ̂ used in Macklin and Müeller [MM21] and the Lamé

parameter λ, we discuss the reason for this in more detail in Section 6.6. We also support

95

the stable Neo-Hookean model proposed in [SGK18]

Ψsnh(F) =
1

2
µ(|F|2F − d) +

1

2
(det(F)− 1− 3µ

4λ
)2 − 1

2
µ log(1 + |F|2F). (6.10)

Figure 6.2: Different Constitutive Models. PBNG works with various constitutive mod-

els. We showcase the corotated, Neo-Hookean, and stable Neo-Hoookean models through a

block twisting and stretching example.

6.2 Discretization

We use the FEM discretization of the quasistatic problem in Equation (6.5)

fi(x
n+1) + f̂ ext

i = 0, Xi /∈ Ω0
D (6.11)

xn+1
i = xD(Xi, t

n+1), Xi ∈ Ω0
D. (6.12)

Here the flow map is discretized as ϕ(X, tn+1) =
∑NN−1

j=0 xn+1
j Nj(X) where the Nj(X) are

piecewise linear interpolating functions defined over a tetrahedron mesh (d = 3) or triangle

mesh (d = 2) and the xn+1
j ∈ Rd, 0 ≤ j < NN are the locations of the vertices of the mesh

at time tn+1. Note that we use xn+1 ∈ RdNN to denote the vector of all vertex locations and

xn+1
iβ to denote the 0 ≤ β < d components of the position of vertex i in the mesh. The forces

96

are given as

fi(y) = −∂P̂E
∂yi

(y) (6.13)

P̂E(y) = P̂E
Ψ
(y) + P̂E

wc
(y) (6.14)

P̂E
Ψ
(y) =

NE−1∑

e=0

Ψ(
NN−1∑

j=0

yj

∂N e
j

∂X
)V 0

e (6.15)

f̂ ext
i =

∫

Ω0

f extNidX+

∫

∂Ω0
N

TNNids(X) (6.16)

where P̂E
Ψ

: RdNN → R is the discretization of the potential energy,
∑NN−1

j=0 yj
∂Ne

j

∂X
is

the deformation gradient induced by nodal positions y ∈ RdNN in tetrahedron (d = 3) or

triangle (d = 2) element e with 0 ≤ e < NE, ∂Ne
i

∂X
is the derivative of the interpolating

function in element e (which is constant since we use piecewise linear interpolation) and V 0
e

is the measure of the element. We refer the reader to [BW08, SB12] for more detail on the

FEM derivation of potential energy terms in a hyperelastic formulation. Also, note that we

add another term to the discrete potential energy P̂E
wc

: RdNN → R in Equation (6.14) to

account for self-collisions and similar weak constraints (see Section 6.2.1). Similar to the

non-discrete case, the constrained minimization problem

xn+1 =
argmin

y ∈ Wn+1
∆x

P̂E(y)− y · f̂ ext (6.17)

where Wn+1
∆x =

{
y ∈ RdNN |yi = xD(Xi, t

n+1), Xi ∈ ∂Ω0
D

}
is equivalent to Equations (6.11)-

(6.12).

97

6.2.1 Weak Constraints

We support weak constraints for self-collision and other similar purposes (as in [MZS11]).

These are terms added to the potential energy in the form

P̂E
wc
(y) =

1

2

Nwc−1∑

c=0

Cc(y)
TKcCc(y) (6.18)

Cc(y) =
NN−1∑

j=0

wc
0jyj − wc

1jyj. (6.19)

Here the wc
0j, w

c
1j are interpolation weights that sum to one and are non-negative. This

creates constraints between the interpolated points
∑NN−1

j=0 wc
0jyj and

∑NN−1
j=0 wc

1jyj. The

stiffness of the constraint is represented in the matrix Kc. This can allow for anisotropic

responses where Kc = knnn
T + kτ

(
τ 0τ

T
0 + τ 1τ

T
1

)
. Here nTτ i = 0, i = 0, 1 and kn is the

stiffness in the n direction while kτ is the stiffness in response to the motion in the plane

normal to n. In the case of an isotropic constraint (kc = kn = kτ), we use the scalar kc

in place of Kc since Kc = kcI is diagonal. We note that, in most of our examples, the

anisotropic model is used for collision constraints where n is the collision constrain direction

(see Section 6.8.2).

6.3 Gauss-Seidel Notation

Our approach, PBD and XPBD all use nonlinear Gauss-Seidel to iteratively improve an

approximation to the solution xn+1 ∈ RdNN of Equation (6.11). We use l to denote the lth

Gauss-Seidel iteration xn+1,l ≈ xn+1. During the course of one iteration, degrees of freedom

in the approximate solution will be updated in sub-iterates which we denote as xn+1,l
(k) with

0 ≤ k < NGS. Here xn+1,l
(0) = xn+1,l and xn+1,l

(NGS−1)
= xn+1,l+1. For example, with PBD/XPBD,

in the kth sub-iterate, the nodes in the kth constraint will be projected/solved for. In our

position-based approach, in the kth sub-iterate, only a single node ik will be updated. It is

important to introduce this notation, since unlike with Jacobi-based approaches, the update

98

of the kth sub-iterate will depend on the contents of the k − 1th sub-iterate.

6.4 Position-Based Dynamics: Constraint-Based Nonlinear Gauss-

Seidel

Macklin et al. [MMC16] show that PBD [MHH07] can be seen to be the extreme case of a

numerical method for the approximation of the backward Euler temporal discretization of

the FEM spatial discretization of Equation (6.1)

NN−1∑

j=0

mij

(
xn+1
j − 2xn

j + xn−1
j

∆t2

)
= fi(x

n+1) + f ext
i , Xi /∈ Ω0

D. (6.20)

Here mii =
∫
Ω0 R

0NidX and mij = 0, j ̸= i are entries in the mass matrix. However, they

require that the discrete potential energy in Equation (6.15) is of the form

P̂E
Ψ
(y) =

2NE−1∑

c=0

1

2αc

C2
c (y), y ∈ RdNE

. (6.21)

For example, this can be done with the energy densities in Equations (6.7) and (6.8) using

two constraints c = 2e and c = 2e+ 1 per element e

Ccor
2e (y) = |Fe(y)−R(Fe(y))|F , Ccor

2e+1(y) = det(Fe(y))− 1 (6.22)

Cnh
2e (y) = |Fe(y)|F , Cnh

2e+1(y) = det(Fe(y))− 1− µ

λ̂
. (6.23)

In this case, αcor
2e = 1

2µV 0
e
, αcor

2e+1 =
1

λV 0
e
, αnh

2e = 1
µV 0

e
, αnh

2e+1 =
1

λ̂V 0
e

To demonstrate the connection between Equation (6.20) and PBD, Macklin et al.

[MMC16] develop XPBD. It is based on the total Lagrange multiplier formulation

NN−1∑

j=0

mij

(
xn+1
j − x̂j

)
−

P−1∑

c=0

∂Cc

∂xi

(xn+1)λn+1
c = 0, Xi /∈ Ω0

D (6.24)

Cc(x
n+1) +

αc

∆t2
λn+1
c = 0, 0 ≤ c < P (6.25)

99

where x̂j = 2xn
j − xn−1

j − ∆t2

mjj
f ext
j and λn+1 ∈ RP is introduced as an additional unknown.

The xn+1 ∈ RdNN in Equations (6.24)-(6.25) is the same in the solution to Equation (6.20).

Macklin et al. [MMC16] use a per-constraint Gauss-Seidel update of Equations (6.24)-(6.25)

xn+1,l
i(k+1) = xn+1,l

i(k) +∆xn+1,l
i(k+1), Xi /∈ Ω0

D (6.26)

∆xn+1,l
i(k+1) =

∆λn+1,l
(k+1)ck

mii

∂Cck

∂xi

(xn+1,l
(k)) (6.27)

∆λn+1,l
(k+1)ck

=
−Cck(x

n+1,l
(k)) +

αck

∆t2
Cck(x

n+1,l
(k))

∑NN−1
j=0

1
mjj

∑d−1
β=0

(
∂Cck

∂xjβ
(xn+1,l

(k))
)2

+
αck

∆t2

. (6.28)

Here the k + 1th sub-iterate in iteration l is generated by solving for the change in a single

Lagrange multiplier ∆λn+1,l
(k+1)ck

associated with a constraint ck that varies from sub-iteration

to sub-iteration.

6.4.1 Quasistatics

As noted by Macklin et al. [MMC16], the XPBD update in Equations (6.26)-(6.28) is the

same as in the original PBD [MHH07] in the limit αc → 0. By choosing a stiffness inversely

proportionate to a parameter s ≥ 0 and examining the limiting behavior of the equations

being approximated, we see that the original PBD approach generates an approximation to

the quasistatic problem (Equations (6.5)), albeit with the external forcing terms omitted.

More precisely, define ϕs to be a solution of the problem

sR0∂
2ϕs

∂t2
= ∇X ·P+ sf ext. (6.29)

subject to the same boundary conditions in Equations (6.2)-(6.3). This is equivalent to

scaling the αc that would appear in Equation (6.1) (through P) by s. The αc are inversely

proportionate to the Lamé parameters, so as s → 0, the material stiffness increases. Since

the inertia and external force terms in Equation (6.29) vanish as s→ 0, it is clear then that

the original PBD formulation generates an approximation to the solution of a quasistatic

problem with the external forcing f ext omitted. Note that PBD does include the external

100

forcing term in its initial guess xn+1
i = xn

i +∆tvn
i +

∆t2

mii
f ext
i . However, the effect of the initial

guess vanishes as the iteration count is increased. We demonstrate this in Section 6.8.4

Also, note that this is not the case in the XPBD formulation where αc > 0.

Unfortunately, XPBD cannot be trivially modified to run quasistatic problems. For

example, omitting the mass terms on the left-hand side of Equation (6.24) makes the

Gauss-Seidel update in Equations(6.26)-(6.28) impossible since there would be a division by

zero. The simplest fix for quasistatic problems we can conceive of in the PBD framework is

to use XPBD run to steady state using a pseudo-time iteration. This prevents the need for

scaling the αc which inherently removes the external forcing terms and does not introduce

a divide by zero in Equation (6.27). However, this is very costly since each quasistatic time

step is essentially the cost of an entire XPBD simulation. Nevertheless, we compare our

approach against this option (see Section 6.8.4) since it will at least allow for the correct

representation of the forcing terms. We refer to this technique as XPBD-QS.

Figure 6.3: Bar under Gravity. A quasistatic simulation of a bar bending under gravity

using different methods. The effect of external forcing vanishes in the PBD example as the

number of iterations increases. More local iterations of XPBD-QS produces better results.

PBNG converges to visually plausible results within fewer iterations than XPBD-QS.

101

6.4.2 XPBD Convergence

The linear system in Equations (6.24)-(6.25) that forms the basis for the XPBD Gauss-Seidel

update is generated from the omission of two terms in their Lagrange multiplier formulation

(shown in red)

 M+

∑
c λck

∂2Cc
∂x2 (xn+1

k) −∇CT
c (x

n+1
k)

∇C(xn+1
k) A

∆t2




 ∆xk+1

∆λk+1


 =


 g(xn+1

k ,λk)

h(xn+1
k ,λk)


 . (6.30)

The left-hand side term is second-order, but its omission is essential for the decoupling of

position (primary) and Lagrange multipliers. However, the omission on the right-hand side

is of the residual in the position (primary) equations. Without this term, residual reduction

with XPBD stagnates after an iteration or two. However, the inclusion of this term leads

to unstable behavior. We demonstrate this in Section 6.8.5 and Figure 6.4. We believe that

the omission of the primary residual in the update causes iteration-dependent behavior and

generally degraded convergence with XPBD since information about adjacent constraints

would be included in this term if it could be stably added. Furthermore, the effect is more

visually pronounced in quasistatic problems.

6.5 Position-Based Nonlinear Gauss-Seidel

To fix the issues with PBD/XPBD and quasistatics, we abandon the Lagrange-multiplier

formulation and approximate the solution of Equation (6.11) using position-centric, rather

than constraint-centric nonlinear Gauss-Seidel., This update takes into account each con-

straint that the position participates in. Visual intuition for this is illustrated in top of

Figure 6.7(a). More specifically, in the kth sub-iterate of iteration l, we modify a single node

102

Iteration 1 Iteration 5 Iteration 15

0 10 20 30 40 50
Iters

10-8

10-6

10-4

10-2

100

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Tolerance

Primary Residual
Secondary Residual
Newton Residual

(a)

0 5 10 15 20 25
Iters

10-8

10-7

10-6

10-5

10-4

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Tolerance

XPBD
PBNG

(b)

Figure 6.4: Top. Clamped blocks under gravity. The green block is XPBD, and the yellow

one is PBNG. (a) Primary Residual Comparison: Stagnation. While XPBD reliably

reduces the secondary residual, its omission of the primary residual in the linearization

causes its primary residual to stagnate, making its true (Newton) residual stagnate as well.

