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3.9 Predicted vs. experimental value correlation plots of 2 best per-
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as the method with the median RMSE of all ranked methods analyzed in the
challenge. Performance statistics of these methods is available in Table 3.4 . 132

3.10 Molecule-wise prediction error distribution plots show the predic-
tion accuracy for individual molecules across all prediction methods
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over all prediction methods. SM25 has the most spread in pK a prediction error.133

3.11 Chemical transformations that lead to common sign disagreements
among participants typically involve a protonated nitrogen in ter-
minal nitrogen groups, 1,2,3-triazoles, and isoxazoles. Shown are some
chemical transformations that repeatedly show up as having large disagree-
ment on the sign of the relative free energy prediction, as seen in Figure 3.13. 137

3.12 The average relative microstate free energy predicted per microstate
and the distribution across predictions in the SAMPL7 pK a chal-
lenge show how varied predictions were. Molecules are labeled with
their compound class as a reference. (A) The average relative microstate
free energy predicted per microstate. Error bars are the standard devia-
tion of the relative microstate free energy predictions. A lower standard de-
viation indicates that predictions for a microstate generally agree, while a
larger standard deviation means that predictions disagree. Predictions made
for microstates such as SM25_micro001, SM26_micro002, SM28_micro001,
SM43_micro003, SM46_micro003 widely disagree, while predictions for mi-
crostates such as SM26_micro004 are in agreement. (B) Distribution for each
relative microstate free energy prediction over all prediction methods shows
how prediction agreement among methods varied depending on the microstate.138
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3.13 The Shannon entropy (H) per microstate transition shows that par-
ticipants disagree on many of the signs of the relative free energy
predictions. Microstates with entropy values greater than 0 reflect increas-
ing disagreement in the predicted sign. Microstates with an entropy of 0 are
not shown here, but indicate that methods made predictions which had the
same sign for the free energy change associated with a particular transition.
About 44% of all microstates predictions disagreed with one another based on
the sign, and the rest agreed. Roughly 5% of microstates strongly disagreed
on the sign of predictions– meaning that predicted relative free energies were
fairly evenly split between positive, neutral, and negative values. This indi-
cates that these transitions were particularly challenging. . . . . . . . . . . 139

3.14 Structures of microstates where relative microstate free energy pre-
dictions disagree. Shown are some of the microstate transitions where par-
ticipants predictions largely disagree with one another, based on Figure 3.12.
The average relative free energy prediction (∆G) along with the standard
deviation are listed under each transition. . . . . . . . . . . . . . . . . . . . 140

3.15 Overall accuracy assessment for log D estimation. Both root-mean-
square error (RMSE) and mean absolute error (MAE) are shown, with error
bars denoting 95% confidence intervals obtained by bootstrapping over chal-
lenge molecules. REF00_ChemAxon [2] is a reference method and NULL0 is
a null method that was included after the blind challenge submission deadline,
and all other method names refer to blind predictions. Methods are listed out
in Table 3.5 and statistics calculated for all methods are available in Table 3.9.142

3.16 Predicted vs. experimental value correlation plots of all log D es-
timation methods in the SAMPL7 challenge. Dark and light green
shaded areas indicate 0.5 and 1.0 units of error. Error bars indicate standard
error of the mean of predicted and experimental values. Some SEM values
are too small to be seen under the data points. Performance statistics of all
methods is available in Table 3.9 . . . . . . . . . . . . . . . . . . . . . . . . 143

3.17 log D values from a combination of the best pK a and log P are
typically superior. Shown is the RMSE in calculated log D values, with
error bars denoting 95% confidence intervals from bootstrapping over chal-
lenge molecules. This plot is similar to Figure 3.4.3A, except it includes
some additional pK a and log P combinations (for log D estimation). Method
logP_experimental + EC_RISM combines the experimental log P with the
top performing pK a method (based on RMSE). Method logP_experimental +
pKa_experimental combines the experimental log P and pK a value. Method
TFE MLR + EC_RISM combines the best performing (based on RMSE)
log P and pK a methods. Method TFE MLR + pKa_experimental combines
the best performing (based on RMSE) log P method with the experimental
pK a. Method logP_experimental + DFT_M05-2X_SMD combines the ex-
perimental log P with an average performing pK a method. Method NES-1
(GAFF2/OPC3) B + pKa_experimental combines a log P method with aver-
age performance with the experimental pK a. All other methods are the same
as in Figure 3.4.3A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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3.18 Distribution of molecular properties of the 22 compounds from the
SAMPL7 physical property blind challenge. (A) Histogram of log P
measurements collected with Sirius T3 instrument. The ticks along the x-axis
indicate the individual values. Compounds have experimental log P values in
the range of 0.58-2.96. (B) Histogram of pK a measurements collected with
Sirius T3 instrument.. Eight compounds have measured pK a’s in the range of
4.49–6.62 and eleven in the range 9.58- 11.93. Two compounds are included
here as having pK a’s of 12, but actually had experimental values greater than
12, and were therefore outside of the experimental detection range. (C) His-
togram of log D measurements between n-octanol and aqueous buffer at pH
7.4 were determined via potentiometric titrations using a Sirius T3 instru-
ment, except for compounds SM27, SM28, SM30-SM34, SM36-SM39 which
had log D7.4 values determined via shake-flask assay. log D measurements
ranged from -0.87-2.96. (D) Histogram of molecular weights calculated for
the compounds in the SAMPL7 dataset. The molecular weight ranged from
227-365 Da. (E) Histogram of the number of rotatable bonds in each molecule.
The number of rotatable bonds in challenge molecules ranged from 3-6. . . 152

3.19 Overall correlation assessment for all methods participating in the
SAMPL7 log P challenge show that the uncertainty of each corre-
lation statistic is quite high, not allowing a true ranking based on
correlation. Pearson’s R2 and Kendall’s Rank Correlation Coefficient Tau
(τ) are shown, with error bars denoting 95% confidence intervals obtained by
bootstrapping over challenge molecules. Submitted methods are listed in Ta-
ble 3.1. The submission REF1 ChemAxon was a reference method included
after the blind challenge submission deadline, and NULL0 mean cLogP FDA
is the null prediction method; all others refer to blind predictions. Most meth-
ods have a statistically indistinguishable performance on ranking because of
the small dynamic range of the dataset. Evaluation statistics calculated for
all methods are available in Table 3.6 of the Supplementary Information. . . 154

3.20 Compound classes and structures of the molecules in the SAMPL7
physical property challenge. SMILES of the compounds are in Table 3.20. 160
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4.1 Molecular interactions between atoms are turned off and on dur-
ing a NCMC move to translate a water molecule. In this cartoon,
water molecules are represented here by red and white spheres for the oxy-
gen and hydrogen atoms. The black-filled water represents a fully interacting
water molecule that has been selected to be moved. Gray-filled water rep-
resents intermediate levels of interaction and white-filled represents the fully
non-interacting water molecule. A) The water molecule (in black) is fully
interacting with its surrounding environment, and in this case, other water
molecules. B) The water’s interactions are partially off, allowing the other
water molecules to slightly relax. C) The water’s interactions are fully turned
off. D) The water is randomly translated to somewhere else in the system (in-
dicated by a black arrow) with its interactions remaining off. E) The water’s
interactions are partially turned on and the propagation steps of NCMC al-
low relaxation of the translated water and its surroundings to resolve clashes.
F) At the end of the NCMC protocol, the water molecule is once again in
the fully interacting state and in a new location. This entire process com-
prises a proposed NCMC move, which is accepted or rejected based on the
nonequilibrium work done in this process, and then followed by conventional
MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.2 Example of a user-defined radius that covers a particular area of
interest. Here, the MUP-1 protein-ligand system is shown. The radius used
(indicated by the black dashed line) defines a sphere around a user-selected
atom (represented by a blue star) in the system, such as an atom inside the
binding site of a protein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.3 Workflow of a BLUES iteration with translational water hopping
move proposals. Before any water is translated to a new location, the user
first selects an atom and picks a radius defining a sphere encompassing an
area of interest around the position of the atom and BLUES identifies all the
water and protein residues in the system. Afterward, BLUES goes through a
number of BLUES iterations n number of times, where each BLUES iteration
is as shown inside the dashed box. A schematic of the NCMC move process
is shown in Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.4 Systems used to test the ability of BLUES (NCMC/MD) water hop-
ping to allow the exchange of water. (A) A C60 buckyball with a single
trapped water molecule. (B) The buried hydration site of the MUP-1 protein
with a bound ligand. (C) The hydration site of the HSP90 protein bound to
a ligand. The protein-ligand systems have internal water(s) (indicated by the
black dashed line) that do not easily exchange with bulk. . . . . . . . . . . . 173

4.5 Impermeable graphene sheets divide a box into separate regions
with initially different densities, testing the ability of water hopping
moves to equilibrate the density. (A) The water box system with dividing
graphene sheets. (B) Shown here are the water densities between the two
sheets (blue) and outside the sheets (orange). The densities in the two regions
reach equilibrium and stabilize with this approach, serving to validate our
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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4.6 Increasing the amount of NCMC steps increases the rate of water
transfer from bulk to the internal hydration site in MUP-1. Ten
replicate simulations with different random seed numbers were run for each
NCMC step value. All of the BLUES simulations were run for 10,000 BLUES
iterations, with each iteration consisting of a certain number of steps of NCMC
and MD. The different colors indicate various amounts of NCMC steps used.
The success rate is equivalent to the ratio of the number of replicate simula-
tions where the MUP-1 site (Figure 4.4.B) has been hydrated relative to the
total number of replicate simulations. (A) shows that using a lower NCMC
step amount increases the number of BLUES iterations for the cavity to be-
come hydrated, such as 1,250 (green) and 2,500 (orange) NCMC steps. The
inset, (B), zooms in on the success rate at low iteration number and shows
that increasing the amount of NCMC steps decreases the number of iterations
needed. 5,000 (blue) NCMC steps needed a little more than 400 BLUES iter-
ations to hydrate the cavity and 30,000 (pink) NCMC steps needed no more
than 250 BLUES iterations to hydrate the cavity. . . . . . . . . . . . . . . . 178

5.1 The structure of the tetra-endomethyl OctaAcid (TEMOA) host. . 192
5.2 The structure of the five guests used in binding free energy prediction.192
5.3 Average prediction error in binding free energy calculations using

the new host parameters (Bespoke) and original host parameters
(Parsley) show there isn’t a statistically significant difference be-
tween the two methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.4 Predicted vs experimental value correlation plots of the two methods.194
5.5 The BespokeFit host is less likely to be in the collapsed stance

compared to the Parsley host when the ligand is not in the host
cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.6 Shown is the timeseries of the distance ratio of the distances of the
diagonal upper cavity phenyl groups for the BespokeFit–parameterized
host (blue) and the Parsley–parameterized host (orange) when guest
number # 1 is not in the binding pocket. . . . . . . . . . . . . . . . . 196

5.7 Shown is the timeseries of the distance ratio of the distances of the
diagonal upper cavity phenyl groups for the BespokeFit–parameterized
host (blue) and the Parsley–parameterized host (orange) when guest
number # 2 is not in the binding pocket. . . . . . . . . . . . . . . . . 197

5.8 Shown is the timeseries of the distance ratio of the distances of the
diagonal upper cavity phenyl groups for the BespokeFit–parameterized
host (blue) and the Parsley–parameterized host (orange) when guest
number # 3 is not in the binding pocket. . . . . . . . . . . . . . . . . 198

5.9 Shown is the timeseries of the distance ratio of the distances of the
diagonal upper cavity phenyl groups for the BespokeFit–parameterized
host (blue) and the Parsley–parameterized host (orange) when guest
number # 4 is not in the binding pocket. . . . . . . . . . . . . . . . . 199
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5.10 Shown is the timeseries of the distance ratio of the distances of the
diagonal upper cavity phenyl groups for the BespokeFit–parameterized
host (blue) and the Parsley–parameterized host (orange) when guest
number # 5 is not in the binding pocket. . . . . . . . . . . . . . . . . 200
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Computer-aided drug design aims to guide the discovery of compounds with optimal phar-

maceutical properties. Computational tools can evaluate large libraries of virtual molecules

to help prioritize new compounds to synthesize and test. Properties such as protein-ligand

binding affinity and physicochemical properties are of interest. To learn how reliable com-

putational models are, it’s necessary to evaluate the prediction accuracy of physicochemical

property prediction. In Chapter 2, I describe my work in testing the accuracy of free energy

calculations through partition coefficient predictions. In Chapter 3, I assess the accuracy of

pK a and partitioning predictions in a physical property prediction challenge. Additionally, I

present work in which I developed and/or applied computational chemistry tools. In Chap-

ter 4, I discuss my work on enhancing the sampling of water rearrangements through the

extension of a hybrid simulation method. In Chapter 5, I describe work towards improving

host-guest binding free energy calculations by refitting host force field parameters.
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Chapter 1

Introduction

Drug discovery and development is a long and time-consuming process that costs billions

of dollars. On average, it takes 10 years for a drug to be developed and approved for

prescription, and can cost up to several billion dollars to bring a new drug to the market.

Millions to billions of dollars are allocated to the preclinical studies where researchers search

for a molecule that acts against a target of interest with sufficient affinity and drug-like

properties.

In the lead optimization stage of drug discovery, initial “hits” that bind to a target receptor

are found and then modified to improve their physicochemical properties. This process

requires synthesis and experimentation, which can take months, and in some cases, even

years. Computational methods can be used in advance of synthesis to narrow down the

number of leads that need to be experimentally tested, saving thousands of dollars per

compound in synthesis costs and months of work.

Various computational methods are used to guide molecular design and find new potential

drugs and targets. Some examples of these methods are molecular dynamics simulations, free

energy calculations, and virtual screening. Although computational chemistry techniques are

1



widely used in industry and academia, there is still a need for improvement.

Here, I first present my work on two community-wide blind challenges in which I bench-

mark the accuracy of physicochemical predictions. Secondly, I present work on developing

a method for enhanced water sampling. Lastly, I describe work applying a tool to enhance

guest-host binding calculations.

