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ABSTRACT 

 

Computational Model Development and Validation for Systems of Biochemical Polymers 

by 

Nathaniel Morgan Charest 

Modeling of biochemical polymers using classical simulation and the analysis of large datasets 

has become important in an age when high-throughput experimentation and advanced 

computational resources have enabled the collection of massive bodies of information regarding 

these systems. Models help us understand and extract insight from experimental data, allowing us 

to develop simulations and predictions around their behavior that can help elucidate macroscopic 

behaviors of interest. The body of work applies techniques in molecular dynamics, machine 

intelligence and information theory to problems within the realm of biological heteropolymers 

with the intent of developing understanding regarding modern methods of data generation and 

analysis. The differing paradigms of first-principles models versus data first models are considered 

and examined, and work is done to show areas where the methods are complementary or applicable 

to helping understand experimental data sets. 
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Chapter 1) Introduction 

1.0 Forward 

In 1976, the statistician George Box famously remarked in his paper “Science and Statistics”1 

that ‘all models are wrong’. The aphorism was completed in a subsequent work of his, suggesting 

‘all models are wrong, but some are useful’. This, arguably, is one of the most concise descriptions 

of modeling’s relationship to science, in which one strives to accurately describe the living reality.  

Within the field of biochemistry, the complexity and diversity of systems invites conscious 

scrutiny of Box’s notion. With the advances in the calculation of novel models and enhanced 

numerical ability, we must remain cognizant that we are will never, truly, be able to exactly model 

the reality, and knowing where our models can succeed and where they can be wrong is necessary 

as we pursue better representations of the ‘true model’ of the universe. Despite this, models remain 

one of our most powerful tools in understanding the natural universe, and so application of new 

modeling techniques to biochemical problems remains the prerogative of investigators in the field. 

By construction, science is the process of elucidating the natural world and its attached 

phenomena as accurately and as precisely as possible. Many tools for this exist – experimental 

designs, mathematical language, peer review – but within this toolkit one of the most recurring 

approaches on the theoretical end is modeling. In biochemistry, modeling is the core means of 

describing often impossibly complicated systems in a way that allows prediction or deeper 

internalization of the material. These models can be derived from simple principles of physics – 

as in the case of molecular dynamics – or they can be constructed based on their ability to predict 

experimentally verifiable points of data – as in the case of neural network predictions of chemical 

activities. In either case, most of these models are ‘wrong’ in the sense that they can accurately 
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predict within a specific range of capability, but beyond these limits are unwise to casually interpret 

or apply. 

Particularly in the Information Age, computation has reached the level where scientists have a 

seemingly limitless number of modern and exciting techniques to interrogate the secrets of the 

universe and build their models. Previously inaccessible problems can be answered through clever 

construction of models, who designs can grant insight into vast databases or highly complex 

systems. Despite how exciting these potentials are, work is still needed to assess the basic 

applicability of many of the approximations or assumptions that often are involved in achieving 

these intentions. 

This work concerns itself with the application of models to modern biochemical problems, 

with the goal of scrutinizing where these applications yield helpful and actionable insights. It 

concerns itself with two primary domains – molecular dynamics modeling and information 

theoretic, colloquially machine learning, analysis techniques – that are unified by the shared 

subject matter of biochemical polymers. In the following four investigations, we consider the 

problem statement and its contemporary means of approach. We then apply a modern method of 

modeling the data, followed by a dissection of what it is capable of doing and final words of caution 

regarding where it might be ‘wrong’.  

This chapter introduces some of the key concepts used through the remaining work. In the next 

section, we consider the general system of ‘biochemical polymer’ and define it both 

mathematically and as it contextually relates to the greater field of biochemistry. We next review 

molecular dynamics, with a particular emphasis placed on coarse-graining or imbedding models, 

as it speaks directly to the heart of the useful assumptions one can make when attempting to apply 

classical  models to gain insight into chemical systems. These assumptions are often essential and 
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attempting to compute predictions from wholly first principles is impossible with modern 

technology. Finally, we review some fundamentals of information theory and their associated 

application to artificial neural networks. These understandings inform the approaches that are 

applied and investigated in the following chapters. 

1.1 Biopolymers: The Machinery of Life 

In the most general sense, a biopolymer 

is simply a polymer – a molecular structure 

defined by the repetition of discrete 

‘monomers’ that can be extended to arbitrary 

length – that has its synthetic origins within 

the chemical processes of a living organism.  

Given modeling’s deep connections to 

mathematics, we formally define a polymer 

as a finite mathematical sequence in which 

the elements are drawn from an ‘alphabet’ set 

whose elements are called monomers, with 

one possible exception (the terminal 

element). The alphabet can be of arbitrary 

size however it must contain at least one 

‘terminal’ element with the property they can only occur at the beginning of a polymer sequence 

or at the end of the sequence. In the key systems studied with this dissertation, a given class of 

biopolymer has only one distinct beginning terminal and one distinct end terminal element. These 

terminal elements can define a directionality – in polypeptides these are called the N-terminal 

Figure 1.1: A general schematic of polymers. The red element 

is the beginning element, and the purple element is the end 

element. Orange, yellow and green are monomers that can 

occur in any order with any frequency in a polymer sequence, 

defining a set of potential polymer sequences with a variety of 

chemical and biological functions and activities. 
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element and the C-terminal element, while in polynucleotides they are called the 5’-terminal and 

the 3’-terminal. There is no requirement that a polymer use every element of its associated alphabet 

aside from the presence of the terminal elements respectively at the beginning of the sequence and 

the end of the sequence. 

Some example general polymers using the same alphabet is shown in Figure 1.1. A polymer 

becomes a ‘biopolymer’ simply when it is a polymer whose alphabet or whose synthesis has 

biological origins. This mathematical definition will be helpful, as it speaks to an isomorphism 

between polypeptides and polynucleotides that allows many of the techniques used in this 

dissertation to be applied to either class.  

We note that the space of associated potential polymers is countably infinite for a given 

alphabet based on this construction. This is the origin of biopolymer’s incredible versatility in the 

biological context: with even a relatively small number of synthetic processes generating a modest 

alphabet, a countably infinite number of potential structures with varying capabilities becomes 

available to an organism. This ratio of potential activities to synthetic requirements is incredibly 

valuable and represents the core value of biopolymers to the evolution of efficient, viable lifeforms.  

  Due to their involvement in numerous distinct biological phenomena, modern scientific 

descriptions of life universally invoke these polymers. Their variability and complexity lend 

themselves to vast arrays of functionalities critical to sustaining an organism, all while maintain a 

fundamental simplicity that is extremely amicable to the limited resources of biosynthesis.  

Broadly, there are three main classes of biopolymers. Polysaccharides are polymer systems 

made up of linked sugar monomers, and carbohydrate science has deep relevance to metabolism, 

organism energy storage, and the properties of biological structures. Polysaccharides are unique 
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amongst the three in that their terminal elements are virtual – they have no chemical relevance or 

manifestation and act only to denote the linear topology of a given sequence or else where the 

chain can connect with extraneous chemical structures. More generally, the terminal elements 

define a topology – the fill the mathematical role of specifying that, physically, a polymer is linear, 

and disruption of that topology can only occur at the terminal elements without compromising the 

identity of the polymer as whole. 

This work concerns itself primarily with the other two classes of biopolymers, which 

rigorously fulfill the requirements laid out above. Three systems of study in this dissertation 

involve models of polypeptides – peptides and proteins – while the fourth develops a model of 

polynucleotides. In the next section, we review polypeptides and polynucleotides, and discuss their 

shared characteristics and relevance.  

Polypeptides, Polynucleotides and Biopolymer Structure 

The biological paradigm of biopolymers considers their structural and chemical role, 

biosynthetic and metabolic importance, and general involvement in the molecular evolution and 

execution of living processes. Due to their sheer importance in the fundamental machineries of 

biology, a full exposition of their background would be prohibitively vast and would require 

describing many decades worth of investigations into biochemistry2. This work focuses on 

modeling of their structural behavior and their activity and makes use of their shared properties in 

this regard. This section will discuss the structural commonalities and terminologies shared by 

polypeptides and polynucleotides, with a more holistic portrait their role in biochemistry left to 

existing literature. 
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Because of their shared fundamental structure as polymers – a chain of connected monomers 

drawn from an ‘alphabet’ of candidates with differing chemical properties – much of the lexicon 

in describing polynucleotides and polypeptides is shared. Both types can be considered structurally 

at similar levels: the primary structure, the secondary structure, and the tertiary and quaternary 

structure. It is the variabilities of these structures that constitutes the principle value of these 

polymers to life. Despite the space of potential monomers beings relatively quite small – only 20 

proteinogenic amino acids are used in human proteins, and only 4 nucleotides constitute the 

‘alphabet’ of human ribonucleic acid polymers – the fact they can be linked in any order and to 

arbitrary length confers a truly astounding amount of flexibility in function because they can adopt 

any number of structures and forms in the living environment. These first principles allude to a 

deeply useful theoretical fact: in abstract, there are significant isomorphisms between the 

informational structures that capture useful relationships and properties of both polynucleotides 

and polypeptides. This is represented in the similar means of characterizing their structures. 

Primary structure refers to the exact order of monomer types in the biopolymer chain. Every 

biopolymer is associated with an alphabet of potential monomers, and the primary sequence 

captures this order. 

This primary sequence interacts with itself and the environment to produce the high-level 

structures. Secondary structure concerns itself with the general three-dimensional form of local 

segments in a biopolymer, with these structures typically dominated by the hydrogen bonding 

patterns. Secondary structure plays an enormous role in the biochemical function of a given 

polymer. In functional RNA, the secondary structure typically has deep implications for its ability 

to catalyze or react with potential reagents. In protein chemistry, the secondary structure can 
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inform everything from thermodynamic 

stability to the availability of chemically 

active sites for any number of potential 

interactions. Characterizing secondary 

structure is often the initial goal of 

researching a new biopolymer, with many 

theoretical models and associated 

calculations done to predict the secondary 

propensities.  

The tertiary structure considers the 

absolute three-dimensional structure of the 

polymer in its environment. The ‘fold’ of a protein or nucleic acid plays an essential role in its 

activity by enabling or disabling access of its chemically active sites to loci of metabolic 

importance in the living milieu. Tertiary structure is often thought of in terms of a native fold – 

the dominant and chemically active structure – and its misfolds. Despite this paradigm, there is 

evidence that flexibility in the tertiary structure facilitates the versatility of polymers in the 

machinery of life, as in the case of intrinsically disordered peptides and promiscuous ribozymes. 

The combination of interest in these flexible systems and the difficulty of capturing their behavior 

using classical models has drawn a considerable need for clever techniques to simulate or elucidate 

their behaviors. 

Finally, quaternary structure concerns itself with the arrangement of multiple units of 

biopolymers that are not chemically bonded. This terminology is more rare with respect to the 

polynucleotide systems, however it does see use when considering high-level organization of 

Figure 1.2 A visualized structure of COVID-19 virus spike 

receptor-binding domain complexed with an antibody, as a 

depiction of polypeptide structure.  The image illustrated 

secondary structure in the rightmost moiety, where secondary 

structures are independently visualized as ribbons and coils 

with differing color. Tertiary structure is visualized by the 

three-dimension form of the sequences, while quaternary 

structure captures the arrangement of the separate polymer 

chains. 
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DNA3,4. A major system of study in two of 

the ensuing works is the amyloid fibril. 

These quaternary arrangements of 

intrinsically disordered peptides are defined 

by their preference for a secondary beta-

sheet structure and are clinically associated 

with numerous diseases.  

Figure 1.2 provides a visualization of a 

COVID-19 viral protein in complex with an antibody5, elegantly illustrating secondary, tertiary 

and quaternary structure for a set of three polypeptide polymers. Image was generated with VMD6 

and the structure file was downloaded from the Protein Data Base identification code 7BZ5. Figure 

1.3 shows a structure for a mutant hammerhead functional RNA polymer7, protein database file 

3ZD4. This image was also generated by VMD. 

Because the structure of these polymers is so complex, much of their investigation involves 

determining the relationship between the primary structure – conceptually the simplest as it is 

restricted to LN discrete forms, where L is the length of the monomer alphabet and N is the length 

in monomers of the chain – and the secondary and tertiary structures. The primary structure is 

immutable – it is the defining structure for a given polymer and cannot be changes without 

changing the fundamental identity of the chemical species.  Conversely, while high level structures 

impact chemical activity, they are not immutably entangled with the chemical identity of the 

polymer. Thus, it is convenient to understand the relationship between chemical activities and 

behaviors of interest in terms of the primary sequence, and this necessarily requires models, 

Figure 1.3 A visualized structure of a mutant hammerhead 

ribozyme, demonstrating the structure of functional 

polynucleotide polymers. The hammerhead ribozyme exhibits 

strong secondary and tertiary structure characteristics.  
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analysis techniques and theories that can relate the primary sequence to secondary and tertiary 

traits. 

1.2 The Importance of Models 

It warrants consideration of why one might be interested in developing models of these 

biopolymer systems, as the process of abstracting, developing rules and validating assumptions 

about physical structures can be nearly as resource intensive as experimentally investigating 

biopolymer properties to begin with. 

An immediate answer is that the process of modeling enables these structures to be studied as 

a whole, exploiting the abstract similarities noted in the prior section to draw conclusions about 

the biopolymer class without independently investigating each system on a case-by-case basis. 

These abstractions are especially important in the Information Age, when the paradigm of object-

oriented programming requires investigators to have well-articulated classes of objects and their 

interactions in order to be translated into languages that best enable modern computational tools 

to further our investigation efforts. Developing and investigating these models and abstractions 

enables collaborating programmers to fully utilize key principles of good software design8 without 

necessarily requiring detailed expertise in chemistry or biophysics. This is an extremely valuable 

end for the purposes of effective cooperation between software engineers and physical scientists. 

Models also possess certain advantages depending on the type of model. As discussed in the 

next section, certain types of models can allow for conclusions to be drawn from first-principle 

simulations by exploiting high-level similarities in the descriptions of vast spans of unique 

biopolymer species. Alternatively, while high-throughput methods for experimentally 
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interrogating enormous libraries of specific species are being discovered, the ability for human 

researchers to synthesize those collections into useful, actionable insights is significantly limited.  

Models are a key step in the development of better artificial intelligence and digital research 

platforms, as they are essential to the encapsulation of necessary description and theory for a 

machine intelligence to access the material in a useful way. Much in the way a model is a helpful 

pedagogical tool for teaching a new researcher concepts and structures within a field, model 

development and exploration is essential for a successful transition of research obligations onto 

digital intelligences. 

Thus, modeling represents an extremely important step in the futurization of scientific 

progress, acting as a critical bridge between artificial intelligence and human understanding of 

biopolymer theory. 

1.3 Classical Modeling: Molecular Dynamics & Simulation 

The foundational question of elucidating the relationship between primary sequence and high-

level structure for biopolymer systems is: ‘given a primary sequence, can we methodically predict 

the ensemble of structures it will occupy for a given environment?’ The immediate resolution to 

this question, at least in equilibrium, can be answered using the rigorous machineries of statistical 

mechanics. Equilibrium, however, neglects the importance of kinetic factors and the role of non-

equilibrium in facilitating biochemical processes, and the prediction of the Hamiltonian energy 

descriptions essential to statistical mechanics theory is nontrivial given the limitations of modern 

computational ability and the complexity of the quantum calculations that would yield accurate 

first-principles energy descriptions. Because of this, simply parameterizing and minimizing 
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structural energy is limited in the degree of insight it can provide or else requires the use of 

assumption to limit the scope of the calculation to a tractable degree. 

Molecular dynamics (MD) strives to address this by explicitly parameterizing trajectories of a 

given system through time, through the iterative integration of the classical equations of motion. 

Enormous numbers of algorithms and methods have evolved to suit the needs of various questions, 

involving the control of environmental factors, the need to sample rare events, and the generation 

of accurate probability measures for ensembles of structures. MD is an alluring modeling approach 

to calculating the relationship between primary and high-order structure because it tends to be 

extremely intuitive. At its root, it is subjecting molecular structures to the same forces and 

dynamics that characterize the classical world we experience. It offers detailed descriptions of 

dynamic processes frequently inaccessible to direct or indirect empirical observation, and it can 

eliminate the need for expensive or dangerous experimental setups. 

Despite these advantages, it is not without drawbacks. MD simulation is an inherently discrete 

technique applied to a fundamentally continuous phenomena: time evolution. Consequently, 

improper choice of temporal discretization can create erroneous results or numerical instability. It 

is also limited by a need to explicitly compute interactions. In a holistic MD setup, every 

component that can potentially affect the analyte system must be represented as a point particle, 

with its interactions explicitly parameterized. 

This ‘all-atomistic’ approach to molecular dynamics can cause systems with high scale or 

complexity to be excessively expensive. Solvent interactions, for example, are known participants 

in the structural preferences of many biopolymers – each solvent molecule, in these cases, requires 

explicit representation and computational treatment to properly capture system behaviors. This can 
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create situations where effective sampling of even relatively small systems will either take 

extremely specialized hardware, or else require unreasonable computational times. 

Putting aside the computational sensitivity to scale, an explicitly represented molecular system 

also requires the parameterization of its numerous interactions. Casually, for a system of N distinct 

atoms, parameterization requires ( N choose 2 ) energy potentials of interaction. This is a forgiving 

approach – in truth the chemical environment of a given atom will impact its interactions with 

others, and thus simply parameterizing based purely on atomic identity will likely result in poor 

predictions. This process of parameterization is broadly referred to as the development of a force 

field.  

In practice, well-designed force fields are the fruit of years of effort and dissertation, and they 

are always associated with success on some subset of systems and failure in another. A truly 

general force field – one capturing the ‘true model’ of molecular interactions – remains beyond 

the reach of current investigatory efforts. Cautious work is required to properly choose a force 

field and, if a system of interest has not been previously parameterized and validated for 

appropriately similar situations, the results of any simulation using a presumed forcefield is 

inherently in question. 

By embracing the notion that ‘all models are wrong, but some are useful’, we can make an 

argument for simplifying these representations. We will know more exactly how our models are 

wrong by construction but take advantage of the simplifications to preserve the model utility. All-

atomistic techniques come with the inherent risk that, by doing one’s best to reflect the ‘true model’ 

of reality, one necessarily lets go of being able to make calculated reductions in detail to better 

facilitate the overall research goal. Mindful use of this exchange between resolution and 
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tractability transitions the conversation to coarse-grained models within MD, which address 

weaknesses of all-atomistic approaches at the cost of structure resolution. 

Coarse-Grained Molecular Dynamics Models 

Coarse graining attempts to deal with the sensitivity of molecular dynamics methods to scale 

by attempting to answer a simple question: how can a model preserve its ability to provide useful 

insight while reducing the absolute number of particles that must be considered at each time step? 

There a few resolutions to this.  

Systematic coarse graining9 attempts to treat groups of atoms as single particles by developing 

a repeatable framework that can be applied to all-atomistic structures, reducing the number of 

particles that need explicit consideration. This can involve the development of rigorous rules for 

combining the interactions of grouped particles – this is a common approach for modeling 

polymers10,11 –  or the parameterization of properties based on recreating experimental observables 

(the radial distribution function, for example, or the force distribution). One such model used in 

Chapter 2 is the Molinero water model12, which was parameterized to reproduce thermodynamic 

and geometric properties of water, and will be discussed in more detail in the relevant chapter. 

A final approach is helpful when assessing general consequences of essential principles13–16, 

and is particularly robust to when there is an issue of scale. So-called ‘phenomenological’ models 

take a top-down approach to capturing behaviors of interest and will use low-resolution structural 

representations with relatively simple interactions. The reduction of the number of parameters can 

lack enough chemical detail to relate to any particular system, however in cases where similar 

behaviors are attributable to numerous disparate chemical species (e.g. the aggregation behavior 

of peptides17 or the hydrophobic packing behavior of protein chains18) this reduction in specificity 
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can be an advantage. These coarse grained models allow the appreciation of the broad implications 

of low-resolution chemical similarities, and by tuning the relatively small parameter space 

researchers can use these models to study the process’ relationship to the shared characteristics of 

species exhibiting the behavior of interest. 