(b) Convergence. PBNG is able to reduce the Newton residual to the tolerance, whereas

XPBD’s residual stagnates.

ik with Xik /∈ ∂Ω0
D as

xn+1,l
(k+1)ik

= xn+1,l
(k)ik

+∆xn+1,l
(k+1)ik

(6.31)

∆xn+1,l
(k+1)ik

=
argmin

∆y ∈ Rd
P̂E(xn+1,l

(k) + C̃ik∆y)−∆y · f̂ ext
ik
.

Here C̃ik ∈ RdNE×d is a selection matrix that isolates the degrees of freedom on the node ik

and has entries C̃ik
jαβ = δjikδαβ. We solve this minimization by setting the gradient to zero

0 = fik(x
n+1,l
(k) + C̃ik∆xn+1,l

(k+1)ik
) + f̂ ext

ik
. (6.32)

We use a single step of a modified Newton’s method to approximate the solution of Equa-

tion (6.32) for ∆xn+1,l
(k+1)ik

∈ Rd. We use ∆xn+1,l
(k+1)ik

= 0 as the initial guess. We found that

103

using more than one iteration did not significantly improve robustness or convergence. Our

update is of the form

∆xn+1,l
(k+1)ik

=
(
An+1,l

(k+1)ik

)−1 (
fik(x

n+1,l
(k)) + f̂ ext

ik

)
. (6.33)

Here An+1,l
(k+1)ik

≈ − ∂fik
∂yik

(xn+1,l
(k)) ∈ Rd×d is an approximation to the potential energy Hes-

sian/negative force gradient.

6.5.1 Modified Hessian

We choose the modified energy Hessian An+1,l
(k+1)ik

to minimize its computational cost. The

true Hessian ∂fik
∂yik

∈ Rd×d has entries

∂fikα
∂yikβ

(y) = −
NE−1∑

e=0

d−1∑

δ,γ=0

Ce
αγβδ(y)

∂N e
ik

∂Xγ

∂N e
ik

∂Xδ

V 0
e − (6.34)

Nwc−1∑

c=0

(
wc

0ik
− wc

1ik

)2
Kcαβ, 0 ≤ α, β < d

where Ce
αγβδ(y) = ∂2Ψ

∂Fβδ∂Fαγ
(
∑NN−1

j=0 yj
∂Ne

j

∂X
) is the Hessian of the potential energy density

evaluated at the deformation gradient in element e. This follows since the potential force on

the node ik is

fik(y) = −
NE−1∑

e=0

P̂e(y)
∂Nik

∂X
(Xe)V 0

e −
Nwc−1∑

c=0

(
wc

0ik
− wc

1ik

)
KcCc(y) (6.35)

where P̂e(y) =
∂Ψ
∂F

(
∑NN−1

j=0 yj
∂Ne

j

∂X
) is the first Piola-Kirchhoff stress in the element.

The primary cost in Equation (6.34) is the evaluation of the Hessian of the energy

density Ce
αγβδ(y) which is a symmetric fourth order tensor with d2×d2 entries. Furthermore,

this tensor can be indefinite, which would complicate the convergence of the Newton

procedure. We use a definiteness projection as in [TSI05] and [SGK19]. However we use

a very simple symmetric positive definite approximation instead of their approaches which

104

require the singular value decomposition of the element deformation gradient
∑NN−1

j=0 yj
∂Ne

j

∂X
.

Teran et al. [TSI05] also require the solution of a 3 × 3 and three 2 × 2 symmetric

eigenvalue problems, our approach does not require this. Our the simple approximation is

C̃e
αγβδ(y) ≈ Ce

αγβδ(y) with

C̃e
αγβδ(y) = 2µδαβδγδ + λJF e−1

αγ(y)JF
e−1

βδ(y). (6.36)

Here JFe(y) = det(Fe(y))Fe−T (y) is the cofactor matrix of the element deformation gradi-

ent Fe(y) =
∑NN−1

j=0 yj
∂Ne

j

∂X
. We note that the cofactor matrix is defined for all deformation

gradients Fe, singular, inverted (negative determinant) or otherwise. This is essential for

robustness to large deformation. We discuss the motivation for this simplification in Sec-

tion 6.6, but note here that it is clearly positive definite since it is a scaled version of the

identity with a rank-one update from the cofactor matrix (with positive λ > 0 scaling). With

this convention, our symmetric positive definite modified nodal Hessian is of the form

An+1
(k+1)ikαβ

=
NE−1∑

e=0

d−1∑

δ,γ=0

C̃e
αγβδ(x

n+1,l
(k))

∂N e
ik

∂Xγ

∂N e
ik

∂Xδ

V 0
e + (6.37)

Nwc−1∑

c=0

(
wc

0ik
− wc

1ik

)2
Kcαβ, 0 ≤ α, β < d (6.38)

6.5.2 Acceleration Techniques

PBNG is remarkably stable and gives visually plausible results when the computational bud-

get is limited, but it is also capable of producing numerically accurate results as the budget is

increased. However, as shown in Figure 6.5 and as with most Gauss-Seidel approaches, the

convergence rate of PBNG may decrease with iteration count. We investigated two simple

acceleration techniques to help mitigate this: the Chebyshev semi-iterative method (as in

[Wan15]) and SOR (as in [FVP16]). The Chebyshev method uses the update

xn+1,l+1 = ωl+1(γ(x
n+1,l+1
PBNG − xn+1,l) + xn+1,l − xn+1,l−1) + xn+1,l−1 (6.39)

105

where xn+1,l+1 denotes the accelerated update and xn+1,l+1
PBNG denotes the standard PBNG

update. Here ωl+1 =
4

4−ρ2ωl
for l > 2, 2

2−ρ2
for l = 2 and 1 for l < 2. γ is an under-relaxation

parameter that stabilizes the algorithm. For our examples, we set ρ = .95. PBNG is very

stable, and this allows for the use of over-relaxation as well. We set γ = 1.7.

The SOR method uses a similar, but simpler update

xn+1,l+1 = ω(xn+1,l+1
PBNG − xn+1,l−1) + xn+1,l−1. (6.40)

We use ω = 1.7 for this under-relaxation parameter. As shown in Figure 6.5, Chebyshev

and SOR behave similarly in terms of residual reduction and visual appearance.

0 10 20 30 40
Iters

101

102

103

104

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Chebyshev
SOR
Plain

Figure 6.5: Acceleration Techniques. The convergence rate of PBNG may slow down as

the iteration count increases. Chebyshev semi-iterative method and SOR effectively acceler-

ate the Newton residual reduction.

6.6 Lamé Coefficients

The parameters of an isotropic constitutive model are often based on Lamé coefficients µ

and λ which are themselves set from Young’s modulus E and Poisson’s ratio ν according to

Equation (6.9). This relationship is based on the assumption of linear dependence of stress

106

Frame 387 Frame 650

Frame 387 Frame 650

Figure 6.6: PBNG Muscle Simulation. The top row shows simulation results while

the bottom row visualizes the vertex constraint status. Red indicates a vertex involved in

contact, weak constraints are dynamically built to resolve the collisions. Blue represents the

vertex positions of connective tissue bindings.

on strain, or quadratic potential energy density

Ψle(F) = µtr(ϵ2(F)) +
λ

2
tr(ϵ(F))2 (6.41)

ϵ =
1

2
(F+ FT)− I. (6.42)

Furthermore, Equation (6.9) is derived from the model in Equation (6.41) by holding one

end of a cuboidal domain fixed and applying a displacement at its opposite end. The

remaining faces of the domain are assumed to be traction-free. Young’s modulus is the

scaling in a linear relationship between the traction exerted by the material in resistance to

the displacement. The Poisson’s ratio correlates with the degree of volume preservation via

deformation in the directions orthogonal to the applied displacement.

107

The use of Lamé coefficients with nonlinear models is not directly analogous since

the relation between displacement and traction is not a linear scaling in the cuboid example.

When using Lamé coefficients with nonlinear problems, the cuboid derivation should hold if

the model were linearized around F = I. All isotropic hyperelastic constitutive models can

be written in terms of the isotropic invariants Iα : Rd×d → R, 0 ≤ α < d

I0(F) = tr(FTF), I1(F) = tr((FTF)2), I2(F) = det(F) (6.43)

Ψ(F) = Ψ̂(I0(F), I1(F), I2(F)). (6.44)

See [GS08] for more detailed derivation. Note, when d = 2, I1(F) = tr((FTF)2) is not used.

With this convention, the Hessian of the potential energy density is of the form

∂2Ψ

∂F2
=

d−1∑

α=0

∂Ψ̂

∂Iα

∂2Iα
∂F2

+
d−1∑

α,β=0

∂2Ψ̂

∂Iα∂Iβ

∂Iα
∂F

⊗ ∂Iβ
∂F

. (6.45)

If Lamé parameters are to be used with a nonlinear model, the Hessian ∂2Ψ
∂F2 (F) should

match that of linear elasticity when evaluated at F = I. For example, this is why we adjust

the Lamé parameters used in [MM21] in Equation (6.8). See the supplementary technical

document (Appendix D) for derivation details.

We choose our approximate Hessian in Equation (6.36) based on this fact. That is,

by omitting all but the first and last terms in Equation (6.45), our approximate Hessian

is both symmetric positive definite and consistent with any model that is set from Lamé

coefficients (e.g. from Young’s modulus and Poisson’s ratio)

C̃ = µ
∂2I0
∂F2

+ λ
∂Id−1

∂F
⊗ ∂Id−1

∂F
. (6.46)

Again, see the supplementary technical document (Appendix D) for more details.

108

6.7 Coloring and Parallelism

Parallel implementation of Gauss-Seidel techniques is complicated by data dependencies in

the updates. This can be alleviated by careful ordering of sub-iterate position updates. We

provide simple color-based orderings for both PBD and PBNG techniques. For PBD, colors

are assigned to constraints so that those in the same color do not share incident nodes.

Constraints in the same color can then be solved at the same time with no race conditions.

For each vertex xi in the mesh, we maintain a set Sxi
that stores the colors used by its

incident constraints. For each constraint c, we find the minimal color as the least integer

that is not contained in the set ∪xi∈cSxi
. We then register the color by adding it into Sxi

for each xi in constraint c. With PBNG, we color the nodes so that those in the same color

do not share any mesh element or weak constraint. For each element or weak constraint

c, we maintain a set Sc that stores the colors used by its incident nodes. For a position

xi, we compute its color as the minimal one not contained in the set ∪xi∈cSc. Then we

register the color by adding it into Sc for each element or weak constraint xi is incident to.

The coloring process is illustrated in Figures 6.7(b) and 6.7(c). We observe that coloring

the nodes instead of the constraints gives fewer colors. This makes simulations run faster

since more work can be done without race conditions. In Table 6.1, we demonstrate this

performance observation. Note that we use the omp parallel directive from Intel’s OpenMP

library for parallelizing the updates.

6.7.1 Collision Coloring

For simulations with static weak constraints, the coloring is a one-time cost. Otherwise, the

colors have to be updated every time the weak constraint structure changes, e.g. from self-

collision (Figures 6.6 and 6.10). We propose a simple coloring scheme for this purpose: only

nodes incident to the newly added weak constraints need recoloring. We first compute all

nodes xextra
i that are incident to newly added weak constraints. For each xextra

i , we compute

109

(a) (b) (c)

Figure 6.7: (a) Dual Coloring . Node based coloring (top) is contrasted with constraint

based coloring (bottom). When a node is colored as red, its incident elements register red

as used colors. When a constraint is colored yellow, its incident particles register yellow as

used colors. (b) Constraints-Based Coloring. A step-by-step constraint mesh coloring

scheme is shown. The dotted line indicates two weak constraints between the elements. The

first constraint is colored red, all its incident points will register red as a used color. Other

constraints incident to the first constraint have to choose other colors. (c) Node-Based

Coloring. A step-by-step node coloring scheme is shown. The constraint register the colors

used by its incident particles. The first particle is colored red, so all its incident constraints

will register red as used. Other particles incident to the constraints have to choose other

colors.

the used color set ∪xextra
i ∈cSc. We use the color of xextra

i from the previous time step as an

initial guess. If it already exists in the used color set, then we find the minimal color that

is not used. This is generally of moderate cost, e.g. in the muscle examples with collisions

(Figures 6.1, 6.11 and 6.6), our algorithm takes less than 680ms/frame for recoloring, while

the actual simulation takes a total of 67s to run.