In Chapter 2, I describe my work in testing the accuracy of free energy calculations through

partition coefficient predictions. I report on the results of the SAMPL6 log P blind chal-

lenge for 11 molecules and my reference calculation procedure. In Chapter 3, I assess the

accuracy of pK a and partitioning predictions in the SAMPL7 physical property prediction

challenge. In Chapter 4, I present my work on enhancing the sampling of water rearrange-

ments through a hybrid method that combines nonequilibrium candidate Monte Carlo simu-

lations and molecular dynamics. In Chapter 5, I describe work towards improving host-guest

binding free energy calculations by refitting host force field parameters.
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Chapter 2

Assessing the accuracy of octanol-water

partition coefficient predictions in the

SAMPL6 Part II log P Challenge

Mehtap Işık*, Teresa Danielle Bergazin*, Thomas Fox, Andrea Rizzi, John D. Chodera, and

David L. Mobley.

* – Denotes equal contribution.

Journal of Computer-Aided Molecular Design volume 34, pages 335–370 (2020)

doi: 10.1007/s10822-020-00295-0

Publication Date (Web): February 27, 2020

2.1 Abstract

The SAMPL Challenges aim to focus the biomolecular and physical modeling community

on issues that limit the accuracy of predictive modeling of protein-ligand binding for ratio-
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nal drug design. In the SAMPL5 log D Challenge, designed to benchmark the accuracy

of methods for predicting drug-like small molecule transfer free energies from aqueous to

nonpolar phases, participants found it difficult to make accurate predictions due to the com-

plexity of protonation state issues. In the SAMPL6 log P Challenge, we asked participants

to make blind predictions of the octanol-water partition coefficients of neutral species of 11

compounds and assessed how well these methods performed absent the complication of pro-

tonation state effects. This challenge builds on the SAMPL6 pK a Challenge, which asked

participants to predict pK a values of a superset of the compounds considered in this log P

challenge. Blind prediction sets of 91 prediction methods were collected from 27 research

groups, spanning a variety of quantum mechanics (QM) or molecular mechanics (MM)-based

physical methods, knowledge-based empirical methods, and mixed approaches. There was a

50% increase in the number of participating groups and a 20% increase in the number of sub-

missions compared to the SAMPL5 log D Challenge. Overall, the accuracy of octanol-water

log P predictions in SAMPL6 Challenge was higher than cyclohexane-water log D predic-

tions in SAMPL5, likely because modeling only the neutral species was necessary for log P

and several categories of method benefited from the vast amounts of experimental octanol-

water log P data. There were many highly accurate methods: 10 diverse methods achieved

RMSE less than 0.5 log P units. These included QM-based methods, empirical methods, and

mixed methods with physical modeling supported with empirical corrections. A compari-

son of physical modeling methods showed that QM-based methods outperformed MM-based

methods. The average RMSE of the most accurate five MM-based, QM-based, empirical,

and mixed approach methods based on RMSE were 0.92±0.13, 0.48±0.06, 0.47±0.05, and

0.50±0.06, respectively.

2.1.1 Abbreviations

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands
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log P log10 of the organic solvent-water partition coefficient (Kow) of neutral species

log D log10 of organic solvent-water distribution coefficient (Dow)

pK a −log10 of the acid dissociation equilibrium constant

SEM Standard error of the mean

RMSE Root mean squared error

MAE Mean absolute error

τ Kendall’s rank correlation coefficient (Tau)

R2 Coefficient of determination (R-Squared)

QM Quantum Mechanics

MM Molecular Mechanics

2.2 Introduction

The development of computational biomolecular modeling methodolgoies is motivated by

the goal of enabling quantitative molecular design, prediction of properties and biomolecular

interactions, and achieving a detailed understanding of mechanisms (chemical and biological)

via computational predictions. While many approaches are available for making such pre-

dictions, methods often suffer from poor or unpredictable performance, ultimately limiting

their predictive power. It is often difficult to know which method would give the most accu-

rate predictions for a target system without extensive evaluation of methods. However, such

extensive comparative evaluations are infrequent and difficult to perform, partly because no

single group has expertise in or access to all relevant methods and also because of the scarcity

of blind experimental data sets that would allow prospective evaluations. In addition, many
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publications which report method comparisons for a target system constructs these studies

with the intention of highlighting the success of a method being developed.

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) Challenges

[http://samplchallenges.github.io] provide a forum to test and compare methods with

the following goals:

1. Determine prospective predictive power rather than accuracy in retrospective tests.

2. Allow a head to head comparison of a wide variety of methods on the same data.

Regular SAMPL challenges focus attention on modeling areas that need improvement, and

sometimes revisit key test systems, providing a crowdsourcing mechanism to drive progress.

Systems are carefully selected to create challenges of gradually increasing complexity span-

ning between prediction objectives that are tractable and that are understood to be slightly

beyond the capabilities of contemporary methods. So far, most frequent SAMPL challenges

have been on solvation and binding systems. Iterated blind prediction challenges have played

a key role in driving innovations in the prediction of physical properties and binding. Here

we report on a SAMPL6 log P Challenge on octanol-water partition coefficients, treat-

ing molecules resembling fragments of kinase inhibitors. This is a follow-on to the earlier

SAMPL6 pK a Challenge which included the same compounds.

The partition coefficient describes the equilibrium concentration ratio of the neutral state of

a substance between two phases:

logP = log10Kow = log10
[unionized solute]octanol
[unionized solute]water

(2.1)

The log P challenge examines how well we model transfer free energy of molecules between
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different solvent environments in the absence of any complications coming from predicting

protonation states and pK a values. Assessing log P prediction accuracy also allows evaluat-

ing methods for modeling protein-ligand affinities in terms of how well they capture solvation

effects.

2.2.1 SAMPL Challenge History and Motivation

The SAMPL blind challenges aim to focus the field of quantitative biomolecular modeling

on major issues that limit the accuracy of protein-ligand binding prediction. Companion

exercises such as the Drug Design Data Resource (D3R) blind challenges aim to assess the

current accuracy of biomolecular modeling methods in predicting bound ligand poses and

affinities on real drug discovery project data. D3R blind challenges serve as an accurate

barometer for accuracy. However, due to the conflation of multiple accuracy-limiting prob-

lems in these complex test systems it is difficult to derive clear insights into how to make

further progress towards better accuracy.

Instead, SAMPL seeks to isolate and focus attention on individual accuracy-limiting issues.

We aim to field blind challenges just at the limit of tractability in order to identify underlying

sources of error and help overcome these challenges. Working on similar model systems or

the same target with new blinded datasets in multiple iterations of prediction challenges

maximize our ability to learn from successes and failures. Often, these challenges focus on

physical properties of high relevance to drug discovery in their own right, such as partition

or distribution coefficients critical to the development of potent, selective, and bioavailable

compounds.

The partition coefficient (log P) and the distribution coefficient (log D) are driven by the

free energy of transfer from an aqueous to a nonpolar phase. Transfer free energy of only

neutral species are considered for log P , whereas both neutral and ionizable species con-
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Figure 2.1: The desire to deconvolute the distinct sources of error contributing
to the large errors observed in the SAMPL5 log D challenge motivated the
separation of pK a and log P challenges in SAMPL6. The SAMPL6 pK a and log P
challenges aim to evaluate protonation state predictions of small molecules in water and
transfer free energy predictions between two solvents, isolating these prediction problems.

tribute to log D . Such solute partitioning models are a simple proxy for the transfer free

energy of a drug-like molecule to a relatively hydrophobic receptor binding pocket, in the

absence of specific interactions. Protein-ligand binding equilibrium is analogous to parti-

tioning of a small molecule between two environments: protein binding site and aqueous

phase. Methods that employ thermodynamic cycles, such as free energy calculations, can

therefore use similar strategies for calculating binding affinities and partition coefficients, and

given the similarity in technique and environment, we might expect the accuracy on log P

and log D may be related to the accuracy expected from binding calculations, or at least

a lower bound for the error these techniques might make in more complex protein-ligand

binding phenomena. Evaluating log P or log D predictions makes it far easier to probe the

accuracy of computational tools used to model protein-ligand interactions and to identify

sources of error to be corrected. For physical modeling approaches, evaluation of partition

coefficient predictions comes with the additional advantage of separating force field accuracy

from protonation state modeling challenges.
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The SAMPL5 log D challenge uncovered surprisingly large modeling errors Hy-

dration free energies formed the basis of several previous SAMPL challenges, but distribu-

tion coefficients (log D) capture many of the same physical effects—namely, solvation in

the respective solvents—and thus replaced hydration free energies in SAMPL5 [191, 19].

This choice was also driven due to a lack of ongoing experimental work with the poten-

tial to generate new hydration free energy data for blind challenges. Octanol-water log D

is also a property relevant to drug discovery, often used as a surrogate for lipophilicity,

further justifying its choice for a SAMPL challenge. The SAMPL5 log D Challenge al-

lowed decoupled evaluation of small molecule solvation models (captured by the transfer

free energy between environments) from other issues, such as the sampling of slow recep-

tor conformational degrees of freedom. This blind challenge generated considerable insight

into the importance of various physical effects [19, 191]; see the SAMPL5 special issue

(https://link.springer.com/journal/10822/30/11/page/1) for more details.

The SAMPL5 log D Challenge used cyclohexane as an apolar solvent, partly to further

simplify this challenge by avoiding some complexities of octanol. In particlar, log D is

typically measured using water-saturated octanol for the nonaqueous phase, which can give

rise to several challenges in modeling accuracy such as a heterogeneous environment with

potentially micelle-like bubbles [110, 29, 38, 129], resulting in relatively slow solute transitions

between environments [29, 48]. The precise water content of wet octanol is unknown, as it is

affected by environmental conditions such as temperature as well as the presence of solutes,

the organic molecule of interest, and salts (added to control pH and ionic strength). Inverse

micelles transiently formed in wet octanol create spatial heterogeneity and can have long

correlation times in molecular dynamics simulations, potentially presenting a challenge to

modern simulation methods[110, 29, 38, 129], resulting in relatively slow solute transitions

between environments [29, 48].

Performance in the SAMPL5 log D Challenge was much poorer than the organizers initially
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expected—and than would have been predicted based on past accuracy in hydration free

energy predictions—and highlighted the difficulty of accurately accounting for protonation

state effects [19]. In many SAMPL5 submissions, many participants treated distribution

coefficients (log D) as if they were asked to predict partition coefficients (log P). The differ-

ence between log D (reflects the transfer free energy at a given pH including the effects of

accessing all equilibrium protonation states of the solute in each phase) and log P (reflects

aqueous-to-apolar phase transfer free energies of the neutral species only) proved particu-

larly important. In some cases, other effects like the presence of a small amount of water in

cyclohexane may also have played a role.

Because the SAMPL5 log D Challenge highlighted the difficulty in correctly predicting trans-

fer free energies involving protonation states (the best methods obtained an RMSE of 2.5

log units [19]), the SAMPL6 Challenge aimed to further subdivide the assessment of mod-

eling accuracy into two challenges: A small-molecule pK a prediction challenge [89] and a

log P challenge. The SAMPL6 pK a Challenge asked participants to predict microscopic

and macroscopic acid dissociation constants (pK as) of 24 small organic molecules and con-

cluded in early 2018. Details of the challenge are maintained on the GitHub repository

(https://github.com/samplchallenges/SAMPL6/). pK a prediction proved to be difficult.

A large number of methods showed RMSE in the range of 1-2 pK aunits, with only a hand-

ful achieving less than 1 pK a unit. These results were in line with expectations from the

SAMPL5 Challenge about protonation state predictions being one of the major sources of

error for log D . But the present challenge allows us delve deeper into modeling the solvation

of neutral species and focus on log P .

The SAMPL6 log P Challenge focused on small molecules resembling kinase in-

hibitor fragments By measuring the log P of a series of compounds resembling fragments

of kinase inhibitors—a subset of those used in the SAMPL6 pK a Prediction Challenge—we
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sought to assess the limitations of force field accuracy in modeling transfer free energies of

drug-like molecules in binding-like processes. This time, the challenge featured octanol as

the apolar medium to assess whether wet octanol presented as much of a problem as was

previously suspected. Participants are asked to predict the partition coefficient (log P) of

the neutral species between octanol and water phases. Here we focus on different aspects of

the challenge, particularly the staging, analysis, results, and lessons learned. Experimental

work for collecting the log P values are described elsewhere [88]. One of the goals of this

challenge is to encourage prediction of model uncertainties (an estimate of the inaccuracy

with which your model predicts the physical property), since the ability to tell when methods

will be successful or not would be very useful for increasing the application potential and

impact of computational methods.

The SAMPL challenges aim to advance predictive quantitative models The

SAMPL challenges have a key focus on lessons learned. In principle, they are a challenge or

competition, but we see it as far more important to learn how to improve accuracy than to

announce the top-performing methods. To aid in learning as much as possible, this overview

paper provides an overall assessment of performance and some analysis of the relative per-

formance of different methods in different categories, provides some insights into lessons we

have learned (and/or other participants have learned). Additionally, this work presents our

own reference calculations which provide points of comparison for participants (some rela-

tively standard and some more recent, especially in the physical category) and also allow us

to provide some additional lessons learned. The data, from all participants and all reference

calculations, is made freely available (see Section 2.9.2) to allow others to compare methods

retrospectively and dig into additional lessons learned.
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2.2.2 Common computational approaches for predicting log P

Many methods have been developed to predict octanol-water log P values of small organic

molecules including physical modeling (QM and MM-based methods) and knowledge-based

empirical prediction approaches (atom-contribution approaches and QSPR). There are also

log P prediction methods that combine the strengths of physical and empirical approaches.

Here, we briefly highlight some of the major ideas and background behind physical and

empirical log P prediction methods.

Physical modeling approaches for predicting log P

Physical approaches begin with a detailed atomistic model of the solute and its conformation

and attempt to estimate partitioning behavior directly from that. Details depend on the

approach employed.