Chapter 3 involves the analysis of the Shea peptide model for amyloid formation19 using a 

latent model of the molecular dynamics ensemble. Because the model is coarse-grained, two major 

mechanisms of amyloid formation can be easily explored by tuning one of the model parameters, 

easily providing diverse testing cases for using neural network methodology to characterize the 

system evolution and structural ensemble. 

1.4 From The Data Modeling: Information & Fitting Approach 

The other side of modeling in this dissertation that is so far undiscussed is to approach from 

top down rather than classical principles. Molecular dynamics represents a paradigm in which a 

well-validated fundamental description of the universe – the laws of classical motion – are 

integrated to explore the energetic landscapes of a biopolymer’s conformations. It attempts to 

parameterize the systems of interest at an elemental level, and explicitly generate insight into the 

systems by iterative application of what essential physics tells us will happen at each time step. 

This is opposed to the other paradigm of modeling, in which one uses vast quantities of data and 

clever processing tools to find embedded information. 

This paradigm has been facilitated in the modern decades by enormous advances in 

computational technology and theory, which have allowed the development of so-called ‘machine 

learning’ techniques for maximizing predictive model performance based on vast sets of data. The 

argument for these techniques is that because the information of interest is embedded in the 
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datasets, there is no reason to attempt to build a model that can simulate the informational 

trajectory. This approach thus builds its models by taking flexible mathematical structures and 

fitting them to the existing data. 

These vast datasets have become available to those studying biopolymers relatively recently, 

with the advent of high-throughput techniques enabling the measurement of huge bodies of 

experimental data on relatively quick timescales20. Because of these techniques, machine learning 

and information models do not stand to lose relevance to the field any time soon and can be 

expected to continue rising in dominance. Chapter 5 applies one of the most basic principles of 

information theory to extract detailed insight into the structure-activity relationship of a functional 

RNA sequence from its related fitness landscape.  

In the chapters concerning the use of information approach models, it will be important to 

understand the critical point of difference in the approaches. As previously stated, a first principle 

model tries to reproduce the true model of reality, as in the case of capturing the solvent-driven 

behaviors of polymers in water covered by Chapter 2. This is subtly different than the approach of 

the information-driven model, in which an amorphous mathematical structure is ‘trained’ to better 

reflect the information content of the data such that a researcher can easily isolate and analyze the 

relevant information as it pertains to the research question – this approach is exemplified in 

Chapter 4’s analysis of a database of peptides labeled as forming amyloids or not. The articulation 

of whether a model generates insight or extracts insight speaks to the compatibility of the two 

paradigms – if a suitable means of generating data from classical simulation is found then its 

analysis can often be facilitated by the informational extraction tools. This is the purview of 

Chapter 3, in which molecular dynamics data is analyzed using the information tool of variational 
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autoencoders, resulting in a means of analyzing the ensembles of data associated with amyloid 

forming processes. 

Artificial Neural Networks 

 

Figure 1.4: A schematic of a neural network, showing the organization of fundamental units, neurons, into layers. A neuron is 
associated with a weight vector, the blue dot, and an activation function, f(), which manipulates the values flowing through them 
to approximate some mapping. This particular connectivity and directionality is known as a feed-forward, densely connected 
neural network. Other topologies are associates with differing performance and ability, and this is an active area of research 
within the field. 

The family of methods known as Artificial Neural Networks is a monolithic subfield of 

machine learning techniques, the scope of which is well-beyond this dissertation. However, they 

are used in two different ways in Chapters 3 and 4, and so are concisely introduced here. 

A schematic of a neural network is shown in Figure 1.4. The artificial neural networks used in 

Chapter 3 & 4 are always feed-forward, representing the interest in testing the fundamental 

properties associated with the theoretically simple structures as opposed to the more sophisticated 

variants that have been engineered for their performance over the past few decades. A feed-forward 

neural network consists of at least two ‘layers’ of neurons, whose values are defined by an 

activation function and an associated weight. The width of the layer is the number of neurons per 
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layer, while the depth of a given network is its number of layers. While the term is so ubiquitously 

used as to be lacking in firm meaning, it is generally thought that a given neural network is 

considered to be a ‘deep-learning’ tool if it possesses at least three layers, where the central layers 

– those unassociated with input or output – are the so-called ‘hidden layers’. In a feed-forward 

scheme, information flows one-directionally through the network, beginning at the input layer as 

input values, being transformed by the hidden layers, and eventually exiting as the output of the 

final layer. 

It can be shown through the universal approximation theorem22 that a feed-forward neural 

networks with an arbitrarily bounded, continuous and nonconstant activation function is a 

universal approximator. Simply put: a feedforward neural network satisfying certain conditions 

can represent any mapping between the input and output space. This mathematical versatility is 

the core of the ANN’s prevalence in machine learning. Because it can learn any mapping with 

sufficient training data and the backpropagation algorithm, it can theoretically play the role of any 

nonlinear mathematical relationship a model requires to accurately capture a trend in data. 

While this capability is utterly impressive, ANNs are possessed of several limitations. The 

universal approximation proof does not provide guidance on the number of neurons or their 

topology to approximate a given function, requiring cautious tuning of so-called ‘hyperparameters’ 

to produce accurate models. Despite these limitations, ANNs have been instrumental in multiple 

advents of machine learning, especially in the regime of machine optics, process control, the 

approximation of quantum mechanical interaction potentials, and numerous other fields. It is truly 

difficult to overstate the role ANNs have played in advancing machine intelligence. This work 

adopts the paradigm that one of the core abilities of ANNs’ ability to capture any mapping is the 

flexibility it provides in changing representations of information into more accessible forms. In 
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Chapter 3, this property is used to automatically learn a means to change the representation of 

serial molecular dynamics trajectories from a highly dimensional enumeration of internal 

coordinates into a single, simple value that tracks the transition of the system from disordered 

monomers into an ordered solid. In Chapter 4, an artificial neural network is used to develop a 

low-dimensional representation of the ‘amyloidogenicity’ of a given peptide, allowing for the 

visualization of motifs of physical properties along the peptide polymer that relate to a propensity 

to form amyloids. 

The exact implementations of the artificial neural networks will be delved into within the 

relevant chapters. Here it is emphasized that, despite the caution necessarily in training and usage, 

ANNs are one of the most flexible and powerful tools for manipulating the representation of data 

that have come out of recent advances in machine learning. 

We now dive into the next chapters, in which more detailed work regarding the concepts 

covered in this section are delved into. 
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Chapter 2) Validation of Solvent Models in Coarse Grained Simulation 

2.0 Forward 

The following work was published in the Feb. 25 2017 issue of Journal of Computational 

Chemistry under the title “Systematic derivation of implicit solvent models for the study of 

polymer collapse”23 and is reprinted with minor changes here with the permission of the publisher. 

Copyright 2020 John Wiley and Sons Publications.  

In the context of this dissertation, this work acts a convenient starting point for our 

investigation of modeling techniques and their applicability to the study of biochemical polymers. 

It embodies the assumptions endemic to coarse-grained and implicit molecular dynamics 

techniques, and rigorously investigates the use of a method of representing solvent that mitigates 

the need for the computationally prohibitive representation of the system particles. This speaks to 

the heart of a significant consideration regarding the first-principle models of molecular dynamics. 

Because they require the repeated application of fundamental physical laws – simulation – there is 

a demand for balance between the computational tractability of the model and adherence to the 

true model of the physical system. This consideration is inescapable in the world of simulation, 

with analogues in any field the requires the representation of many interacting objects. 

The desolvation potential is a phenomenological model of solvent interaction that embeds a 

specific pairwise behavior of hydrophobic particles when solvated into the pairwise Hamiltonian. 

Embedding the interaction in this way prevents a need for explicit representation of the solvent 

molecules, enhancing the computational speed of simulation by orders of magnitude. 

Despite this incredible advantage, the assumption that solvent activities can be captured 
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through pairwise additivity is not without substantial risk. Because this risk-reward consideration 

is a core principle in the application of models to biochemical polymers, this work serves as an 

analysis devoted entirely to first-principles modeling of polymer behavior. 

2.1 Introduction 

A characterization of the thermodynamics of folding of short (100 amino acid) biomolecules 

in an explicit solvent representation is feasible using enhanced sampling methods such as replica 

exchange molecular dynamics simulations or metadynamics. However, the problem becomes 

rapidly intractable when one seeks to study the assembly of multiple proteins, as would be the case 

in protein aggregation. Much of the cost in simulating such systems comes from evaluating the 

interactions and forces acting upon the large number of water molecules needed to solvate the 

system. Coarse-graining the solvent, or using an implicit representation of the solvent becomes a 

necessity given current day computational resources. In this work, we consider polymeric chains 

and evaluate the effect of systematically simplifying the solvent representation on the 

conformational free energy landscape of the chain. We start with an explicit coarse-grained water 

model, then develop an implicit solvent representation that reproduces features of the free energy 

of attraction between monomers in solvent and finally consider the polymer in a mere vacuum 

environment.  

 Several coarse-grained explicit water models have been developed in recent years, including 

the MS-CG model of Voth and co-workers24, the relative-entropy based model of Shell and co-

workers25,26, then 3D-Mercedes-Benz model27, the BMW model28, to name a few. In this work we 

use as starting point for the development of implicit models the coarse-grained explicit water 

model mW12, a single site model with no electrostatic interactions and hydrogen bonds, but which 

nonetheless captures the tetrahedral arrangements of water molecules, and reproduces the radial 
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distribution, enthalpy of vaporization, and surface tension, as well as the anomalies and phase 

transitions of water. Important for this work, the mW model quantitatively reproduces the free 

energy of association in water of a pair of M methane beads that make up our polyM polymer. In 

quantitative agreement with simulations of methane in fully atomistic water, the free energy of 

association between the pair of methanes displays three features: a contact pair (CP) global free 

energy minimum corresponding to the methane pairs in contact, a solvent-separated pair (SSP), 

and a desolvation barrier (DP) separating the CP and the SSP states.29 The mW model has been 

extensively validated in studies of hydrophobic interaction of methane pair, hydrophobic solvation 

of methane, and cavity-ligand binding12,29,30.  

We consider two types of coarse-grained homopolymers in this work. The first one represents 

an alkane chain made of small hydrophobic beads with explicit bond, angle and dihedral potentials. 

We will refer to this model as polyC (where C stands for carbon in CH2 and CH3). Short alkane 

chains have been studied in explicit water solvent by Ferguson and co-workers, who found that 

the chain properties were primarily determined by ideal gas statistics, and that the role of water 

was quite minor, leading to a destabilization of the unfolded state and to a modest barrier (on the 

order of the thermal energy) between compact and extended states.31 The second polymer model 

involves larger, more hydrophobic beads, similar in spirit to the ones used by Athawalle and co-

workers32, with no dihedral potentials. We will refer to this model as polyM (where M stands for 

methane). We use mW water simulations of the association of two “M” bead and two “C” beads 

as our starting point for generating two implicit solvent models, in which the solvent effects are 

incorporated into the effective interatomic interactions of the solute.  The first implicit solvent 

model reproduces the free energy of contact pair (CP) minima via Lennard-Jones (LJ) interactions 

between the monomers. We refer to this model as implicit-LJ. The second model reproduces the 
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free energy of contact pair minima, desolvation barrier, and solvent-separated minima. We refer to 

this potential as the implicit-DP (desolvation potential) model. Finally, we consider a third model, 

which we refer to as the vacuum model, in which we simply model the polymer chains in vacuum 

without modifying the inter-bead potentials. We compare the effectiveness of the two implicit 

solvent models and solvent-free simulations in reproducing the free energy of folding of the 

hydrophobic homopolymers in explicit mW water model. The vacuum simulations were seen to 

outperform the implicit solvent models for homopolymers, leading us to turn to the study of 

heteropolymers made of hydrophobic M beads and hydrophilic beads. This heteropolymer is a 

closer model of a peptide, and we examined the effectiveness of solvent-free simulations in 

reproducing the free energy landscapes obtained with explicit solvation. In contrast to the 

homopolymer case, the vacuum simulations were less successful, overall leading to 

overcompaction of the heteropolymer, with the degree of agreement between vacuum and explicit 

solvation depending critically on hydrophobic-hydrophilic patterning. 

2.2 Models and Methods 

Molecular Models. We study the folding free energy of two types of linear homopolymers in 

vacuum, in explicit solvent modeled by the mW water model, and in implicit solvents and vacuum 

that we detail below. We similarly study the free energy of folding for four sequences of 

heteropolymers, in explicit solvent and in vacuum. 

The mW model uses a combination of short-ranged two-body and three-body interactions to 

produce tetrahedrally coordinated “hydrogen-bonded” configurations.  The functional form and 

parameters of mW are detailed in the Equation below and in Table 1. Here, rij is the distance 

between particles i and j; θijk is the angle between atoms i-j-k. 
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Table 2.1 Fixed Constants for mW Model (Dimensionless) 

A 7.049 

B 0.602 

γ 1.2 

A 1.8 

cos(θ0) -1/3 

The first type of polymer we consider is a united atom model inspired by TraPPE-UA alkanes33. 

The monomer of these alkanes represents a CH2 or CH3 group and is referred to as C in what 

follows. The C-C pairwise interaction has the same Stillinger-Weber functional form and 

parameters as the two-body term in mW water, except for the value of ε and σ. Non-bonded 

interactions are excluded for C particles one of two bonds apart. The bond and angle potentials are 

harmonic, and the dihedral potential is of OPLS style. The C homopolymers (polyC) considered 

in this study have 10, 20 and 30 C beads and are denoted as C10, C20 and C30. The nonbonded 

parameters for the C beads and their interaction with mW water are in Table 2.2. 
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The second type of polymer, which we call polyM, is composed of larger, methane-like M 

subunits. Molecule M was previously used in studies of hydrophobic interactions, the stability, 

nucleation and growth of clathrate hydrates29,30,34,34–36. The nonbonded parameters for the M-M 

and M-mW interactions are from prior work and are shown in Table 2.2. PolyM has harmonic 

bonds and angles with no restrictions placed on its dihedrals. Nonbonded exclusions in polyM are 

the same as in polyC. The four lengths of polyM studied are M10, M20, M30 and M60. 

Heteropolymers comprised of sequences of hydrophobic M beads and hydrophilic P beads are 

also considered. Hydrophilic beads (P) are created using the parameters of mW, however their 

three-body interactions are restricted to configurations in which the central atom is mW (e.g. x-

mW-y, where x,y could be mW or P, but not M). This results in relatively small beads with equally 

strong two-body interactions between both itself and water, while the restriction on the three-body 

behavior yields a bead that can interact with and integrate into the water tetrahedral network while 

preventing strong geometries between elements of the polymers. These beads are similar to the S 

ions from prior studies37–40,  however they differ in that they possess two-body interactions with 

themselves that are equivalent in strength to their two-body interactions with water. 

Pairwise interactions are modeled using the two-body term of the mW model with the same 

parameters except ε and σ, which are shown in Table 2.1.  

The bond and angle potentials are harmonic. It should be noted that LAMMPS implements the 

harmonic function without the ½ factor. Angles are only constrained for atoms that are connected 

by one bonded atom. The parameters are shown in Table 2.3. 

Table 2.2 Parameters of the Pairwise Interactions in Explicit Water 

 mW-mW (mW-P) M-M M-mW/M-P C-mW C-C 

 (kcal/mol) 6.089 0.34 0.24 0.10 0.091 

 (A ) 2.4 4.08 4.05 3.166 3.95 
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Table 2.3 Parameters of bond and angle potentials. 

 Kbond 

(kcal mol-1 A -2 ) 

r0 (A ) Kangle (kcal/mol 

rad2) 

θ0 

polyM 10 2.0 10 109o 

polyC 30 1.54 62.099 114o 

polyMP 15 2.0 10 109o 

 

The dihedral of polyC is OPLS style, with constants K1 = 1.141 kcal/mol Å-2, K2 = -0.271 

kcal/mol Å-2, K3 = -3.145 kcal/mol Å-2 and K4 = 0.0 kcal/mol Å-2. PolyM are not constrained by 

dihedrals. The bonded atoms, or atoms that interact with angle potentials, dihedral potentials do 

not have pairwise interactions. It should be noted that the angle, bond and dihedral potentials are 

identical in the explicit and implicit water simulations. 

Parameterization of implicit solvent models. The parameterization of implicit water models 

is based on the potential of mean force (PMF) of association of monomers in explicit water at 300 

K. The computation of PMF of M-M pair was performed in prior work8, while the computation of 

PMF of C-C pair was conducted in this work following the same procedures in reference 3541. 

From this PMF we fitted an implicit solvent model with effective monomer-monomer interactions 

governed by the Lennard-Jones potential that reproduces the primary potential well of the PMF, 

and a tabulated implicit desolvation potential that reproduces the full extent of the free energy of 

interaction of two monomers in the explicit water simulations. In the vacuum simulations, the 

direct interactions of the polymers are the same as in the explicit water simulations. The bonding 

potentials including bonds, angles and dihedrals of each polymer are the same in all type of 

simulations.   
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Simulation of C-C pair association in mW water.  

The association of C-C pair is simulated using LAMMPS in a NVT ensemble with temperature 

set at 300 K and volume corresponding to an average pressure of 1 bar. The simulation box has 

dimensions 25 × 25 × 25 Å3 and contains 510 water molecules and two C particles. The time step 

was 5 fs. The temperature is kept with a Nose-Hoover thermostat with damping constant 1 ps. 

Free energy calculations. 

We used umbrella sampling42 and weighted histogram analysis method (WHAM)43 to compute 

the potential of mean force of the association of C-C pair as a function of the C-C distance. We 

simulate ten windows with separations of 1 Å between neighboring windows. The spring constant 

of umbrella sampling is 2 kcal/mol Å2.   

Parameterization of Lennard-Jones (LJ) Implicit Solvent Model. As the LJ potential only 

reproduced the depth and location of the contact pair of the PMF of association, we tuned the 

values of ε and σ so that the LJ potential shares the depth and global minima of the associated 

desolvation curve. The parameters used are in Table 2.4. 

Parameterization of Desolvation Potential (DP) Implicit Solvent Model. The desolvation 

PMF between monomers was divided into sections and fitted using polynomial functions. At 

section boundaries, the fitted functions were joined to create a continuous potential. The associated 

force was then smoothed by polynomial fitting followed by integration to obtain the new potential. 

This new potential would differ from the PMF, and in regions that differed polynomial fitting was 

Table 2.4 Parameters of LJ Interactions 

 M-M C-C 

 (kcal/mol) 0.34 0.091 

(A ) 4.08 3.95 
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again conducted. The polynomial fitting was conducted in cycles of potential-force conversions 

through integration and differentiation. In the end, we obtained the implicit DP potential and force 

that were smooth and went to zero at long distances.  

Simulation Settings. NVT simulations of the polymers are performed using molecular 

dynamic simulation package LAMMPS44. The time constant of the Nose-Hoover thermostat is 1 

ps. Temperature is 300 K for all the simulations. The simulations with implicit water or in vacuum 

are run with Langevin dynamics at 300 K using a damping coefficient of 1 ps and a a time step of 

10 fs. Explicit solvent models use a time step of 10 fs and a density of 0.0327 mW/A3, which 

results in an average pressure of 1 bar.  Heteropolymer models are run under similar conditions, 

however with a time step of 5 fs. All simulations are run for 400 ns total, with the first 100 ns being 

excluded from the WHAM computation of the PMF as the equilibration period.  