6.8 Examples

We demonstrate the versatility and robustness of PBNG with a number of representative

simulations of quasistatic (and dynamic) hyperelasticity. Examples run with the corotated

model (Equation (6.7)) use the algorithm from [GFJ16] for its accuracy and efficiency. All

110

Example # Vertices # Elements. # Particle Colors # Constraint Colors PBNG Runtime/Iter PBD Runtime/Iter

Res 32 Box Stretching 32K 150K 5 39 28ms 26.8ms

Muscles Without Collisions 284k 1097K 13 82 131ms 140ms

Res 64 Box Stretching 260K 1250K 5 39 65ms 137ms

Res 128 Box Stretching 2097K 10242K 5 40 1520ms 1080ms

Dropping Simple Shapes Into Box 256K 1069K 11 52 270ms 140ms

Res 16 Box Dropping 4.1K 17K 5 39 3.6ms 4.1ms

Table 6.1: Number of Colors Comparison: runtime is measured per iteration (averaged over

the first 200 iterations). PBNG does more work per-iteration than PBD, but has comparable

speed due to improved scaling resulting from a smaller number of colors.

the examples use Poisson’s ratio ν = 0.3. We compare PBNG, PBD, XPBD, XPBD-QS

and XPBD-QS (Flipped). For XPBD-QS we do the hyperelastic constraints first, followed

by weak constraints. For XPBD-QS (Flipped) the order is swapped. All the examples were

run on an AMD Ryzen Threadripper PRO 3995WX CPU with 64 cores and 128 threads.

In Table 6.3, we provide comprehensive performance statistics for PBNG. In Table 6.2, we

provide runtime comparisons between PBNG and the other methods.

6.8.1 Stretching Block

We stretch and twist a simple block in a simple scenario. The block has 32K particles and

150K elements. Both ends of the block are clamped. They are stretched, squeezed and

twisted in opposite directions. The block has R0 = 10 and Young’s modulus E = 105. There

is no gravity. The simulation is quasistatic. We compare performance between Newton’s

Example # Vertices # Elements. PBNG Runtime Newton Runtime PBD Runtime PBNG # iter PBD # iter Newton # iter

Box Stretching (low budget) 32K 150K 170ms 170ms 170ms 6 6 2 (7 CGs)

Box Stretching (big budget) 32K 150K 1.3s 1.3s 1.3s 40 40 11 (10 CGs)

Muscle with collisions 284k 1097K 67s 430s - 510 - 34 (200CGs)

Table 6.2: Methods Comparisons: We show runtime per frame for different methods for

some of the examples. Each frame is run after advancing time .033.

111

0 1 2 3 4 5
Time(s)

102

104

106

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Computational Budget: 1.3s/frame

Newton
PBNG
PBD
XPBD-QS

0 1 2 3 4 5
Time(s)

104

106

108

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Computational Budget: 170ms/frame

Newton
PBNG
PBD
XPBD-QS

Figure 6.8: Comparisons with Different Computational Budget. A block is

stretched/compressed while being twisted. With a sufficiently large computational bud-

get, Newton’s method is stable, but it becomes unstable when the computational budget

is small. PBD and XPBD-QS do not significantly reduce the residual in the given compu-

tational time, resulting in noisy artifacts on the mesh. PBNG maintains relatively small

residuals and generates visually plausible results of the deformable block even if the budget

is limited.

method, PBD, PBNG and XPBD as described in Section 6.4. In Figure 6.8, these methods

are run under a fixed budget. Every method has a runtime of 1.3s/frame. With an ample

budget, PBNG converges to ground truth, while PBD and XPBD do not. In Figure 6.8,

we show a simulation where every method has a runtime of 170ms/frame. Newton’s method

is remarkably unstable. PBNG looks visually plausible. PBD and XPBD-QS have visual

artifacts and fail to converge. Residual plots vs. time are shown at the bottom of Figure

6.8.

112

6.8.1.1 Different Resolution

In this example, we demonstrate PBNG’s versatility by running the block stretching and

twisting with various resolutions. As shown in Figure 6.9, the top block has 32K particles

and 150K elements. The middle block has 260K particles and 1250K elements. The bottom

block has 2097K particles and 10242K elements. Even at high-resolution (bottom block),

PBNG is visually plausible after only 40 iterations and 61 seconds/frame of runtime.

Figure 6.9: Different Mesh Resolution. PBNG produces consistent results when the mesh

is spatially refined. The highest resolution mesh in this comparison has over 2M vertices and

only requires 40 iterations to produce visually plausible results.

6.8.1.2 Different Constitutive Models

In this example, we apply PBNG to various constitutive models on the same block examples.

All three blocks have 32K particles and 150K elements. Frames are shown in Figure 6.2.

The blocks from top to bottom are run with corotated (Equation 6.7), stable Neo-Hookean

(Equation 6.10) and Neo-Hookean (Equation 6.8) models respectively. With 40 iterations

per frame, they are all visually plausible.

113

6.8.1.3 Acceleration Comparison

In this example, we compare the effects of the Chebyshev semi-iterative method and the

SOR method. In Figure 6.5, we stretch and twist the same block with 32K particles and

150K elements. The top bar is simulated with plain PBNG. The middle bar is simulated

with PBNG with Chebyshev semi-iterative method with γ = 1.7, ρ = .95. The bottom bar

is simulated with PBNG with SOR and ω = 1.7. 10 iterations are used for each time step.

With a limited budget, plain PBNG is less converged than accelerated techniques. Figure

6.5 shows the convergence rate of the three methods vs. the number of iterations at the first

time step. We can see that the acceleration techniques boost the convergence rate.

6.8.2 Collisions

We support collisions by dynamically adding weak constraints as discussed in Section 6.2.1.

We use a time step of ∆t = .002 and detect collision every time step.

6.8.2.1 Two Blocks Colliding

We demonstrate the generation of dynamic weak constraints with a simple example. We take

two blocks with one side fixed and drive them toward each other. This is a dynamic/backward

Euler simulation. The blocks have R0 = 10 and Young’s modulus E = 1000. The weak

constraints have stiffness kn = 108 and kτ = 0. The dynamic weak constraints are visualized

in Figure 6.10 as red nodes in the mesh.

6.8.2.2 Muscles

We quasistatically simulate a large-scale musculature with collision and connective tissue

weak constraints. The mesh has a total of 284K particles and 1097K elements. The muscles

have R0 = 1000, Young’s modulus E = 105, connective tissue (blue) weak constraint stiffness

114

Frame 9 Frame 25

Figure 6.10: Two Blocks Colliding. Two blocks collide with each other with one face

clamped. Red particles indicate that dynamic weak constraints have been built to resolve

the collision of corresponding mesh vertices.

is isotropic kn = kτ = 108. Dynamic collision (red) weak constraint stiffness is anisotropic

kn = 108 and kτ = 0. We show several frames of muscles simulated with PBNG and dy-

namically generated weak constraints in Figure 6.6. PBNG takes 67 seconds to simulate a

frame, while Newton’s method takes 430s. In figure 6.1, we show that PBNG looks visually

the same as Newton, while running 6-7 times faster. We also show that PBD and XPBD-QS

fail to converge. In Figure 6.1, we show PBD becomes unstable. In Figure 6.11, we demon-

strate sub-iteration order-dependent behavior with PBD. XPBD-QS has weak constraints

processed last, which leads to excessive stretching of elements. XPBD-QS (Flipped) has

weak constraints processed first, which degrades their enforcement and leaves a gap.

6.8.2.3 Dropping Objects

40 objects with simple shapes are dropped into a glass box. The objects have a total of

256K particles and 1069K elements. The simulation is run with dynamic/backward Euler.

Some frames are shown in Figure 6.12. We show PBNG’s capability of handling collision-

115

Figure 6.11: PBNG vs XPBD. Muscle simulation demonstrates iteration-order-dependent

behavior with XPBD and quasistatics. A zoom-in view under the right armpit region is

provided. Each method is run 130 iterations. PBNG converges to the desired solution,

binding the muscles closely together. XPBD-QS and XPBD-QS (Flipped) fail to converge,

leaving either artifacts or gaps between the muscles.

intensive scenarios. The example is run with R0 = 10, Young’s modulus E = 3000 and weak

constraint stiffness kn = 108 and kτ = 0.

6.8.3 Varying Stiffness

In this example, we demonstrate that XPBD-QS fails to resolve quasistatic problems with

varied stiffness. In Figure 6.13, we show the initial setup for the simulation. The simulation

is quasistatic. Both block meshes have R0 = 10 and Young’s modulus E = 1000. The first

block mesh has its top boundary constrained. The second block is weakly constrained to

the first block via weak constraints between them. The springs have stiffness kn = kτ = 108.

There is gravity in the scene with acceleration −9.8 in the y−direction. As we show in

Figure 6.13, PBNG converges to a plausible state. XPBD-QS and XPBD-QS (Flipped) fail

to converge. Depending on the order of the constraints, it either leaves a gap between the

two blocks or a very stretched top layer of the bottom block. This example also serves as a

simplified version of the connective bindings on the muscles, which are used in Figure 6.11.

The residual plot is shown on the right of Figure 6.13.

116

Frame 0 Frame 25

Frame 60 Frame 150

Figure 6.12: Objects Dropping. A variety of objects drop under gravity. Our method is

able to robustly handle collisions between deformable objects through weak constraints.

6.8.4 PBD

In this example, we show how PBD eliminates the effects of external forcing as the number

of iterations increases. We clamp the left side of a simple bar mesh. We run a quasistatic

simulation with gravity (acceleration −9.8 in the y−direction). The bar has R0 = 10 and

Young’s modulus E = 1000. As shown in Figure 6.3, PBD converges to a rigid bar config-

uration. PBNG converges to a plausible solution. XPBD-QS appears to resolve the issues

with PBD and quasistatics. However, XPBD-QS with 10 iterations per pseudo-time step

appears more converged than XPBD-QS with 1 iteration per pseudo-time step.

117

0 100 200 300 400 500
Iters

100

102

104

106

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Quasistatic Convergence

PBNG
XPBD-QS
XPBD-QS Flipped

Figure 6.13: Two Blocks Hanging. Two identical blocks are bound together through weak

constraints. Green line segments in iteration 0 indicate weak constraint springs. PBNG is

able to reduce the residual by a few orders of magnitude and converges quickly. XPBD-QS

methods demonstrate iteration-order-dependent behavior. Residuals oscillate and produce

visually incorrect results.

6.8.5 XPBD

We run a simple dynamics example to show that XPBD does not converge numerically, as

discussed in Section 6.4.2. We take a simple block with the left side clamped. It falls under

gravity and oscillates. The simulation scene is shown on the top of Figure 6.4. The block

has 4.1K particles and 17K elements. In this simple simulation, we compare the convergence

behavior between PBNG and XPBD. As shown in Figure 6.4(b), XPBD stagnates, while

PBNG converges to the tolerance. We demonstrate the reason for XPBD’s stagnation in

Figure 6.4(a). XPBD omits the primary residual terms, which results in the stagnation

of residual reduction. Though XPBD reduces the secondary residual, the true residual

stagnates.

118

Example # Vertices # Elements. PBGN Runtime / Frame PBNG # Iter/Frame # Substeps Model

Box Stretching (low budget) 32K 150K 170ms 6 1 Corotated

Box Stretching (big budget) 32K 150K 1300ms 40 1 Corotated

Muscle with collisions 284k 1097K 67000ms 510 17 Corotated

Res 64 Box Stretching 260K 1250K 1300ms 20 1 Corotated

Res 128 Box Stretching 2097K 10242K 61000ms 40 1 Corotated

Dropping Simple Shapes Into Box 256K 1069K 49800ms 136 17 Corotated

Two moving blocks colliding 8.2K 33K 1630ms 136 17 Corotated

Box Stretching 32K 150K 1300ms 40 1 Stable Neo-Hookean

Box Stretching 32K 150K 825ms 40 1 Neo-Hookean

Table 6.3: Performance Table of PBNG: runtime is measured for each frame (averaged over

the course of the simulation). Each frame is written after advancing time .033.

6.8.6 PBNG vs. PBD and Limited Newton

We run a simple quasistatic example to illustrate the convergence propagation behavior of

PBNG compared to each conjugate gradient (CG) iteration in Newton’s method as well as

PBD. In Figure 6.14, a block has its two sides stretched and then clamped. We compute the

quasistatic equilibrium using Newton’s method with 1 Newton iteration, PBD and PBNG.

PBD does not converge to the right solution. After 50 iterations, PBNG looks visually

plausible, but Newton’s method is visually not converged. The residual plots are presented

in Figure 6.14. PBNG iterations are comparable to CG iterations in Newton’s method, but

they have more favorable deformation propagation behavior.