1.2.1.1. Quantum mechanical (QM) approaches for predicting log P QM ap-

proaches to solvation modeling utilize numerical solution of the Schrödinger equation to es-

timate solvation free energies (and thereby partitioning) directly from first principles. There

are a number of approaches for these calculations, and discussing them is outside the scope

of this work. However, it is important to note that direct solution of the underlying equa-

tions, especially when coupled with dynamics, becomes impractical for large systems such as

molecules in solution. So, several approximations must be made before such approaches can

be applied to estimating phase transfer free energies. These typical approximations include

assuming the solute has one or a small number of dominant conformations in each phase

being considered, and using an implicit solvent model to represent the solvent. The basis

set and level of theory can be important choices and can significantly affect accuracy of cal-

culated values. Additionally, protonation or tautomerization state selected as an input can
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also introduce errors. With QM approaches possible protonation states and tautomers can

be evaluated to find the lowest energy state in each solvent. However, if these estimates are

erroneous, any errors will propagate into the final transfer free energy and log P predictions.

Implicit solvent models can be used, in the context of the present SAMPL, both to represent

water and octanol. Such models are often parameterized—sometimes highly so—based on

experimental solvation free energy data. This means that such models perform well for

solvents (and solute chemistries) where solvation free energy data is abundant (as in the

present challenge) but are often less successful when far less training data is available. In

this respect, QM methods, by virtue of the solvent model, have some degree of overlap with

the empirical methods discussed further below.

Several solvent models are particularly common, and in the present challenge two were par-

ticularly commonly employed. One was Marenich, Cramer and Truhlar’s SMD solvation

model [135], which derives its electrostatics from the widely used IEF-PCM model and was

empirically trained on various solutes/solvents utilizing a total of some 2821 different sol-

vation data points. This has been employed in various SAMPL challenges in the past in

the context of calculation of hydration free energies, including the earliest SAMPL chal-

lenges [134, 183]. Others in the Cramer-Truhlar series of solvent models were also used,

including the 2012 SM12 solvation model, which is based on the generalized born (GB) ap-

proximation [137]. Another set of submissions also used the reference interaction site model

(RISM) integral equation approach, discussed further below.

The COSMO-RS solvation model is another method utilized in this context which covers a

particularly broad range of solvents, typically quite well [127, 106, 104, 103, 107]. In the

present challenge, a “Cosmoquick” variant was also applied and falls into the “Mixed” method

category, as it utilizes additional empirical adjustments. The COSMO-RS implementation

of COSMOtherm takes into account conformational effects to some extent; the chemical

potential in each phase is computed using the Boltzmann weights of a fixed set of conformers.
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In general, while choice of solvation model can be a major factor impacting QM approaches,

the neglect of conformational changes means these approaches typically (though not always)

neglect any possibility of significant change of conformation on transfer between phases and

they simply estimate solvation by the difference in (estimated) solvation free energies for

each phase of a fixed conformation. Additionally, solute entropy is often neglected, assuming

the single-conformation solvation free energy plays the primary role in driving partitioning

between phases. In addition to directly estimating solvation, QM approaches can also be

used to drive the selection of the gas- or solution-phase tautomer, and thus can be used to

drive the choice of inputs for MM approaches discussed further below.

Integral equation-based approaches

Integral equation approaches provide an alternate approach to solvation modeling (for both

water and non-water solvents) and have been applied in SAMPL challenges within both

the MM and QM frameworks [211, 207, 128]. In this particular challenge, however, the

employed approaches were entirely QM, and utilized the reference interaction site model

(RISM) approach [210, 24, 111]. Additionally, as noted above, the IEF-PCM model used by

the SMD solvation model (discussed above) is also an integral equation approach. Practical

implementation details mean that RISM approaches typically have one to a few adjustable

parameters (e.g. four [207]) which are empirically tuned to experimental solvation free

energies, in contrast to the SMD and SM-n series of solvation models which tend to have

a larger number of adjustable parameters and thus require larger training sets. In this

particular SAMPL challenge, RISM participation was limited to embedded cluster EC-RISM

methods [109, 211, 210], which combine RISM with a quantum mechanical treatment of the

solute.

1.2.1.2. Molecular mechanics (MM) approaches for predicting log P MM ap-

proaches to computing solvation and partition free energies (and thus log P values), as
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typically applied in SAMPL, use a force field or energy model which gives the energy (and,

usually, forces) in a system as a function of the atomic positions. These models include all-

atom fixed charge additive force fields, as well as polarizable force fields. Such approaches

typically (though not always) are applied in a dynamical framework, integrating the equa-

tions of motion to solve for the time evolution of the system, though Monte Carlo approaches

are also possible.

MM-based methods are typically coupled with free energy calculations to estimate parti-

tioning. Often, these are so-called alchemical methods which utilize a non-physical thermo-

dynamic cycle to estimate transfer between phases, though pulling-based techniques which

directly model phase transfer are in principle possible [47, 40]. Such free energy methods al-

low detailed all-atom modeling of each phase, and compute the full free energy of the system,

in principle (in the limit of adequate sampling) providing the correct free energy difference

given the choice of energy model (“force field”). However, adequate sampling can sometimes

prove difficult to achieve.

Key additional limitations facing MM approaches are the accuracy of the force field, the

fact that protonation state/tautomer is generally selected as an input and held fixed (mean-

ing that incorrect assignment or multiple relevant states can introduce significant errors),

and timescale—simulations only capture motions that are faster than simulation timescale.

However, these approaches do capture conformational changes on phase transfer, as long as

such changes occur on timescales faster than the simulation timescale.

Empirical log P predictions

Due to the importance of accurate log P predictions, ranging from pharmaceutical sciences

to environmental hazard assessment, a large number of empirical models to predict this

property have been developed and reviewed [164, 133, 45]. An important characteristic of
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many of these methods is that they are very fast, so even large virtual libraries of molecules

can be characterized.

In general, two main methodologies can be distinguished: group- or atom-contribution ap-

proaches, also called additive group methods, and quantitative structure-property relation-

ship (QSPR) methods.

1.2.2.1 Atom- and group-contribution approaches Atom contribution methods, pi-

oneered by Crippen in the late 1980s [71, 72], are the easiest to understand conceptually.

These assume that each atom contributes a specific amount to the solvation free energy and

that these contributions to log P are additive. Using a potentially large number of different

atom types (typically in the order of 50-100), the log P is the sum of the individual atom

types times the number of their occurrences in the molecule:

logP =
n∑

i=1

niai (2.2)

A number of log P calculation programs are based on this philosophy, including AlogP [73],

AlogP98 [73], and moe_SlogP [225].

The assumption of independent atomic contributions fails for compounds with complex aro-

matic systems or stronger electronic effects. Thus correction factors and contributions from

neighboring atoms were introduced to account for these shortcomings (e.g. in XlogP [222,

223, 39] and SlogP [225].

In contrast, in group contribution approaches, log P is calculated as a sum of group con-

tributions, usually augmented by correction terms that take into account intramolecular
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interactions. Thus, the basic equation is

logP =
n∑

i=1

aifi +
m∑
j=1

bjFj (2.3)

where the first term describes the contribution of the fragments fi (each occurring ai times),

the second term gives the contributions of the correction factors Fj occurring bj times in the

compound. Group contribution approaches assume that the details of the electronic or inter-

molecular structure can be better modeled with whole fragments. However, this breaks down

when molecular features are not covered in the training set. Prominent examples of group

contribution approaches include clogP [122, 121, 119, 192], KlogP [108], ACD/logP [175] and

KowWIN [142].

clogP is probably one of the most widely used log P calculation programs [122, 121, 119].

clogP relies on fragment values derived from measured data of simple molecules, e.g., carbon

and hydrogen fragment constants were derived from measured values for hydrogen, methane,

and ethane. For more complex hydrocarbons, correction factors were defined to minimize

the difference to the experimental values. These can be structural correction factors taking

into account bond order, bond topology (ring/chain/branched) or interaction factors taking

into account topological proximity of certain functional groups, electronic effects through

π-bonds, or special ortho-effects.

1.2.2.2 QSPR approaches Quantitative structure-property relationships (QSPR) pro-

vide an entirely different category of approaches. In QSPR methods, a property of a

compound is calculated from molecular features that are encoded by so-called molecular

descriptors. Often, these theoretical molecular descriptors are classified as 0D-descriptors

(constitutional descriptors, only based on the structural formula), 1D-descriptors (i.e. list

of structural fragments, fingerprints), 2D-descriptors (based on the connection table, topo-

logical descriptors), and 3D-descriptors (based on the three-dimensional structure of the
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compound, thus conformation-dependent). Sometimes, this classification is extended to 4D-

descriptors, which are derived from molecular interaction fields (e.g., GRID, CoMFA fields).

Over the years, a large number of descriptors have been suggested, with varying degrees of

interpretability. Following the selection of descriptors, a regression model that relates the

descriptors to the molecular property is derived by fitting the individual contributions of the

descriptors to a dataset of experimental data; both linear and nonlinear fitting is possible.

Various machine learning approaches such as random forest models, artificial neural network

models, etc. also belong to this category. Consequently, a large number of estimators of

this type have been proposed; some of the more well- known ones include MlogP [157] and

VlogP [77].

Expectations from different prediction approaches

Octanol-water log P literature data abounds, impacting our expectations. Given this abun-

dance of data, in contrast to cyclohexane-water log D data, e.g., for the SAMPL5 log D Chal-

lenge, we expected higher accuracy here. Some sources of public octanol-water log P values

include DrugBank [226], ChemSpider [173], PubChem, the NCI CACTUS databases [4, 3],

and SRC’s PHYSPROP Database [6].

Our expectation was that empirical knowledge-based and other trained methods (implicit

solvent QM, mixed methods) would outperform other methods in the present challenge as

they are impacted directly by the availability of octanol-water data. Methods well trained

to experimental octanol-water partitioning data should typically result in higher accuracy,

if fitting is done well. The abundance of octanol-water data may also provide empirical and

mixed approaches with an advantage over physical modeling methods. Current molecular

mechanics-based methods and other methods not trained to experimental log P data ought

to do worse in this challenge. Performance of strictly physical modeling based prediction
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methods might generalize better across other solvent types where training data is scarce, but

that will not be tested by this challenge. In principle, molecular mechanics-based methods

could also be fitted using octanol-water data as one of the targets for force field optimization,

but present force fields have not made broad use of this data in fitting. Thus, top methods

are expected to be from empirical knowledge-based, QM-based approaches and combination

of QM-based and empirical approaches because of training data availability. These categories

are broken out separately for analysis.

2.3 Challenge design and evaluation

2.3.1 Challenge structure

The SAMPL6 Part II Challenge was conducted as a blind prediction challenge on predicting

octanol-water partition coefficients of 11 small molecules that resemble fragments of kinase

inhibitors. The challenge molecule set was composed of small molecules with limited flexibil-

ity (less than 5 non-terminal rotatable bonds) and covers limited chemical diversity. There

are six 4-aminoquinazolines, two benzimidazoles, one pyrazolo[3,4-d]pyrimidine, one pyri-

dine, one 2-oxoquinoline substructure containing compounds with log P values in the range

of 1.95–4.09. Information on experimental data collection is presented elsewhere [88].

The dataset composition was announced several months before the challenge including details

of the measurement technique (potentiometric log P measurement, at room temperature,

using water saturated octanol phase, and ionic strength-adjusted water with 0.15 M KCl

[88]), but not the identity of the small molecules. The instructions and the molecule set

were released at the challenge start date (Nov 1, 2018), and then submissions were accepted

until March 22, 2019.
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Figure 2.2: Structures of the 11 protein kinase inhibitor fragments used for the
SAMPL6 log P Blind Prediction Challenge. These compounds are a subset of the
SAMPL6 pK a Challenge compound set [89] which were found to be tractable potentiometric
measurements with sufficient solubility and pK a values far from pH titration limits. Chemical
identifiers of these molecules are available in Table 2.8 and experimental log P values are
published [88]. Molecular structures in the figure were generated using OEDepict Toolkit [5].

Following the conclusion of the blind challenge, the experimental data was made public on

Mar 25, 2019 and results are first discussed in a virtual workshop (on May 16, 2019) [151]

then later in an in person workshop (Joint D3R/SAMPL Workshop, San Diego, Aug 22-

23, 2019). The purpose of the virtual workshop was to go over a preliminary evaluation

of results, begin considering analysis and lessons learned, and nucleate opportunities for

follow up and additional discussion. Part of the goal was to facilitate discussion so that

participants can work together to maximize lessons learned in the lead up to an in-person

workshop and special issue of a journal. The SAMPL6 log P Virtual Workshop video [151]

and presentation slides [152] are available, as are organizer presentation slides from the joint

D3R/SAMPL Workshop 2019 [147, 94] on the SAMPL Community Zenodo page (https:

//zenodo.org/communities/sampl/).

A machine-readable submission file format was specified for blind submissions. Participants
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were asked to report SAMPL6 Molecule IDs, predicted octanol-water log P values, the log P

standard error of the mean (SEM), and model uncertainty. It was mandatory to submit

predictions for all these values, including the estimates of uncertainty. The log P SEM

captures the statistical uncertainty of the predicted method, and the model uncertainty is

an estimate of how well prediction and experimental values will agree. Molecule IDs assigned

in SAMPL6 pK a Challenge were conserved in the challenge for the ease of reference.

Participants were asked to categorize their methods as belonging to one of four method

categories — physical, empirical, mixed or other. The following are definitions provided to

participants for selecting a method category: Empirical models are prediction methods that

are trained on experimental data, such as QSPR, machine learning models, artificial neural

networks etc. Physical models are prediction methods that rely on the physical principles

of the system such as molecular mechanics or quantum mechanics based methods to predict

molecular properties. Methods taking advantage of both kinds of approaches were asked

to be reported as “Mixed”. The “other” category was for methods which do not match the

previous ones. At the analysis stage, some categories were further refined, as discussed in

Section 3.3.5.

The submission files also included fields for naming the method, listing the software utilized,

and a free text method section for the detailed documentation of each method. Only one

log P value for each molecule per submission and only full prediction sets were allowed.

Incomplete submissions – such as for a subset of compounds – were not accepted. We

highlighted various factors for participants to consider in their log P predictions. These

included:

1. There is a significant partitioning of water into the octanol phase. The mole fraction

of water in octanol was previously measured as 0.271±0.003 at 25◦C [117].