Free energy calculations. We use umbrella sampling and Weighted Histogram Analysis 

Method (WHAM) to compute the free energy of homopolymers with respect to its radius of 

gyration (Rg). The sampling windows are separated by 1 Å in Rg. The restraining spring has a 

constant 1 kcal/mol. Heteropolymers are studied using replica exchange molecular dynamics. 

PMFs from these runs are compared to those obtained using the umbrella method, to verify the 

validity of the alternative methods. Temperatures are chosen such that acceptance ratios for 

exchanges ranged from 22% to 40%. Initial configurations of polymers are generated by allowing 

simulations to run at high temperatures for 1 ns and capturing the final structure.  

2.3 Results and discussion 

The potentials of mean force (PMF) for the association of M-M pair and C-C pair in mW water 

are shown in Figure 1, alongside the pairwise interactions of M-M pair and C-C pair in both 

implicit water models, and in vacuum. Consistent with similar simulations and theoretical 
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calculations45,46, the PMFs have three common 

features: one global minimum corresponding to the 

contact pair, one local minimum for the solvent-

separated pair, and a free energy barrier, the 

desolvation barrier, separating these two minima. 

There are two notable differences in the PMFs of the 

M-M and C-C pairs in water. First, the desolvation 

barrier for the M-M pair peaks at a free energy higher 

than the free energy of the fully dissociated pair, while 

for the C-C pair this barrier is essentially at the same 

level of the fully dissociated pair. Later in the chapter, 

we demonstrate that this difference impacts the 

behaviors of two types of polymers modeled with the 

implicit desolvation potential (DP). The second 

difference regards the extent to which the direct 

pairwise interaction contributes to the free energy of 

association. The association of M-M pair is noticeably influenced by the presence of water: the 

loci and magnitude of the minima in the free energy profile do not coincide with the one of the 

minimum in the direct M-M interaction. In contrast, the direct C-C pair interaction possesses a 

relatively large overlap with the PMF of association, suggesting a lesser role of water in the 

energetics of attraction. 

Figure 2.1 Potential of mean force of association 

for a pair of M (a) or C (b) beads in mW water 

(black lines), vacuum (red lines), implicit 

desolvation potential (green lines) and the 

implicit LJ potential (blue lines). The implicit LJ 

potential reproduces the first minimum of the free 

energy of association in mW water, while the 

implicit desolvation potential also reproduces the 

second minimum of the free energy of association 

besides the first minimum. 



 

29 
 

The implicit model here referred to as the DP model is parameterized such that it captures both 

the contact minimum and the secondary minimum at the first solvation length. Contrary to this, 

the implicit Lennard-Jones (LJ) potential only captures the global PMF minimum at the contact 

pair, omitting the features of the PMF at longer separations. This simplification naturally assumes 

that these features do not play a significant role in conformations of polymers. We show below 

these differences are extremely relevant. 

Figure 2.2 shows the free energy of polyC and polyM polymers as a function of their radii of 

gyration. Shorter chains of both polymers display two distinct, stable states in explicit water: a 

compact, collapsed polymer and an extended state. As polymers grow longer, the extended state 

becomes less favorable and the compact state dominates, as expected for hydrophobic polymers.  

Figure 2.2: The free energy of polyC (upper panel) and polyM (lower panel) with respect to the radius of gyration (Rg) simulated 
with the four water models. Following the same color-coding in Fig. 1, black represents explicit water simulations. Desolvation 
potential is in green, and Lennard-Jones potential is in blue. Red represents vacuum simulations. The lengths of the polymers 
are labeled in each figure. 
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This trend was predicted for polymers with beads similar to the C beads of this work, by both 

extrapolations of shorter-chain simulations as well as by calculations done using a simple 

geometric analysis of the configuration space and energetics of solvation31,47. These previous 

works speculated n-alkane chains would begin to favor collapsed conformers at a length of about 

50 carbon atoms in the direct interaction scheme; results presented here show this transition 

occurring at lengths above 30 carbons and below 60 carbons. 

Disappointingly, neither the DP nor the LJ implicit solvent models reproduce the free energy 

profiles obtained in the explicit simulations with mW water. The desolvation potential fails utterly 

for both polymers across all the lengths, even for the shortest polymers, C20 and M10, and is 

discussed in more detail below. However, consistent with prior work on similar systems, the direct 

interaction (i.e. vacuum simulations) does a very good job in reproducing the PMF for the various 

systems, particularly for shorter chains. In the case of C20, the PMFs obtained in vacuum 

simulations and in explicit mW water very nearly overlap, except for a slightly higher transition 

barrier between the collapsed and extended states. Work on similar alkane chains has demonstrated 

the emergence of a barrier for unfolding in explicitly solvated systems with more than 10 

monomers. The barrier-raising for C20 is smaller in mW water than that observed by Ferguson et 

al. using SPC/E water as solvent. This could be due to differences between parameterizations of 

the hydrophobic bead. Despite this difference, the general shape of the PMFs in the mW and SPC/E 

water models is consistent for explicit solvation of the hydrocarbon chain, describing a two-state 

system in which the extended conformer is favored for shorter chains and collapsed conformers 

are favored for longer chains. 

In the case of the polyM chains, for which the dihedral potential is absent, the collapsed state 

is consistently favored across all length scales, regardless of the solvent model used. These results 
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resemble those of Athawale et al. The PMFs suggest the polyM chain consistently favors a 

collapsed state under the direct interaction and LJ schemes, underestimating the sampling of the 

more extended configurations stabilized by explicit solvent. 

The simulations in vacuum come the closest in approximating the free energy landscapes 

produced by explicit solvation, for both polyM and polyC. The shortest chain of the M bead 

presents one of the biggest disagreements between the direct, vacuum interaction and explicit 

solvation PMFs. An explanation for this may be that without an embedded preference for trans 

dihedrals, the chain is overwhelmed by favorable intramolecular interactions of proximal beads. 

This effect is attenuated by the presence of solvent, which can stabilize the extended states through 

favorable water-chain interactions. This explanation is strengthened by the observation that, for all 

M chains, the solvated system has higher populations of extended states compared to the vacuum 

simulations. 

The two implicit water potentials quantitatively differ from the explicit water simulations, as 

well as from one another. The implicit LJ potential over-collapses both polyC and polyM. This is 

not unexpected, as the depth of the well of the implicit LJ potential is not only much deeper than 

that of the direct interaction between the beads in vacuum but also encourages a short distance 

between particles. Thus, the distance favored by the LJ potential dominates pairwise interactions 

in the chain, resulting in highly compact structures. The polyC models are able to sample to some 

extent extended states at lower length scales due to enthalpic preference for trans conformations 

within chain dihedrals; in the case of longer polyC chains, it seems likely that the entropy of states 

with gauche defects eventually overwhelms the beneficial energetics of primarily trans 

conformations, resulting in favored collapsed structures. 
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As mentioned above, the implicit desolvation potential fails to accurately capture the behavior 

of the homopolymers in explicit water across all length scales, regardless of the bead used. The 

implicit DP potential does not capture the Rg of the most stable conformation and, in all but one 

case, fails to predict a two-state topology of the Rg configuration space. While the Lennard-Jones 

model has similar failings, the desolvation potential's shortcomings are particularly obvious when 

considering polyM. As the chain lengthens, the radii of gyration drift to be dramatically greater 

than in all the other solvent models. 

This clearly unphysical behavior of the DP model in the case of polyM is almost certainly due 

the way the pairwise desolvation potential scales with the number of beads in the system. The use 

of the desolvation potential assumes that the collapsing hydrophobic polymers entrap solvent 

particles within them, which are subsequently expelled through some unfavorable transition states. 

These multimeric water traps formed by polymeric systems such as those studied here are not ably 

captured by a model that simply tries to account for the presence of a desolvation barrier and 

solvent separated pair minimum. Indeed, the DP potential predicts that a hydrophobic bead 

approaching two clustered hydrophobic beads characterized by an implicit desolvation potential 

must overcome a barrier twice that of the original desolvation barrier for the monomer. As these 

barriers continue to sum, the kinetics of a full collapse become consistently more insurmountable 

as beads aggregate. The real scenario of simply needing to expel some central solvent particle is 

lost as these artificial kinetic barriers continue to emerge. Further explanation for the failure lies 

in the reasoning that small hydrophobic systems' solvation behaviors possess considerably 

different physics than for large hydrophobic systems such as the hydrophobic polymers studied 

here. With that in mind, generalizing the energetics of two small hydrophobes to a single, 

considerably larger hydrophobic chain is intrinsically flawed. 
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The bizarre overextension behavior that the DP implicit solvent produces for polyM is not 

present with the DP solvation of polyC, likely because there is no appreciable desolvation barrier. 

In this respect the DP and LJ models are quite similar for polyC. The DP model for these chains 

shares the LJ weakness of greatly over-predicting the dominance of collapsed states, to the point 

where the magnitude of the predicted modal radius of gyration is consistently underestimated 

across all polymer length scales.  

Further illustrating weaknesses in the DP scheme, Figure 2.3(a) shows the average Rg
 of polyM 

in mW water and with the two implicit water models. The average Rg of polyM scales with subunit 

number N1/3 with implicit LJ solvation and with explicit water. In contrast, Rg is linearly 

proportional to N0.9 for the chain implicitly solvated through the DP potential. Typical 

conformations of M30 with the four models are displayed in Figure 2.3(b). With the desolvation 

potential, M30 has a helical conformation; M30 represented with the other three models favors 

globular conformations.  Ultimately, it is clear that the physics represented by the PMF between a 
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pair of M beads in explicit water cannot be scaled up, through addition of these effective pair 

interactions, to predict the physics of the whole hydrophobic chain in water. 

As a final note on the success of the direct interaction scheme (i.e. vacuum simulations) against 

the two implicit water models, it is beneficial to consider the elements involved in the solvation of 

hydrophobes. Solvation of such systems can typically be viewed in two steps: the creation of a 

suitably-sized cavity in the solvent, followed by the activation of relevant chain-water 

interactions45,47,48. For the systems studied here, the direct interactions between the polymer beads 

is the primary driving force for collapse, hence the success of the vacuum simulations. Naturally, 

microstates exist in which solvent particles are captured within the hydrophobic cavity. However, 

subsequent expulsion of these particles is energetically favored49, with the most stable globular 

states consisting of directly-interacting hydrophobic beads without intruding solvent particles.  

Given the success of the vacuum simulations in modeling the collapse of hydrophobic 

Figure 2.3: The average radii of gyration for polyM of variaed lengths obtained from the three models. On the right 

panel, there are typical conformations of M30 simulated with the four solvation models. 
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homopolymers, we turn to an assessment of the effectiveness of vacuum simulations in sampling 

the configuration space of heteropolymers. We introduce four models of heteropolymers 

possessing hydrophobic M beads and hydrophilic beads that can hydrogen bond to mW water 

(Figure 2.4). We compute for these sequences the PMF in explicit mW and in vacuum (Figure 2.5). 

The first sequence, a hydrophobic chain of M beads capped with a short hydrophilic cap, appears 

to replicate the results of the homopolymers in terms of both methods producing relatively similar 

PMFs, with the single-cap peptide essentially behaving as a shorter homopolymer. The primary 

difference is that the explicit solvent promotes a stronger presence of extended states, resulting in 

lower energy extended conformations. 

The relative success of the vacuum 

simulations for the primarily hydrophobic 

Single-Cap model is not repeated for the other 

three heteropolymers. Two of these systems, 

containing more than one locus of hydrophilic 

sites, distinctly possess states in which they 

were folded (characterized by relative 

collapse) and unfolded (characterized by relatively linear conformations), ably described by the 

radii of gyration. These results are reminiscent of those in the work of Matysiak et al.50 with similar 

models. The fourth and most hydrophilic model chain samples a collapsed state under these 

conditions. Vacuum simulation of the terminal-philes model results in a significant barrier 

separating the collapsed state from the extended state, stressing the difficulty of exchanging 

conformers at lower temperatures. This transition barrier is significantly attenuated by the presence 

of the explicit solvent, stabilizing transition states as the hydrophilic moieties migrate away from 

Figure 2.4 Heteropolymer models with hydrophobic 

(blue) and hydrophilic (yellow) beads. 
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another and allowing more extended structures within explicitly solvated trajectories. The Three-

Point model similarly exhibits these differences, with the folded state being the only conformer 

appreciably present in the direct interaction scheme, while extended conformers were enabled by 

the presence of solvation of the hydrophilic groups.  

The Two-by-Two sequence is the most hydrophilic polymer studied. It possesses the strongest 

tendency for the chain to self-interact, and further illustrates the point that the direct interaction 

scheme is insufficient for reproducing the distribution of conformations of the heteropolymer in 

water. In both the explicitly solvated and direct interaction schemes, the polymer remains 

extremely collapsed, driven by the attractions between hydrophilic moieties. The extent of 

Figure 2.5 PMFs for the four heteropolymers with 20 beads of Figure 4 solvated in explicit mW water (black) and in 

vacuum (red). Structures in blue-yellow are for explicit solvation, structures in green-organe correspond to vacuum. 
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collapse, however, is clearly overstated by the direct interaction scheme, which yields a PMF with 

both a noticeably smaller average radius of gyration as well as a conspicuously smaller dispersion 

in allowable conformers. The presence of explicit solvent appreciably stabilizes the wider more 

extended states, reducing the drive of the hydrophilic moieties' self-attractions. 

In the case of sequences with folded and unfolded states, it is clear that the strength of the 

interaction with hydrophilic beads and solvent particles plays an important role in determining the 

landscape of accessible conformers. Without explicit solvent molecules to compete with the force 

of hydrophilic self-attraction, direct interaction overwhelmingly favors states in which the 

hydrophiles are very close. The chain in the explicit solvent explores competing configurations, in 

which hydrophiles are stabilized by interacting with nearby water. This results in a relaxing of the 

drive of the hydrophilic beads to cluster. The attenuation of transition barriers within the 

conformational landscapes of explicitly modeled systems clearly supports the idea that solvent-

hydrophile interactions competing with hydrophile self-interactions are crucial elements of 

producing accurate PMFs for these chains. 

Thus, the suggestion by the homopolymers that the direct interaction might be capable of 

producing acceptably accurate results in comparison to explicitly solvated systems falls apart upon 

the introduction of beads with strong solvent interactions. Alongside a general tendency to produce 

minima corresponding to noticeably more compact structures, the direct interaction scheme 

repeatedly represents significantly higher barriers to polymer extension and collapse, thus 

excluding multiple conformers that would be otherwise present. Ultimately, the consideration of 

heteropolymers makes the point that generalization of the effectiveness of direct interaction in 

modeling the homopolymers begins to fall apart upon introduction of hydrophilic beads. 
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2.4 Conclusions 

In this work we first parameterize two implicit water models based on the free energy of 

association of subunits in mW water for two types of hydrophobic polymers. The implicit 

desolvation potential reproduces both free energy minima at the contact pair and solvent-separated 

pair, while the implicit LJ potential only reproduces the free energy minimum at the contact pair. 

We then use the explicit solvent, implicit solvent models, and vacuum simulations to compute the 

free energy of the polymers as a function of their radii of gyration, for various length of polymer 

chain. We find that vacuum simulations are able to adequately capture the radius gyration of the 

compact state, while the implicit LJ potential over collapses the polymers. Depending on the height 

of the desolvation barrier between monomers, the implicit DP potential either over collapses the 

polymers, or prevents the polymers from properly folding. In the case of large desolvation barrier 

(as is the case for polyM), the polymer adopts extended (unrealistic in the context of explicit 

solvent) conformations as the polymer is unable to collapse while satisfying the demands of 

creating solvent separated pairs.  This is not to say that the desolvation potential is not of utility. 

Indeed, when coupled to a Go-model potential (that enforces well-defined folded states by 

assigning attractive interactions between pairs that are known to be in contact in the collapsed 

structure), the desolvation potential can provide important insights into the process of water 

expulsion from hydrophobic cavities46,49,51. Overall, the implicit water models and direct 

interaction simulations cannot stabilize the unfolded state of polymers to the extent that explicit 

water can. The success of the vacuum simulations can be attributed to the fact that the direct 

interactions between beads in the studied homopolymers play a greater role in the collapse of the 

chain than water-mediated interactions.  

The direct interaction schemes are tested against explicitly solvated models for four types of 



 

39 
 

heteropolymer chains. The vacuum simulations do not meet the same success as in the case of the 

homopolymers, with the heteropolymers populated more compact structures than in explicit 

solvent and encountering larger barriers between collapsed and extended states. The degree of 

success of the vacuum simulations in capturing the details of the explicit solvent PMFs depends 

heavily on the sequence patterning of the heteropolymer chain. These observations indicate that, 

despite the results of the hydrophobic homopolymer simulations, direct interaction fails to be a 

viable method for studying peptide-like chains that contained moieties with strong solvent 

interactions. 
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Chapter 3) Latent Space Representation of Molecular Dynamic 

Ensembles 

3.0 Forward 

The following work is to be published in the Journal of Physical Chemistry B. It is currently 

in press with the DOI 10.1021/acs.jpcb.0c05763. It is reproduced here with minor differences with 

permission from the publisher. 

Chapter 2 was a systematic consideration of various ways of modeling the interactions of 

solvent with a solute, applied specifically the conformations of alkane- and peptide-like coarse-

grained polymers in water. In the greater context of this dissertation, it was an entry point into 

considering the advantages and disadvantages of using molecular dynamics to produce ensembles 

of data, and from that data infer the structural tendencies of the analyte molecules of interest. 

The ability of molecular dynamics to produce visualizations of the exact molecular systems of 

interest is one of its greatest advantages, however the volumes of data generated by even relatively 

modest simulations can be prohibitive to analyze frame-by-frame. This is an especially salient 

point when it comes to non-equilibrium simulations, such as in cases where a dynamical process 

is the primary subject of interest. In Chapter 2, the data was synthesized to produce equilibrium 

representations of the free energy landscape. The tools of statistical mechanics – manifest in the 

WHAM algorithm – allowed for the synthesis of the vast quantities of information from Chapter 

2’s simulations into easily-interpreted landscapes with physical interpretation. 

In Chapter 3, we consider the issue of when a non-equilibrium process must be modeled. 

Specifically, we use a molecular dynamics model to generate trajectories of such a process and try 
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to interpret the data so that we can gain insight into the general progress of the system toward a 

stable end state. 

For systems of scale, the phase space is enormously complex – for a system of N independent 

particles, the system possesses 6*N – 3 degrees of freedom. Consequently, simulations that 

approach the scales necessary to capture the dynamics of more detailed models of biopolymers 

have enormously complicated free energy landscapes. 

Much theoretical work has been done in this area, including analytical approaches under the 

label of transition state theories as well as advanced sampling techniques that favor the generation 

of trajectories resulting in structures of interest. These methods attempt to synthesize actionable 

information from systems of potentially enormous complexity. 

One primary modeling technique that pursues such tools is the use of order parameters. These 

constructions – intuitively or algorithmically produced – attempt to reduce the representation of a 

molecular trajectory from its native dimensionality to relatively few quantities, which describe 

broadly the degree of progress of a system toward an end state of interest. These are enormously 

helpful when considering systems where the number of possible pathways toward a general end 

state are difficult to explicitly enumerate, preventing situations where recrossing methods can 

develop rigorous portraits of the transitional landscape. 

Order parameters, as models, are naturally not without their flaws. Outside the world of phase 

transitions, their definition can be argued as lacking rigor.  In the most general sense, they are 

simply quantities that provide insight into a system’s state between two endpoints. Despite this, 

their use is established in literature, and forms a helpful descriptive tool for quantifying the 

behavior of complex systems undergoing dynamic shifts. 
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Chapter 3 marks an intersection of the molecular dynamics modeling method and the 

information first modeling method. Serial trajectories of a coarse-grained model of amyloid 

assembly are generated, exploiting a property of the model to produce a diversity of kinetic 

pathways toward a similar end state. In a second layer of analysis, an order parameter of this system 

is automatically generated using a neural network architecture. This order parameter model is 

compared to an order parameter commonly used within the literature to represent similar ordering 

processes and is found to present a more tailored image of a given trajectory than the conventional 

tool. 