6.9 Discussion and Limitations

We show that a node-based Gauss-Seidel approach for the nonlinear equations of quasistatic

and backward Euler time stepping has remarkably stable behavior. While we generate visu-

ally plausible behaviors with restricted computational budgets in a manner that surpasses the

PBD and XPBD state-of-the-art for quasistatic problems, our approach (even with Cheby-

shev and SOR acceleration) will still lose (in terms of numerical residual reduction) to a

119

0 50 100 150 200
Iters

10-3

10-2

10-1

100

101

102

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Large Deformation

Newton/CG
PBNG
PBD

0 50 100 150 200
Iters

10-6

10-4

10-2

100

102

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Medium Deformation

Newton/CG
PBNG
PBD

0 50 100 150 200
Iters

10-6

10-4

10-2

100

102

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Small Deformation

Newton/CG
PBNG
PBD

Figure 6.14: Deformation Propagation Visualization. A square block is initially

stretched on its sides. Top row: visual results of the blocks after certain iterations. Black

points are the initial positions. Red points are positions at the current iteration. Yellow line

segments indicate the displacement of each node. Each method is color coded - purple is

Newton, orange is PBNG, and green is PBD. Each row shows the results of large, medium,

and small deformations respectively. PBNG converges to a visually plausible result in fewer

iterations than one Newton step with increasing CG iterations. PBD fails to shrink in the

transverse direction. Bottom row: 2-norm of the Newton residual vector. PBNG outper-

forms Newton’s method and PBD.

standard Newton’s method when the computational budget is expanded. A multigrid or

domain decomposition approach could be combined with our approach to address this in

future work.

120

APPENDIX A

Supplementary Material for Surface Tension

This supplementary material provides detailed derivations of the momentum-conserving

remapping algorithm. Section A.1 generalizes the APIC momentum [JSS15] and introduces

our notation. Section A.2 proves that assigning the linear and angular velocities of “center

of mass” particles to the rest in the particle group (see Figure A.1) conserves linear and

angular momentum. Finally, Section A.3 provides the strategy we choose for conservative

momentum merging.

A.1 Preliminaries

In order to consider conservation of momentum on the MPM grid, we first need to define

mass and velocity on a grid node i. In the APIC perspective, the mass of a grid node i is

mi =
∑

p

mpwip, (A.1)

and the momentum of grid node i is

mivi =
∑

p

wipmp(vp +Ap(xi − xp)), (A.2)

where wip = Ni(xp) is the interpolation weight from particle p to grid node i. We can

substitute (A.1) into (A.2) to obtain
(∑

p

mpwip

)
vi =

∑

p

wipmp(vp +Ap(xi − xp)). (A.3)

121

If we denote mip ≡ mpwip, each particle p’s contribution to grid node i’s momentum is

mipvi = mip

∑

p

(vp +Ap(xi − xp)) , (A.4)

and therefore, velocity at grid node i can be expressed as

vi =
∑

p

(vp +Aprip) , (A.5)

where rip ∈ Rd is the distance from the grid node i to the center of mass of the all grid nodes

associated with particle p. The center of mass location is xp.

Remark. The repeated grid index (eg. i) and particle index (eg. p) does not suggest summing

over the grid nodes or particles unless we explicitly write the summation notation.

Definition 1. Based on (A.5), we define the generalized particle velocity as

Gp ≡ [vpAp]. (A.6)

Gp is a d× (d+1) matrix, which is a combination of the linear velocity vp and the affine

velocity Ap, where d = 2, 3 is the dimension. Alternatively, Gp can be written using index

notation Gβγp, where β = 1, . . . , d and γ = 0, 1, . . . , d. Gp for particle p can be compacted

into a column vector. For 3D scenarios,

Gp = [v1p, v2p, v3p, A11p, A12p, A13p, A21p, A22p, A23p, A31p, A32p, A33p]
T . (A.7)

Definition 2. With the generalized velocity Gβγp, we can write the grid velocity as

viα = QipαβγGβγp. (A.8)

where

Qipαβγ =




δαβ, γ = 0,

ripγδαβ, γ > 0

(A.9)

122

Qipαβγ can be written in matrix form as

Qip =




1 0 0 rip1 rip2 rip3 0 0 0 0 0 0

0 1 0 0 0 0 rip1 rip2 rip3 0 0 0

0 0 1 0 0 0 0 0 0 rip1 rip2 rip3


 . (A.10)

Note that since Qipαβγ only relies on the node i and the center of mass location, for

simplicity, we define

Qiαβγ ≡ Qipαβγ. (A.11)

Then, particle p’s contribution to the grid momentum of node i is

piαp = mipviα = mipQiαβγGβγp. (A.12)

Definition 3. The generalized moment on the grid due to particle p is

tβγp ≡
∑

i

d∑

α=1

Qiαβγpiαp, (A.13)

which is a generalization of the linear momentum and the angular momentum about the

center of mass.

(A.12) and (A.13) lead to

∑

i

d∑

α=1

Qiαβγpiαp =
∑

i

d∑

α=1

QiαβγmipQiαβγGβγp, (A.14)

which is also the equation for the grid-to-particle transfer [JST17].

Definition 4. The generalized inertia tensor is defined as

Iβγδϵp ≡
∑

i

d∑

α=1

QiαβγmipQiαβγ (A.15)

For APIC with quadratic B-spline interpolation, the inertia tensor is diagonal [JSS15]:

Iβγδϵp = mpDβγδϵ, (A.16)

123

where Dβγδϵ is constant and diagonal. In 3D,

Dβγδϵ = diag{1, 1, 1, 1
4
∆x2,

1

4
∆x2,

1

4
∆x2,

1

4
∆x2,

1

4
∆x2,

1

4
∆x2,

1

4
∆x2,

1

4
∆x2,

1

4
∆x2}. (A.17)

We can rewrite the right-hand side of the (A.14) as the product of the generalized inertia

tensor and the generalized velocity

∑

i

d∑

α=1

QiαβγmipQiαβγGβγp = IβγδϵpGδϵp. (A.18)

Remark. Up to this point, our discussion still falls inside the APIC framework (no resam-

pling involved). Starting from the next section, we introduce the resampled surface particles

sr and balance particles br.

A.2 Conservative Splitting

We now prove our splitting method is conservative. The conservation is both global (total

linear and angular momentum conserved over the background grid) and local (linear and

angular momentum conserved in each particle group).

P2GSplitBoundary
Sampling

Active GridsParticle Group

xp

An
q

An
p

mp

mq

xn
p

xn
q

vn
p

vn
q xn

p

mp An
p

vn
p

xn
q

An
q

mq

vn
q

mp

3

mp

3

mp

3

An
p

An
p

vn
p

vn
p

vn
p

snr

bnr

snr An
p

bnr

mq
vn
q

An
qxn

q

Figure A.1: Splitting algorithm demonstration. The blue particle xp is the center of mass of

the particle group. Center of mass particles have their linear and angular velocities assigned

to the rest of the particles in the group.

Claim 1. Let tβγ be the total generalized moment before the splitting, and t̃βγ be the one

after the splitting. For each particle r in particle p’s group Πp, setting vr = vp and Ar = Ap

124

conserves the total linear and angular momentum:

tβγ = t̃βγ. (A.19)

vp and Ap are the linear and affine velocities of xp, which is the center of mass of the particle

group.

Proof. Before the splitting, only xp contributes to the generalized moment (on the grid)

about the center of mass.

tβγ = tβγp =
∑

i

d−1∑

α=0

Qiαβγpiαp (A.20)

After the splitting, each particle (br, sr and xp) will have its own contribution to the gen-

eralized moment. Note that the center of mass location for the particle group is xp before

and after the splitting, and Qiαβγ only depends on grid node i and the center of mass xp.

Therefore, we can write the new total generalized moment as

t̃βγ = t̃βγp +
∑

r∈Πp

(
t̃sβγr + t̃bβγr

)
(A.21)

=
∑

i

d∑

α=1

Qiαβγ p̃iαp +
∑

r∈Πp

(∑

i

d∑

α=1

Qiαβγ p̃
s
iαr +

∑

i

d∑

α=1

Qiαβγ p̃
b
iαr

)
(A.22)

=
∑

i

d∑

α=1

Qiαβγm̃ipQiαδϵG̃δϵp+

∑

r∈Πp

(∑

i

d∑

α=1

Qiαβγm̃
s
irQiαδϵG̃

s
δϵr +

∑

i

d∑

α=1

Qiαβγm̃
b
irQiαδϵG̃

b
δϵr

)
(A.23)

Since the mass is evenly distributed to each particle,

m̃p = m̃s
r = m̃b

r =
mp

2|Πp|+ 1
. (A.24)

If we assign the same linear and affine velocity to all the particles, that is,

G̃βγp = G̃s
βγr = G̃b

βγr = Gβγp, (A.25)

125

then (A.23) can be written as

t̃βγ =
∑

i

d∑

α=1

Qiαβγwipm̃pQiαδϵG̃δϵp+

∑

r∈Πp

(∑

i

d∑

α=1

Qiαβγw
s
irm̃

s
irQiαδϵG̃

s
δϵr +

∑

i

d∑

α=1

Qiαβγw
b
irm̃

b
irQiαδϵG̃

b
δϵr

)
(A.26)

= ĨβγδϵpG̃δϵp +
∑

r∈Πp

(
ĨsβγδϵrG̃s

δϵr + ĨbβγδϵrG̃b
δϵr

)
(A.27)

=


m̃p +

∑

r∈Πp

(m̃s
r + m̃b

r)


DβγδϵGδϵp (A.28)

Based on (A.25), we can compute the original mass as

mp =


m̃p +

∑

r∈Πp

(m̃s
r + m̃b

r)


 (A.29)

Substituting (A.29) into (A.28), we recover the generalized moment before the splitting:

t̃βγ = mpDβγδϵGδϵp = tβγ. (A.30)

Since our way of building surface and balance particles and distributed mass does not

alter the center of mass location, this leads to the conclusion that the generalized moment

on the grid about the center of mass is conserved during the splitting. In other words, our

splitting method conserves linear and angular momentum.

A.3 Conservative Merging

During the merge process, we collect mass and momentum from the surface particles and

balance particles, and we remove these temporary particles. Here, we show a momentum-

conserving way to set the linear and affine velocity of xp.

Claim 2. There exists a way to set vn+1
p and An+1

p so that the generalized moment before

126

G2PMerge

Particle Contributions
to the Grid Momentum

mp

mq

xn
p

xn
q

An+1
p

vn+1
p

vn+1
q

An+1
q

psiαr = m̃pNi(s
n
r)v̂

n+1
iα

piαp = m̃pNi(x
n
p)v̂

n+1
iα

pbiαr = m̃pNi(b
n
r)v̂

n+1
iα

G2P

∑

r∈Πp

∑

i

Qiαβγp
s
iαr +

∑

i

Qiαβγpiαp+

∑

r∈Πp

∑

i

Qiαβγp
b
iαr =

∑

i

QiαβγmpNi(x
n
p)QiαδεG

n+1
δεp

xn
p
xn
q

bnr

snr

Figure A.2: Merging algorithm demonstration.

the merge tβγ and the generalized moment after the merge t̂βγ match:

tβγ = t̂βγ. (A.31)

Proof. Recall that for a single particle group Πp, the total generalized moment on the grid

can be computed by each particle’s contributions:

tβγ = tβγp +
∑

r

tβγr. (A.32)

Before the merge, we have

tβγ =
∑

i

d∑

α=1

Qiαβγpiαp +
∑

r∈Πp

∑

i

d∑

α=1

Qiαβγp
s
iαr +

∑

r∈Πp

∑

i

d∑

α=1

Qiαβγp
b
iαr. (A.33)

After the merge, only particle xp contributes to the generalized moment:

t̂βγ =
∑

i

d∑

α=1

Qiαβγm̂ipQiαδϵĜδϵp. (A.34)

In order to have t̂βγ = tβγ, we need Ĝδϵp to satisfy the follow equation:

∑

i

d∑

α=1

Qiαβγm̂ipQiαδϵĜδϵp =
∑

i

d∑

α=1

Qiαβγpiαp

+
∑

r∈Πp

∑

i

d∑

α=1

Qiαβγp
s
iαr +

∑

r∈Πp

∑

i

d∑

α=1

Qiαβγp
b
iαr.

(A.35)

127

Thus, (A.35) leads to an expression for Ĝδϵp which conserves the linear and angular

momentum during the merging:

Ĝδϵp = (Iβγδϵp)−1


∑

i

d∑

α=1

Qiαβγpiαp +
∑

r∈Πp

(∑

i

d∑

α=1

Qiαβγp
s
iαr +

∑

i

d∑

α=1

Qiαβγp
b
iαr

)
 .

(A.36)

From Ĝδϵp, we can determine vn+1
p and An+1

p . Since our derivation of Ĝδϵp is based on

t̂βγ = tβγ, the merged linear and affine velocity guarantees the conservation of linear and

angular momentum.

128

APPENDIX B

Supplementary Material for DCDM

B.1 Conjugate Gradients Method

In this appendix, we provide a review of the conjugate gradients (CG) method, which is

the inspiration for DCDM as presented in this paper. The conjugate gradients method is a

special case of the line search method, where the search directions are A-orthogonal to each

other. It can also be viewed as a modification of gradient descent (GD) where the search

direction is chosen as the component of the residual (equivalently, the negative gradient of

the matrix norm of the error) that is A-orthogonal to all previous search directions:

dk = rk−1 −
k−1∑

i=1

hikdi, hik =
dT
i Ark−1

dT
i Adi

.