2. The solutes can impact the distribution of water and octanol. Dimerization or oligomer-
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ization of solute molecules in one or more of the phases may also impact results [120].

3. log P measurements capture partition of neutral species which may consist of multiple

tautomers with significant populations or the major tautomer may not be the one given

in the input file.

4. Shifts in tautomeric state populations on transfer between phases are also possible.

Research groups were allowed to participate with multiple submissions, which allowed them

to submit prediction sets to compare multiple methods or to investigate the effect of varying

parameters of a single method. All blind submissions were assigned a 5-digit alphanumeric

submission ID, which will be used throughout this paper and also in the evaluation papers

of participants. These abbreviations are defined in Table 2.3.

2.3.2 Evaluation approach

A variety of error metrics were considered when analyzing predictions submitted to the

SAMPL6 log P Challenge. Summary statistics were calculated for each submission for

method comparison, as well as error metrics of predictions of each method. Both summary

statistics and individual error analysis of predictions were provided to participants before

the virtual workshop. Details of the analysis and scripts are maintained on the SAMPL6

Github Repository (described in section 2.9.2).

There are six error metrics reported: the root-mean-squared error (RMSE), mean absolute

error (MAE), mean (signed) error (ME), coefficient of determination (R2), linear regres-

sion slope (m), and Kendall’s Rank Correlation Coefficient (τ). In addition to calculating

these performance metrics, 95% confidence intervals were computed for these values using a

bootstrapping-over-molecules procedure (with 10000 bootstrap samples) as described else-

where in a previous SAMPL overview article [155]. Due to the small dynamic range of
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experimental log P values of the SAMPL6 set, it is more appropriate to use accuracy based

performance metrics, such as RMSE and MAE, to evaluate methods than correlation-based

statistics. This observation is also typically reflected in the confidence intervals on these

metrics. Calculated errors statistics of all methods can be found in Tables 2.10 and 2.11.

Submissions were originally assigned to four method categories (physical, empirical, mixed,

and other) by participants. However, when we evaluated the set of participating methods

it became clear that it was going to be more informative to group them using the follow-

ing categories: physical (MM), physical (QM), empirical, and mixed. Methods from

the “other” group were reassigned to empirical or physical (QM) categories as appropri-

ate. Methods submitted as Physical by participants included quantum mechanical (QM),

molecular mechanics-based (MM) and, to a lesser extent, integral equation-based approaches

(EC-RISM). We subdivided these submissions into “physical (MM)” and “physical (QM)” cat-

egories. Integral equation-based approaches were also evaluated under the Physical (QM)

category. The “mixed” category includes methods that physical and empirical approaches

are used in combination. Table 2.3 indicates the final category assignments in the “Category”

column.

We created a shortlist of consistently well-performing methods that were ranked in the top

20 consistently according to two error and two correlation metrics: RMSE, MAE, R-Squared,

and Kendall’s Tau. These are shown in Table 2.4.

We included null and reference method prediction sets in the analysis to provide perspective

for performance evaluations of blind predictions. Null models or null predictions employ

a model which is not expected to be useful and can provide a simple point of comparison

for more sophisticated methods, as ideally, such methods should improve on predictions

from a null model. We created a null prediction set (submission ID NULL0 ) by predicting

a constant log P value for every compound, based on a plausible log P value for drug-

like compounds. We also provide reference calculations using several physical (alchemical)
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and empirical approaches as a point of comparison. The analysis is presented with and

without the inclusion of reference calculations in the SAMPL6 GitHub repository. All Figures

and statistics tables in this manuscript include reference calculations. As the reference

calculations were not formal submissions, these were omitted from formal ranking in the

challenge, but we present plots in this article which show them for easy comparison. These

are labeled with submission IDs of the form REF## to allow easy recognition of non-blind

reference calculations.

In addition to the comparison of methods we also evaluated the relative difficulty of predicting

log P of each molecule in the set. For this purpose, we plotted prediction error distributions

of each molecule considering all prediction methods. We also calculated MAE for each

molecule’s overall predictions as well as for predictions from each category as a whole.

2.4 Methods for reference calculations

Here we highlight the null prediction method and reference methods. We have included sev-

eral widely-used physical and empirical methods as reference calculations in the comparative

evaluation of log P prediction methods, in addition to the blind submissions of the SAMPL6

log P Challenge. These reference calculations are not formally part of the challenge but

are provided as comparison methods. They were collected after the blind challenge deadline

when the experimental data was released to the public. For a more detailed description of

the methods used in the reference calculations, please refer to Section 2.9.3.

2.4.1 Physical Reference Calculations

Physical reference calculations were carried out using YANK [16], an alchemical free energy

calculation toolkit [220, 184]. YANK implements Hamiltonian replica exchange molecular
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dynamics (H-REMD) simulations to sample multiple alchemical states and is able to explore

a number of different alchemical intermediate functional forms using the OpenMM toolkit

for molecular simulation [57, 56, 55].

The GAFF 1.81 [? ] and SMIRNOFF (smirnoff99Frosst 1.0.7) [148] force fields were com-

bined with three different water models. Water models are important for accuracy in model-

ing efforts in molecular modeling and simulation. The majority of modeling packages make

use of rigid and fixed charge models due to their computational efficiency. To test how

different water models can impact predictions, we combined three explicit water models

TIP3P [98], TIP3P Force Balance (TIP3P-FB) [221] and the Optimal Point Charge (OPC)

model [92] with the GAFF and SMIRNOFF force fields. The TIP3P and TIP3P-FB models

are a part of the three-site water model class where each atom has partial atomic charges

and a Lennard-Jones interaction site centered at the oxygen atom. The OPC model is a

rigid 4-site, 3-charge water model that has the same molecular geometry as TIP3P, but the

negative charge on the oxygen atom is located on a massless virtual site at the HOH angle

bisector. This arrangement is meant to improve the water molecule’s electrostatic distribu-

tion. While TIP3P is one of the older and more common models used, OPC and TIP3P-FB

are newer models that were parameterized to more accurately reproduce more of the physical

properties of liquid bulk water.

Reference calculations also included wet and dry conditions for the octanol phase using the

GAFF and SMIRNOFF force field with TIP3P water. The wet octanol phase was 27% water

by mole fraction [117]. The methods used for physical reference calculations are summarized

in Table 2.1.

Physical reference calculations (submission IDs: REF01-REF08 ) were done using a previ-

ously untested direct transfer free energy calculation protocol (DFE) which involved cal-

culating the transfer free energy between water and octanol phases (explained in detail in

Section 2.9.3), rather than a more typical protocol involving calculating a gas-to-solvent
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Table 2.1: Methods used as reference calculations for the MM-based physical methods
category. Please see Section 2.9.3 in the Supplementary Information for detailed description of
physical reference methods.

Submission ID Approach Force Field Water Model Octanol Phase Number of Replicates

REF01 YANK, DFE protocol GAFF 1.81 TIP3P-FB Wet 3
REF02 YANK, DFE protocol GAFF 1.81 TIP3P Wet 3
REF03 YANK, DFE protocol GAFF 1.81 OPC Wet 3
REF04 YANK, DFE protocol smirnoff99Frosst 1.0.7 TIP3P-FB Wet 3
REF05 YANK, DFE protocol smirnoff99Frosst 1.0.7 TIP3P Wet 3
REF06 YANK, DFE protocol smirnoff99Frosst 1.0.7 OPC Wet 3
REF07 YANK, DFE protocol GAFF 1.81 TIP3P Dry 3
REF08 YANK, DFE protocol smirnoff99Frosst 1.0.7 TIP3P Dry 3

transfer free energy for each phase – an indirect solvation-based transfer free energy (IFE)

protocol. In order to check for problems caused by this error, we included additional calcu-

lations performed by the more typical IFE protocol. Method details for the IFE protocol

are presented in Section 2.9.3 and results are discussed in Section 2.5.2. However, only ref-

erence calculations performed with DFE protocol were included in overall evaluation of the

SAMPL6 Challenge presented in Section 2.5.1, because only these spanned the full range of

force fields and solvent models we sought to explore.

2.4.2 Empirical Reference Calculations

As empirical reference models, we used a number of commercial calculation programs, with

the permission of the respective vendors, who agreed to have the results included in the

SAMPL6 comparison. The programs are summarized in Table 2.2 and cover several of the

different methodologies described in sections 2.2.2 and 2.9.3.
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Table 2.2: Methods used as reference calculations for the empirical log P predic-
tion category. Please see section 2.9.3 in the Supplementary Information for a detailed
description of empirical methods.

Submission ID Name Vendor Approach Website

REF09 clogP (BioByte) BioByte group contributions www.biobyte.com
REF13 SlogP (MOE) Chemical Computing Group atomic contributions www.chemcomp.com

REF11 logP(ow) (MOE) Chemical Computing Group atomic contributions
and correction factors www.chemcomp.com

REF10 h_logP (MOE) Chemical Computing Group QSPR, based on extended
Hückel theory descriptors www.chemcomp.com

REF12 MoKa_logP Molecular Discovery QSPR, based on Molecular
Interaction Field descriptors www.moldiscovery.com

2.4.3 Our null prediction method

This submission set is designed as a null model which predicts the log P of all molecules to

be equal to the mean clogP of FDA approved oral new chemical entities (NCEs) between

the years 1998 and 2017 based on the analysis of Micheal D. Shultz (2019) [199]. We

show this null model with submission ID NULL0. The mean clogP of FDA approved oral

NCEs approved between 1900-1997, 1998-2007, and 2008-2017 were reported 2.1, 2.4, and

2.9, respectively, using StarDrop clogP calculations (https://www.optibrium.com/). We

calculated the mean of NCEs approved between 1998 – 2017, which is 2.66, to represent the

average log P of contemporary drug-like molecules. We excluded the years 1900-1997 from

this calculation as the early drugs tend to be much smaller and much more hydrophilic than

the ones being developed at present.

2.5 Results and Discussion

2.5.1 Overview of challenge results

A large variety of methods were represented in the SAMPL6 log P Challenge. There were

91 blind submissions collected from 27 participating groups in the log P challenge (Tables of
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participants and the predictions they submitted are presented in SAMPL6 GitHub Repos-

itory and its archived copy in the Supporting Information.) This represented an increase

in interest over the previous SAMPL challenges. In the SAMPL5 Cyclohexane-Water log D

Challenge, there were 76 submissions from 18 participating groups [19], so participation was

even higher this iteration.

Out of blind submissions of the SAMPL6 log P Challenge, there were 31 in the physical

(MM) category, 25 in the physical (QM) category, 18 in the empirical category, and 17 in

the mixed method category (Table 2.3). We also provided additional reference calculations

– five in the empirical category, and eight in the physical (MM) category.

The following sections present detailed performance evaluation of blind submissions and

reference prediction methods. Performance statistics of all the methods can be found in

2.10. Methods are referred to by their submission ID’s which are provided in 2.3.

Performance statistics for method comparison

Many methods in the SAMPL6 Challenge achieved good predictive accuracy for octanol-

water log P values. Figure 2.3 shows the performance comparison of methods based on

accuracy with RMSE and MAE. 10 methods achieved an RMSE ≤ 0.5 log P units. These

methods were QM-based, empirical, and mixed approaches (submission IDs: hmz0n, gmoq5,

3vqbi, sq07q, j8nwc, xxh4i, hdpuj, dqxk4, vzgyt, ypmr0 ). Many of the methods had an RMSE

≤ 1.0 log P units. These 40 methods include 34 blind predictions, 5 reference calculations,

and the null prediction method.

Correlation-based statistics methods only provide a rough comparison of methods of the

SAMPL6 Challenge, given the small dynamic range of the experimental log P dataset. Fig-

ure 2.4 shows R2 and Kendall’s Tau values calculated for each method, sorted from high to

low performance. However, the uncertainty of each correlation statistic is quite high, not
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Table 2.3: Submission IDs, names, category, and type for all the log P participant
and reference calculation submissions. Submission IDs of methods are listed in the ID
column. Reference calculations are labeled as REF##. The method name column lists the
names provided by each participant in the submission file. The “type” column indicates if
submission was or a post-deadline reference calculation, denoted by “Blind” or “Reference”
respectively. The table is ordered by increasing RMSE from top to down and left to right,
although many consecutively listed methods are statistically indistinguishable. All calculated
error statistics are available in Tables 2.10 and 2.11.
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allowing a true ranking based on correlation. Methods with R2 and Kendall’s Tau higher

than 0.5 constitute around 50% of the methods and can be considered as the better half.

However, the performance of individual methods is statistically indistinguishable. Never-

theless, it is worth noting that QM-based methods appeared marginally better at capturing

the correlation and ranking of experimental log P values. These methods comprised the top

four based on R2 (≥ 0.75; submission IDs: 2tzb0, rdsnw, hmz0n, mm0jf ), and the top six

based on Kendall’s Tau, (≥ 0.70; submission IDs: j8nwc, qyzjx, 2tzb0, rdsnw, mm0jf, and

6fyg5 ). However, due to the small dynamic range and the number of experimental log P val-

ues of the SAMPL6 set, correlation-based statistics are less informative than accuracy-based

performance metrics such as RMSE and MAE.

Results from physical methods

One of the aims of the SAMPL6 log P Challenge was to assess the accuracy of physical ap-

proaches in order to potentially provide direction for improvements which could later impact

accuracy in downstream applications like protein-ligand binding. Some MM-based methods

used for log P predictions use the same technology applied to protein-ligand binding predic-

tions, so improvements made to modeling of partition may in principle carry over. However,

prediction of partition between two solvent phases is a far simpler test only capturing some

aspects of affinity prediction – specifically, small molecule and solvation modeling – in the

absence of protein-ligand interactions and protonation state prediction problems.