3.1 Introduction 

Amyloid fibrils are associated with the clinical pathology of numerous diseases, including 

Alzheimer’s disease52–54, ALS55, Type II Diabetes56 and Parkinson’s disease55. They are 

distinguished by their characteristic x-ray diffraction pattern, and their structure is well-

characterized as being beta-sheets whose stacking axis is perpendicular to the peptide backbone57–

59. Because of their pathological connections, there has been considerable investigation into the 

means by which these fibrils form through both experiment and simulation for the purposes of 

finding insight and developing potential treatments60–62. Fibril formation exists at the crossroads 

of multiple intriguing phenomena, requiring the consideration of many contributing factors in the 

formation of fibrils63–67.  The complexity and diversity of species associated with these structures 

suggests a comprehensive understanding of their formation would involve the consideration of a 

wide diversity of potential formation mechanisms, presenting an important challenge for 

synthesizing and interpreting information related to them. 

Fibrillizing systems have proven difficult to explore computationally due to the large number 

of atoms needed to produce a fully formed fibril and the timescale over which that fibril forms.  
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While fully atomistic studies of the formation of a fibrillar plaque often yield important insights68, 

they remain limited by time and scale constraints in terms of offering a serial, full picture of the 

process. Coarse grained models have been successfully used to model fibril formation from 

unassembled monomers 69–74 as well as facilitating the comprehensive investigation of intrinsically 

disordered peptides75, allowing for the exploration of system evolutions over large timescales and 

revealing a diversity of mechanisms for assembly. As computation improves, the simulation of 

systems of increasing complexity will become more common. This will require enhancing the 

researcher’s capability to assess the behavior of systems with potentially many different 

mechanisms evolving toward common or closely related end states. Coarse graining offers a means 

of studying systems with common traits and allowing investigation of a wide variety of processes, 

including amyloid formation.  

In this work, we apply a common type of artificial neural network – the variational autoencoder 

(VAE) 76 – with the goal of developing a single value parameter that can indicate the degree of 

progression of a system approaching a final, ordered form by characterizing the underlying order 

of the trajectory’s time series. Order parameters, in which highly dimensional systems are reduced 

to a few parameters, are useful descriptors of major advances along a dynamical pathway.  Here 

we build on work that improved molecular dynamics sampling and analysis utilizing the Ising 

model77–79 by investigating the use of VAE’s to find single-value parameterizations of two 

amyloid-associated processes. The VAE’s ability to identify intermediates, characterize phase 

transitions and act as automated feature selection are considered.  

Latent models are the result of unsupervised learning of data, in which a large bulk of 

information is reduced to a smaller set of values. They have been used successfully to extract 

information relating to protein fitness landscapes80 as well as help characterize smaller dynamic 
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systems in biochemical simulations81. These successes suggest similar models may be a useful tool 

in analyzing larger systems. 

In this paper we present the first application of the VAE to determine order parameters for the 

process of holistic protein aggregation and fibril formation, demonstrating that this approach can 

be used on systems larger and more dynamically complex than previously studied. We consider 

molecular dynamics trajectories of the aggregation of a coarse-grained peptide model developed 

by Bellesia and Shea 82,83. The level of resolution of this model preserves the major common 

attributes of fibrillizing peptides and allows access of system sizes large enough to gain 

mechanistic insight into the process of aggregation. The process allows following a simulation 

from monomer to a final ordered solid and enabling exploration of multiple potential mechanisms. 

We will demonstrate how the VAE can use the information in a molecular dynamics ensemble of 

a serial ordering process to develop a single-valued order parameter for two aggregating systems: 

First, a rigid system of monomer peptides undergoing assembly into beta-rich fibrils, followed by 

rearrangement of these solid moieties into a greater fibril stack, and second a system of flexible 

peptide units first assembling into a liquid globule and subsequently undergoing a liquid-to-solid 

phase transition.  The automatically learned order parameter for these systems will be compared 

to the commonly used nematic order parameter84–87 as a means of checking performance. The 

nematic order parameter has been used in numerous computational studies to follow the 

progression of protein aggregation. We show here that the VAE generated automatic order 

parameter not only outperforms the nematic order parameter, but that in certain cases the nematic 

order parameter incorrectly describes the progress from monomeric to aggregate state and even in 

one case fails to predict a fibrillization event. Because the VAE develops its latent model from 

data immediately associated with a specific evolution, its order parameter offers a more tailored 
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description of the aggregation process and enables insights into events significant to the 

mechanism of fibril formation. Additionally, the VAE’s ability to internalize and simplify the 

statistics of the transient ensembles associated with the dynamical processes enables for a 

streamlined means of analysis. By comparing the latent model’s representations of various states’ 

ensembles one can rapidly extract the features contributing to the characterization of the process. 

This enables a relatively ‘hands free’ means of detecting quantities associated with states of the 

dynamic process, and avoids the need for assumptions to be made about general qualities of diverse 

families of mechanisms to intuit reduced model parameters 

3.2 Models and Methods 

Shea Amyloid Monomer Model 

The peptide model is a phenomenological 

mid-resolution coarse-grained model 

developed in earlier work by Bellesia and 

Shea83. The monomeric peptide unit is 

depicted in Figure 1. The backbone contains 

two interaction centers per residue (X and Y) 

along the backbone, and one interaction center on the side chain. Four different types of side chain 

groups are considered: hydrophobic group H, polar group P, cationic group C and anionic group 

A. Capping groups, E, are used at the termini. The sequence is chosen to have an alternating 

sequence HPHPHP, motivated by combinatorial studies of Hecht and collaborators 88,89 Hecht et 

al. that indicated a generic amphiphilic alternating pattern is a major indicator of beta-sheet 

secondary structure in self-assembling peptides. This trend was also supported by recent analysis 

of the Waltz database using classifying autoencoders 90, further suggesting that this pattern is 

Figure 3.1 A diagram of the peptide model with important 

vectors labeled. The formula provided is the conventional 

cross product. All vectors are normalized. 
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favored in fibril-forming systems. A major useful feature of this model is the fact the model’s 

preference for an amyloid-ready stacking state is controlled by a single value that modulates the 

dihedral. This allows for a diversity of amyloid-forming mechanisms to be explored, interpretable 

as the sequence’s conformational preference toward beta-sheet-forming structures. In our 

simulations, the rigid peptides are associated with monomers that show a high degree of preference 

for a planar, stack-ready conformation, while our flexible peptides display greater conformational 

variety. 

Energy Terms 

The force field terms are as follows.  

1. The bond potential is of the form: 

𝑈𝑏𝑜𝑛𝑑 =  ∑ (
1

2
) 𝐾𝑏(𝑖𝑗)

𝑏𝑜𝑛𝑑𝑠(𝑖𝑗)

(𝑟𝑖𝑗 −  𝑟0𝑖𝑗)
2
 

For which Kb(ij) = 200.0 kcal/mol and r0ij = 2.0 A 

2. The angle potential is of the form:  

Kangles = ∑
𝐾𝜃(𝑖𝑗𝑘)

2
(𝜃𝑖𝑗𝑘 − 𝜃0𝑖𝑗𝑘)

2

𝑎𝑛𝑔𝑙𝑒𝑠(𝑖𝑗𝑘)

 

Where Kθ(ijjk) = 40.0 kcal/mol, θ0iXk = 120.0o and θ0iYk = 180o. 

3. Dihedral potentials are of the form: 

𝑈𝑑𝑖ℎ𝑒𝑑 =  ∑ 𝐷𝑖𝑗𝑘𝑙 cos(3 𝛼 − 𝛿𝑖𝑗𝑘𝑙) − 𝐺𝑖𝑗𝑘𝑙cos (𝛼 − 𝛿𝑖𝑗𝑘𝑙)

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠(𝑖𝑗𝑘𝑙)

 

Parameters for quadruplets are listed in Table 3.1.  
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Ijkl D 

(kcal/mol) 

G 

(kcal/mol) 

Δ (degrees) 

XYXY, YXYX -0.25 -0.25 180 

Sequence 1 (Rigid)    

CXXH, HXXP, PXXH, 

HXXA 

0.0 -1.115 180.0 

Sequence 2 (Flexible)    

CXXH, HXXP, PXXH, 

HXXA 

0.0 -2.0 180.0 

4. Nonbonded Interactions are of the form: 

𝑈𝑁𝐵 = (
1

2
) ∑ 4 𝜖𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− 𝜆 (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝐶𝑐𝑞𝑖𝑞𝑗

𝑟𝑖𝑗𝑖 ≠𝑗

 

Where εXX = εYY = εXY = 0.5, εHH = 0.3, εPP = 0.04, εHP  = 1.0 and Cc = 16.603 kcal Å mol-1 e-2 . 

Beads A and C have charges qA = -1 e and qc = 1 e respectively. Parameter σ has the value 2.0 for 

every pair except XY, where σXY  = 3.0. λXX = λYY = λXY = λHH = λPP = 1.0 and λHP = 0.01. For any 

pair of a side chain bead (C,H,P,A) and a backbone bead (X,Y) or else a pair involving a terminus 

bead (E) the parameters are  ε = 1.0, σ = 2.0 and λ = 0.0. Energy constants are in kcal/mol and 

length constants are in Å.  

Simulations & Nematic Order Parameter 

Simulations were run in the molecular dynamics package NAMD91  using Langevin dynamics with 

implicit solvent.  108 copies of the peptide model were placed in a cubic box of 102 angstroms on 

a side. Periodic boundary conditions were applied, and the temperature brought to 305 K after 

scattering the peptides at a high temperature in absence of pair-wise potentials. A timestep of 10 
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fs was used, while randomly seeded velocity initialization promoted the evolution of multiple 

trajectories from the same initial conditions. Systems were then relaxed using a brief minimization 

to eliminate strain from scattering, and then run for 750 ns. 

First-pass analysis of the trajectories was conducted using the what is referred to as the nematic 

order parameter, 𝜆𝑝 which is described in detail elsewhere84–86. Briefly, it is calculated as the 

highest eigenvalue of the always-diagonalizable 3-by-3 matrix Qab where: 

𝑄𝑎𝑏 =
1

2𝑁
∑(3𝑢𝑎

(𝑖)
𝑢𝑏

(𝑖)
− 𝛿𝑎𝑏)

𝑁

𝑖=1

 

where a and b are x, y or z; N is the number of peptides, δ is the Kronecker delta, and 𝑢𝑎 and 𝑢𝑏 

are the x, y, or z components of the Up vector described above. This expression is a metric of 

overlap of the monomers’ orientations.  Eigenvalue decomposition yields eigenvectors, the 

primary of which is parallel with the fibril axis.  The corresponding eigenvalue is the nematic order 

parameter, 𝜆𝑝,  which describes the degree of that alignment along the carbon back bones in the 

system.  In a perfect fibril stack this value would approach one, however in practice fibril stacks 

are associated with values around 0.8. This choice of order parameter helps differentiate between 

two ordered but fundamentally different structures (the fibril stack and the beta-barrel-like 

structure) which are the two common end states for the systems studied. 

Variational Autoencoder 

A variational auto encoder is a method of dimensional reduction using an artificial neural network.  

It has been described in detail elsewhere76, but is briefly described here.  Artificial neural networks 

are a machine learning system inspired by biological neurons.  Much like biological neurons, each 

node in an artificial neural network has many inputs.  Depending on the nature of those inputs the 
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node is activated or deactivated, and the node’s output, along with all other nodes in its layer, are 

used as inputs for the next set of nodes.  The layout of these nodes is depicted in Figure 3.2.  Each 

gray arrow has a fitting parameter associated with it.  The fitting parameters are fit to the data such 

that when an input is fed into the model reproduces that input in the reconstructed nodes.  Note, a 

frame in this context is the state of all atomic data (coordinates, velocity and physical properties) 

at a specified time point of the simulation.  Importantly, the input data is first reduced to a single 

number — encoded — before being reconstructed — decoded.  That single number is termed the 

latent space value (LSV).  To decode that value with the highest fidelity possible, similar inputs 

will be encoded to similar points in latent space.  This means that frames in the trajectory which 

are similar will encode to similar points in latent space.   

In terms of an order parameter, frames at the beginning of the simulation bear similarity to 

other frames and will encode to similar points in latent space.  As the simulation begins to evolve, 

each frame’s data will encode to a different point in latent space. In this way, we can plot the LSV 

of each frame as a function of time. Because the variational autoencoder possesses a smooth latent 

space, the statistics of stable states become associated with distinct regions in the latent dimension, 

allowing for the single-value parameterization of the system through time. We note that, directly 

interpreted, the term order parameter suggests a value that determines the degree of order in a 

system. In this case, that term is appropriate, as the latent model shows the evolution from a 

disordered state to an ordered state. More generally, the latent model generated by autoencoding 

is simply a reduced representation of the temporal ensemble. Thus, it will discriminate between 

states of similar order if they are separated dynamically in the mechanistic space. This is an 

advantage for characterizing more general systems, as the assumption that a system evolves toward 

or away from order does not hold generally.  
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Figure 3.2 A simple depiction of a variational autoencoder.  Each dot represents a node. The gray arrows show how 

information is passed from node to node.  Inputs are fed into nodes on the left, and the network is fit to reconstruct 

those inputs in the nodes on the right.   

Artificial neural networks were built using the Keras python package92, using Google’s 

Tensorflow93 as a backend. Learning sets were representations of frames from the simulation.  The 

simulation was run for 750 ns and saved every 0.1 ns resulting in 7500 frames or input data points 

for the model.  Each frame was represented as the internal coordinates of the system (dihedral 

angles, molecular angles and bond lengths, 7236 total features in each frame).  The 

hyperparameters were tuned through a grid search and code has been posted on github at 

https://github.com/ncharest/Core. Molecular structure images were generated using VMD6 and 

graphs were plotted using matplotlib94. 

Reconstruction Analysis 

For the reconstruction analysis, LSVs of interest were chosen based on correlating LSV 

behavior with visual inspection over the course of the trajectory.  For example, over the course of 

https://github.com/ncharest/Core
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the simulation the LSV typically reaches a final value and remains at that value for the remainder 

of the trajectory.  Presumably, this means the system has reached some final state. Visual 

inspection of the trajectory confirms no large structural shifts occur once the LSV reaches its 

final value.  Typically, this final state is used as a reference state, and compared to other LSVs 

associated with time points of interest.  Each LSV (including the reference) was then decoded 

into reconstructions.  

The residual, 𝑟 =  𝐼𝑟𝑒𝑓
𝑟𝑒𝑐𝑜𝑛 − 𝐼𝑖𝑛𝑡

𝑟𝑒𝑐𝑜𝑛 , was calculated for each dihedral angle, bond length, and 

bond angle (or, generally, the features) of the system, where 𝐼𝑟𝑒𝑓
𝑟𝑒𝑐𝑜𝑛 represents the value of that 

feature in the reference reconstruction,  and  𝐼𝑖𝑛𝑡
𝑟𝑒𝑐𝑜𝑛 the value of that feature in the reconstruction 

of interest. To identify dihedral angles that contributed to changes in latent space, dihedral angles 

which satisfied some residual threshold were identified, where the threshold condition was 

varied.   

3.3 Results & Discussion 

This section is organized as follows. We first present results for the rigid peptides that assemble 

into fibrillar stacks. We compare the performance of the nematic order parameter compared to the 

automated order parameter (the LSV). Next, we present the same analysis for a different self-

assembling system, the flexible peptide system that forms a liquid globule that then solidifies.  

Analysis of Rigid Peptides 
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Figure 3.3 Parameterizations of representative simulations. The figure is depicted as follows. The lightest yellow line 

shows the exact parameterization of a frame in latent space. This fluctuates wildly, however a rolling average of these 

values results in the darkest red line, which functions as an effective order parameter. For clarity, differing levels of 

averaging are shown, indicating how the averaging process reduces the latent space to a parameter tracking system 

evolution. The green dots correspond to the value of the nematic order parameter. Trajectory (RA) undergoes an 

evolution of rigid sequences from bulk dispersion progressing toward a final stacked beta-sheet state via the assembly 

of smaller stacks from bulk and subsequent rearrangement. In trajectory (RB) the  relatively disordered beta-barrel-

like intermediate forms, but then rearranges into a stack.  

Two representative trajectories (RA and RB) that we will analyze in details are shown in Figure 

3.The green dots are the value of the nematic order parameter along the trajectory. The lightest 

yellow line shows the exact parameterization of a frame in latent space. This fluctuates wildly, 

however a rolling average of these values results in the darkest red line, which functions as an 

effective order parameter. For clarity, differing levels of averaging are shown, indicating how the 

averaging process reduces the latent space to a parameter tracking system evolution. Because the 

absolute values of the latent space parameter are arbitrary, these values are plotted such that they 

are on the same scale as the relative nematic order parameter. The important take away is that, 

when assessing a latent space model of the trajectory ensemble, it is the differences between LSVs 

that is important. Plateaus represent statistical states that were populated for longer lengths of time, 

while the connecting transitions show the system moving through transient states. The end 

products of each simulation are shown in Figures 4 and 5, respectively. Importantly, RA comes 
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closer to realizing a single fibril stack than RB in the time studied. RB concludes with several stacks, 

oriented roughly perpendicular to one another or otherwise twisted out of alignment. Both rigid 

trajectories are associated with the relatively rapid formation of states of stacked peptide sheets 

that resemble amyloid fibrils. These stacks are exceptionally stable, with little evolution away from 

these states. Subsequent ordering takes the form of large-scale rearrangement of largely solid 

stacks, resulting in the formation of a mature fibrillar arrangement. The primary means of assembly 

for these systems involves the alignment of existing stacks (seen in RA), or the slow recruitment 

from nearby beta-barrels to slowly grow the stacks where possible (seen in RB).   By inspecting 

the trajectories we are able to deduce the reasons for the divergence in their behavior as described 

by the nematic and latent parameters.    

 

Figure 3.4 A visual summary of Trajectory (RA). A major fibril stack capped by beta-barrel-like structures emerges 

(circled in red), along with two minor fibril stacks. Subsequent rearrangement results in the formation of the final 

state, largely a single fibril stack with only a few disordered peptides on the ends. 
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Trajectory RA: Nematic Parameter Implies Erroneous Growth 

In trajectory (RA) there is an apparent rapid growth of a fibril structure as evidenced by the 

rapid increase of the nematic order parameter (Figure 3.3) in the earliest few hundred nanoseconds 

of the simulation, followed by a lag period before a final burst of growth.  The LSV, however, 

predicts a plateau region during the initial simulation period. By visually inspecting the simulation, 

the source of the disagreement becomes clear.  In the middle two images (130 ns and 300 ns) in 

Figure 3.3 Trajectory RA shows the beginning and the end of the first major transition between 

plateaus in the LSV (between 130 ns and 300 ns). A noteworthy transformation is occurring during 

this period, in which the largest fibril stack (circled in red) is reorganizing the rest of the cluster 

by recruiting peptides from the more disordered regions. This is an important moment for the 

sequence of events – this major stack eventually becomes the template for the realization of the 

relatively complete fibril stack at the end of the trajectory. The nematic order parameter fails to 

find this transition and apparently indicates that the fibril core condenses immediately out of bulk. 

This occurs due to a coincidentally parallel orientation of the major stack and minor stack at about 

130 ns. The nematic order parameter treats these separated moieties as belonging to the same stack 

since they are in planar alignment.  The matrix Q artificially diagonalizes to have an eigenvalue 

implying a higher degree of connected fibrilization than is actually in the system. 
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Trajectory RB: Nematic Parameter Erroneously Implies Ordering With No Resulting Fibril 

Trajectory (RB) illustrates a mechanism by which a mixed, largely immobile extended structure 

condenses out of bulk. This structure consists of beta-barrel-like structures or fibril stacks. Over 

the course of the trajectory, sections of beta-barrels or stacks get absorbed into one of two primary 

fibril stacks. By the end of the time studied, two major fibril stacks are formed, joined by a beta-

barrel moiety. This is visually summarized in Figure 3.5. 