With this choice, the search directions form a basis for Rn so that the initial error can be

written as e0 = x− x0 =
∑n

i=1 eidi, where ei are the components of the initial error written

in the basis. Furthermore, since the search directions are A-orthogonal, the optimal step

sizes αk at each iteration satisfy

αk =
rTk−1dk

dT
kAdk

=
dT
kAek−1

dT
kAdk

=
dT
kA
(∑n

i=1 eidi −
∑k−1

j=1 αjdj

)

dT
kAdk

= ek.

That is, the optimal step sizes are chosen to precisely eliminate the components of the error

on the basis defined by the search directions. Thus, convergence is determined by the (at

most n) non-zero components ei in the initial error. Although rounding errors prevent this

129

from happening exactly in practice, this property greatly reduces the number of required

iterations [GL12].

Furthermore, hik = 0 for i < k−1, and thus iteration can be performed without the need

to store all previous search directions di and without the need for computing all previous

hik. To see this, it is sufficient to show dT
i Ark−1 = 0.

Lemma In the CG method, residuals are orthogonal, i.e., rTk rj = 0 for all j < k.

Proof

rTk rj = (rk−1 − αkAdk)
T rj

= rTk−1rj − αkd
T
kArj

= rTk−1rj − αkd
T
kA

(
dj+1 +

j∑

i=1

hi(j+1)di

)

For j < k− 1, rTk−1rj = 0 follows from induction. dT
kA(dj+1 +

∑j
i=1 hi(j+1)di) = dT

kAdj+1 +
∑j

i=1 hi(j+1)d
T
kAdi=0 because di are A-orthogonal by their definition. For j = k − 1,

rTk rk−1 = rTk−1rk−1 − αkd
T
kArk−1

= rTk−1rk−1 −
rTk−1dk

dT
kAdk

dT
kArk−1

= rTk−1rk−1 −
rTk−1dk

dT
kAdk

dT
kA

(
dk +

k−1∑

i=1

hidk

)

= rTk−1rk−1 − rTk−1dk (by A-orthogonality of dk)

= rTk−1(rk−1 − dk)

= rTk−1

(
k−1∑

i=1

hikdi

)

=
k−1∑

i=1

hikr
T
k−1di

So proving rTk−1di = 0 for i < k would finish the proof. However, by the definition of

di = ri−1 −
∑i−1

j=1 hijdk, induction proves di ∈ span(r1, r2, . . . , ri−1). Hence, rTk−1di = 0 for

130

all i ≤ k − 1, which proves the lemma.

Claim In the CG method, search directions are A-orthogonal to all previous residuals, i.e.,

dT
i Ark−1 = 0 for all i < k − 1.

Proof rTi rk−1 = (rTi−1−αiAdi)
T rk−1, hence diArk−1 = rTi−1rk−1−rTi rk−1 = 0 for all i < k−1,

using the lemma above.

This proves the sparsity of the hik. As discussed in the main body of the paper, this

“memoryless” property of CG is inherited by DCDM and enables the efficiency of our method.

B.2 Choice of α

Line search is an iterative method to find a local minimum of an objective function h : Rn →

R. In the context of variationally solving Ax = b, h(x) = 1
2
xTAx−xTb, and the kth iterate

is computed by

xk = xk−1 + αkdk.

One desires a step size αk that yields h(xk) < h(xk−1). More specifically, the optimal choice

is

αk = argmin
α

h(xk−1 + αdk) =
rTk−1dk

dT
kAdk

,

where rk−1 = b−Axk−1 is the (k− 1)th residual. To see that this choice of αk is indeed the

minimizer, we can define the objective function as g(α) and write

g(α) = h(xk−1 + αdk)

=
1

2
(xk−1 + αdk)

TA(xk−1 + αdk)− bT (xk−1 + αdk)

=
1

2
α2dT

kAdk + α(dT
kAxk−1 − dT

kb) +

(
1

2
xT
k−1Axk−1 + xT

k−1b

)

=
1

2
α2dT

kAdk − αdT
k rk−1︸︷︷︸

b−Axk−1

+(constant terms).

131

Taking the derivative with respect to α, we have g′(α) = αdT
kAdk − dT

k rk−1 = 0, yielding

α =
rTk−1dk

dT
k Adk

as the minimizer of g(α).

B.3 Additional Convergence Results

We include additional convergence results, similar to those shown in Figure 4.4b, in Figure

B.1. Specifically, these plots show the convergence of all the methods reported in Table 4.1

at each of the resolutions reported there. The figure visually demonstrates the significant

reduction in iteration count achieved by DCDM.

0 50 100 150 200
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=
kr

0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(a) N = 64

0 50 100 150 200 250 300 350 400
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=
kr

0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(b) N = 128

0 100 200 300 400 500 600 700
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=
kr

0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(c) N = 256

Figure B.1: Convergence of different methods on the 3D bunny example for N = 64, 128,

256; summary results, as well as timings, are reported in Table 4.1. DCDM-{64,128} calls a

model whose parameters are trained over a {643, 1283} grid.

We remark on ICPCG since it is a popular preconditioner and closest in performance

to DCDM. When using ICPCG with matrices that arise in a domain with moving internal

boundaries (such as our bunny examples), the approximate factorization of A must be re-

computed. Recomputation is also required in the approach of [TSS17] in examples like these.

Moreover, as Figure 4.4d shows, DCDM does not require full A-orthogonality. Hence the al-

gorithm only stores two previous vectors, just like CG, and unlike the much more significant

memory requirements of ICPCG. For example, the L and D matrices for 1283 take about

18.7MB in scipy.sparse format, while our network can be stored in less than 500KB.

132

B.4 Ablation Study and Runtime Analysis

Here, we provide results of a small ablation study on network architecture in order to justify

some of the architectural choices we made in constructing the DCDM network. We considered

a few different models (Figure B.4a to Figure B.4e), several of which are modifications of the

model we ultimately used to generate our results (Figure B.4a). The models we considered

include one without ResNet connections (Figure B.4b), one with simple downsampling and

upsampling (a U-Net-like structure) (Figure B.4c), a minimal CNN (Figure B.4d), and a

model with different filter sizes of the blocks (Figure B.4e). We compared how these models

perform on the same bunny example considered in the main part of the paper (at resolution

643). Figure B.2 shows that the architecture we ultimately selected for DCDM yields the

best results.

Method DCDM Model 1 Model 2 Model 3 Model 4 U-Net

Number of Parameters 97,457 97,457 97,457 97,457 24,537 3,527,505

Table B.1: Number of parameters for each network architecture considered in the ablation

study.

Each model’s parameter count is listed in Table B.1. Compared to a basic CNN or U-Net

architecture (like the one used in [TSS17]), our DCDM network is actually quite light. For

example, the U-Net architecture in [TSS17] uses 3,527,505 parameters (at N = 64 in 3D),

while our network (at the same resolution) requires only 97,457 parameters (a 36x reduction).

In addition, one advantage of our method is that DCDM only needs to be trained once (and

data only generated once) per problem class (and possibly size). So if a user desired to

solve Poisson systems (which are quite common in computer graphics and engineering), they

could use our pre-trained models off the shelf; though we readily concede that new classes

of matrices or new resolutions could require new data generation or retraining.

Dataset generation is a key step in using the DCDM model we selected. We found that we

133

0 5 10 15 20
iterations

-4

-3

-2

-1

0

lo
g

1
0
(k

rk
=
kr

0
k)

4 orders of magnitude

DCDM
Model 1
Model 2
Model 3
Model 4
U-net

Figure B.2: Residual plot for the bunny example at N = 64 with each trained model.

The dashed line represents a four-orders-of-magnitude reduction in residual, which is the

convergence criterion we use throughout our examples.

needed to include orthogonalization to previous vectors in the Lanczos problem in practice

(a well-known limitation of the method). This causes the creation of a dataset (cf. Section

4.3.1) to take O(n3m2) time, where m is the number of Lanczos vectors to be created and

n is the resolution. Hence increasing resolution from 643 to 1283 increases the time by a

factor of 8, which scales 5–7 hours to 2–2.5 days. (However, since we can use low resolution

models on higher resolution problems, this scaling can be mitigated, cf. Section 4.3.2.) In

addition, the orthogonalization step makes dataset generation have complexity O(n3m2),

instead of the O(n3m) complexity of classical Lanczos processes. If we can find any other

solution for the numerical problems of classical Lanczos iteration besides orthogonalization,

we can drastically reduce the time to generate the dataset (such a task is outside the scope

of the present work). We note that storing the training dataset has asymptotic cost O(kn3);

for instance, the dataset of k = 20,000 synthetic data takes 23GB and 159GB of storage for

resolutions 643 and 1283, respectively.

134

B.5 Model training

Figure B.3 shows the decrease in training and validation losses observed when training the

neural network used for DCDM. As mentioned in Section 4.3.3, for DCDM, we selected the

model after epoch 31 for N = 64 and epoch 3 for N = 128. The plots clearly demonstrate

that training and validation loss seem to decrease after these epochs. However, we found that

our epoch selections yielded the best performance on our test data, namely, the examples we

showed in Section 4.4. Accordingly, we conjecture that our model overfit relatively quickly

to both training and validation data, and that perhaps training and validation data were

much more similar to each other compared to the test data. We are interested in exploring

this further in future work. Of course, philosophically, choosing a model by comparing its

performance from different epochs on test data essentially makes that test data part of the

validation data, but this is a broader discussion for the learning community.

0 10 20 30 40 50
Epoch

2

4

6

8

10

12

14

L
os

s

#10-3

Training Loss
Validation Loss

(a) N = 64

0 10 20 30 40 50
Epoch

0.02

0.04

0.06

0.08

0.1

L
o
ss

Training Loss
Validation Loss

(b) N = 128

Figure B.3: Training and validation loss for the networks used in DCDM at resolutions N

= 64 and N = 128.

135

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

+

+

+

+

+

+

+

+ : adding

+

(a) DCDM (our model)

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

+

+ : adding

(b) Model 1

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

(c) Model 2

Input

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

(d) Model 3

Input

Average pooling 3×3×3

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Up sampling 3×3×3

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Output

+

+

+

+

+

+

+

+

+ : adding

(e) Model 4

Figure B.4: Network architectures considered for our ablation study.

136

APPENDIX C

Supplementary Material for XPBD

C.1 First Piola-Kirchhoff XPBD System

As described in the paper, we want to solve the following system with Newton’s method:

Me(xn+1,e
k+1 − x̃e) + ∆t2Be∂Ψ

∂F
(Fe(xn+1,e

k+1))− f e = 0 (C.1)

Let xn+1,e
iek+1l denotes the lth iteration of the local Newton procedure for computing the

k + 1th global iteration, which modifies the nodes ie of element e. These nodes are updated

in Newton’s method as xn+1,e
iek+1l+1 = xn+1,e

iek+1l + δxe
iek+1l. We define the following linearization

∂Ψ

∂F
(Fe(xn+1,e

k+1l+1)) ≈
∂2Ψ

∂F2
(Fe(xn+1,e

k+1l)) : δF
e
k+1l +Pe

k+1l (C.2)

where we use an affine basis for the change in positions determined by a Newton step:

δxe
iek+1l = δFe

k+1l(X
e
ie −Xe

com) + be
k+1l (C.3)

In index notations we have:

δxe
ieαk+1l = δαϵδF

e
ϵτk+1l(X

e
ieτ −Xe

τ com) + be
αk+1l (C.4)

To solve for δxe
iek+1l, we need to solve the following system.

Meδxe
iek+1l +∆t2Be∂

2Ψ

∂F2
(Fe(xn+1,e

k+1))δFe
k+1l = −gk+1l (C.5)

137

where ge
k+1l = Me(xn+1,e

k+1l − x̃e) + ∆t2Be ∂Ψ
∂F

(Fe(xn+1,e
k+1l))− f e.