Figure 2.5 shows a comparison of the performance of MM- and QM-based methods in terms

of RMSE and Kendall’s Tau. Both in terms of accuracy and ranking ability, QM methods

resulted in better results, on average. QM methods using implicit solvation models outper-

formed MM-based methods with explicit solvent methods that were expected to capture the

heterogeneous structure of the wet octanol phase better. Only 3 MM-based methods and 8

QM-based methods achieved RMSE less than 1 log P unit. 5 of these QM-based methods
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Figure 2.3: Overall accuracy assessment for all methods participating in the
SAMPL6 log P Challenge. Both root-mean squared error (RMSE) and mean ab-
solute error (MAE) are shown, with error bars denoting 95% confidence intervals obtained
by bootstrapping over challenge molecules. Submission IDs are summarized in Table 2.3.
Submission IDs of the form REF## refer to non-blinded reference methods computed after
the blind challenge submission deadline, and NULL0 is the null prediction method; all others
refer to blind, prospective predictions.
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Figure 2.4: Overall correlation assessment for all methods participating SAMPL6
log P Challenge. Pearson’s R2 and Kendall’s Rank Correlation Coefficient Tau (τ) are
shown, with error bars denoting 95% confidence intervals obtained by bootstrapping over
challenge molecules. Submission IDs are summarized in Table 2.3. Submission IDs of the
form REF## refer to non-blinded reference methods computed after the blind challenge
submission deadline, and NULL0 is the null prediction method; all others refer to blind,
prospective predictions. Overall, a large number and wide variety of methods have a sta-
tistically indistinguishable performance on ranking, in part because of the relatively small
dynamic range of this set and because of the small size of the set. Roughly the top half of
methods with Kendall’s Tau > 0.5 fall into this category.
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showed very high accuracy (RMSE ≤ 0.5 log P units). The three MM-based methods with

the lowest RMSE were:

• Molecular-Dynamics-Expanded-Ensembles (nh6c0 ): This submission used an AMBER/OPLS-

based force field with manually adjusted parameters (following rules from the partic-

ipant’s article [166]), modified Toukan-Rahman water model with Non-zero Lennard-

Jones parameters [165], and modified Expanded Ensembles (EEMD) method [130] for

free energy estimations .

• Alchemical-CGenFF (ujsgv, 2mi5w, [112]): These two submissions used Multi-Phase

Boltzmann Weighting with the CHARMM Generalized Force Field (CGenFF) [214],

and the TIP3P water model [98]. From the brief method descriptions submitted to the

challenge we could not identify the difference between these prediction sets.

RMSE values for predictions made with MM-based methods ranged from 0.74 to 4.00 log P

units, with the average of the better half being 1.44 log P units.

Submissions included diverse molecular simulation-based log P predictions made using al-

chemical approaches. These included Free Energy Perturbation (FEP) [235] and BAR esti-

mation [27], Thermodynamic integration (TI) [102], and non-equilibrium switching (NES) [180,

96]. Predictions using YANK [16] Hamiltonian replica exchange molecular dynamics and

MBAR [198] were provided as reference calculations.

A variety of combinations of force fields and water models were represented in the chal-

lenge. These included CGenFF with TIP3P or OPC3 [93] water models; OPLS-AA [51] with

OPC3 and TIP4P [98] water models; GAFF [219] with TIP3P, TIP3P Force Balance [221],

OPC [92], and OPC3 water models; GAFF2 [215] with the OPC3 water model; GAFF with

Hirshfeld-I [32] and Minimal Basis Set Iterative Stockholder(MBIS) [216] partial charges

and the TIP3P or SPCE water models [115]; the SMIRNOFF force field [148] with the
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TIP3P, TIP3P Force Balance, and OPC water models; and submissions using Drude [124]

and ARROW [99] polarizable force fields.

Predictions that used polarizable force fields did not show an advantage over fixed-charged

force fields in this challenge. RMSEs for polarizable force field submissions range from 1.85 to

2.86 (submissions with the Drude Force Field were fyx45, pnc4j, and those with the ARROW

Force Field were odex0, padym fcspk, and 6cm6a).

Predictions using both dry and wet octanol phases were submitted to the log P challenge.

When submissions from the same participants were compared, we find that including water

in the octanol phase only slightly lowers the RMSE (0.05-0.10 log P units), as seen in

Alchemical-CGenFF predictions ( wet: ujshv, 2mi5w, ttzb5 ; dry: 3wvyh), YANK-GAFF-

TIP3P predictions (wet: REF02, dry: REF07 ), MD-LigParGen predictions with OPLS and

TIP4P (wet: mwuua, dry: eufcy), and MD-OPLSAA predictions with TIP4P (wet: 623c0,

dry: cp8kv). However this improvement in performance with wet octanol phase was not

found to be a significant effect on overall prediction accuracy. Methodological differences

and choice of force field have a greater impact on prediction accuracy than the composition

of the octanol phase.

Refer to Table 2.7 for a summary of force fields and water models used in MM-based submis-

sions. For additional analysis, we refer the interested reader to the work of Piero Procacci and

Guido Guarnieri, who provide a detailed comparison of MM-based alchemical equilibrium

and non-equilibrium approaches in SAMPL6 Challenge in their paper [181]. Specifically, in

the section “Overview on MD-based SAMPL6 submissions” of their paper, they provide com-

parisons subdividing submissions based force field (for CGenFF, GAFF1/2, and OPLS-AA).
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Figure 2.5: Performance statistics of physical methods. Physical methods are further
classified into quantum chemical (QM) methods and molecular mechanics (MM) methods.
RMSE and Kendall’s Rank Correlation Coefficient Tau are shown, with error bars denoting
95% confidence intervals obtained by bootstrapping over challenge molecules. Submission
IDs are summarized in Table 2.3. Submission IDs of the form REF## refer to non-blinded
reference methods computed after the blind challenge submission deadline; all others refer
to blind, prospective predictions.
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A shortlist of consistently well-performing methods

Although there was not any single method that performed significantly better than others

in the log P challenge, we identified a group of consistently well performing methods. There

were many methods with good performance when judged based on RMSE, but not many

methods consistently showed up at the top according to all metrics. When individual error

metrics are considered, many submissions were not different from one another in a statisti-

cally significant way, and ranking typically depends on the metric chosen due overlapping

confidence intervals. Instead, we identified several consistently well performing methods by

looking at several different metrics – two assessing accuracy (RMSE and MAE) and two

assessing correlation (Kendall’s Tau and R2). We determined those methods which are in

the top 20 by each of these metrics. This resulted in a list of eight methods which are consis-

tently well performing. The shortlist of consistently well-performing methods are presented

in Table 2.4.

The resulting eight consistently well-performing methods were QM-based physical models

and empirical methods. These eight methods were fairly diverse. Traditional QM-based

physical methods included log P predictions with COSMO-RS method as implemented in

COSMOtherm v19 at the BP//TZVPD//FINE Single Point level (hmz0n, [104, 103, 107])

and the SMD solvation model with the M06 density functional family (dqxk4, [79]). Addi-

tionally, two other top QM-based methods seen in this shortlist used EC-RISM theory with

wet or dry octanol (j8nwc and qyzjx ) [210]. Several empirical submissions also were among

these well-performing methods – specifically, the Global XGBoost-Based QSPR LogP Pre-

dictor (gmoq5 ), the RayLogP-II (hdpuj ) approach, and rfs-logp (vzgyt). Among reference

calculations, SlogP calculated by MOE software (REF13 ) was the only method that was

consistently well performing.

Figure 2.6 compares log P predictions with experimental values for these 8 well-performing
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methods, as well as one additional method which has an average level of performance. This

representative method (rdsnw, [210]) is the method with the highest RMSE below the

median of all methods (including reference methods).

Table 2.4: Eight consistently well-performing prediction methods based on consis-
tent ranking within the Top 20 according to various statistical metrics. Submis-
sions were ranked according to RMSE, MAE, R2, and τ . Many top methods were found to be
statistically indistinguishable considering uncertainties of error metrics. Moreover, sorting
of methods was influenced significantly by the choice of metric chosen. We assessed top 20
methods according the each metric to determine which methods are always among the top 20
according to all four statistical metrics chosen. A set of consistently well-performing methods
were determined: Four QM-based and four empirical methods. Seven of these methods are
blind submissions of SAMPL6 Challenge, and one of them (REF13 ) is a non-blind reference
calculation. Performance statistics are provided as mean and 95% confidence intervals.

Difficult chemical properties for log P predictions

In addition to comparing method performance, we analyzed the prediction errors for each

compound in the challenge set to assess whether particular compounds or chemistries are

especially challenging (Figure 2.7). For this analysis, MAE is a more appropriate statistical

value for following global trends, as its value is less affected by outliers than is RMSE.

Performance on individual molecules shows relatively uniform MAE across the challenge set

(Figure 2.7A). Predictions of SM14 and SM16 were slightly more accurate than the rest

of the molecules when averaged across all methods. Prediction accuracy on each molecule,

however, is highly variable depending on method category (Figure 2.7B). Predictions of

SM08, SM13, SM09, and SM12 were significantly less accurate with physical (MM) methods
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Figure 2.6: Predicted vs experimental value correlation plots of 8 best-performing
methods and one representative average method. Dark and light green shaded areas
indicate 0.5 and 1.0 units of error. Error bars indicate standard error of the mean of predicted
and experimental values. Experimental log P SEM values are too small to be seen under the
data points. EC_RISM_wet_P1w+1o method (rdsnw) was selected as the representative
average method, as it is the method with the highest RMSE below the median.
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than the other method categories by 2 log P units in terms of MAE over all methods in each

category. These molecules were not challenging for QM-based methods. Discrepancies in

predictions of SM08 and SM13 are discussed in Section 2.5.2. For QM-based methods, SM04

and SM02 were most challenging. The largest MAE for empirical methods was observed for

SM11 and SM15.

Figure 2.7C shows the error distribution for each SAMPL6 molecule over all prediction

methods. It is interesting to note that most distributions are peaked near an error of zero,

suggesting that perhaps a consensus model might outperform most individual models. How-

ever, SM15 is more significantly shifted away from zero than any other compound (ME

calculated accross all molecules is -0.88±1.49 for SM15). SM08 had the most spread in log P

prediction error.

This challenge focused on log P of neutral species, rather than log D as studied in SAMPL5,

which meant that we do not see the same trends where performance is significantly worse for

compounds with multiple protonation states/tautomers or where pK a values are uncertain.

However, in principle, tautomerization can still influence log P values. Multiple neutral

tautomers can be present at significant populations in either solvent phase, or the major

tautomer can be different in each solvent phase. However, this was not expected to be the

case for any of the 11 compounds in this SAMPL6 Challenge. We do not have experimental

data on the identity or ratio of tautomers, but tautomers other than those depicted in

Figure 2.2 would be much higher in energy according to QM predictions [210] and, thus,

very unlikely to play a significant role. Still, for most log P prediction methods, it was

at least necessary for participants to select the major neutral tautomer. We do not observe

statistically worse error for compounds with potential tautomer uncertainties here, suggesting

it was not a major factor in overall accuracy, some participants did chose to run calculations

on tautomers that were not provided in the challenge input files (Figure 2.11 and Table 2.5),

as we discuss in Section 2.5.2.
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Figure 2.7: Molecule-wise prediction error distribution plots show how variable the
prediction accuracy was for individual molecules across all prediction methods.
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interesting to note that most distributions are peaked near an error of zero, suggesting that
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Comparison to the past SAMPL challenges

Overall, SAMPL6 log P predictions were more accurate than log D predictions in the

SAMPL5 Cyclohexane-Water log D Challenge (Figure 2.3). In the log D challenge, only

five submissions had an RMSE ≤ 2.5 log units, with the best having an RMSE of 2.1 log P

units. A rough estimate of expected error for log P and log D is 1.54 log units. This comes

from taking the mean RMSE of the top half of submissions in SAMPL4 Hydration Free

Energy Prediction Challenge (1.5 kcal/mol) [155] and assuming the error in each phase is

independent and equal to this value, yieding an expected error of 1.54 log P units [19]. Here,

64 log P challenge methods performed better than this threshold (58 blind predictions, 5

reference calculations, and the null prediction). However, only 10 of them were MM-based

methods, with the lowest RMSE of 0.74 observed for method named Molecular-Dynamics-

Expanded-Ensembles (nh6c0 ).

Challenge construction and experimental data availability are factors that contributed to the

higher prediction accuracy observed in SAMPL6 compared to prior years. The log P chal-

lenge benefited from having a well-defined protonation state, especially for physical methods.

Empirical methods benefited from the wealth of octanol-water training data. Accordingly,

empirical methods were among the best performers here. But also, the chemical diversity

represented by 11 compounds of the SAMPL6 log P challenge is very restricted and lower

than the 53 small molecules in the SAMPL5 log D Challenge set. This was somewhat con-

sistent with our expectations (discussed in Section 2.2.2)—that empirical, QM (with trained

implicit solvation models), and mixed methods would outperform MM methods given their

more extensive use of abundant octanol-water data in training (Figure 2.3).
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2.5.2 Lessons learned from physical reference calculations

Comparison of reference calculations did not indicate a single force field or water

model with dramatically better performance

As in previous SAMPL challenges, we conducted a number of reference calculations with

established methods to provide a point of comparison. These included calculations with

alchemical physical methods. Particularly, to see how the choice of water model affects

accuracy we included three explicit solvent water models – TIP3P, TIP3P-FB and the OPC

model – with the GAFF and SMIRNOFF force fields in our physical reference calculations.

Deviations from experiment were significant (RMSE values ranged from 2.3 [1.1, 3.5] to

4.0 [2.7, 5.3] log units) across all the conditions used in the physical reference predictions

(Figure 2.3A). In general, all the water models tend to overestimate the log P , especially for

the carboxylic acid in the challenge set, SM08, though our calculations on this molecule had

some specific difficulties we discuss further below. Relative to the TIP3P-FB and OPC water

models, predictions which used TIP3P showed improvement in some of the error metrics,

such as lower deviation from experiment with an RMSE range of 2.3 [1.1, 3.5] to 2.34 [1.0,

3.7] log units. The OPC and TIP3P-FB containing combinations had a higher RMSE range

of 3.2 [2.0, 4.5] to 4.0 [2.7, 5.3] log units.

Physical reference calculations also included wet and dry conditions for the octanol phase

using the GAFF and SMIRNOFF force field with TIP3P water. The wet octanol phase was

composed of 27% water and dry octanol was modeled as pure octanol (0% water content).