Trajectory (RB) provides a good example of how the nematic order parameter is vulnerable to 

oversights that the LSV detects. The nematic order parameter suggests the system initially starts 

by ordering and then suddenly undergoes a dramatic disordering around 200-300 ns (Figure 3.5). 

This is at odds with the analysis of the LSV, which continues to increase over the course of the 

entire trajectory. This trajectory, with images of the major structures, is presented in Figure 3.5.  

Figure 3.5 A visual summary of Trajectory (RB). Two major fibril stacks form and are joined by a beta barrel 

region. Growth occurs by the absorption of smaller stacks or the reorientation of peptides from the beta-barrel.  

Coincidentally the two major fibril stacks shift alignment during the course of the trajectory. 
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Broadly, two fibril stacks form early in the trajectory (depicted at 100 ns in Figure 3.5) resulting 

in both the nematic order parameter and the LSV to increase in value until about 200 ns. These 

two stacks have planar vectors that point roughly in the same direction, resulting in the relatively 

large value for the nematic order parameter. At around 200 ns, however, the two stacks twist out 

of alignment, resulting in an “L” shape arrangement of the two major fibril stacks. Because the 

planar vectors are now perpendicular, the nematic order parameter now perceives a lower degree 

of order despite the fact the two fibril stacks are still present, but now just oriented differently in 

space. This oversight is not exhibited by the LSV, which is trained on data from the monomers 

and therefore considers the structure from the level of the individual molecules. Because this 

perspective is insensitive to global rearrangement of major, multimeric structures the LSV does 

not consider the perpendicular arrangement of the stacks to be disordered. In this sense the LSV 

outperforms the nematic order parameter because it recognizes that the parallel-aligned fibril 

stacks are structurally quite similar to the perpendicular-aligned fibril stacks and does not register 

this difference as substantially impacting the overall structure. 

Analysis of Flexible Peptides 

The flexible peptides progress through a different primary mechanism of growth than the rigid 

peptides, with lesser diversity between different trajectories in terms of a broad mechanism.  

Rather than undergoing a solid-solid transition as was the case for the rigid peptides, the flexible 

peptides undergo a molecular liquid-to-solid phase transition. Relatively speaking, the rate at 

which the disordered peptides attracted into a liquid-like, internally mobile mass was faster than 

the rate of stacking. Consequently, relatively few peptides aligned during the condensation of the 

bulk distributed peptides, with a slow transition from a liquid peptide mass, characterized by 

relative conformational flexibility for conformers, into a solid mass, characterized by peptides 
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‘locked’ into a beta-barrel-like 

conformation. The initial state will be 

referred to as ‘dispersed’, the fluid 

intermediate as the ‘globule’ and the 

final, solid state as ‘beta-barrel-like’.  

This transition resembles the liquid-

to-solid transitions observed in 

literature, relating to coacervation 

processes and then “gelation” 

occurring in some peptides associated 

with amyloidosis.95–98 

Trajectory F illustrates an 

archetypal transition for the flexible 

monomer peptides. The monomers 

rapidly condense into a liquid-like 

globule, characterized by a roughly spherical shape and independent internal monomer mobility. 

Eventually several monomers order and align their backbones into a beta-barrel-like solid 

structure. This promotes the ordering of nearby peptides, launching the transition from globule to 

stable solid BBL end phase. This process is shown schematically in Figure 3.7. 

 It is clear from Figure 3.6 that the LSV characterizes the phase transition very similarly to 

the conventional order parameter, with both parameters demonstrating a sigmoid-like transition 

process. The VAE’s capabilities for these transitions lay in its capability to act as automated 

features selection, with the capacity to ‘report back’ the input parameters used in its 

Figure 3.6  The LSV representation for trajectory F compared to the 

nematic order parameter. The lightest yellow line shows the exact 

parameterization of a frame in latent space. This fluctuates wildly, 

however a rolling average of these values results in the darkest red 

line, which functions as an effective order parameter. For clarity, 

differing levels of averaging are shown, indicating how the 

averaging process reduces the latent space to a parameter tracking 

system evolution.  The flexible peptides undergo a liquid-to-solid 

phase transition with low diversity of mechanism pathways. After 

forming a globule characterized by high internal monomer mobility 

(0 – 100 ns), an initial beta-barrel-like structure spontaneously 

orders (~100 ns). This stable BBL templates and promotes the 

ordering of the globule, which spreads and solidifies the system 

(100 – 400 ns) in the major dynamic transition. The final BBL 

structure is highly stable, undergoing virtually no subsequent 

transitions in the length of time studied.  
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characterization through a systematic process. Because of the smoothing around points in latent 

space for a given set of inputs, the VAE automatically filters input values for thermal fluctuations 

and statistical noise in addition to detecting the input features whose statistics most effectively 

characterize the course of the system. We can isolate these features using the reconstructions of 

LSVs along the trajectory. 

 This isolation process proceeds as follows. A point in the LSV associated with the end state 

is chosen as a reference (for example, for figure 3.6, we can choose LSVref  = 0.75). This reference 

point is identified with the statistics of the end state, where the statistics are smoothed by the VAE 

averaging and denoising. We can now scrutinize an analyte state by choosing its LSV and 

examining the differences between the analyte and reference states’ reconstructions. This is not so 

trivial as comparing the frames associated with either state directly. The VAE performs automated 

denoising and statistical consolidation of input features as part of its characterization process. 

Figure 3.7 A visual summary of Trajectory (F), showing the formation of a globular, spherical disordered phase 

with high internal mobility. The final state is a highly immobile beta-barrel-like solid. This system forms a solid 

nucleus early in the trajectory and subsequently undergoes a conversion from globule to solid. 
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 We use this process to isolate the dihedral angles whose average values best characterize the 

difference between the reference (BBL end) and analyte (initial globular) states. Figure 3.8B shows 

a histogram of the residuals found by subtracting the reconstruction of the analyte state from the 

reference state. By setting a threshold at some distance from zero (no difference between 

reconstructed values), and scanning different thresholds, we produce the curves of Figure 3.8A. 

These curves are the average dihedrals of the subsets identified by the process of Figure 3.8B. The 

threshold is chosen by considering the fraction of residuals that are above versus below it, 

indicating the number of dihedrals that are significantly different between analyte and reference 

as a fraction of the total dihedrals. More directly: the higher the threshold, the more extreme a 

difference between analyte and reference reconstruction must be registered for a given dihedral to 

be accepted into the set of ‘contributing’ features, the average of which is plotted in the purple 

line. The darker the purple, the more exclusive the contributing subset. Each contributing subset 

is identified with a ‘non-contributing’ set, which contains the dihedrals that did not significantly 

change between reconstructed analyte and reference states. 

 We find that by looking at the 10% result of the reconstructed dihedrals that differ the most 

between analyte and reference, we can reproduce the behavior of the LSV order parameter with 

decent fidelity. By plotting the average value of the rest of the dihedrals (the corresponding green 

line for each purple line), it is made clear that the dihedrals which were not contributing to the 

order parameter are filtered out by the VAE. When the threshold reaches about 50% there is little 

change in the dihedral values as the simulation progresses, indicating a cutoff where the dihedrals 

are not affected by the fibrillization process.  The fact we can directly compare the results of this 

process to the over-arching LSV is almost certainly a property of the fact that the system possesses 

two major dynamical ensembles. The statistics of the liquid ensemble can then be associated with 
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one region of latent space while the statistics of the solid ensemble are associated with another, 

with the mechanistic pathways between them traversing between those regions. For a system with 

more numerous stable states and dynamic ensembles, this process would elucidate the transitional 

pathways between the chosen reference and analyte.  

This ability to automatically isolate contributing features is useful for systems of scale, when 

identifying relatively small portions of large simulation volumes might require an otherwise 

difficult-to-intuit search. Furthermore, it more generally enables the comparison of any point in 

the trajectory with any other point, and swift labeling of the VAE’s interpretation of similar 

regions. Thus for dynamical systems with high degrees of noise or other convoluting factors, the 

VAE’s encoded representation may serve as an effective method of cleaning up the simulation 

data for analysis. 

Sensitivity of VAEs As Feature Selection 

The idea that dihedral angles of the model might serve as a good indicator of whether or not 

the system is in a globular liquid state is intuitive given an understanding of the model and the 

Figure 3.8 Figures illustrating the reference-analyte comparison process enabled by the VAE parameterization. LSV 

values associated with two states of interest (in this case the two values labeled by blue diamonds in panel A) can be 

reconstructed and each dihedral change (Δ) computed between reference and analyte reconstruction. These residuals 

are binned into a histogram (B), yielding populations with varying degrees of difference between reference and 

analyte. Defining a threshold allows the creation of a subset of ‘contributing’ features (purple), whose average values 

are shown to correlate with the general LSV-defined transition between states (A). The non-contributing converse 

subset (green) shows little mimicry of the general LSV. 
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dynamical behavior of the liquid globular state versus the solid BBL state. The ability of the VAE 

to pick out these major contributing features of the system automatically is valuable. However, we 

can also inspect cases where the relevance of the features is not immediately obvious because it is 

so minutely realized in the difference between states that it might be overlooked. Variational 

autoencoders present themselves as highly sensitive tools for assessing the descriptive potential of 

such features, able to provide insight into whether a set of features is useful for differentiating 

between states and providing a qualitative sense of how indicative the groups might be.  

Figure 3.9 presents the LSV parameterization of trajectory F as trained on only the bond angles 

or the bond lengths. The parameterization presented in Figure 3.6 is a synthesis of all internal 

coordinates – bond lengths, bond angles and dihedrals. It is intuitive that the statistics of the 

Figure 3.9 A comparison of the LSV trained on bond lengths alone versus an LSV trained on bond angles alone. 

Neither internal coordinate shows a relation to the difference of states like the dihedrals in Figure 6. Despite this, the 

VAE can parameterize a similar curve, albeit a noisier one, with the bond angles while failing with the bond lengths. 

Histograms of the reconstructed angles and lengths offers insight into how the statistics of the BBL state and globular 

state differ, and why the angles were able to parameterize when the bond lengths could not.  
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dihedral angles would display most clearly the difference between the liquid and solid state, per 

the discussion around Figure 3.8.  

It is less obvious whether the bond lengths or bond angles would be useful in describing the 

transition. Figure 3.9 clarifies these points. Reassuringly, the intuitively meaningless bond lengths 

fail to parameterize the system with any degree of useful clarity. The statistics of the bond lengths 

should depend little on whether the system is in the globular or BBL state, as their vibrational 

behavior should depend only on the temperature of the system. This is reinforced by a histogram 

depicting bond length populations over the course of the LSV parameterization – it is a roughly 

normal distribution centered essentially at 2 angstroms, the ground state length of all bonds within 

the system, at all reconstructed frames along the trajectory. 

The relevance of the bond angles is less immediately trivial to understand. It is not clear that 

the BBL geometry should preferentially alter the ensemble of bond angles, however it may be that 

the relatively weak constraint on the angles (40.0 kcal/mol) versus the constraint on the bonds 

(200.0 kcal/mol) gives the bond angles enough conformational flexibility that their statistics can 

be identified with the general state of this system. The LSV trained from the bond angles in Figure 

9 therefore helps settle this dispute. We see it parameterizes the trajectory with the same sigmoid 

as the full internal coordinate treatment. This time, a histogram of the bond angles as they evolve 

indicates how the VAE may be separating the phases: the shift of the ensemble average by a mere 

0.5 o would be difficult to predict intuitively, however it is not overlooked by the precise eyes of 

an unsupervised algorithm. Upon consideration, the idea that the globular arrangement of 

disordered, liquid-phase monomers might compress the bond angles away from their preferred 

value of 120o more than the parallel-arranged BBL solid is reasonable. It is not the sort of 
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conclusion that one might immediately jump to, however, given the minute affect the difference 

in states has, but one that the VAE is capable of identifying. 

Thus, the development of single-value descriptions of the system from sets of unlabeled data 

with a VAE presents a sensitive means of determining the relevance of potential descriptor 

variables to states of interest. If it is found that a subset of descriptors can satisfactorily train a 

VAE to parameterize the general transitions of interest, it is an argument for investigating those 

variables in greater detail as they pertain to the process.  

3.4 Conclusions 

VAE was applied to the trajectories of a rigid and flexible coarse-grained peptide models that 

could respectively assemble directly into fibrils stacks, or transition from a liquid globular state to 

a solid fibrillar state.  In all cases, the trajectories approached a solid final state with little further 

evolution in the time spans studied.  

The order parameters (LSVs) learned from serial trajectories of aggregating monomers were 

compared to the nematic order parameter widely used in aggregation literature.  The VAE required 

no implicit enforcement of a time series to properly organize the data, nor did they require 

significant feature selection by the researcher. They were trained on states encoded as monomeric 

internal coordinates (the bond lengths, the bond angles and the dihedrals defined in the system) to 

develop latent models of system evolution, allowing for single-value parameterization of related 

but distinct mechanistic processes. This results in an unsupervised means of simplifying 

mechanisms with reduced models tailored to identify important elements of unique pathways and 

bypasses a need for assumptions to be made the system. In addition, the technique acts as a proof-

of-concept for characterizing systems based on unlabeled features. The success of these latent 
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models demonstrates it is possible to characterize the state of the system by monomer features 

alone.  Reconstruction-based methods were shown to facilitate an understanding of which features 

were most significant in characterization of the transition from the dispersed phase to a final solid 

state. Additionally, cases where the LSV more successfully characterized important features of 

transitional pathways than the nematic order parameter were identified. 

Using the VAE’s reconstructions allowed study of which elements of the simulation were 

contributing to its characterization. This is useful for feature selection, and the prescribed process 

is applied to isolating the sets of dihedrals that best characterize the difference between the liquid-

like globular state and the solid BBL end state. Training VAEs using subsets of candidate input 

features also enables the automated detection of the sets of features suitable for differentiating the 

statistics of intermediate states, and therefore suitable for developing single-value 

parameterizations of the system. 

The results reported here show the possibility of applying VAE tools to large systems with 

high mechanistic complexity and dimensionality. The work affirms VAEs as a useful method of 

information compression, filtration and denoising and provides a means of obtaining insight into 

the contributing factors of a given latent representation. They are unsupervised algorithms, 

requiring relatively little preparation of data, and they possess high potential for automation of 

data-processing pipelines. Ultimately, they are a promising avenue for generating useful latent 

representations of complex systems of scale. 
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Chapter 4) Extraction of Activity-Feature Relationships Using Artificial 

Neural Networks 

4.0 Forward 

The following work was published with few changes in Tro, Charest, Taitz, Shea and Bowers90 

in the Journal of Physical Chemistry B on Jun 27. 2019 under the title “The Classifying 

Autoencoder: Gaining Insight Into Amyloid Assembly of Peptides and Proteins”, and has been 

presented here with permission from the publisher. Copyright 2020 ACS Publications. 

In the context of this dissertation, it is the first pure application of the information approach 

models introduced in Chapter 1 and demonstrates a relatively interesting ability of ANN 

techniques to shape themselves in controllable ways through their objective training functions. 

Unlike Chapter 3, it does not attempt to use the data generated in mass by a molecular dynamics 

simulation to produce insights. Instead, it uses an experimentally measured database.   

Here, we use a similar artificial neural network as in Chapter 3, however the goal is no longer 

the purely unsupervised reduction of data dimensionality for the purposes of simplification. While 

the purview of Chapter 3 was the creation of simplified representations of large ensembles of 

noisy, potentially unrelated descriptor data, we take a more focused approach in this work by using 

a supervised technique that couples an ANN classifier with the VAE architecture. 

This allows the structuring of the latent space, a technique generally referred to as conditioning 

the autoencoder. This technique is relatively novel in chemistry, though it has seen application in 

other fields. It represents a more refined attempt to use a latent model of data to extract insights 

from the dataset, however it comes with cost of requiring labeled data points. It steps away from 

using classical simulations to explicitly simulate insights for analysis; instead, this model indicates 

trends in the data in a way accessible to the researcher. Unlike the combined model of Chapter 3, 
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however, there is no real way to elucidate exactly how the predicted data patterns lend themselves 

to amyloid formation, leaving it open to interpretation. 

Despite this, the Classifying Autoencoder shows a convenient means of analyzing labeled 

datasets and extracting trends in the primary sequence that are associated with the amyloid forming 

activity. It reproduces amyloid-forming motifs identified in prior literature, and the insights it 

offers could be used to augment first-principle models and facilitate more immediate insights. 

4.1 Introduction 

In this work we combine two types of machine learning algorithms by coupling two distinct 

artificial neural network architectures. This enables us to separate hexamer peptide chains based 

on whether they produced amyloid fibrils in solution, and subsequently visualize the characteristics 

that were associated with a tendency to produce amyloids. By employing this method, we can 

analyze the value of novel features (descriptors) used to describe peptides while simultaneously 

finding patterns in the data associated with the activity of the peptide. 

Artificial neural networks (ANNs) offers a powerful approach to classification problems. By 

using numerical descriptions of a system, many fitting parameters, and a set of data points to learn 

from, ANNs generate a complicated mapping from the descriptions to an output. This output can 

be any target set of numbers but is often a numerical representation of a class — for our purposes, 

whether a peptide sequence is amyloid-forming or not. These classification networks have been 

employed in a number of fields, from ecological studies to economics to chemistry 99–102. Attempts 

have been made to elucidate the inner workings of ANNs 103,104, however these methods can still 

leave intuition difficult to obtain. 
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In this work we view classification as a dimensional reduction problem in which numerous 

pieces of descriptive input data (an attribute of an amino acid, in our case) must be reduced to a 

single descriptive dimension (the propensity to aggregate). Autoencoders are an architecture of 

ANNs that have been applied to the problem of dimensional reduction, capable of reducing 

relatively complex descriptions of objects to a lower dimension (termed the latent space), and then 

reconstructing the original description of the object with as much fidelity as can be allowed 105. 

Differing versions of the basic autoencoder, perhaps most notably the Variational Autoencoder 

(VAE)76 have emerged, with variants typically involving goals beyond dimensional reduction and 

reconstruction of the data 106. In this paper, our goal was to develop a method of classification, 

which we call the classifying autoencoder (CAE), based on prior algorithms76,101,102, that could 

offer easily-interpreted insight into our classification task. 

For this work, we develop a relation between the attributes of the amino acids in a six amino 

acid peptide (hexapeptide) and the amyloid propensity of the sequences. The use of hexapeptides 

means the primary structure will dominate the behavior of a given peptide. While other peptide 

lengths can also form amyloids, hexapeptides are the shortest length for which a large number of 

amyloid forming peptides are known107.  There are relatively few known examples of smaller 

peptides which form amyloids108,109.  Longer peptides are more likely to have more complex 

mechanisms of amyloid formation involving thorough considerations of internal secondary and 

tertiary structures.  We adopt a reductionist paradigm and posit understanding simple systems will 

help understanding of more complex systems in future work.   A database exists in which about 

one thousand hexapeptides have been experimentally characterized as amyloid or non-amyloid, 

which we use here107. We this database to help prove the concept of our method and explore some 

of its potential usages, including elucidating the role specific descriptors play in establishing the 
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classification and whether any motifs within these descriptor sequences can be identified as 

especially related to amyloid formation. 

In the next sections we first assess the capability of the CAE to identify motifs by generating 

a dataset and then using the method to recover the motifs used in generating the dataset. This 

process validates choices made regarding the Shea coarse grained model and supports the 

conclusions of its original development. With our method’s concept successfully tested, we 

demonstrate its ability to analyze the relationship between a novel experimentally measured 

descriptor of a system, and that system’s properties to illustrate a major investigatory power of the 

method. We have called the new descriptor dimeric isotropic deviation (DID). Deviation from 

isotropic aggregation of amino acids has previously been suggested a parameter predictive of 

amyloid formation110 for a small data set (3 peptides) and only 5 amino acids. DID differs from 

the isotropic deviation previously utilized (explained in Results and Discussion), but these 

simplifying differences enabled the measurement of all 20 common amino acids, allowing for a 

more robust exploration of DID and amyloid aggregation over a set of about one thousand peptides.   