Plug Equation C.3 into Equation C.5 we have:

∑

ie∈Ωe

(
Mieαjeβδx

e
jeβk+1l +∆t2Be

ieαγδ

∂2Ψ

∂Fγδ∂Fσν

(Fe(xn+1,e
k+1l))δF

e
σνk+1l

)
= (C.6)

∑

ie∈Ωe

miejeδαβδx
e
jeβk+1l +∆t2

∑

ie∈Ωe

Be
ieαγδ

∂2Ψ

∂Fγδ∂Fσνk+1l

(Fe(xn+1,e
k+1l))δF

e
σνk+1l = (C.7)

∑

ie∈Ωe

miejeδx
e
jeαk+1l = (C.8)

−
∑

ie∈Ωe

gieαk+1l. (C.9)

Using Equation (C.3), Mieαjeβ = δαβmieje where mieje is diagonal and me =
∑

ie∈Ωe mieie

∑

ie∈Ωe

miejeδx
e
jeαk+1l =

∑

ie∈Ωe

miejeD
e
ieαϵτδF

e
ϵτk+1l +meb

e
αk+1l = (C.10)

(meX
e
τcom −meX

e
τcom)δF

e
ϵτk+1l +meb

e
αk+1l = meb

e
αk+1l. (C.11)

Therefore

be
k+1l =

−1

me

∑

ie∈Ωe

giek+1l (C.12)

Furthermore, multiplying Equation (C.5) by the transpose of D yields

De
ieαην

(
Mieαjeβδx

e
jeβk+1l +∆t2Be

iαγδ

∂2Ψ

∂Fγδ∂Fσν

(Fe(xn+1
(k)))δF e

σνk+1l

)
= (C.13)

De
ieαηνmiejeδx

e
jeβk+1l +∆t2

∂2Ψ

∂Fην∂Fσν

(Fe(xn+1
(k)))δF e

σνk+1l (C.14)

De
ieαηνmieje(D

e
ieαϵτδF

e
ϵτk+1l + beαk+1l) + ∆t2

∂2Ψ

∂Fην∂Fσν

(Fe(xn+1
(k)))δF e

σνk+1l (C.15)

138

where we use the fact that DTB = V eI, which is shown below:

(DTB)ϵτβν = De
ieαϵτB

e
ieαβν (C.16)

=
∑

ie,α

δαβδαϵ(X
e
ieτ −Xe

τcom)
∂Nie

∂Xν

(Xe)V e (C.17)

= δϵβV
e
∑

ie

(Xe
ieτ −Xe

τcom)
∂Nie

∂Xν

(Xe) (C.18)

= δϵβV
e(
∑

ie

∂Nie

∂Xν

(Xe)Xe
ieτ −

∑

ie

∂Nie

∂Xν

(Xe)Xe
τcom) (C.19)

= δϵβV
e(
∑

ie

∂Nie

∂Xν

(Xe)Xe
ieτ − (

∑

ie

∂Nie

∂Xν

(Xe))Xe
τcom) (C.20)

= δϵβV
e(
∑

ie

∂Nie

∂Xν

(Xe)Xe
ieτ −

∂(
∑

ie Nie)

∂Xν

(Xe)Xe
τcom) (C.21)

= δϵβV
e(
∑

ie

∂Nie

∂Xν

(Xe)Xe
ieτ −

∂1

∂Xν

(Xe)Xe
τcom) (C.22)

= δϵβV
e
∑

ie

∂Nie

∂Xν

(Xe)Xe
ieτ (C.23)

= V eδϵβδτν (C.24)

where we use the factNie is a partition of unity and reproduction of linear function properties.

C.1.1 Mass Term Computation

We compute M̃e:

M̃ e
ηνϵτ =

∑

ie,je∈Ωe

De
ieαηνmiejeD

e
jeαϵτ (C.25)

=
∑

α,ie,je,β

δαη(X
e
ieν −Xe

νcom))δiejeδαβδαϵ(X
e
jeτ −Xe

τcom)) (C.26)

= δηϵ
∑

ie

mie(X
e
ieν −Xe

νcom)(X
e
ieτ −Xe

τcom) (C.27)

139

Let M̂ e
ντ =

∑
ie mie(X

e
ieν −Xe

νcom)(X
e
ieτ −Xe

τcom) then M̃e =




M̂e

M̂e

M̂e




C.1.2 Quasi-Newton

In the paper we made an approximation of the Hessian term. The true hessian is:

∂2Ψ

∂F2
(Fe) = 2µI+ 2µ

∂R(F)

∂F
+ λ

∂ det(Fe)

∂Fe
⊗ ∂ det(Fe)

∂Fe
+ λ det(Fe)

∂2 det(Fe)

∂(Fe)2
(C.28)

≈ 2µI+ λ
∂ det(Fe)

∂Fe
⊗ ∂ det(Fe)

∂Fe
(C.29)

The term we omit is 2µ∂R(F)
∂F

+ λ det(Fe)∂
2 det(Fe)
∂(Fe)2

. This approximation makes it easier to

compute the inverse of the matrix. Also it ensures that the matrix is positive definite, so

that the whole Newton solve becomes more stable.

C.1.3 Corotated Fiber Term

Here is a more detailed description of the temrs for corotated fiber model:

fp =




0.0076λofle

6.6(le

λofl
−1) − 0.05(le − λofl) le > λofl

0 otherwise
(C.30)

fa =





0 le ≤ 0.4λofl

3λofl(
le

λofl
− 0.4)3 0.6λofl > le > 0.4λofl

−0.6612λofl + le − 1.33λofl(
le

λofl
− 1)3 1.4λofl ≥ le ≥ 0.6λofl

0.6774λofl + 3λofl(
le

λofl
− 1.6)3 1.6λofl ≥ le ≥ 1.4λofl

0.6774λofl le > 1.6λofl

(C.31)

where le = Feve and ve is the fiber direction of the element e.

140

C.2 Parallel Gauss-Seidel

Computation of the element-wise updates must be done in parallel for optimal efficiency.

Even though we use a Gauss-Seidel (as opposed to Jacobi) approach, we can achieve this

with careful ordering of element-wise updates. We provide a simple coloring scheme that

works for all tetrahedron meshes. The coloring is done so that elements in the same color do

not share vertices and can be updated in parallel without race conditions. For each vertex

xi in the mesh we maintain a set Sxi
that stores the colors used by its incident elements. For

each mesh element e, we find the minimal color that is not contained in the set ∪xie∈eSxie
.

Then, we register the color by adding it into Sxie
for each xie in element e. This coloring

strategy does not depend on the topology of the mesh and requires only a one-time cost at

the beginning of the simulation. The process is illustrated in Figure C.1.

We also offer a coloring scheme for the grid-based variation. We do a similar process as

the coloring scheme for the mesh, except the incident points of an element are now a subset

of the grid nodes. Since the particle positions are interpolated by grid nodes, an element

would be incident to all the grid nodes that interpolate to its incident particles on the mesh.

So for each element, we choose its color as the the color with the least color index such

that it is not yet registered by the incident grid nodes. The process is illustrated in Figure

C.2. Since grid nodes incident to an element change every timestep, the elements have to be

recolored every timestep. We can speed up the coloring process by using the coloring results

from previous timestep as an initial guess.

141

Figure C.1: Tetrahedron Mesh Coloring. A step-by-step tetrahedron mesh coloring

scheme is shown. After the first element is colored red, all its incident points will register

red as used color. Other elements incident to the first element have to choose other colors.

Figure C.2: Grid-Based Mesh Coloring. A step-by-step grid-based tetrahedron mesh

coloring scheme for 2D is shown. The grid uses linear interpolation here, so each particle on

the mesh is interpolated by the 4 grid nodes on the cell containing it. An element can have

at maximum 12 incident grid nodes. After the first element is colored green, 9 grid nodes

that are incident will register green as a used color, so that other elements incident to those

nodes won’t use it.

142

APPENDIX D

Supplementary Material for Nonlinear Gauss-Seidel

D.1 Linear Elasticity

D.1.1 Potential

Ψle(F) = µϵ(F) : ϵ(F) +
λ

2
tr(ϵ(F))2 (D.1)

ϵ(F) =
1

2

(
F+ FT

)
− I (D.2)

D.1.2 First-Piola-Kirchhoff Stress

Ple(F) =
∂Ψle

∂F
(F) = 2µϵ(F) + λtr(ϵ(F))I (D.3)

D.1.3 Hessian

∂2Ψle

∂F2
(F) = 2µ

∂ϵ

∂F
(F) + λI⊗ I. (D.4)

The entries in ∂ϵ
∂F

(F) are given by ∂ϵαβ

∂Fγδ
= 1

2
(δαγδβδ + δβγδαδ). When viewed as a matrix, the

Hessian has entries

143

∂2Ψle

∂Fστ∂Fδϵ
(I) 00 11 22 01 10 12 21 02 20

00 2µ+ λ λ λ

11 λ 2µ+ λ λ

22 λ λ 2µ+ λ

01 µ µ

10 µ µ

12 µ µ

21 µ µ

02 µ µ

20 µ µ

D.1.4 General Isotropic Elasticity Modified Hessian

We use the modified Hessian

C̃(F) = µ
∂2I0
∂F2

+ λ
∂Id−1

∂F
⊗ ∂Id−1

∂F
. (D.5)

where I0(F) = F : F and Id−1(F) = det(F). ∂2I0
∂F2 is the twice the identity. Furthermore,

when F = I, we get C̃(I) has entries

C̃αβγδ(I) 00 11 22 01 10 12 21 02 20

00 2µ+ λ λ λ

11 λ 2µ+ λ λ

22 λ λ 2µ+ λ

01 2µ 0

10 0 2µ

12 2µ 0

21 0 2µ

02 2µ 0

20 0 2µ

144

While this is not exactly equal to the Hessian of the potential for linear elasticity, the bottom

three 2× 2 blocks have the same eigenvalues as in the linear elasticity Hessian, where the 2µ

mode is repeated and the null mode for the linear elasticity Hessian associated with linear

rotations are removed. We keep this simplification since it maintains the meaning of the

Lamé coefficients and since we found it to work as a modified Hessian in practice.

D.2 Neo-Hookean

D.2.1 Neo-Hookean Potential

Ψ(F) =
µ

2
F : F+

λ̂

2
(det(F)− 1− µ

λ̂
)2 (D.6)

D.2.2 First-Piola-Kirchhoff Stress

P(F) = µF+ λ̂(det(F)− 1− µ

λ̂
)JF−T (D.7)

D.2.3 Hessian

∂2Ψ

∂F
(F) = µI+ λ̂JF−T ⊗ JF−T + λ̂(det(F)− 1− µ

λ̂
)
∂2J

∂F2
(F) (D.8)

145

D.2.3.1 Determinant Hessian

The determinant can be written in terms of the permutation tensor ϵ̃αβγ as

J = det(F) = ϵ̃αβγF0αF1βF1γ (D.9)

∂J

∂Fδϵ

(F) = JF−1
ϵδ (D.10)

= ϵ̃ϵβγδ0δF1βF2γ + ϵ̃αϵγδ1δF0αF2γ + ϵ̃αβϵδ2δF0αF1β (D.11)

∂2J

∂Fστ∂Fδϵ

(F) = ϵ̃ϵτγδ0δδ1σF2γ + ϵ̃τϵγδ0σδ1δF2γ + ϵ̃τβϵδ0σδ2δF1β+ (D.12)

ϵ̃ϵβτδ0δδ2σF1β + ϵ̃αϵτδ1δδ2σF0α + ϵ̃ατϵδ1σδ2δF0α. (D.13)

The determinant Hessian evaluated at F = I is

∂2J
∂Fστ∂Fδϵ

(I) 00 11 22 01 10 12 21 02 20

00 1 1

11 1 1

22 1 1

01 -1

10 -1

12 -1

21 -1

02 -1

20 -1

146

D.2.4 Lamé Coefficients

∂2Ψnh

∂Fστ∂Fδϵ
(I) 00 11 22 01 10 12 21 02 20

00 µ+ λ̂ −µ+ λ̂ −µ+ λ̂

11 −µ+ λ̂ µ+ λ̂ −µ+ λ̂

22 −µ+ λ̂ −µ+ λ̂ µ+ λ̂

01 µ µ

10 µ µ

12 µ µ

21 µ µ

02 µ µ

20 µ µ

This is only consistent with linear elasticity if we have −µ+ λ̂ = λ, note that then µ+ λ̂ =

2µ+ λ.

147

REFERENCES

[AAB15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. “Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Systems.”, 2015. Software
available from tensorflow.org.

[ADP20] J. Ackmann, P. D. Düben, T. N. Palmer, and P. K. Smolarkiewicz. “Machine-
learned preconditioners for linear solvers in geophysical fluid flows.” arXiv
preprint arXiv:2010.02866, 2020.

[BLM13] T. Belytschko, W. Liu, B. Moran, and K. Elkhodary. Nonlinear finite elements
for continua and structures. John Wiley and sons, 2013.

[BML14] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. “Projective Dynam-
ics: Fusing Constraint Projections for Fast Simulation.” ACM Trans Graph,
33(4):154:1–154:11, 2014.

[BPD05] S. Blemker, P. Pinsky, and S. Delp. “A 3D model of muscle reveals the causes of
nonuniform strains in the biceps brachii.” J. Biomech, 38(4):657–665, 2005.

[BR86] J. Brackbill and H. Ruppel. “FLIP: A method for adaptively zoned, Particle-In-
Cell calculations of fluid flows in two dimensions.” J Comp Phys, 65:314–343,
1986.

[Bri08] R. Bridson. Fluid simulation for computer graphics. Taylor & Francis, 2008.

[BW98] D. Baraff and A. Witkin. “Large Steps in Cloth Simulation.” In Proc ACM
SIGGRAPH, SIGGRAPH ’98, pp. 43–54, 1998.