For reference calculations with the TIP3P water model the GAFF, and SMIRNOFF force

fields using wet or dry octanol phases resulted in statistically indistinguishable performance.

With GAFF, the dry octanol (REF07 ) RMSE was 2.4 [1.0, 3.7]. The wet octanol (REF02 )

RMSE was 2.3 [1.1, 3.5]. With SMIRNOFF, the dry octanol REF08 RMSE was 2.4 [1.0,

3.7], with a wet octanol (REF05 ) RMSE of 2.3 [1.2, 3.5] (Table 2.10 and 2.11).
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While water model and force field may have significantly impacted differences in performance

across methods in some cases in this challenge, we have very few cases – aside from these

reference calculations – where submitted protocols differed only by force field or water model,

making it difficult to know the origin of performance differences for certain.

Different simulation protocols lead to different results between “equivalent” meth-

ods that use the same force field and water model

Several participants submitted predictions from physical methods which are equivalent to

those used in our reference calculations and use the same force field and water model,

which in principle ought to give identical results given adequate simulation time. There

were three submissions which used the GAFF force field, TIP3P water model, and wet

octanol phase: 6nmtt (MD-AMBER-wetoct), v2q0t (InterX_GAFF_ WET_OCTANOL),

and REF02 (YANK-GAFF-TIP3P-dry-oct). As can be seen in Figure 2.3A, v2q0t (In-

terX_GAFF_ WET_OCTANOL) showed the best accuracy with an RMSE of 1.31 [0.94,

1.65]. 6nmtt (MD-AMBER-wetoct) and REF02 (YANK-GAFF-TIP3P-dry-oct) had higher

RMSE values of 1.87 [1.33, 2.45] and 2.29 [1.07, 3.53], respectively. Two methods that used

GAFF force field, TIP3P water model and wet octanol phase are sqosi (MD-AMBER-dryoct)

and REF07 (YANK-GAFF-TIP3P-dry-oct). These two also have an RMSE difference of 0.7

log P units. Although, in terms of overall accuracy there are differences, Figure 2.8 shows

that in terms of individual predictions, submissions using the same force field and water

model largely agree for most compounds.

Some discrepancies are observed for molecules SM13 and SM07, but are largest for SM08.

For SM13 and SM07, method v2q0t (InterX_GAFF_ WET_OCTANOL) performs over

1 log P unit better than 6nmtt (MD-AMBER-wetoct). The rest of the predictions for

these two methods differ by no more than about 1 log P unit, with the majority of the

molecules differing by about 0.5 log P units or less from each other. Comparing 6nmtt (MD-
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Figure 2.8: Comparison of independent predictions that use seemingly iden-
tical methods (free energy calculations using GAFF and TIP3P water)
shows significant systematic deviations between predictions for many com-
pounds. Comparison of the calculated and experimental values for submissions v2q0t
(InterX_GAFF_WET_OCTANOL), 6nmtt (MD-AMBER-wetoct), sqosi (MD-AMBER-
dryoct) and physical reference calculations REF02 (YANK-GAFF-TIP3P-wet-oct) and
REF07 (YANK-GAFF-TIP3P-dry-oct). (A) compares calculations that used wet octanol,
and (B) compares those that used dry octanol. Plots C to F show the methods compared to
one another. The dark and light-shaded region indicates 0.5 and 1.0 units of error, respec-
tively.
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AMBER-wetoct) vs REF02 (YANK-GAFF-TIP3P-wet-oct) (Figure 2.8A), there is a sub-

stantial difference in the predicted values for molecules SM08 (4.6 log unit difference), SM13

(1.4 log unit difference), and SM07 (1.2 log unit difference). Method v2q0t (InterX_GAFF_

WET_OCTANOL) and 6nmtt (MD-AMBER-wetoct) perform about 5 log P units better

than REF02 (YANK-GAFF-TIP3P-wet-oct) for molecule SM08. Besides SM08, predictions

from v2q0t (InterX_GAFF_ WET_OCTANOL) and REF02 (YANK-GAFF-TIP3P-wet-

oct) differ by 0.5 log P units or less from each other. In dry octanol, REF07 (YANK-GAFF-

TIP3P-dry-oct) performs about 4 log P units worse than sqosi (MD-AMBER-dryoct) for

SM08 (Figure 2.8B).

Submissions 6nmtt (MD-AMBER-wetoct), sqosi (MD-AMBER-dryoct) and v2q0t (InterX_GAFF_WET_OCTANOL)

used GAFF version 1.4 and the reference calculations used version 1.81, though GAFF dif-

ferences are not expected to play a significant role here (i.e. only the valence parameters

differ).

Selected small molecule state differences may have caused divergence between

otherwise equivalent methods

In several of these approaches, users selected their own starting conformation, protona-

tion state and tautomer, rather than those provided in the SAMPL6 challenge, so the dif-

ferences here could possibly be attributed to differences in tautomer or resonance struc-

tures. Submissions 6nmtt (MD-AMBER-wetoct) and sqosi (MD-AMBER-dryoct) used

different tautomers for SM08 and different resonance structures for SM11 and SM14 (mi-

crostates SM08_micro010, SM11_micro005, SM14_micro001 from the previous SAMPL6

pK a Challenge). We will discuss possible differences due to tautomer choice below in Sec-

tion 2.5.2. The majority of the calculated log P values in 6nmtt (MD-AMBER-wetoct), sqosi

(MD-AMBER-dryoct), v2q0t (InterX_GAFF_WET_OCTANOL), REF02 (YANK-GAFF-

TIP3P-wet-oct), and REF07 (YANK-GAFF-TIP3P-dry-oct) show the molecules having a
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greater preference for octanol over water than the experimental measurements (Figure 2.8A,

B). Methods 6nmtt (MD-AMBER-wetoct) and REF02 (YANK-GAFF-TIP3P-wet-oct) over-

estimate log P more than v2q0t (InterX_GAFF_WET_OCTANOL) (Figure 2.8A). Method

REF07 (YANK-GAFF-TIP3P-dry-oct) overestimates log P slightly more than sqosi (MD-

AMBER-dryoct) (Figure 2.8B).

Three equivalent wet octanol methods and 2 equivalent dry octanol methods gave dissim-

ilar results, and specific molecules were identified that show the major differences in pre-

dicted values (Figure 2.8C-F). GAFF and the TIP3P water model were used in all of these

cases, but different simulation setups and codes were used, as well as different equilibration

protocols and production methods. Submissions 6nmtt (MD-AMBER-wetoct) and sqosi

(MD-AMBER-dryoct), which come from the same group, used 10 ps NPT, 15 ns addi-

tional equilibration with MD, and Thermodynamic integration for production in their setup.

Submission v2q0t (InterX_GAFF_WET_OCTANOL) used 200 ns of molecular dynamics

to pre-equilibrate octanol systems, 10 ns of Temperature replica exchange in equilibration,

and Isothermal-isobaric ensemble based molecular dynamics simulations in production. The

reference calculations (REF02 and REF07 ) were equilibrated for about 500 ns and used

Hamiltonian replica exchange in production. Reference calculations performed with the IFE

protocol and MD-AMBER-dryoct (sqosi) method used shorter equilibration times than the

DFE protocol (REF07 ).

DFE and IFE protocols led to indistinguishable performance, except for SM08

and SM02

The direct transfer free energy (DFE) protocol was used for the physical reference calculations

(REF01-REF08 ). Because the DFE protocol implemented in YANK [16] (which was also

used in our reference calculations (REF01-REF08 )) was relatively untested (see Section 2.9.3

for more details), we wanted to ensure it had not dramatically affected performance, so we
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Figure 2.9: Comparison of predictions that use free energy calculations using
GAFF and TIP3P water show deviations between predictions for the challenge
molecules and several alternative tautomers and resonance structures. Deviations
seem to largely stem from differences in equilibration amount and choice of tautomer. A
compares reference direct transfer free energy (DFE, REF07 ) and indirect solvation-based
transfer free energy (IFE) protocols to experiment for the challenge provided resonance states
of molecules and a couple of extra resonance states for SM14 and SM11, and extra tautomers
for SM08. B compares the same exact tautomers for submission sqosi (MD-AMBER-dryoct)
and the two reference protocols to experiment. Submission sqosi (MD-AMBER-dryoct) used
different tautomers than the ones provided in the challenge. C-E compares the calculated
log P between different methods using the same tautomers. All of the predicted values can
be found in Table 2.5. 47



compared it to the indirect solvation-based transfer free energy protocol (IFE) [20] protocol.

The DFE protocol directly computed the transfer free energy between solvents without

any gas phase calculation, whereas the IFE protocol (used in the blind submissions and

some additional reference calculations labeled IFE) computed gas-to-solution solvation free

energies in water and octanol separately and then subtracted to obtain the transfer free

energy. The IFE protocol calculates the transfer free energy as the difference between the

solvation free energy of the solute going from the gas to the octanol phase, and the hydration

free energy going from the gas to the water phase. These protocols ought to yield equivalent

results in the limit of sufficient sampling, but may have different convergence behavior.

Figure 2.9A shows calculations from our two different reference protocols using the DFE and

IFE methods. We find that the two protocols yield similar results, with the exception of

two molecules. Molecule SM08 is not substantially overestimated using the IFE protocol,

where it is with the DFE protocol, and SM02 is largely overestimated by IFE, but not

DFE (Figure 2.9A). The DFE (REF07 )and IFE protocol both tend to overestimate the

molecules’ preference for octanol over water than in experiment, with the DFE protocol

overestimating it slightly more. Figure 2.9D shows comparison of predicted log P values of

the same tautomers by the DFE (REF07 ) and IFE protocols. The DFE and IFE protocols

are almost within statistical error of one another, with the largest discrepancies coming from

SM02 and SM08. The DFE and IFE protocols are in better agreement for some tautomers

of SM08 more than others. They agree better on the predicted values for SM08_micro008

and SM08_micro010 than for SM08_micro011.

In the SAMPL6 blind submissions, there was a third putatively equivalent method to our ref-

erence predictions with the DFE protocol (REF07 ) and IFE protocol: sqosi (MD-AMBER-

dryoct). It is identical in chosen force field, water model, and composition of octanol phase,

however, different tautomers and resonance states for some molecules were used. All three

predictions used free energy calculations with GAFF, TIP3P water, and a dry octanol phase.
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Additionally, sqosi (MD-AMBER-dryoct) also used the more traditional indirect solvation

free energy protocol. We chose to investigate the differences in these equivalent approaches

approaches by comparing predictions using matching tautomers and resonance structures

(Figure 2.9). Figure 2.9B shows comparison of these three methods using predictions made

with DFE and IFE protocols using identical tautomer and resonance input states as sqosi

(MD-AMBER-dryoct): SM08_micro010, SM11_micro005, and SM14_micro001 (structures

can be found in Figure 2.11. Except SM02, there is general agreement between these

predictions. Figure 2.9C, other than the SM08_micro010 tautomer, predictions of DFE

(REF07 ) and sqosi (MD-AMBER-dryoct) largely agree. Figure 2.9E highlights SM02 and

SM08_micro010 predictions as the major differences between our predictions with IFE pro-

tocol and sqosi (MD-AMBER-dryoct).

Only results from the DFE protocol were assigned submission numbers (of the form REF##)

and presented in the overall method analysis in Section 2.5.1. More details of the solvation

and transfer free energy protocol can be found in section 2.9.3.

SM08 and SM13 were the most challenging for physical reference calculations

For the physical reference calculations category, some of the challenge molecules were harder

to predict than others (Figure 2.10). Overall, the chemical diversity in the SAMPL6 Chal-

lenge dataset was limited. This set has 6 molecules with 4-amino quinazoline groups and

2 molecules with a benzimidazole group. The experimental values have a narrow dynamic

range from 1.95 to 4.09 and the number of heavy atoms ranges from 16 to 22 (with the

average being 19), and the number of rotatable bonds ranges from 1 to 4 (with most having

3 rotatable bonds). SM13 had the highest number of rotatable bonds and number of heavy

atoms. This molecule was overestimated in the reference calculations. As noted earlier,

molecule SM08, a carboxylic acid, was predicted poorly across all reference calculations.

The origin of problems with molecule SM08 are discussed below in Section 2.5.2.
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Figure 2.10: The prediction errors per molecule indicate some compounds were
more difficult to predict than others for the reference calculations category. (A)
MAE of each SAMPL6 molecule broken out by physical and empirical reference method
category. (B) Error distribution for each molecule calculated for the reference methods.
SM08 was the most difficult to predict for the physical reference calculations, due to our
partial charge assignment procedure.
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SM08 is a carboxylic acid and can potentially form an internal hydrogen bond. This molecule

was greatly overestimated in the physical reference calculations. When this one molecule in

the set is omitted from the analysis, log P prediction accuracy improves. For example,

the average RMSE and R2 values across all of the physical reference calculations when

the carboxylic acid is included are 2.9 (2.3–4.0 RMSE range) and 0.2 (0.1–0.2 R2 range),

respectively. Excluding this molecule gives an average RMSE of 2.1 (1.3–3,3 RMSE range)

and R2 of 0.57 (0.3–0.7 R2 range), which is still considerably worse than best-performing

methods.

Choice of tautomer, resonance state, and assignment of partial charges impact

log P predictions appreciably

Some physical submissions selected alternate tautomers or resonance structures for some

compounds. Figure 2.11 shows three tautomers of SM08, and two alternative resonance

structures of SM11 and SM14, all of which were considered by some participants. The

leftmost structure of the alternate structure group of each molecule depicts the structure

provided to participants.