3.2 Models, Methods & Proof of Concept 

Given the goal of recovering visualizable patterns within primary sequence data of hexamers, 

we first decided to generate a toy database with an embedded structure-activity relationship and 

attempt to automatically recover it using the classifying autoencoder technique. We devised a set 

of amino acid sequences that were assigned as belonging to an archetype (we use this term to 

describe a pattern within the sequence, such as alternating amino acid hydrophobicity), and then 

the sequence classified as positive or negative.  Figure 4.1 depicts a flow chart of the process used 

to generate this database. 
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We generated two artificial descriptors for our validation database.  A descriptor is a property 

of the system (e.g. the hydrophobicity of an amino acid). The two descriptors were uncorrelated 

and generated to be linearly distributed between 0 and 1. Peptide archetypes were also defined.   

These archetypes are treated as the ideal positive or negative peptide (in the context of amyloid 

aggregation this assumes that certain patterns would yield an optimal activity, and the activity 

could be directly correlated  to the degree of difference between an archetype’s set of descriptor 

values and a peptide’s set of descriptor values). The database was generated by randomly picking 

hexapeptides and classifying them as positive or negative (e.g. amyloid or not amyloid). These 

classifications were based on equation 1, which compares a generated peptide to an archetype: 

𝑟2 = Σ𝑖=𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠Σ𝑗=𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 (𝑓𝑎𝑟𝑐ℎ𝑒𝑡𝑦𝑝𝑒;𝑖,𝑗 − 𝑓𝑖,𝑗)
2

                       (1) 

Figure 4.1 This flow chart depicts the generation of the database. In the example depiction shown in the flow chart a 

random peptide is added to the database by being assigned to the positive archetype and classified as positive. 
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Where 𝑓𝑎𝑟𝑐ℎ𝑒𝑡𝑦𝑝𝑒;𝑖,𝑗 is the value of the 𝑗th descriptor of the 𝑖th amino acid in an archetypal 

peptide, and 𝑓𝑖,𝑗  is the corresponding value of the peptide that is being classified. This r-squared 

value between the peptide and the archetypes served as our metric of distance. A peptide is 

assigned to an archetype with which it has the smallest r-squared value. The peptide is then 

classified based on which archetype it has been assigned to. In addition, if the peptide is not within 

a threshold r-squared of any of the archetypes, that peptide was deemed unassigned and either 

given a random classification or thrown out, depending on which validation test we were 

performing.  

Experimental Database 

Given that our goal is to better understand how the physical descriptors of a peptide relate to 

amyloid activity, we used a database of experimentally-verified peptides. We use the Waltz-

DB107,111  of 1089 hexapeptides that have been experimentally tested for amyloid formation by 

transmission electron microscopy, dye binding, and Fourier transform infrared spectroscopy. Of 

the 1089 peptides, 244 form amyloids, and the rest do not. This database is known to have over-

representation of peptides similar to the peptide sequence STVIIE.  The database was pruned to 

exclude any peptide which is within three point mutations of the peptide sequence STVIIE. This 

reduced the database to 946 total peptides. Of the pruned data set, 174 form amyloids; 772 do not.  

The model was trained on half of the database, while the other half of the database was used 

for validation. The ratio of amyloid peptides to non-amyloid peptides was held constant over the 

training set and the validation set. Other fitting algorithms often use upwards of 66% of the 

database for training and 34% for validation. We opted for a larger validation set at the cost of a 
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smaller training set since the database is relatively small and we wanted to make sure there was 

enough data in the validation set to get a good idea of how generalizable the model is. 

Polarity Descriptor 

We found the hydrophobic parameter using the AAindex database112–114 . This parameter was 

first measured by Jean-Luc Fauchere, in which the amino acids were dissolved in octanol and 

water and the relative solubility was measured115 . We choose this metric for hydrophobicity 

because it correlates with many of the other hydrophobicity metrics in the database, it performs 

well for classification, and has a clear experimental basis and intuitive interpretation.  

Cross Section Measurements 

To measure the DID, amino acid samples were dissolved in water to concentrations between 1 

and 12 millimolar. The cross section of the singly charged amino acid, and the cross section of the 

singly charged dimer cluster of the amino acid were measured using a lab-built ion mobility mass 

spectrometer which is described in detail elsewhere116 . Briefly, this instrument uses nano-

electrospray ionization to generate ions. The ions enter the instrument from atmosphere into a 10 

torr source region. The ions are stored in an ion funnel and pulse injected into a 2-meter-long drift 

cell which is held at 0.25 torr above the pressure in the ion funnel to maintain a pure helium buffer 

gas in the drift cell. The ions exit the drift cell through another ion funnel and are mass selected 

with a quadrupole before being detected. This instrument is notable for minimization of energizing 

the sample ions at all stages. This allows us to easily measure non-covalently bound assemblies 

such as the amino acid clusters reported here.  

To measure the cross section, the ions traverse the drift cell at various drift voltages. The time 

it takes to reach the detector is 𝑡𝐴 =
𝑙2

𝐾0
(

𝑇

760
) (

𝑃

𝑉
) + 𝑡0, where 𝑙 is the cell length, 𝑇 the temperature, 
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𝑉 the voltage across the cell, 𝑃 the pressure in the cell, and 𝑡0 the time from exiting the drift cell 

to the detector recorded for mobility calculations117. The reduced mobility, 𝐾0, is related to the 

cross section by the equation 𝜎 ≈
3𝑒

16𝑁0
(

2𝜋

𝜇𝑘𝐵𝑇
)

1

2
(

1

𝐾0
). Here 𝑒 is the charge of the ion, 𝑁0 is the 

number density of the buffer gas, 𝜇 is the reduced mass of the buffer gas and the ion, 𝑘𝐵 is the 

Boltzmann constant, and 𝜎 is the cross section of the ion 118.  

Software 

All neural nets were constructed and trained using the Keras software package92 with the 

Tensorflow backend93.  Images were generated with matplotlib94. 

Optimization of Model Hyperparameters 

To optimize the model, we first need a metric for characterizing the effectiveness of a given 

model. Accuracy, as given in the following equation, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁) + 𝑇𝑃 + 𝑇𝑁
 

can be a poor metric in cases where one class is much greater than the other. Consider, for 

example, a situation in which 90% of all peptides were non-amyloid and 10% were amyloid. Then, 

by trivially classifying all inputs as non-amyloid, our classifier would obtain an accuracy of 90% 

without any real characterization of the classifying task. Thus, we sought a better measure of 

success. 

The Matthews correlation coefficient (MCC): 

𝑀𝐶𝐶 =  
𝑇𝑃 𝑥 𝑇𝑁 − 𝐹𝑃 𝑥 𝐹𝑁 

√((𝑇𝑃 + 𝐹𝑃)𝑥(𝑇𝑃 + 𝐹𝑁)𝑥(𝑇𝑁 + 𝐹𝑃)𝑥(𝑇𝑁 + 𝐹𝑁))
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is a metric of agreement (or correlation) between the predicted class and the experimentally 

determined class over all samples in the data base 119.  The MCC ranges from -1 to 1.  1 is perfect 

correlation, 0 is no correlation, and -1 is perfect anti-correlation.  We use this as the metric for 

comparing our models’ effectiveness due to its robustness to unequal populations within classes. 

Using the MCC to evaluate our model’s performance, we optimized the so-called 

‘hyperparameters’ to maximize this performance. Before using most machine learning algorithms, 

several hyperparameters must be chosen. Hyperparameters are parameters which are not fit during 

training (the number of nodes per layer for example).  There is generally more than one set of 

hyperparameters which yield a strong model, but poorly chosen hyperparameters can detrimentally 

affect performance.   

In the next sections each hyperparameter is detailed.  The CAE has three hyperparameters 

(relating to the terms of the loss function), as well as the typical hyperparameters for artificial 

neural networks specifying its architecture (the number of layers, and the number of nodes per 

layer).   

Since the fitting parameters in the ANN are initialized to random numbers, there is a stochastic 

element to the fitting process. To address this, we train each set of hyperparameters 50 times.  The 

performance of each model is logged, and the best models are saved for later analysis.  Because of 

the stochastic nature of training the models, the reconstructed space between different trainings 

with the same parameters vary from one another slightly. It is thus important to draw conclusions 

from consensus between models.  The figures presented here represent behaviors found in high-

scoring models. 

Weights of the Loss Function 
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The loss function defines the goals of the training process.  During the training process the 

fitting parameters are varied until a minimum in the loss function is found. It is analogous to the 

square of the residual in linear regression.  The classifying autoencoder has three terms in the loss 

function.  The reconstruction term compares the reconstructed input to the original input. The 

prediction term compares the model’s classification prediction (amyloid or not) to the 

classification from the database.  Finally, the Kullback-Leibler (KL) divergence term relates to 

how much noise is added to the model during training 76.  Interestingly, we did not find the relative 

weighting of these terms affected the maximum MCC score a configuration can achieve (Figure 

S4.1). We attribute this to the model being able to independently minimize the prediction term 

regardless of the magnitude of the other terms in the loss function. The weights do, however, affect 

the frequency with which a model can find this maximum MCC, suggesting that while the global 

minimum remains constant, a poorly weighted loss function tends to get stuck in local minima 

during training, leading to a need for more trainings and thus inefficiency in the training process. 

Once we found that the maximum MCC achievable was unaffected by the loss weighting, we 

investigated the reconstructive capabilities of the model. As shown in Figure S4.1, every weight 

of the reconstruction term over 5 orders of magnitude can score an MCC of around 0.5.  However, 

we notice a strong dependence on the minimum reconstruction loss the model can achieve at each 

weighting. We seek to minimize the reconstruction loss (ensuring fidelity of reconstruction), while 

simultaneously maximizing the MCC (representative of a successful representation of the 

classification function).  The models in the bottom right of Figure S4.1 achieve this. 

Number of Layers 

This plot also informs the number of hidden layers to choose.  All models have the same 

number of nodes. A node is a unit cell of an artificial neural network, that stores a unit of the 
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information learned during training. The depth is the number of hidden layers and the nodes per 

layer is the total number of nodes (24) divided by the depth.  We find that depths of 1, 2, and 3 are 

found most frequently in the bottom right of Figure S4.1.  

  

Figure S4.1 A scatter plot over 50 trainings with each combination of hyper 

parameters shown.  The depth of the model is the number of hidden layers, 

while the total number of hidden nodes was held constant at 24. The weight is 

a scaler multiplied by the reconstruction term of the loss function.  MCC is the 

Mathews correlation coefficient of the test set. The Val Reconstruction Loss is 

the loss of the reconstruction term on the test set before being multiplied by the 

weight.   
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Figure S4.2 Histograms of models trained with differing weights in the loss function against MCC of each model.  To 

optimize the weights in the loss function, each weight was varied over 5 orders of magnitude from 0.01 to 100, while 

holding the other two weights at 1.  The heat bars represent the MCC distribution of models with the weight set to the 

value of the x axis.  Light colors on the heat bars represent more models with that MCC.  The green X denotes the best 

model at that weight— the model with the highest MCC on the test set at that set of hyperparameters; the red X is the 

MCC on the test set of that same model.  There is little dependence in the maximum MCC (from the test set) from the 

change in weights.  There is, however, a change in the distribution of MCC depending on the weights.  When the 

reconstruction weight (reconw) or the noise weight (klw) are raised to 100 the histogram shows a larger spread in 

MCC.  Surprisingly as the prediction weight (predw) is increased, the peak of the green histogram (the test MCCs) 

decreases.  This trend is explained by studying the red histogram, the training set MCC.  When the prediction weight 

is set to high values the model overfits, and ‘memorizes’ the data in the training set. By doing so the model only learns 

a specific dataset and is not able to generalize to the test set.  

  

4.3 Results 

Developing the Classifying Autoencoder 

Classification is a specific type of dimensional reduction. We hypothesize we can learn more 

about why the classifying model is making its predictions by combining it with a variational 

autoencoder (VAE).  A primer of VAEs can be found in the supporting information, but briefly, a 

VAE is an unsupervised neural-network-based dimensional reduction algorithm which seeks a 

robust reduced representation of a data set.  As with any fitting algorithm, it quantifies the quality 

of the fit by defining and minimizing a loss function.  For standard linear regression this is typically 

the sum of squares of the residuals, r2.  The VAE has a two-term loss function. The first term 

relates the fidelity between the reduced representation and the original representation.  This is 
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called the reconstruction term since it is a measure of how well the model can reconstruct the 

original representation if only given the reduced representation.  The second term adds noise to 

the data during training.  These competing loss terms lead to robust reduced representations.  

We used the underlying architecture and concept of the VAE but added another term to the 

loss function to make the reduced representation also function as a classification metric.  We have 

called this the classifying autoencoder (CAE), and depicted it in Figure 4.2.  Inputs (a description 

of the peptide) are fed into the model via the input nodes. The depiction in Figure 4.2 shows only 

four input nodes, but in the final model there will be an input node for each value that represents 

the peptide, i.e. the number of descriptors times the number of amino acids in the peptide.  The 

hidden layers add more fitting parameters.  The nodes labeled 𝜇 represent what is termed the latent 

space.  Typically, the term latent space is used to refer to the space of the reduced representation.  

Here, these values are also used as the prediction.  The latent space is two dimensional, one for the 

amyloid propensity and one for the non-amyloid propensity.  A peptide is classified depending 

which node outputs a higher value. The nodes labeled 𝑁(𝜇, 𝜎2) inject noise into the data during 

training. This noise is in the form of a normal distribution centered at the reduced representation, 

𝜇, and has a standard deviation, 𝜎2.  The nodes to the right of the nodes labeled 𝑁(𝜇, 𝜎2) (the 

decoder) attempt to reconstruct the original input.  For a more detailed explanation of this please 

see the primer of VAEs in the supporting information.  
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Figure 4.2 Depicted is the architecture of a classifying autoencoder (CAE) with four inputs, and one hidden layer 

with three nodes. The latent space in this model is two-dimensional and is labeled  𝜇.  These nodes are also used as 

the prediction layer. Noise is added to the latent space at the nodes labeled 𝑁(𝜇, 𝜎2); this noise is in the form of a 

normal distribution centered on the reduced representation, 𝜇, with a standard deviation, 𝜎2.  The decoder (all nodes 

to the right of the nodes which introduce the noise) tries to reconstruct the input. Dense connectivity (see primer of 

VAEs in Supporting Information) can be assumed for all layers not drawn explicitly. In addition, connectivity has 

been drawn explicitly at the latent space to highlight that the output nodes are not fed into the decoder, but the nodes 

labeled 𝑁(𝜇, 𝜎) are fed to the decoder. 

Validation on a Constructed Data Set 

To verify that the CAE successfully elucidates and reconstructs characteristic archetypes, we 

generated an artificial peptide database as discussed in Methods. Using the constructed database 

allowed us to verify the model was performing its intended functions, while also testing how 

sensitive the model is to potential issues within the database, such as small database sizes or flawed 

results. We did this in two ways. First, we allowed for some unassigned peptides (peptides which 

were not in the neighborhood of any archetype) to be given a random class to see if the model 

would be able to see through the resulting noise. This tests situations where the descriptor we are 

using contributes to the amyloid activity of some of the peptides, while other peptides are 

dominated by a mechanism unrelated to the descriptors that have been chosen.  The second test 

only used peptides that have been assigned to an archetype but introduced a stochastic element to 
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classifications. When a peptide was assigned to an archetype it was classified as amyloidogenic or 

non-amyloidogenic according to a probability. The second scenario captures errors in the 

experimental data in the database, or an amyloid mechanism that only partially relates to the chosen 

descriptors.  

All models are trained on 500 peptides and validated with 500 different peptides. Peptides are 

described with two descriptors per amino acid. The axes for each plot in Figures 4.3 are the values 

in the latent space; that is the values output by the two nodes labeled 𝜇 in Figures 4.2. The y-axis 

is the positive prediction axis, and the x-axis is the negative prediction axis. A peptide is classified 

as positive if its positive prediction value is greater than its negative prediction value. Thus, if a 

peptide falls above the red line on the plots that peptide is predicted positive, while falling below 

the red line is a negative prediction. Figures 4.3 A, D, and E plot each peptide in the database 

according to where they fall in latent space. Figures 4.3 B and C show the reconstructed description 

of the peptide for equally spaced points in latent space. These types of plots will be referred as 

reconstruction plots.  
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Figure 4.3 For all plots, the y-axis is the positive prediction axis, and the x-axis is the negative prediction axis. A 

peptide is predicted positive if it is falls above the red line and is predicted negative if it falls below the red line. Plot 

(A) shows where each peptide is encoded by the CAE, while plots (B) and (C) show the reconstructed description at 

each point in latent space for that same model. Plots (D) and (E) are each a separate model (see text) and show where 

each peptide in their database encodes to in latent space. 

Figures 4.3 A-C are generated from the same model. Of the 1000 peptides 27% are assigned to an 

archetype, and subsequently classified as either positive or negative depending on the archetype. 

The positive archetype is LULULU (U = upper, L = lower) in descriptor 1 and LLLLLL or 

UUUUUU in descriptor 2. The negative archetype is LLLUUU for descriptor 1 and either 

LLLLLL or UUUUUU in descriptor 2. All peptides not assigned to an archetype were not within 

a threshold r-squared distance of any of these archetypes and were classified randomly.  

In Figure 4.3A, each peptide is encoded to two numbers (the values output by 𝜇) and plotted 

according to those values, showing how the peptides are arranged in latent space. The color of the 

marker represents the peptide’s classification in the database; pink markers are positive, while 

green are negative. In Figure 4.3 B and C, we visualize the reconstructed description of the peptide, 
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descriptors 1 and 2, respectively, in latent space.  This representation of the peptide description 

arranged in latent space, the reconstruction plot, is the key to gaining intuition from the CAE, as it 

visualizes the different regions of positive and negative predictions that the CAE identified. 

Figures 4.3 D and E depict different models than Figures 4.3 A-C. These use a database 

generated to mimic a set of experiments that yielded occasionally flawed results. In Figures 4.3 D 

and E all peptides in the database are within a threshold distance to one of four archetypes. For the 

two positive archetypes, one archetype was always classified positive, while the other archetype 

was misclassified at the rate indicated in the plot title. The negative archetypes were assigned in 

the same way. 

These results show the models can simultaneously sort the data into the positive and negative 

classifications and identify the original archetypes used to generate the data. In the top left of 

Figure 4.3 A, the positive prediction region of the latent space, positive peptides have been 

separated from a mixture of positive and negative peptides, correctly predicting those peptides as 

positive. The corresponding region in the reconstruction plot, Figures 4.3 B and C, correctly 

reflects the positive archetypes. This happens similarly for the negative prediction region. We, 

also, learn how to interpret the reconstruction plot by examining Figures 4.3 B and C. The middle 

of Figures 4.3 A, the data’s latent space distribution, shows mixed positive and negative peptides; 

in Figures 4.3 B and C, the reconstruction plot, this region shows no evidence of the positive or 

negative archetypes. However, as we move to the top left of the data’s latent space distribution, 

Figures 4.3 A, we see a separation of positive classifications from the mixture of classifications; 

when we follow this trajectory in the reconstruction plot, Figures 4.3 B and C, the positive 

archetype emerges. The separation of a single class from a mixture of classes can tell us about the 

trend that contributed to that separation.  
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In Figure 4.3 D and E, the model correctly shows four clusters in the latent space, according 

to the four archetypes used to construct the database. The reconstruction plot (Figure S4.5) 

correctly reflects the four archetypes. This gives us insight to how the model deals with the 

uncertainty in the data. In Figure 4.3 D, the archetype which has been 80% classified positive and 

20% classified negative is placed in the positive prediction region of the latent space. However, 

this is nearer the decision boundary (the red line) than the cluster associated with the 100% positive 

archetype, suggesting the model identified the ambiguous archetype. Further, in Figure 4.3 E, the 

ambiguous archetype was associated 60% to one classification and 40% to the other. In this case, 

the cluster that represents the ambiguous archetype is placed nearly atop the decision boundary, 

leaning slightly positive. The method can make identifications regarding how an archetype leans, 

in addition to characterizing archetypes that are certainly associated with activities. 