[BW08] J. Bonet and R. Wood. Nonlinear continuum mechanics for finite element anal-
ysis. Cambridge University Press, 2008.

[CCS12] M. Corsini, P. Cignoni, and R. Scopigno. “Efficient and Flexible Sampling with
Blue Noise Properties of Triangular Meshes.” IEEE Trans Vis Comp Graph,
18(6):914–924, 2012.

[CHC23a] Yizhou Chen, Yushan Han, Jingyu Chen, Shiqian Ma, Ronald Fedkiw, and Joseph
Teran. “Primal Extended Position Based Dynamics for Hyperelasticity.” In Pro-
ceedings of the 16th ACM SIGGRAPH Conference on Motion, Interaction and

148

Games, MIG ’23, New York, NY, USA, 2023. Association for Computing Machin-
ery.

[CHC23b] Yizhou Chen, Yushan Han, Jingyu Chen, and Joseph Teran. “Position-Based
Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity.”, 2023.

[Che95] E. Chernyaev. “Marching cubes 33: Construction of topologically correct isosur-
faces.” Technical report, 1995.

[Cho67] A. Chorin. “A numerical method for solving incompressible viscous flow prob-
lems.” J Comp Phys, 2(1):12–26, 1967.

[CKM21] J. Chen, V. Kala, A. Marquez-Razon, E. Gueidon, D. A. B. Hyde, and J. Teran.
“A Momentum-Conserving Implicit Material Point Method for Surface Tension
with Contact Angles and Spatial Gradients.” ACM Trans. Graph., 40(4), jul
2021.

[CKS17] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn,
D. Nowrouzezahrai, and T. Aila. “Interactive reconstruction of Monte Carlo im-
age sequences using a recurrent denoising autoencoder.” ACM Trans Graph,
36(4):1–12, 2017.

[CMM90] Alexandre Joel Chorin, Jerrold E Marsden, and Jerrold E Marsden. A mathe-
matical introduction to fluid mechanics, volume 3. Springer, 1990.

[CPS10] I. Chao, U. Pinkall, P. Sanan, and P. Schröder. “A Simple Geometric Model for
Elastic Deformations.” ACM Trans Graph, 29(4), 2010.

[CWS13] P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien. “Simulating liquids
and solid-liquid interactions with Lagrangian meshes.” ACM Transactions on
Graphics (TOG), 32(2):17, 2013.

[DBW15] F. Da, C. Batty, C. Wojtan, and E. Grinspun. “Double bubbles sans toil and
trouble: discrete circulation-preserving vortex sheets for soap films and foams.”
ACM Trans Graph (SIGGRAPH 2015), 2015.

[DHB16] F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. “Surface-only liquids.”
ACM Trans Graph (TOG), 35(4):1–12, 2016.

[DHW19] M. Ding, X. Han, S. Wang, T. Gast, and J. Teran. “A thermomechanical material
point method for baking and cooking.” ACM Trans Graph, 38(6):192, 2019.

[EGS03] O. Etzmuss, J. Gross, and W. Strasser. “Deriving a particle system from contin-
uum mechanics for the animation of deformable objects.” IEEE Trans Vis Comp
Graph, 9(4):538–550, October 2003.

149

[FGG17] C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. “A Polynomial Particle-in-cell
Method.” ACM Trans Graph, 36(6):222:1–222:12, November 2017.

[FLP14] Y. Fan, J. Litven, and D. Pai. “Active Volumetric Musculoskeletal Systems.”
ACM Trans Graph, 33(4):152:1–152:9, 2014.

[flu22] fluidnetsc22. “fluidnetsc22/fluidnet_sc22: v0.0.1.”, April 2022. doi: 10.5281/zen-
odo.6424901, URL: https://doi.org/10.5281/zenodo.6424901.

[FPF04] R. Farahi, A. Passian, T. Ferrell, and T. Thundat. “Microfluidic manipulation
via Marangoni forces.” Applied Phys Let, 85(18):4237–4239, 2004.

[FPS19] Joel H Ferziger, Milovan Perić, and Robert L Street. Computational methods for
fluid dynamics. springer, 2019.

[FSJ01] R. Fedkiw, J. Stam, and H. Jensen. “Visual simulation of smoke.” In SIGGRAPH,
pp. 15–22. ACM, 2001.

[FSK06] M. M. Francois, J. M. Sicilian, and D. B. Kothe. “Modeling of thermocapillary
forces within a volume tracking algorithm.” In Modeling of Casting, Welding and
Advanced Solidification Processes–XI, pp. 935–942, 2006.

[FVP16] M. Fratarcangeli, T. Valentina, and F. Pellacini. “Vivace: a practical gauss-seidel
method for stable soft body dynamics.” ACM Trans Graph, 35(6):1–9, Nov 2016.

[GA18] M. Götz and H. Anzt. “Machine learning-aided numerical linear algebra: Con-
volutional neural networks for the efficient preconditioner generation.” In 2018
IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems (scalA), pp. 49–56. IEEE, 2018.

[GFJ16] T. Gast, C. Fu, C. Jiang, and J. Teran. “Implicit-shifted Symmetric QR Singular
Value Decomposition of 3x3 Matrices.” Technical report, University of California
Los Angeles, 2016.

[GGB19] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel. “Learning to
optimize multigrid PDE solvers.” In Int Conf Mach Learn, pp. 2415–2423. PMLR,
2019.

[GHB20] C. Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. “An implicit compress-
ible SPH solver for snow simulation.” ACM Trans Graph (TOG), 39(4):36–1,
2020.

[GHF07] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, and E. Grinspun. “Efficient
Simulation of Inextensible Cloth.” ACM Trans Graph, 26(3), July 2007.

150

https://doi.org/10.5281/zenodo.6424901

[GHM20] S. Gagniere, D. Hyde, A. Marquez-Razon, C. Jiang, Z. Ge, X. Han, Q. Guo, and
J. Teran. “A Hybrid Lagrangian/Eulerian Collocated Velocity Advection and
Projection Method for Fluid Simulation.” Computer Graphics Forum, 39(8):1–
14, 2020.

[GIF18] I. Georgiev, T. Ize, M. Farnsworth, R. Montoya-Vozmediano, A. King,
B. Van Lommel, A. Jimenez, O. Anson, S. Ogaki, E. Johnston, A. Herubel,
D. Russell, F. Servant, and M. Fajardo. “Arnold: A brute-force production path
tracer.” ACM Transactions on Graphics (TOG), 37(3):1–12, 2018.

[GL12] G. Golub and C. Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[GS08] O. Gonzalez and A. Stuart. A first course in continuum mechanics. Cambridge
University Press, 2008.

[GSK16] A. Grebhahn, N. Siegmund, H. Köstler, and S. Apel. “Performance prediction of
multigrid-solver configurations.” In Software for Exascale Computing-SPPEXA
2013-2015, pp. 69–88. Springer, 2016.

[GSS15] T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. “Optimization
Integrator for Large Time Steps.” IEEE Trans Vis Comp Graph, 21(10):1103–
1115, 2015.

[Hag89] W. Hager. “Updating the inverse of a matrix.” SIAM review, 31(2):221–239,
1989.

[Har64] F. Harlow. “The particle-in-cell method for numerical solution of problems in
fluid dynamics.” Meth Comp Phys, 3:319–343, 1964.

[HGM20] D.A.B. Hyde, S.W. Gagniere, A. Marquez-Razon, and J. Teran. “An Implicit
Updated Lagrangian Formulation for Liquids with Large Surface Energy.” ACM
Trans Graph, 39(6), November 2020.

[HIK20] W. Huang, J. Iseringhausen, T. Kneiphof, Z. Qu, C. Jiang, and M.B. Hullin.
“Chemomechanical Simulation of Soap Film Flow on Spherical Bubbles.” ACM
Trans Graph, 39(4), July 2020.

[HS52] M. R. Hestenes and E. Stiefel. “Methods of Conjugate Gradients for Solving Lin-
ear Systems.” Journal of research of the National Bureau of Standards, 49(6):409,
1952.

[HSN18] M. Hopp-Hirschler, M. S. Shadloo, and U. Nieken. “A Smoothed Particle Hy-
drodynamics approach for thermo-capillary flows.” Comp Fluids, 176:1 – 19,
2018.

151

[Hug00] T. Hughes. The finite element method : linear static and dynamic finite elment
analysis. Mineola, NY : Dover Publications, 2000.

[HW65] F. Harlow and E. Welch. “Numerical Calculation of Time Dependent Viscous
Flow of Fluid with a Free Surface.” Phys Fluid, 8(12):2182–2189, 1965.

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learn-
ing for Image Recognition.” In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778, 2016.

[IFH20] T. Ichimura, K. Fujita, M. Hori, L. Maddegedara, N. Ueda, and Y. Kikuchi.
“A Fast Scalable Iterative Implicit Solver with Green’s function-based Neural
Networks.” In 2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems (ScalA), pp. 61–68, 2020.

[ITF04] G. Irving, J. Teran, and R. Fedkiw. “Invertible Finite Elements for Robust Simu-
lation of Large Deformation.” In Proc ACM SIGGRAPH/Eurograph Symp Comp
Anim, pp. 131–140, 2004.

[JSS15] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. “The Affine
Particle-In-Cell Method.” ACM Trans Graph, 34(4):51:1–51:10, 2015.

[JST16] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. “The Material
Point Method for Simulating Continuum Materials.” In ACM SIGGRAPH 2016
Course, pp. 24:1–24:52, 2016.

[JST17] C. Jiang, C. Schroeder, and J. Teran. “An angular momentum conserving affine-
particle-in-cell method.” J Comp Phys, 338:137 – 164, 2017.

[KAC23] A. Kaneda, O. Akar, J. Chen, V.A.T. Kala, D. Hyde, and J. Teran. “A Deep
Conjugate Direction Method for Iteratively Solving Linear Systems.” In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 15720–15736. PMLR, 23–29 Jul 2023.

[KB15] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.” CoRR,
abs/1412.6980, 2015.

[KGF10] N. Kwatra, J. Gretarsson, and R. Fedkiw. “Practical Animation of Compressible
Flow for ShockWaves and Related Phenomena.” In Symp Comp Anim, pp. 207–
215, 2010.

[KYT06] L. Kharevych, W. Yang, Y. Tong, E. Kanso, J.E. Marsden, P. Schröder, and
M. Desbrun. “Geometric, Variational Integrators for Computer Animation.” In
Proc 2006 ACM SIGGRAPH/Eurograph Symp Comp Anim, SCA ’06, p. 43?51.
Eurographics Association, 2006.

152

[Lan50] C. Lanczos. “An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators.” 1950.

[Lan02] D. Langbein. Capillary surfaces: shape – stability – dynamics, in particular under
weightlessness, volume 178. Springer Science & Business Media, 2002.

[LBO13] T. Liu, A. Bargteil, J. O’Brien, and L. Kavan. “Fast Simulation of Mass-Spring
Systems.” ACM Trans Graph, 32(6):209:1–7, 2013.

[LGF04] F. Losasso, F. Gibou, and R. Fedkiw. “Simulating water and smoke with an octree
data structure.” ACM Trans. Graph., 23(3):457–462, 2004.

[LGL19] M. Li, M. Gao, T. Langlois, C. Jiang, and D. Kaufman. “Decomposed Optimiza-
tion Time Integrator for Large-Step Elastodynamics.” ACM Trans Graph, 38(4),
jul 2019.

[LGM20] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh. “Learning algebraic multi-
grid using graph neural networks.” In Int Conf Mach Learn, pp. 6489–6499.
PMLR, 2020.

[LKB21] K. Luna, K. Klymko, and J. P. Blaschke. “Accelerating GMRES with Deep
Learning in Real-Time.”, 2021.

[LLD20] W. Li, D. Liu, M. Desbrun, J. Huang, and X. Liu. “Kinetic-based Multiphase
Flow Simulation.” IEEE Trans Vis Comp Graph, 2020.

[MDM02] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. “Stable real-time
deformations.” In Proc 2002 ACM SIGGRAPH/Eurograph Symp Comp Anim,
pp. 49–54, 2002.

[MFJ21] V. Modi, L. Fulton, A. Jacobson, S. Sueda, and D. Levin. “Emu: Efficient muscle
simulation in deformation space.” In Comp Graph Forum, volume 40, pp. 234–
248. Wiley Online Library, 2021.

[MG04] M. Müller and M. Gross. “Interactive virtual materials.” In Proc Graph Int, pp.
239–246. Canadian Human-Computer Communications Society, 2004.

[MH94] Jerrold E Marsden and Thomas JR Hughes. Mathematical foundations of elas-
ticity. Courier Corporation, 1994.

[MHH07] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. “Position based dynam-
ics.” J Vis Comm Im Rep, 18(2):109–118, 2007.

[MHT05] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. “Meshless deformations
based on shape matching.” In ACM transactions on graphics (TOG), volume 24,
pp. 471–478. ACM, 2005.