Because some participants chose alternate structures, we explored how much variation in

the selected input structures impacted the results. Particularly, for molecules SM14, SM11

and SM08, both AMBER MD protocols (submissions sqosi (MD-AMBER-dryoct) and 6nmtt

(MD-AMBER-wetoct)) used the SM14_micro001 microstate for SM14, SM11_micro005 for

SM11 and SM08_micro010 for SM08, rather than the input structures provided as SMILES

in the SAMPL6 log P Challenge instructions (See Figure 2.11 for depictions). The reference

calculations and the submission from InterX (v2q0t (InterX_GAFF_WET_OCTANOL))

used the exact input structures provided as input SMILES for the challenge. Below, we refer

to these several submissions as the MD-AMBER and InterX submissions.
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To assess whether the choice of tautomer or resonance structure was important, we per-

formed direct transfer free energy (DFE) and indirect solvation-based transfer free energy

(IFE) [20] calculations for these alternate structures (please refer to section 2.5.2 for an ex-

planation of the DFE and IFE methods). We —and the other participants utilizing these

MM-based methods— assumed that the tautomers and resonance structures are fixed on

transfer between phases and we did not do any assessments of how such populations might

shift between octanol and water. Table 2.5 and Figure 2.9B compare log P calculations start-

ing from the same input structures across the three methods: sqosi (MD-AMBER-dryoct),

REF07 (YANK-GAFF-TIP3P-dry-oct) which used the DFE protocol, and an additional set

of calculations with the IFE protocol (using YANK, the GAFF force field, and TIP3P water

just like REF07 ). The DFE protocol prediction set presented in Figure 2.9A is the same as

REF07 (YANK-GAFF-TIP3P-dry-oct), but includes extra tautomers for SM08, and extra

resonance structures for SM11 and SM14.

From our comparison of our reference calculations and those with the InterX and MD-

AMBER, we find that the choice of input tautomer has a significant effect on log P predic-

tions. Particularly, within the traditional IFE method, our results indicate up to 2.7 log units

variation between log P values for different tautomers of SM08 (between SM08_micro011,

SM08_micro08 and SM08_micro10) (Table 2.5). Our exploration of these issues was prompted

by the fact that the MD-AMBER protocols had utilized different tautomers than those ini-

tially employed in our physical reference calculations.

We also find that the choice of resonance structure affects calculated values, though less

strongly so than the choice of tautomer. Within the IFE method we find 1.3 log units of

variation between log P values calculated with different resonance structures of SM11 (SM11

and SM11_micro005) and 0.6 log units of variation between resonance structures of SM14

(SM14 and SM14_micro001) (Table 2.5).

We also find that the partial charge assignment procedure can also dramatically impact log P
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values for carboxylic acids (Table 2.13). Particularly, our calculations with the DFE and IFE

protocols employed different partial charge assignment procedures as an unintentional feature

of the protocol difference, as we detail below, and this impacted calculated log P values by

up to 6.7 log units for SM08 (specifically SM08_micro011, the carboxylic acid in the set)

compared to experiment. Particularly, the DFE protocol utilized antechamber for assigning

AM1-BCC charges, whereas the IFE protocol used OpenEye’s quacpac. Antechamber utilizes

the provided conformer (in this case, the anti conformation) for each molecule, whereas

quacpac’s procedure computes charges for carboxylic acids in the syn conformation because

this has been viewed as the relevant conformation, and because of concerns that the anti

conformation might result in unusually large and inappropriate charges. Thus, because of

this difference, the DFE and IFE protocols used dramatically different partial charges for

these molecules (Table 2.13). Our results for SM08_micro011 (likely the dominant state)

indicate that indeed, the conformer used for charging plays a major role in assigned charges

and the resulting log P values (Table 2.13, Figure 2.15). We find our DFE protocol, which

used the anti conformation for charging, overestimates the log P by about 6.7 log units,

whereas the IFE protocol which used the syn conformation only overestimates it by about

0.3 log units. With the IFE method, we calculated a log P of 2.8 ± 0.2 for SM08, whereas

with DFE method we obtained a value of 9.8± 0.1 (Table 2.5).

2.5.3 Lessons learned from empirical reference calculations

Empirical methods are fast and can be applied to large virtual libraries (100 000 cmps/min/CPU).

This is in contrast to physical methods, which are often far more computationally demand-

ing. Most of the empirical methods are among the top performers, with the exception of

a few approaches that use descriptors and/or pre-factors that do not yield accurate log P

predictions. Most empirical methods obtain RMSE and MAE values below 1 log P unit. The

best empirical method achieved RMSE and MAE below 0.5 (gmoq5, Global XGBoost-Based
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Table 2.5: Predicted log P values of free energy calculations of methods using
GAFF, TIP3P water, and dry octanol. The methods listed are the reference direct
transfer free energy (DFE) protocol, reference indirect solvation-based transfer free energy
(IFE) protocol and submission sqosi (MD-AMBER-dryoct). Details of the two reference
protocols can be found in Section 2.9.3. log P predictions for multiple tautomers (SM08)
and resonance structures (SM11 and SM14) are listed, when available. The experimental
values are provided for comparison. The same experimental log P values are stated for
multiple tautomers or resonance structures. Potentiometric log P measurements do not
provide information about the identity or populations of tautomers.

The tautomer or resonance structure presented as the input SMILES for the SAMPL6 log P Challenge.
It corresponds to the microstate SM08_micro011 of the SAMPL6 pK a Challenge.

QSPR LogP Predictor). In all these cases, using a relatively large training set (>1000-10000

compounds) seems to be key.

The exact choice of method or descriptors seems to be less critical. Predictions based on

atom or group contributions perform as well as those using either a small set of EHT-derived

descriptors or a large set of diverse descriptors, sometimes additionally including fingerprint

descriptors. A possible explanation could be that log P is, to first order, primarily an

additive property so that empirical methods can do well since a wealth of octanol-water data

is available for training. This is also reflected in the success of the simple methods summing

up atom contributions. This approach may become problematic, however, when a functional

group is present that was underrepresented or missing in the training set. In such cases,

higher are expected.

As is true for the physical methods, empirical methods depend on the tautomeric state of
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9.8±0.1 3.8±0.1 3.8±0.1 2.5±0.1 2.36±0.01 2.4±0.1 3.1±0.1

SM08
SM11 SM11_micro005 SM14 SM14_micro001SM08_micro008 SM08_micro010(SM08_micro011)

Figure 2.11: The tautomer and resonance structure choice resulted in discrep-
ancies in the reference calculations. Shown here are calculated values for different
input structures using the reference direct transfer free energy method. The uncertainties
of the log P predictions were calculated as the standard error of the mean (SEM) of three
replicate predictions. Structures labelled as SM08, SM11, and SM14 are based on input
SMILES provided in SAMPL6 log P Challenge instructions. Three microstates shown for
SM08 are different tautomers. SM08 (SM08_micro011) and SM08_micro010 are carboxylic
acids, while SM08_micro008 is a carboxylate ion. SM08 (SM08_micro011) has a carbonyl
group in the ring, while SM08_micro008 and SM08_micro010 have a hydroxyl in the ring.
Structures pertaining to SM11 and SM14 are different resonance hybrids of the same tau-
tomer (neutral microstate). Enumeration of all theoretically possible neutral tautomers of
SAMPL6 molecules can be found in the SAMPL6 GitHub Repository (https://github.
com/samplchallenges/SAMPL6/tree/master/physical_properties/pKa/microstates).

the compound. Here we have observed that clogP is particularly sensitive. clogP shifts of

more than one log unit upon change of the tautomer are not uncommon. h_logP is much

less sensitive to tautomers with shifts usually below 0.5 log P units. This is also true for

molecule SM08, for which different tautomeric forms are possible (as seen in Figure 2.11).

For the pyridone form of SM08 (SM08_micro011), clogP predicts a log P of 2.17, whereas the

hydroxy-pyridine form (SM08_micro010) yields a log P of 3.63. For h_logP, the respective

values are 3.09 and 3.06.

Despite the small training sets of the MOE models, good prediction for kinase inhibitor

fragments and the extra compounds was achieved. This is possibly because the training set

for this model was biased towards drug-like compounds, with substantial similarity to the

SAMPL6 Challenge set.

Other studies have found that some empirical methods tend to overestimate log P when
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molecular weight increases [163, 205]. In this challenge, this was less of an issue as molecular

size remained relatively constant.

According to in-house experience at Boehringer-Ingelheim, different experimental log P mea-

surement methods produce values that are correlated with one another with an R2 value of

around 0.7 (T. Fox, P. Sieger, unpublished results), indicating that experimental methods

themselves can disagree with one another significantly. This is especially true when it comes

to more approximate methods of estimating log P experimentally, such as HPLC-based

methods [218, 192]. A dataset composed of 400 compounds from Boehringer-Ingelheim mea-

sured both with GLpKa and HPLC assays covering a range from 0-7 log P units had R2 of

0.56, though in some cases these methods may have higher correlations with potentiometric

approaches [76]. Thus, if an empirical model is trained on log P data from one particular

method, testing it on data collected via another method may not yield performance as high

as expected.

Here, all of the analyzed empirical reference methods achieved absolute error <2.0, and often

<1.5 calculated for each molecule in the SAMPL6 log P Challenge set. This is a sign of

more consistent accuracy of the predictions across different molecules compared to physical

methods. However, it is difficult to draw general conclusions given the small size of the data

set, and many hypotheses being based on only one example.

2.5.4 Performance of reference methods on additional molecules

To broaden the analysis with a larger set with more chemical diversity and larger dynamic

range of log P values, an extra set of 27 compounds were included in the analysis of reference

calculations (Figure 2.12). These compounds had literature experimental log P values col-

lected using the same method as the SAMPL6 dataset. This set is composed of substituted

phenols, substituted quinolines, barbiturate derivatives and other pharmaceutically relevant
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(±)-Propranolol

N

Figure 2.12: Structures of the 27 additional molecules that were included in follow-
up assessment of the reference methods. These molecules were not included in the
statistics overview.

compounds [202].

This set of molecules is larger and more diverse than the SAMPL6 challenge set, spanning

a range of 4.5 log units compared to the challenge set which had a range of 2.1 log units.

For this set, the number of rotatable bonds ranges from 0 to 12, with an average of 3 per

compound. The number of heavy atoms ranges from 7 to 27, and the average per compound

is 14. Most of the worst-performing compounds for the physical reference calculations had

a higher number of heavy atoms – celiprolol (27), acebutolol (24) and pericyazine (26).

Celiprolol and acebutolol both have the highest number of rotatable bonds in the set, 12

and 11 respectively. Chlorpromazine, pericyazine, and sulfamethazine all contain sulfur.

Sulfur can in some cases pose particular challenges for force fields, especially hypervalent

sulfur [149], which may account for the poor performance of pericyazine, chlorpromazine,

and sulfamethazine. Pericyazine, one of the worst performing compounds, is also the only
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Figure 2.13: Distribution of reference method calculation errors by molecule on
our extra set shows that a few of the molecules were more challenging than
others. (A) MAE of each of the extra molecules broken out by physical and empirical
reference method category. Majority of molecules have mean absolute errors below 1 log P
unit for physical reference calculations. All of the mean absolute errors are well below 1 log P
unit for empirical reference calculations. (B) Error distribution for each molecule calculated
for the reference methods. A couple molecules have a significant tail showing probability of
overestimated log P predictions.
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Table 2.6: Statistics of the physical and empirical reference method predictions
on the extra test of molecules. Methods were ranked according to increasing RMSE in
this table. Performance statistics of MAE, R2, and Kendall’s Tau are also provided. Mean
and 95% confidence intervals of all statistics are presented.

molecule in the set that has a nitrile.

In the physical reference calculations, the mean absolute errors are below 1 log P unit for

dry octanol conditions and below 1 log P units for wet octanol conditions (Table 2.6). The

calculated log P values had an average RMSE of 1.4 (RMSE range of 1.3 [0.9, 1.6] to 1.5

[1.0, 2.0]), and an average R2 of 0.5 (with a correlation range of 0.5 [0.1, 0.8] to 0.6 [0.3, 0.8]).

Physical methods are on par with empirical ones for the smaller, less flexible compounds,

but in general are worse, especially for compounds with long flexible hydrophilic tails. The

exception is chlorpromazine, but the smaller error seen in this molecule might be due to

an error compensation caused by the presence of the sulfur atom since force fields have

challenges with sulfur-containing compounds. [149].

Empirical methods are more stable in the sense that there are no gross outliers found in

the extended set. For the empirical reference calculations, the absolute errors for the 27

extra compounds are all below 1 log P unit. For clogP, most compounds have errors below

0.4 log P unit, with only (±)-propanolol a bit higher. Compound 3,5-dichlorophenol and

3,4-dichlorophenol consistently had a slightly higher error; there is no obvious correlation

between method performance and size or complexity of the compounds. Figure 2.13A shows

that 3,5-dichlorophenol, 3,4-dichlorophenol, and (±)-propranolol were the most challenging
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compounds for empirical reference methods. The MAE calculated for these three molecules

as the average of five methods (EXT09, EXT10, EXT11, EXT12, EXT13 ) was higher than

0.5 log P units (Table 2.6). RMSE overall compounds between 0.23 for clogP and 0.59 for

MOE_SlogP, significantly below the best physical model. This is mirrored in the Kendall

tau values, where the best empirical method (clogP) achieves 0.85, whereas the best physical

methods are comparable to the worst empirical method with a value of 0.55.

When prediction performance of empirical prediction methods for this dataset and for the

SAMPL6 Challenge set are compared, we observe better prediction accuracy for this set,

with an RMSE range of 0.2 [0.2, 0.3] to 0.6 [0.5,0.7] for the extra molecules and 0.5 [0.2,

0.8] to 0.8 [0.5, 1.1] for the challenge molecules. The average R2 was 0.6 (with a correlation

range of 0.38 [0.01, 0.82] to 0.7 [0.3, 0.9]). This may be due to SAMPL6 compounds being

more challenging, or it may be that these extra molecules appear in the training sets used

in developing empirical methods.

2.5.5 Take-away lessons from the SAMPL6 Challenge

Empirical and QM-based prediction methods represented in SAMPL6 Challenge in general

performed better than MM-based methods. Ten empirical and QM-based methods achieved

an RMSE < 0.5 log P units. The lowest RMSE observed for MM-based physical methods

was 0.74 and the average RMSE of the better half of MM-based methods was 1.44 log P

units. However, the RMSE of the best two MM-based methods was similar to the null model,

which simply guessed that all compounds had a constant, typical log P value.