We note our validations show our method works with large databases that are typically used 

in machine learning (N = 10,000; Fig. S7), but crucially also with the limited databases we have 

available for amyloid studies (N = 1000; as shown here).  This suggests potential generalizability 

of the models to problems associated with relatively small databases, such as the Waltz database 

we use later 107.   

Ultimately, these results demonstrate the CAE’s ability to relate sequences to an interesting 

activity. Even adding disturbances to the ideality of an artificially constructed database, the CAE 

was able to mine the patterns associated with the class of interest, and discern when a pattern had 

a leaning, rather than a fixed identity. This suggests the validity of this method for the task at hand: 

identifying characteristics and motifs of sequences that yield amyloidogenic behavior. 

CAE on an Experimental Database: Hydrophobicity  
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 Metrics related to hydrophobicity were found to be the most effective descriptors, and such 

a metric is used in both descriptors examined here. In Figure 4.4 B (and later in Figure 4.5 B) we 

can see a region of peptides with yellow or green amino acids in the middle (positions 3 and 4) 

and dark green or blue amino acids on the ends. This means peptides in this region of the latent 

space tend to be hydrophobic in the middle, and more hydrophilic on the ends, suggesting this type 

of amyloid fibril buries the hydrophobic core by stacking while the hydrophilic ends on the outside 

interact with water. It should be noted in both cases much of this region is an extrapolation by the 

model (there are few data points in the latent space in these regions). While extrapolation must be 

taken with caution, this motif in this “most-likely amyloid” region is worth noting due to the 

intuitive sense that hydrophobic amino acids should be buried away from the solvent.  This 

motivates further investigation on sequences capturing this motif. In other words, if a goal is to 

investigate the coarse forces driving amyloid formation or design new amyloid forming peptides, 

the CAE’s extrapolation can be a hypothesis to pursue. 

 

Figure 3.4 Representative model trained using hydrophobicity and monomer cross section (MCS). (A) All sequences 

in the validation set plotted in latent space. Each axis here is the value of one of the latent space nodes. The color of 
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the point represents the experimental classification of that peptide. (B) and (C) show the reconstructed descriptions.  

The axes here also represent values in the latent space, but the markers represent peptide descriptions. Each group 

of six dots represents a peptide, and the color of that dot represents the reconstructed descriptor value at that point 

in latent space. (B) depicts the hydrophobicity of the peptides, where yellow is hydrophobic, and blue is hydrophilic. 

(C) depicts the monomer cross section (MCS) of each point in latent space. Here yellow is a large cross section, and 

blue a small cross section. 

There also exists some signs of the West et al result 89 of NPNPNP (P = hydrophobic (polar), 

N = hydrophilic (non-polar) within the core residues (2, 3, 4, 5) in both models. This patterning is 

also characterized by less extreme hydrophobicity, suggesting this motif is preferred by those 

residues with moderate hydrophobicity values. It is worth noting this region has been interpolated 

as there are many amyloid points in this region of the latent space; we can then be more confident 

that these motifs are well-represented within the database. Observations based on this interpolated 

region could also provide grounds to investigate forces driving amyloid formation or to inspire 

novel amyloid forming peptides.  

 These two motifs are consistently represented in the amyloid region independently of the 

second descriptor, giving further confidence these motifs are mirrored in the data.  

CAE on an Experimental Database: Monomeric Cross Section 

 Figure 4.4 represents a model trained using Monomeric Cross Section (reported in Table 

1) and hydrophobicity as the descriptors. The populated region on the amyloid side tends to include 

mid-to-large residues, while the populated region in the non-amyloid side tends to include small 

residues. This could suggest a preference for bulky side chains, perhaps to help drive amyloid 

stability through surface-area dependent forces such as van der Waals.  Additionally, on the 

amyloid side, there is some alternation of large and small residues. We also note that 

hydrophobicity similarly alternates in the same region of latent space. Perhaps this alludes to a 

connection between the size of a side chain and its potential for stronger hydrophobic-related 
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forces resulting in a preference for sequences that alternate large, hydrophobic residues and small, 

hydrophilic residues120–122.  

Monomer Cross Section and Dimeric Isotropic Deviation 

 

 

Amino acid 

Monomer 

Cross Section 

(Å±Standard 

Deviation) 

Dimeric 

isotropic 

deviation, 

𝚫𝒊𝟐 

× 𝟏𝟎𝟎 (± 

Standard 

Deviation) 

Glutamic acid 61.9 ± 0.3 -6.1 ± 0.3 

Leucine 65.3 ± 0.2 -5.8 ± 0.4 

Isoleucine 64.2 ± 0.4 -4.8 ± 0.5 

Glutamine 63.3 ± 0.1 -4.7 ± 0.4 

Valine 58.8 ± 0.2 -4.7 ± 0.7 

Methionine 65.6 ± 0.3 -4.5 ± 0.2 

Proline 56.5 ± 0.2 -3.2 ± 0.2 

Histidine 66.3 ± 0.4 -2.9 ± 0.5 

Threonine 56.3 ± 0.3 -2.5 ± 0.6 

Aspartic acid 57.8 ± 0.4 -1.7 ± 0.5 

Arginine 71.8 ± 0.2 -1.0 ± 0.4 

Asparagine 59.0 ± 0.4 -0.1 ± 0.5 

Lysine 65.4 ± 0.2 0.5 ± 0.4 

Alanine 50.6 ± 0.3 0.8 ± 0.3 

Serine 52.1 ± 0.5 1.2 ± 0.9 

Phenylalanine 72.0 ± 0.4 3.5 ± 0.6 

Tyrosine 75.2 ± 0.3 4.0 ± 0.0 

Tryptophan 81.3 ± 0.7 6.0 ± 1.0 

Cysteine 55.7 ± 0.3 9.2 ± 0.3 

Glycine 49.1 ± 0.4 11.6 ± 0.5 

 

Table 3.1 Experimentally measured monomer cross section and dimeric isotropic deviation (𝛥𝑖2) for each amino acid. 

The 𝛥𝑖2 have been multiplied by 100 for ease of reading. Convention dictates a negative value is associated with 

growth larger than isotropic prediction, zero is isotropic growth, and a positive deviation growth more compact than 

the isotropic prediction. 
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Introducing Dimeric Isotropic Deviation (DID)  

To offer insight into isotropic deviation, consider growth around a sphere as material is added. 

If that volume is distributed equally around the object, isotropically, it is straight-forward to write 

an equation which predicts the cross section when material is added: 𝜎𝑖𝑠𝑜 = 𝜎0 (
𝑉

𝑉0
)

2 3⁄

, where 𝑉0 

is the original volume of the sphere , 𝑉 the final volume of the sphere, 𝜎0 the cross section of the 

original sphere, and 𝜎𝑖𝑠𝑜 the cross section given isotropic addition of volume. If that volume is not 

added isotropically, or the overall density changes, the system will deviate from that prediction. In 

the same way, if we calculate the volume of an amino acid based off our experimentally measured 

cross section and assume isotropic growth, we can predict the cross section of an oligomer (in this 

case, a cluster of amino acids) based on the volume of the monomer using the equation 𝜎𝑛
𝑖𝑠𝑜 =

𝜎1
𝑒𝑥𝑝 𝑛2/3, where 𝑛 is the number of amino acid molecules in the oligomer 110. Most amino acids 

do not grow isotropically, and we call the degree of deviation from this growth isotropic deviation.  

It is intuitive that this property of amino acid aggregation could be used to make predictions 

about the aggregation properties of peptides since it reflects some degree of order in the amino 

acid aggregates. In the Do paper, isotropic deviation is measured for different large order oligomers 

(n = 20 to 30), but was only measured for five amino acids, and verified on three peptides 110. As 

we collected more data on aggregation of amino acids, we found that this value was oligomer size 

dependent. We also found the monomer and dimer to be the only oligomer sizes that we could 

consistently observe across all amino acids. The desire for a systematic metric for all amino acids 

drove the development of what we call DID (reported in Table 1). For the data available, 

comparison of Do’s measure and DID does not show strong correlation, however DID’s basis in 

peptide packing behavior suggests a potential relation to amyloid formation.  
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Use of DID (a descriptor to be assessed) along with hydrophobicity (a known strong descriptor) 

shows an important power of the CAE: the ability to assess the relationship between a potential 

descriptor and classification.  The strong descriptor essentially scaffolds the latent space’s shape, 

ensuring good classifications, while the other descriptor can then be used to refine details within 

the latent space, either indicating that descriptor’s relationship to the activity through meaningful 

contributions, or no such relationship through a lack of systematic contributions. This process is 

illustrated below. 

CAE on an Experimental Database: Dimeric Isotropic Deviation (DID) 

Here we probe the relationship between DID and amyloid propensity. For the most part, Figure 

4.5 C shows few features in the amyloid region and the peptides are generally on the extended side 

of DID. The top left shows some signs of compact DID. This is also the same region where the 

hydrophobic core motif is represented. Like the monomer cross section result, here the 

hydrophobicity is likely the larger factor governing amyloid formation, as evidenced by the larger 

diversity of hydrophobicity motifs in the amyloid region. In the non-amyloid region, there exists 

a region of mixed amyloid and non-amyloid points (middle of the plots), as well as a region of 

pure non-amyloid points (the right of the plots), reminiscent to the pattern we saw in the 

distribution of points during the first validation experiment (Fig. 3 A). Within these regions the 

hydrophobicity motifs have relatively low diversity, being generally hydrophilic, while there is 

greater diversity in the DID motifs. Critically, as one moves deeper into the non-amyloid region, 

one observes a rise in the compactness of the residues. Thus, in the same way the model from Fig. 

3 A determined the archetype in the pure green region, the CAE has determined a strong 

relationship between compactness and a failure to grow fibrils – the extrapolated “least 

amyloidogenic” peptides (those that would appear in the bottom right of Fig. 5 C) are most strongly 
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characterized by a higher degree of compactness, with less distinguishing features in 

hydrophobicity representation.  

 

Figure 3.5 Representative model trained using hydrophobicity and DID.  This figure is the same representation of a 

model as Fig. 4except (C) depicts the DID of each point in latent space. Here yellow is extended growth, and blue is 

compact growth. 

These results provide potential insight about how DID relates to amyloid formation. Namely, 

compact growth of the amino acids could block the amyloid process of the peptide when 

hydrophobic interactions are not a significant driving force of amyloid formation. While it was not 

found that DID could be used by itself to attain reliable correlations with amyloid-forming 

behavior, likely due to the specificity of the interaction observed at the dimer level, the CAE 

determined that DID could be strongly related to a failure to form fibrils.  Further, from this 

observation we may gain some insight about the differences between amyloid forming 

hexapeptides, and larger proteins.  The residue with the most compact isotropic deviation is 
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glycine, and indeed the peptides in the non-amyloid forming/compact isotropic deviation region 

of the latent space are rich in glycine.  This is a curious result since amyloids are often associated 

with glycine rich proteins as they tend to be intrinsically disordered 123,124.  Further, it has also 

recently been shown that glycine is an essential residue in cylindrin formation125–127, a structure 

that may be responsible for breaching the plasma membrane potentially leading to neuron death.  

However, for cylindrin formation peptide lengths on 11 or more amino acids are required. Here, 

however, we see the opposite trend.  Perhaps amyloid structures for small hexapeptides are 

destabilized by the lack of side chains from glycine. Larger proteins have more backbone 

interactions and other non-glycine side chains to stabilize the amyloid structure.  This observation 

may help in understanding how to use data taken on hexapeptides to make predictions about 

proteins.  Precise mechanistic insight is beyond the capability of this method. However, its ability 

to obtain correlations may motivate more detailed experiments or simulations which can 

investigate the hypotheses yielded by the trends within the CAE’s latent space representations. 

4.4 Conclusions 

Here we develop a method combining the techniques of an artificial neural network classifier 

and the variational autoencoder (VAE) to analyze a set of experimental data and produce 

relationships between properties of the peptides and their amyloidogenic activity. This method was 

validated on a set of artificially generated data, demonstrating its ability to perform the functions 

intended as well as demonstrate a robustness to both noisy and limited datasets – common features 

of currently available data for biochemical assembly systems.  

The CAE was then applied to the experimentally verified Waltz database to mine important 

motifs correlated to amyloidogenic behavior. The CAE was able to rediscover previously observed 

relationships regarding hydrophobicity and steric size and additionally establish a link between 



 

90 
 

DID and amyloidogenic activity. This observation demonstrates its ability to provide relationships 

between relatively complex input spaces and a reduced-dimension output associated with whether 

a peptide produces amyloid fibrils. This capability enabled us to observe an extrapolated but 

intuitive suggestion that hexapeptides with highly hydrophobic, bulky cores and hydrophilic, 

smaller termini will be among the most likely to form fibrils. We were also able to detect that the 

database has a strong representation of sequences in which alternating patterns of hydrophobic and 

intermediate residues correlate to amyloid formation.  

In addition, we used this method to elucidate the relationship between novel descriptors (such 

as the newly reported DID) and activities of interest. The CAE was able to extract trends within 

the DID of peptides, and demonstrate a relationship to amyloidogenicity, even though this 

relationship only weakly contributed to the overall score of the model. The hydrophobicity of the 

peptide dominates in this database, but we are still able to observe cases where hydrophobic forces 

did not strongly contribute, and compact amino acid growth could be clearly associated with failure 

to form amyloid.  

This method can easily be generalized to analyze many problems that involve understanding 

complicated data. There are no restrictions on the number of classes or inputs that can be 

considered, and while we use classification in the latent space, other loss functions could be used 

to alter the meaning of the axes. While we demonstrated this works on relatively small datasets, 

we took great care to avoid overfitting. The more inputs (and thus hidden layer fitting parameters) 

and the smaller the dataset, the more likely the model will overfit.  

We believe we have successfully illustrated a quick and understandable analysis of high 

dimensional, nonlinearly dependent data. We set out to probe the relationship between DID and 

amyloid formation, and our method offered a relatively rapid way to obtain correlations of 
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significance. The general approach established here could be used to mine databases for directions 

to take when considering future experiments. As science continues to move to higher throughput 

methods, higher dimensionality, and more complicated systems, machine learning methods have 

flourished at the cost of physical/chemical insight. Here we have used a prescription to open the 

black box and have offered a way to gain intuitive insight to the system which has been modeled, 

while retaining the full power of machine learning’s modeling abilities. 
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Chapter 5) Characterizing Epistasis of fRNA Fitness Landscapes Using 

Entropy  

5.0 Forward 

So far, the characterization of biopolymers has focused on polypeptides, either in the abstract, 

as in the coarse-grained models of Chapters 2 & 3, or in the immediate, as in the database of 

Chapter 4. Chapter 5 represents a shift away from polypeptides to focus on polynucleotides, 

specifically ribonucleic acid polymers, or RNA. 

This is not outside the purview of this dissertation so far, as polynucleotides and polypeptides 

share key isomorphisms that make their modeling extremely similar in key regards. As described 

in Chapter 1, both categories of polymer can be described as a sequence of monomers drawn from 

a characteristic “alphabet”. In human polypeptides, this alphabet contains the 20 amino acids. In 

polynucleotides, the alphabet contains the 4 nucleotides associated with either the RNA 

nucleobases or the DNA nucleobases. 

Because of this abstract shared identity, both classes of polymers can be treated similarly at 

the level of information modeling. The methods of simulation applied to polypeptides in Ch. 1 & 

Ch. 2 could, and often are, be applied to chains of ribonucleic acids. Similarly, the process of 

mining a database for sequence motifs associated with a desired binary activity could be applied 

to polynucleotides, assuming that a broad enough database of active and inactive sequences can 

be acquired. 

Polynucleotides tend to be viewed primarily under the paradigm of storing or transmitting 

genetic information. While this is a key function, RNA in particular is known to occasionally serve 

in a manner more similar to the protein machineries – that is, it will possess a chemical function, 

and can catalyze reactions with itself or other molecules. Such RNA is known as function RNA 
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(fRNA), and due to theories regarding the earliest biomolecules, investigation in fRNA abilities 

are implicated in elucidating the origins of terrestrial life. 

An essential informatic structure regarding these explorations is the fitness landscape, which 

relates variations in a sequence of RNA, or genotype, to its ability to perform a specific activity. 

Advances in experimental methods has enabled the collection of large databases of information in 

the form of these landscapes, inviting a need to model these structures in terms that easily 

quantifies the factors most relevant to developing theories of molecular evolution. 

As such, Chapter 5 applies a core tool of information theory to extract information from a 

fitness landscape model and represent it in terms of how sites along an fRNA sequence interact 

with one another, affecting the activity of interest. It represents the power of stepping away from 

seeing the biopolymer world as implicitly linked the physics of chemistry and seeing through the 

lens of pure statistics and information quantities. This is a fitting testament to the paradigm of 

information first modeling. 

5.1 Introduction 

The ‘fitness landscape’ is one of the determining factors in molecular evolution. These 

landscapes encode fundamentally the propensity of a given molecular sequence to possess a given 

activity. Knowledge of these landscapes is necessary for a fully understanding of these activities 

then, with collection and synthesis of the information they contain representing an important goal 

in advancing scientific understanding of functional RNAs. A predominant paradigm in the analysis 

of fitness landscapes is viewing evolution as a random walk along these landscapes20, with much 

research being done on improving understanding of these topographical structures. 
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Substantial work had been done developing theoretical models of fitness landscapes to assist 

in their characterization, and have been covered in recent reviews128,129. These works tend to view 

evolution as a serial process in which an organism moves through some favored path toward a 

genetic optimum. Endemic to this paradigm is the question of how an genotype moves through 

this landscape, either by crossing low-fitness valleys130 or exploiting the probabilistic implications 

of high dimensionality in sequence space to move monotonically toward higher fitness131,132. Many 

models of fitness landscapes exist, ranging from simple additive models to enhanced models 

capable of integrating the complexities of epistatic interaction133–136. Indeed, quantifying epistasis 

is such an essential element of characterizing the structure of fitness landscapes that many direct 

or indirect measures of epistasis, such the divergence from additivity, the ratio of roughness over 

additive fitness, the fraction of sign epistasis, Fourier spectral analysis and multiple other 

techniques have been explored137. 

With the realization of new methods in the massive collection of data across fitness 

landscapes138–141 new means of quantifying their attributes have become accessible. Methods for 

approximating RNA secondary structure142–146 from the primary sequence has been extremely 

useful in this regard however when considering the interpretation of the vast quantities of data 

available from contemporary methods, simulation techniques are limited by the need for researcher 

oversight in the examination of each potential sequence. This can easily become prohibitive.  

In this paper, we use the paradigm that the fitness – here the activity of a self-aminoacylating 

piece of fRNA – can be viewed as a random variable whose samples can be drawn from controlled 

ensembles. We further choose to study the mutation space that is implicitly associated with any 

sequence space – we view the fitness space in terms of changes to the fRNA activity rather than 

focusing on the value of the activity for any given sequence. With this combination of viewpoints, 
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we can apply the tools of information theory to study two empirical fitness landscapes and quantify 

insights regarding interactions between residues and site-specific relevance of epistatic effects. 

This bears resemblance to work that considers epistasis in terms of statistical correlations of 

mutations147. This work adopts those mutational ensembles, but rather than focusing on 

correlations instead approaches the problem from the perspective of the entropy content of these 

associated distributions. This abstracts the problem to the level of information content, providing 

a highly general framework of analyzing these spaces in terms of variables of potential interest. 