153

[MM21] M. Macklin and M. Muller. “A Constraint-based Formulation of Stable Neo-
Hookean Materials.” In Motion, Interaction and Games, p. 1–7. ACM, Nov 2021.

[MMC16] M. Macklin, M. Müller, and N. Chentanez. “XPBD: Position-Based Simulation
of Compliant Constrained Dynamics.” In Proc 9th Int Conf Motion Games, MIG
’16, p. 49?54. ACM, 2016.

[Mon92] J. Monaghan. “Smoothed particle hydrodynamics.” Ann Rev Astron Astroph,
30(1):543–574, 1992.

[MST10] A. McAdams, E. Sifakis, and J. Teran. “A Parallel Multigrid Poisson Solver for
Fluids Simulation on Large Grids.” In Proc 2010 ACM SIGGRAPH/Eurograph
Symp Comp Anim, pp. 65–74. Eurographics Association, 2010.

[MZS11] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis.
“Efficient Elasticity for Character Skinning with Contact and Collisions.” ACM
Trans Graph, 30(4):37:1–37:12, 2011.

[NOB16] R. Narain, M. Overby, and G. Brown. “ADMM Projective Dynamics: Fast Sim-
ulation of General Constitutive Models.” In Proc ACM SIGGRAPH/Eurograph
Symp Comp Anim, SCA ’16, p. 21?28. Eurograph Assoc, 2016.

[NW06] J. Nocedal and S. Wright. “Conjugate gradient methods.” Num Opt, pp. 101–134,
2006.

[OFC02] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. “Shape Distributions.”
ACM Trans. Graph., 21(4):807–832, October 2002.

[Pai71] C. C. Paige. The computation of eigenvalues and eigenvectors of very large sparse
matrices. PhD thesis, University of London, 1971.

[PGG23] J. Panuelos, R. Goldade, E. Grinspun, D.I.W. Levin, and C. Batty. “PolyStokes:
A Polynomial Model Reduction Method for Viscous Fluid Simulation.” ACM
Trans Graph (TOG), 42(4), 2023.

[Pro95] X. Provot. “Deformation constraints in a mass-spring model to describe rigid
cloth behaviour.” In Graph Int, pp. 147–155. Canadian Information Processing
Society, 1995.

[RGJ15] D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kaveh-
pour. “A material point method for viscoelastic fluids, foams and sponges.” In
Proc ACM SIGGRAPH/Eurograph Symp Comp Anim, pp. 157–163, 2015.

[RPP17] M. Rabinovich, R. Poranne, D. Panozzo, and O. Sorkine-Hornung. “Scalable
Locally Injective Mappings.” ACM Trans Graph, 36(2), 2017.

154

[RTM01] R. Rioboo, C. Tropea, and M. Marengo. “Outcomes from a Drop Impact on Solid
Surfaces.” Atomization and Sprays, 11(2), 2001.

[SA07] O. Sorkine and M. Alexa. “As-Rigid-As-Possible Surface Modeling.” In EURO-
GRAPHICS SYMPOSIUM ON GEOMETRY PROCESSING, 2007.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, USA, 2nd edition, 2003.

[SB12] E. Sifakis and J. Barbic. “FEM simulation of 3D deformable solids: a prac-
titioner’s guide to theory, discretization and model reduction.” In ACM SIG-
GRAPH 2012 Courses, SIGGRAPH ’12, pp. 20:1–20:50. ACM, 2012.

[SCS94] D. Sulsky, Z. Chen, and H. Schreyer. “A particle method for history-dependent
materials.” Comp Meth App Mech Eng, 118(1):179–196, 1994.

[SGK18] B. Smith, F. De Goes, and T. Kim. “Stable neo-hookean flesh simulation.” ACM
Trans Grap (TOG), 37(2):1–15, 2018.

[SGK19] B. Smith, F. Goes, and T. Kim. “Analytic eigensystems for isotropic distortion
energies.” ACM Trans Graph (TOG), 38(1):1–15, 2019.

[SHS12] A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. “Energetically consistent
invertible elasticity.” In Proc Symp Comp Anim, pp. 25–32, 2012.

[SKB08] M. Steffen, R. Kirby, and M. Berzins. “Analysis and reduction of quadrature
errors in the material point method (MPM).” Int J Numer Meth Eng, 76(6):922–
948, 2008.

[SS60] L. Scriven and C. Sternling. “The marangoni effects.” Nature, 187(4733):186–
188, 1960.

[SSC13] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. “A Material Point
Method for snow simulation.” ACM Trans Graph, 32(4):102:1–102:10, 2013.

[SSH19] J. Sappl, L. Seiler, M. Harders, and W. Rauch. “Deep Learning of Preconditioners
for Conjugate Gradient Solvers in Urban Water Related Problems.”, 2019.

[SSJ14] A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. “Aug-
mented MPM for phase-change and varied materials.” ACM Trans Graph,
33(4):138:1–138:11, 2014.

[ST08] R. Schmedding and M. Teschner. “Inversion handling for stable deformable mod-
eling.” Vis Comp, 24(7-9):625–633, 2008.

[Sta99] J. Stam. “Stable Fluids.” In Siggraph, volume 99, pp. 121–128, 1999.

155

[Sta20] R. Stanaityte. ILU and Machine Learning Based Preconditioning For The Dis-
cretized Incompressible Navier-Stokes Equations. PhD thesis, University of Hous-
ton, 2020.

[Sti52] E. Stiefel. “Über einige methoden der relaxationsrechnung.” Zeitschrift für ange-
wandte Mathematik und Physik ZAMP, 3(1):1–33, 1952.

[SYE00] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. “A Deflated Version of the Con-
jugate Gradient Algorithm.” SIAM Journal on Scientific Computing, 21:1909–
1926, 2000.

[Tho55] J. Thomson. “XLII. On certain curious motions observable at the surfaces of
wine and other alcoholic liquors.” London, Edinburgh, and Dublin Phil Mag J
Sci, 10(67):330–333, 1855.

[TL94] G. Turk and M. Levoy. “Stanford Bunny.”, 1994. Stanford University Computer
Graphics Laboratory.

[TSB05] J. Teran, E. Sifakis, S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw.
“Creating and simulating skeletal muscle from the visible human data set.” IEEE
Trans Vis Comp Graph, 11(3):317–328, 2005.

[TSI05] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. “Robust quasistatic finite elements
and flesh simulation.” In Proc 2005 ACM SIGGRAPH/Eurograph Symp Comp
Anim, pp. 181–190, 2005.

[TSS17] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. “Accelerating Eulerian
fluid simulation with convolutional networks.” In D. Precup and Y. Teh, editors,
Proc 34th Int Conf Mach Learn, volume 70 of Proc Mach Learn Res, pp. 3424–
3433. PMLR, 06–11 Aug 2017.

[TWG10] N. Thürey, C. Wojtan, M. Gross, and G. Turk. “A multiscale approach to mesh-
based surface tension flows.” ACM Trans Graph (TOG), 29(4):1–10, 2010.

[UBF20] K. Um, R. Brand, Y. Fei, P. Holl, and N. Thuerey. “Solver-in-the-Loop: Learn-
ing from Differentiable Physics to Interact with Iterative PDE-Solvers.” In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pp. 6111–6122.
Curran Associates, Inc., 2020.

[VGO20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,

156

Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python.” Nature Methods, 17:261–272, 2020.

[VS15] D. C. Venerus and D. N. Simavilla. “Tears of wine: New insights on an old
phenomenon.” Scientific reports, 5:16162, 2015.

[Wan15] H. Wang. “A Chebyshev Semi-Iterative Approach for Accelerating Projective and
Position-Based Dynamics.” ACM Trans Graph, 34(6), nov 2015.

[WTG10] C. Wojtan, N. Thürey, M. Gross, and G. Turk. “Physics-inspired topology changes
for thin fluid features.” ACM Trans Graph, 29(4):50:1–50:8, 2010.

[WZB20] B. Wang, M. Zheng, and J. Barbič. “Adjustable Constrained Soft-Tissue Dynam-
ics.” Pac Graph 2020 and Comp Graph Forum, 39(7), 2020.

[YHW16] S. Yang, X. He, H. Wang, S. Li, G. Wang, E. Wu, and K. Zhou. “Enriching SPH
simulation by approximate capillary waves.” In Symp Comp Anim, pp. 29–36,
2016.

[You05] T. Young. “III. An essay on the cohesion of fluids.” Phil Trans Royal Soc London,
95:65–87, 1805.

[YYJ23] Y.Chen, Y.Han, J.Chen, S.Ma, R.Fedkiw, and J.Teran. Supplementary Technical
Document, 2023.

[YYX16] C. Yang, X. Yang, and X. Xiao. “Data-driven projection method in fluid simula-
tion.” Comp Anim Virt Worlds, 27(3-4):415–424, 2016.

[ZB05] Y. Zhu and R. Bridson. “Animating sand as a fluid.” ACM Trans Graph,
24(3):965–972, 2005.

[ZBK18] Y. Zhu, R. Bridson, and D. Kaufman. “Blended Cured Quasi-Newton for Distor-
tion Optimization.” ACM Trans Graph, 37(4), jul 2018.

[ZLB16] D. Zhao, Y. Li, and J. Barbič. “Asynchronous Implicit Backward Euler Integra-
tion.” 2016.

[ZQC14] B. Zhu, E. Quigley, M. Cong, J. Solomon, and R. Fedkiw. “Codimensional surface
tension flow on simplicial complexes.” ACM Trans Graph (TOG), 33(4):1–11,
2014.

[ZZK15] W. Zheng, B. Zhu, B. Kim, and R. Fedkiw. “A new incompressibility discretiza-
tion for a hybrid particle MAC grid representation with surface tension.” J Comp
Phys, 280:96–142, 2015.

157

	Introduction
	Material Point Method for Surface Tension
	Deep Conjugate Direction Method
	Efficient Simulations of Elastic Solids
	Primal Extended Position Based Dynamics
	Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity

	Dissertation Overview

	Continuum Mechanics and Material Point Method
	Continuum Mechanics
	Kinematic Theory
	Balance Laws
	Constitutive Relations

	Material Point Method
	MPM Algorithm
	Weak Form
	Discretization
	Transfer Schemes

	A Momentum-Conserving Implicit Material Point Method for Surface Tension with Spatial Gradients
	Governing Equations
	Kinematics
	Conservation of Mass and Momentum
	Conservation of energy
	Variational Form of Momentum Balance
	Thermomechanical Material Dependence and Phase Change
	Contact Angle

	Discretization
	Conservative Surface Particle Resampling
	Transfer: P2G
	Grid Momentum and Temperature Update
	Transfer: G2P

	Examples
	Conservation
	Thermal Boundary Conditions
	Droplet Impact on Dry Surface
	Droplets on Ramps
	Lid-Driven Cavity
	Contact Angles
	Soap Droplet in Water
	Wine Glass
	Candles
	Droplet with Marangoni Effect
	Performance

	Discussion and Future Work

	A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
	Motivation: Incompressible Flow
	Deep Conjugate Direction Method
	Model Architecture, Datasets, and Training
	Loss Function and Self-supervised Learning
	Model Architecture
	Training

	Results and Analysis
	Conclusions

	Primal Extended Position Based Dynamics for Hyperelasticity
	Methods
	Equations
	XPBD
	Primary residual XPBD (PXPBD)

	Parallelism
	Examples
	Residual Comparison
	Equal Budget Comparison
	XPBD Hyperelastic
	XPBD Neohookean
	Grid-Based B-PXPBD Examples

	Discussion and Limitations

	Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity
	Equations
	Constitutive Models

	Discretization
	Weak Constraints

	Gauss-Seidel Notation
	Position-Based Dynamics: Constraint-Based Nonlinear Gauss-Seidel
	Quasistatics
	XPBD Convergence

	Position-Based Nonlinear Gauss-Seidel
	Modified Hessian
	Acceleration Techniques

	Lamé Coefficients
	Coloring and Parallelism
	Collision Coloring

	Examples
	Stretching Block
	Collisions
	Varying Stiffness
	PBD
	XPBD
	PBNG vs. PBD and Limited Newton

	Discussion and Limitations

	Supplementary Material for Surface Tension
	Preliminaries
	Conservative Splitting
	Conservative Merging

	Supplementary Material for DCDM
	Conjugate Gradients Method
	Choice of
	Additional Convergence Results
	Ablation Study and Runtime Analysis
	Model training

	Supplementary Material for XPBD
	First Piola-Kirchhoff XPBD System
	Mass Term Computation
	Quasi-Newton
	Corotated Fiber Term

	Parallel Gauss-Seidel

	Supplementary Material for Nonlinear Gauss-Seidel
	Linear Elasticity
	Potential
	First-Piola-Kirchhoff Stress
	Hessian
	General Isotropic Elasticity Modified Hessian

	Neo-Hookean
	Neo-Hookean Potential
	First-Piola-Kirchhoff Stress
	Hessian
	Lamé Coefficients

	References