By adopting the information theoretic perspective of big data, this method will be amicable to 

the ever-growing capability to produce empirically realized fitness landscapes and rapidly 

characterize site-specific information from that data. This may enable the improvement of existing 

theoretical models, refinement of thinking on evolutionary processes, or else enable abstract 

comparison of many fitness landscapes in search of trends. Ultimately, it allows epistasis to be 

characterized at the level of the entire fitness landscape or to the degree of nucleotide epistatic 

interactions with other locations within the sequence. 

To this end, we use relative entropy, a quantity associated with the training of machine learning 

algorithms such as decision trees. Concisely, the relative entropy quantifies the amount of 

uncertainty about a random variable when one can observe a variable from another potentially 

related variable. It is related to the Kullback-Leibler divergence21,148, which has found a wide 

variety of applications over numerous fields149–153, acting a critical metric in the development of 

artificial intelligence and refining machine learned models. 

This work uses data gathered by a method introduced in a previous publication154. The SCAPE 

(sequencing to measure catalytic activity paired with in vitro evolution) combined method for 

sampling large swathes of a fitness landscape. The object of study is a RNA sequence 71 
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nucleotides in length, of the form 5’-CON1-VAR-CON2-3’, where CON1 is a 26 nucleotide length 

sequence of constant nucleotides, VAR is a 21 length sequence of variable nucleotides and CON2 

is a 24 length constant sequence of constant nucleotides. The prior work performed identified 5 

families of ribozyme within this sequence space. The five families were individually capable of 

performing the key activity of covalently attaching aminoacyl groups. This reaction has particular 

significance due to it potential involvement in the formation of compounds that could have 

potentially functioned as a prebiotic chemically activated amino acid, capable of forming the 

earliest peptides155. The data is collected using a process called k-seq, which provides the activity 

of the ribozyme catalysts in terms of kA, where k is a rate constant (min-1 M-1) and A is the 

maximum amplitude of reaction from the experiment, a unitless quantity. For the families of 

enzymes considered the parameters cannot be estimated separately, however their product 

provides viable insight into the catalytic rate of the polymer.  

This work focuses on the analysis of a family of aminoacylating ribozymes referred to in 

previous work as S-1B.1-a (see prior work for nomenclature). The database of sequences mined 

for information represents an exhaustive coverage of the sequence space within two Hamming 

distance of a core seed sequence, which we call S1B. 

 In the following sections, we calculate the conditional entropy associated with knowing the 

identity of a target nucleotide when considering the effect of a mutation on a specific site of the 

variable region of the RNA polymer. We connect the values of this conditional entropy to 

significance in assessing the activity of the ribozyme, prescribing a quantitative metric for locating 

sites of interest along the biopolymer chain. This is, to the author’s best knowledge, the first 

instance of applying conditional entropy to quantify structure-activity relationships and elucidate 

epistatic connections between activity and site-specific couplings using a systematic process of 
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considering ensembles of mutations within a fitness landscape. The hope is that the generalizability 

and deep connections to information content will yield a satisfying and robust approach to 

characterizing these sorts of landscapes, in a way that does not necessarily depend on any assumed 

properties of the distributions in question. 

5.2 Methods  

As stated in Chapter 1, the relative entropy of a random variable X when considered with a 

covarying conditioning random variable A is defined as follows: 

𝑅𝐸𝑋𝐴 = 𝐷𝐾𝐿(𝑃𝑋(𝑥, 𝑎)||𝑃𝑋(𝑎)) =  ∑ 𝑝(𝑥, 𝑎)𝑙𝑜𝑔𝑏 (
𝑝(𝑥, 𝑎)

𝑝(𝑎)𝑝(𝑥)
)

𝑥 𝜖 𝑿,𝑎 𝜖 𝑨

 

Where p(x,a) is the joint probability distribution of variable X on conditioning variable A, and 

x, a are the values from the sampling ensemble. The logarithmic root b allows for a choice of units. 

In this work we set this value to 2, so that all information is in units of bits. The sum is taken over 

the support set of the probability mass functions associated with X and A. We note that in the case 

of unrelated variables that p(x,a) = p(x) p(a) and REXA = 0, reflecting that fact that knowledge of 

one does not inform the other. 

We compute the relative entropy for a given site on the ribozyme as follows. The sequences 

are associated with values kA, which is treated as a variable kA that exists as samples from the 

‘random’ space of the variable region’s permutations. The probability mass function associated 

with this variable can be approximated by the generation of a histogram. Conditioning variables 

can then be chosen at will from the genotypes, and are broadly referred to in this work using the 

variable M. For example, if we are interested in the relative entropy of the first site along sequence 

then we can create a probability mass function for whether the residue is A (class one), U (class 
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two), C (class three), etc. This yields a quantity that relates the knowledge of the activity class to 

the genotype variable in terms of the amount of information one gains about the phenotype when 

one has knowledge of the genotype variable.  

A pdf for kA is approximated by producing a histogram over the range of kA values for the 

ensemble, similar to the discretization process used to compute the free energy landscapes of 

Chapter 2 with the WHAM43 method. The choice of bins in the histogram is treat as an arbitrary 

decision based on the observation it influences results significant only at extremes. For the 

purposes of this work, the histogram of kA was chosen to have 21 bins, with a maximum and 

minimum value defined by the complete mutation ensemble. 

With the pdfs for Ka and M, the relative entropy for a given set of sites is calculated as follows: 

𝑅𝐸{ni},{Mi} =   ∑ 𝑝(kA, M)𝑙𝑜𝑔2 (
𝑝(kA, M)

𝑝(M)𝑝(𝑘𝐴)
)

kA,M

  

See prior work for experimental details on how the fitness landscapes were collected. 

Secondary structures were calculated using mfold156. 

ε, Difference from Additivity 

We compare relative entropy to the quantity ε as a means of building intuition and verifying 

the relationship to epistasis. ε quantifies the epistatic contribution as follows: 

𝜀 = Δ𝑘𝐴𝑞𝑁𝑝,𝑙𝑀𝑘 − (Δ𝑘𝐴𝑞𝑁𝑝 + Δ𝑘𝐴𝑙𝑀𝑘) 

Where q, p ,l and k are nucleotide identities; N and M are the sites where the mutation occurs; and 

Δ implies the change in the quantity associated with the subscripted mutation. The mutants are 

computed with respect to the seed sequence as the wildtype. 
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5.3 Results & Discussion 

Figure 5.1 shows a similarity between the standard deviation of epsilon and the single-site 

entropy computed when considering the distribution of kA jointly with the nucleotide identity of 

site N along the variable region. 

We build intuition around the relative entropy quantity by observing the similarities. The 

standard deviation of ε captures the spread of the difference between the double mutation and 

additivity.  We can consider Figure 5.2 to build insight into these quantities, in which we plot a 

representation of the mutations affecting sites from the data cluster. These plots show the effects 

of mutation of single residues against a variety of backgrounds, reflecting the changes due to these 

residues and their interactions with the rest of the system. 

Figure 5.1 Two plots showing similarity between the standard deviation of ε, which quantifies epistasis as the difference between 
the actual change of a phenotype by a double mutant from the sum of the constituent single mutations, and the single site relative 
entropy. Both quantify the complexity of the mutations (STD(ε) as the spread of the differences and relative entropy as the 
information gain between knowing the identity of a site and the activity distribution) 
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The mutations are color coded according to the wildtype nucleotide at the indicated position. 

For high-entropy sites like 29 and 38 the high relative entropy is characterized by a greater 

diversity of mutations. The information gains by knowing the identity of these residues better 

informs our understanding of the kA distribution due to the wide set of values the mutation 

stretches over. Conversely, locations with low relative entropy (32 and 33 in Figure 5.2) tend to 

have their mutations clustered in smaller areas, speaking to the fact the identity of these nucleotides 

do not have complex interactions with the background and relatively low epistatic character. These 

residues might be considered ‘critical’ sites. In the cases of 32 and 33 (Figure 5.2) we can observe 

that the wildtype only has appreciable activity in cases where a certain nucleotide occupies the 

position. Conversely, we see more complex coloration patterns for the high-RE sites. We can note 

that this property was not well-captured by the ε-derived quantity, which characterized site 29 as 

being more similar to site 32 than site 38. In terms of the effects of mutation on this residue when 

Figure 5.2 Figures showing the single-site relative entropies calculated between the distribution of activities and the genotype 
of specific residues. Color of a point represents the wildtype’s nucleotide at that location, indicating the breakdown of 
genotype populations. Sites with higher relative entropy show more hierarchy, while sites with low relative entropy have 
distributions that contain relatively little information regarding the distribution of activities. 
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considering the complexities of interaction with the genetic background, this characterization is 

manifestly untrue for the examined data. 

The relative entropy provides reason to further investigate the importance of certain sites. Site 

38 is shown to have the highest single site RE, suggesting its identity provides the most information 

regarding the kA distribution. Secondary structure predictions by mfold156 helps interpret the 

significance of these residues. In Figure 5.3 we can observe that the predicted nucleophile in the 

acylation, G65, exists in flexible base pairing with C35 within the variable region. 

Figures 5.3B show mutations of sites including and nearby C35. Unsurprisingly, mutation of 

C35 itself disrupts the function of the ribozyme entirely, suggesting that the base pairing itself is 

of critical importance. Sites 36 & 37 exhibit similar intolerance of variable residues. This may 

suggest that closing the loop that opens after C35 is similarly destructive. Interestingly, site 34 

Figure 5.3 The predicted structure of seed S1B (kA = 53.84 min-1M-1) and several select mutation plots showing distributions 
characteristic of sites whose nucleotide identity is critical to ribozyme function. C35 (B2) is base paired to the nucleophile G65. 
Nearby residues have similarly strict identities, implying that the specific arrangement of C35 is important to the catalytic 
mechanism. Because this sites only confer information regarding whether or not a ribozyme is functional they possess low 
relative entropy compared to sites with more flexible identities, but whose interactions with the genetic background have 
sophisticated relation to the catalytic process. 
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shows signs of tolerance toward mutation – function is severely impacted, but there exist sequences 

for which function unambiguously exists for C34.  

The importance of the 36-38 loop is qualified by the observation that the highest functionality 

sequences are intimately tied to having A38 (Figure 5.2B4). However, the relationship of this 

location to the ribozyme function is the highest in the variable region as evidenced by the high 

relative entropy to the kA distribution. We can observe that all possible nucleotides are can 

possibly yield functional ribozymes. Interestingly, and predicted by the high relative entropy, these 

values are hierarchical within the distribution – adenine is preferred, then guanine, then cytosine 

and finally uracil. This existence of clear hierarchy, in addition to the wide span of potential values, 

is at the heart of the high relative entropy value. For the entire set, knowing the value of site 38 

helps ‘narrow down’ what the activity will be. Knowing the values of critical sites like 35 or 36 

will only provide information as to whether the ribozyme is functional or not and provides little 

information regarding the complex distribution within the subset of active ribozymes, thus despite 

the importance to function in a binary sense, the critical locales show little relative entropy and 

might best be detected using complementary analysis like conservation studies. 
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Knowing Site 38 prefers adenine for functionality strengthens the argument that the catalytic 

mechanism relies on the open loop 36-38. Figure 5.4 shows the predicted secondary structures for 

S1B and the three single mutants of site 38. Uracil results in the poorest functional ribozymes, 

likely due to the partial loop closure that is predicted to occur from the U38-A63 base pairing. 

C38’s activity is comparable to S1B, possibly due to interactions with G62 creating a more stable 

loop and interfering with the ability of G65 to depart its base pairing to C34. A38 is unambiguously 

the functional ribozyme, likely because the adenine has no possible base pairings that would not 

substantially strain the rest of the structure and thus the loop is fixed in the apparently ideal state. 

The region with high relative entropy at the beginning of the variable region is involved with 

Site 29 and is implied, based on relative entropy, to contain a high amount of information regarding 

the activity of the ribozyme. Secondary structure calculations show the value of the nucleotide 

affects the stability of the functional structure, suggesting the reason for its importance is the 

complex interactions this site and the surrounding region have with genetic background in 

Figure 5.4: Predicted secondary structures for mutants of site 38, showing a drop in function when the loop after the active 
site is closed. A38, for which the loop must remain open due to a lack of base pairing opportunities for adenine, shows the 
highest activity. U38, which is predicted to exist in a stable base pair with A63, closes the loop and the sequence has reduced 
function. 
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stabilizing the functional fold. This is how the area can impact the functionality of the ribozyme 

despite being distant from the catalytic site. These calculations are summarized in Table 5.1. 

Table 5.1 

Ribozyme Proper Fold Energy Activity 

S1B -14.20 kcal/mol 53.84 mol-1M-1 

G29 -14.20 kcal/mol 54.76 mol-1M-1 

C29 -13.30 kcal/mol 43.66 mol-1M-1 

U29 -13.70 kcal/mol 45.44 mol-1M-1 

Table 5.1 Showing the predicted energy of the functional fold for site 29 mutants. The identity of the nucleotide interacts with 
the sequence to stabilize or destabilizing the active fold and affects the overall catalytic capability. 

5.4 Conclusions 

We show that the relative entropy between an approximated probability density function of 

activities for a given database of sequences and the identity of a nucleotide at a given location in 

the sequence can be used to quickly characterize the complexity of a nucleotide’s interactions with 

the functional process. This is a means of quantifying epistasis, the phenomenon in which genes 

interact with potentially distant regions in a primary sequence to have non-additive effects. 

The relative entropy was related to ε, the difference between an additive mutation and the true 

mutation. Analysis was performed to demonstrate the relative entropy’s ability to characterize a 

system’s interaction and provide guidance in deducing a possible mechanism. 

Using relative entropy in combination with plots of mutations extracted from the network 

graph of the sequence space, we were able to establish the relative entropy’s deep connections to 

clarifying which locations in the primary sequence provide the most information regarding the 

phenotype distribution. Critical sites – sites essential for ribozyme function – contained low 



 

105 
 

information. While superficially counter-intuitive, these regions only contain information as to 

whether or not a sequence is function and are thus less informative than knowledge about sites 

with more complex interactions with functionality. Sites with high relative entropy were 

implicated through consideration of mutations and secondary structure prediction with more 

sophisticated effects on the catalytic capability, either through direct interaction with the catalytic 

site or by globally affecting the stability of the functional fold.  

Thus, relative entropy in combination with this sort of data can help detect locations in the 

primary sequence that mathematically provide the most guidance for forming a hierarchical 

understanding of subset of functional RNA. Paired with complementary analysis methods, this can 

be used to build insight into the mechanistic process. 

Because relative entropy is a foundational quantity in information theory, it is intimately 

related with machine learning algorithms, such as the formation of decisions trees. Thus, this 

research acts to help perform fundamental analysis using the quantity in hopes that these insights 

can be used to develop better machine intelligence algorithms for characterizing ribozyme 

behavior using the sorts of large datasets now available with high throughput experimentation. 

Broadly, relative entropy can be used to interrogate the information content of genetic variables 

with respect to their impact on activities. Because it is so fundamental, it is an extremely general 

and powerful approach that can be applied to any situation in which ample data is available relating 

primary sequence and an observable of interest. Combined with existing techniques such as 

conservation analysis and secondary structure prediction, the relative entropy can indicate regions 

in the gene that are mathematically most pertinent to informing our understanding of the 

distribution of activity within the sequence space. 
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Chapter 6) Conclusions 
 

The techniques present in this dissertation are promising and novel means of elucidating 

biological heteropolymers using the sorts of data that have become possible to generate in modern 

times. Molecular dynamics and information-based machine intelligence approaches provide a 

complementary framework for investigating the behavior and characterizing the dynamics of 

polymer systems. 

In Chapter 2, work was performed in which we established the utility of coarse grained 

molecular dynamics in assessing the general behavior of heteropolymer models with the intent of 

validating an assumption that has been used to make more efficient calculations regarding the 

behavior of proteins in solvated systems. In broader scheme of this dissertation it represented work 

showing the importance of validation when making approximations of complex behavior. We 

concluded a simpler scheme that the analyte approach was in certain cases stronger, and the analyte 

model of interaction was vulnerable to significant error. This provided physical insights into the 

behavior of bulk solutions of molecules versus simplified classical models in which the behavior 

of such systems are embedded into solutes at the level of pairwise interactions in their 

Hamiltonians. To capture the proper physics, pairwise terms displayed poor additive effects and 

consequently affected the predictions of the simulations. 

In Chapter 3, a variational autoencoder was used to reduce the representation of a large volume 

of data describing the assembly of peptide fibril structures using a coarse-grained model. This 

process allowed for the unsupervised discovery of an ‘order parameter’ for the system, 

qualitatively capturing the process by which a disordered system approached its favored ordered 

state. Such a method is helpful as larger volumes of data are generated using molecular dynamics, 
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as the automatic discovery and representation of broad phases or states is important for the proper 

analysis of these trajectories. The work in Chapter 3 showed a common form of neural network 

was compatible with these sorts of data sets, and that the ANNs could be used to extract insight 

from highly dimensional molecular dynamics trajectories on a large scale. 

Chapter 4 modified the neural network architecture used in Chapter 3 by coupling a variational 

autoencoder to a neural network classifier and forming a latent representation of amyloidogenic 

peptides from an experimental database of hexamers. This process allowed for the rapid 

visualization of characteristic motifs that can contribute to amyloid formation and enabled the 

investigation of novel features for their potential pertinence to amyloid activity. These motifs 

included the alternating pattern of hydrophobic and hydrophilic residues and hydrophobic core 

peptides that have been associated with fibril formation. Additionally, an experimental quantity 

called the dimeric isotropic deviation was analyzed using the classifying autoencoder for its 

potential relationship to amyloidogenic properties. It was found to be implicated in the blockage 

of fibril formation when monomers in the peptide are associated with spherical growth in their 

homogenous dimers. The classifying autoencoder presented an intriguing and useful way of 

interrogating the relationships between primary sequence patterns and amyloid forming behavior 

in solution. 

Finally, Chapter 5 focused on the application of essential information theory to quantify and 

characterize the epistatic character of site-specific nucleotides in the behavior of a functional 

ribozyme. Predictions backed by experimental evidence and secondary structure calculations 

verified the connection between the quantity calculated, relative entropy, and the complexity of a 

site’s interactions with the catalytic process of a self-acylating fRNA.  The relative entropy used 

here is a quantity involved in the formation of decisions trees, and it is the hope that these 
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investigations will aid in the development of more advanced machine learning techniques for 

characterizing the behavior of fRNA fitness landscapes. At a more immediate level, the relative 

entropy was used to identify loci in the fRNA primary sequence that were associated with complex 

interactions in the catalytic mechanism, such as the significance of a loop motif proximate to the 

catalytic site and the importance of a distant stem region seemingly implicated in the stability of 

the active fold. These sorts of datasets paired with entropy analysis can produce high priority 

targets in the primary sequence for direct experimental interrogation and could enable more rapid 

characterization of the nuanced interactions regions with higher epistatic behavior have with their 

relevant phenotypes. 

We conclude by remarking on the importance of creative and innovative application of novel 

modeling strategies as we move forward. While all models may indeed be wrong, contemporary 

methods in data collection and analysis have enable us to make them as right as possible. With 

ever-increasing experimental and computational capabilities, using diverse and complementary 

methods from simulation through information theory will be necessary to fully unlock the potential 

of understanding. Critical to this is modeling, either through first-principles approaches such as 

molecular dynamics or through data-down perspectives like those in neural network approaches. 

The availability of large datasets will increasingly improve our ability to develop and validate our 

models, while the ambition of gaining insight into larger and more complicated systems requires 

clever approximation and thorough validation. It is our hope that this work serves as a useful body 

for the purposes of improving the use of some of the explored methods in the field of biological 

chemistry, and that with continued effort biochemical models and analytic techniques will continue 

to grow and improve. 
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