For MM approaches, prediction accuracy varied based on methodological choices such as

simulation method, equilibration protocol, free energy estimation method, force field, and

water model. Only a small number of MM-based physical models achieved an accuracy

similar to the null model, which had an RMSE of 0.8. Some MM methods outperformed the
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null model, but such performance was variable across approaches and not clearly linked to a

single choice of force field, water model, etc. Polarizable force fields also did not provide an

advantage for log P predictions, possibly due to solute simplicity and the absence of formal

charge, or because other sources of error dominated.

Analysis of the MM-based reference calculations highlighted equilibration and charging pro-

tocols, sampling challenges, identification of the dominant neutral tautomer, and selection of

input resonance states as confounding factors. Comparison of equivalent calculations from

independent participants (identical methods such as free energy calculations using GAFF

and TIP3P water with different setups and code) showed significant systematic deviations

between predicted values for some compounds. The comparison of identical methods also

showed that the tautomer and resonance state choice for some molecules resulted in discrep-

ancies in calculated log P values. In one case, conformation selected for a carboxylic acid

before charging was important. We have also noticed differences in in equilibration protocols,

which could be particularly important for the octanol phase, though the present challenge

does not conclusively demonstrate that differences in equilibration made a significant differ-

ence.

Fast empirical methods showed greater consistency of prediction accuracy across test molecules

compared to physical methods. Most of the empirical methods were among the better-

performing methods. The size of the training sets seems to be more important for accuracy

than the exact methods and descriptors used in each model. Although not observed in the

SAMPL6 Challenge set, empirical methods may experience problems if a functional group

is underrepresented in training sets. Just like the physical methods, the choice of tautomer

makes a difference. For example, shifts greater than 1 log unit in the calculated log P of

different tautomers are common.

Performance in the SAMPL6 log P challenge was generally better than in the SAMPL5

log D Challenge. The change of partition solvent from cyclohexane to octanol, absence of
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protonation state effects, and smaller chemical diversity represented in the challenge are

likely reasons. In the SAMPL5 log D Challenge, only five submissions had an RMSE below

2.5 log units, while here, 10 methods achieved an RMSE ≤ 0.5 log P units and many of the

submissions had an RMSE ≤ 1.0 log P units. The design of the SAMPL6 log P Challenge

removed some of the factors confounding accuracy in the earlier log D challenge, namely

pK a prediction and cyclohexane (a challenging solvent for empirical methods).

Compared to expected accuracy for partition coefficients based on SAMPL4 Challenge per-

formance, many QM-based methods were better while only a small number of MM-based

methods achieved slightly better results. In SAMPL4, the top-performing hydration free

energy predictions had an error of about 1.5 kcal/mol, which would yield an expected error

here (assuming independent errors/no error cancellation) of about 1.54 log units [19], if log P

values were estimated from a difference in solvation free energies. Many physical methods

achieved roughly this accuracy or slightly better.

Partition coefficient predictions can also serve, for physical calculations, as a model system

that reflects how well solvation effects can be captured by the same techniques developed for

protein-ligand binding predictions – where solvation also plays a role in calculations. Relative

binding free energy calculations tend to achieve errors, in the best-case scenario, in the 1–2

kcal/mol range [44], or about 1.03–2.06 log units if similar accuracy were achieved here for

solvation in each phase (with independent errors). Many methods did better than 2 log P

units of error in this challenge, which is in agreement with the expectation that partition

coefficients present an easier model system compared to protein-ligand binding affinities.

Performance of empirical methods far surpassed these thresholds taking advantage of the

available octanol-water experimental data, however, these empirical techniques are specifi-

cally oriented towards predicting partitioning and cannot be applied to the binding problem.
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2.5.6 Suggestions for the design of future challenges

In the SAMPL6 Challenge, the log P focus proved helpful to allow a focus on modeling of

solvation effects without the complexities of modeling different protonation states present

in a log D challenge. Challenges which focus on specific aspects of modeling help isolate

methodological problems, making challenges like log P and log D modeling particularly

helpful. We believe the largest benefits to the field will be achieved from iterated challenges,

as seen from the progress achieved in predicting hydration free energies over multiple SAMPL

challenges [155].

As MM-based physical methods struggled with octanol-water log P predictions in SAMPL6,

we recommend additional SAMPL iterations focused on log P with larger datasets and

more chemical diversity to facilitate progress. The conclusions of SAMPL6 pK a and log P

Challenges indicate that, if this had been posed as a log D challenge rather than a log P

challenge, larger pK a prediction errors would have masked underlying issues in predicting

equilibrium partitioning of neutral solutes between solvent phases. The fact that performance

for physical methods was still relatively poor illustrates the potential benefit of future log P

challenges.

For near-term challenges, we would like to keep the level of difficulty reasonable by keeping

the focus on smaller and fragment-like compounds and limiting the number of non-terminal

rotatable bonds (maximum of 6) similar to SAMPL5. The SAMPL5 Challenge suggested

that molecules with many rotatable bonds still pose challenges for contemporary methods,

suggesting this is a criterion for difficulty. However, in later challenges we hope to gradually

increase the difficulty of the compounds considered to provide a more diverse set that includes

more difficult compounds including varying numbers of rotatable bonds.

Ideally, a more diverse combination of functional groups in the compounds should be included

in future sets, with improved chemical diversity posing more challenges and also helping

63



provide additional lessons learned. For example, a dataset could include matched molecular

pairs which differ by only a single functional group, helping to isolate which functional groups

pose particular challenges. Current MM-based methods are known to often have difficulty

modeling sulfonyl and sulfonamide groups, but a challenge utilizing matched molecular pairs

could reveal other such challenging functional groups. In addition, expanding partition

coefficient challenges with a diverse set of solvent phases would be beneficial for improving

solute partitioning models.

The statistical power of the SAMPL6 log P Challenge for comparative method evaluation

was limited due to the narrow experimental data set with only 2 log P units of dynamic

range and 11 data points, both of which were driven by limitations of the experimental

methodology chosen for this challenge [88]. Future log P challenges would benefit from

larger blind datasets with a broader dynamic range. We recommend at least a log P range

of 1–5. The potentiometric log P measurement method used for the collection for SAMPL6

data was rather low throughput, requiring method optimization for each molecule. High-

throughput log D measurement methods performed at pHs that would ensure neutral states

of the analytes may provide a way to collect larger datasets of log P measurements. However,

this approach poses some challenges. First, it is necessary to measure pK a values of the

molecules first. Second, partitioning measurements need to be done at a pH that guarantees

that the compound has neutral charge, in which case solubility will be lower than if it is

charged and may become a limitation for the experiment.

SAMPL6 log P Challenge molecules were not expected to have multiple tautomers affecting

log P predictions (based on QM predictions). The choice of the challenge set also ensured

participants did not have to calculate contributions of multiple relevant tautomerization

states or shifts in tautomerization states during transfer between phases. However, partic-

ipants still had to select a major tautomer for each compound. To evaluate the tautomer

predictions in the future, experimental measurement of tautomer populations in each sol-
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vent phase would provide valuable information. However, such experimental measurements

are difficult and low throughput. If measuring tautomers is not a possibility, the best ap-

proach may be to exclude compounds that present potential tautomerization issues from the

challenge, unless the challenge focus is specifically on tautomer prediction.

Overall, for future solute partitioning challenges, we would like to focus on fragment-like

compounds, matched molecular pairs, larger dynamic range, larger set size, and functional

group diversity.

2.6 Conclusion

Several previous SAMPL challenges focused on modeling solvation to help address this

key accuracy-limiting component of protein-ligand modeling. Thus, the SAMPL0 through

SAMPL4 challenges included hydration free energy prediction as a component, followed by

cyclohexane-water distribution coefficient in SAMPL5.

Here, a community-wide blind partition coefficient prediction challenge was fielded for the

first time, and participants were asked to predict octanol-water partition coefficients for small

molecules resembling fragments of kinase inhibitors. As predicting log D in the previous

challenge was quite challenging due to issues with pK a prediction, the present challenge

focused on log P , avoiding these challenges and placing it at roughly the right level of

complexity for evaluating contemporary methods and issues they face regarding the modeling

of small molecule solvation in different liquid phases. The set of molecules selected for the

challenge were small and relatively rigid fragment-like compounds without tautomerization

issues which further reduces the difficulty of the prospective prediction challenge.

Participation in the challenge was much higher than in SAMPL5, and included submissions

from many diverse methods. A total of 27 research groups participated, submitting 91 blind
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submissions in total. The best prospective prediction performance observed in SAMPL6

log P Challenge came from QM-based physical modeling methods and empirical knowledge-

based methods, with 10 methods achieving an RMSE below 0.5 log P units. On the other

hand, only a small number of MM-based physical models achieved an accuracy similar to the

null model (which predicted a constant, typical log P value), which had an RMSE of 0.8. Em-

pirical predictions showed performance which was less dependent on the compound/dataset

than physical methods in this study. For empirical methods, the size and chemical diversity

of the training set employed in developing the method seems to be more important than the

exact methods and descriptors employed. We expected many of the empirical methods to

be the top performers, given the wealth of octanol-water log P training data available, and

this expectation was borne out.

Better prediction performance was seen for octanol-water log P challenge than the SAMPL5

cyclohexane-water log D challenge. In addition to absence of pK a prediction problem for

the partition system, the molecules in the SAMPL6 log P Challenge were considerably less

diverse than in the SAMPL5 log D Challenge, which may have also affected relative perfor-

mance in the two challenges. Physical methods fared slightly better in this challenge than

previous cyclohexane-water log D challenge, likely because of the elimination of the need to

consider protonation state effects. However, MM-based physical methods with similar ap-

proaches did not necessarily agree on predicted values, with occasionally large discrepancies

resulting from apparently relatively modest variations in protocol.

All information regarding the challenge structure, experimental data, blind prediction sub-

mission sets, and evaluation of methods is available in the SAMPL6 GitHub Repository to

allow follow up analysis and additional method testing.

Overall, high participation and clear lessons learned pave the way forward for improving

solute partitioning and biomolecular binding models for structure-based drug design.
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2.9 Supplementary Information

2.9.1 Overview of Supplementary Information

Contents of Supplementary Information

• Code and Data Availability

• Detailed methods section:

1. Physical reference calculations - Direct Transfer Free Energy Approach

2. Physical reference calculations - Indirect Solvation-Based Transfer Free Energy

Approach

3. Empirical reference calculations

• Table 2.7 Method details of log P predictions with MM-based physical methods.

• Table 2.8 SMILES and InChI identifiers of SAMPL6 log P Challenge molecules.

• Table 2.9 SMILES and InChI identifiers of extra molecules included in the evaluation

of reference methods.

• Table 2.10 and Table 2.11 Evaluation statistics calculated for all methods.

• Table 2.12 Comparison of force field parameters of the TIP3P, TIP3P-FB and OPC

water models

• Table 2.13 Comparison of the charges assigned to the syn and anti conformation of

SM08_micro011 in the DFE protocol

• Figure 2.14: Varying the amount of water in the octanol phase has no significant

effect on the predicted log P in reference calculations.
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• Figure 2.15 2D and 3D structures of SM08_micro011 with the carboxylic acid in

“anti” and “syn” conformation.

• Figure 2.16 For the DFE method, the starting conformation impacts the number of

C-O dihedral transitions for SM08_micro011.

Additional supplementary files SAMPL6-supplementary-documents.tar.gz file includes:

• An archive copy of the log P Challenge directory of SAMPL6 GitHub Repository

(SAMPL6-repository-logP-directory.zip)

• SAMPL6 log P Challenge Instructions (logP_challenge_instructions.md)

• Table 2.7 in CSV format (SI-table-MM-method-details.csv)

• Table 2.8 in CSV format (SAMPL6-logP-chemical-identifiers-table.csv)

• Table 2.9 in CSV format (extra-chemical-identifiers-table.csv)

• Table 2.10 and Table 2.11 in CSV format (statistics.csv)

• The free energy and enthalpy values of each phase in triplicate and comparisons of

calculated solvation free energies across trials for the physical reference calculations

(analysis-of-physical-reference-calculations.zip)

• Scripts related to the physical reference calculations (physical-reference-calculation-

scripts.zip)

2.9.2 Code and Data Availability

All SAMPL6 log P Challenge instructions, submissions, experimental data and analysis are

available at
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https://github.com/samplchallenges/SAMPL6/tree/master/physical_properties/logP.

An archive copy of SAMPL6 GitHub Repository log P Challenge directory is also avail-

able in the Supplementary Documents bundle (SAMPL6-supplementary-documents.tar.gz ).

Some useful files from this repository are highlighted below.

• Table of participants and their submission filenames:

https://github.com/samplchallenges/SAMPL6/blob/master/physical_properties/

logP/predictions/SAMPL6-user-map-logP.csv

• Table of methods including submission IDs, method names, participant assigned method

category, and reassigned method categories:

https://github.com/samplchallenges/SAMPL6/blob/master/physical_properties/

logP/predictions/SAMPL6-logP-method-map.csv

• Submission files of prediction sets:

https://github.com/samplchallenges/SAMPL6/tree/master/physical_properties/

logP/predictions/submission_files

• Python analysis scripts and outputs:

https://github.com/samplchallenges/SAMPL6/blob/master/physical_properties/

logP/analysis_with_reassigned_categories/

• Table of performance statistics calculated for all methods:

https://github.com/samplchallenges/SAMPL6/blob/master/physical_properties/

logP/analysis_with_reassigned_categories/analysis_outputs_withrefs/StatisticsTables/

statistics.csv
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2.9.3 Detailed methods

Physical reference calculations - Direct Transfer Free Energy Approach

log P can be estimated directly from the transfer free energy of a solute moving from the

organic to the aqueous layer. Specifically, we calculate the transfer free energy from the

difference in solvation free energy into octanol and hydration free energy. log P is directly

proportional to the difference between the solvation free energy for the solute into each

solvent

logP = −∆Gtransfer

RT ln 10
=

∆Gsolvation −∆Ghydration

RT ln 10
(2.4)

where ∆Gtransfer is the transfer free energy, ∆Gsolvation is the solvation free energy of the

solute going from the gas to the octanol phase, ∆Ghydration is the hydration free energy going

from the gas to the water phase, R is the gas constant (8.314 J / mol · K) and T is the

temperature (298.15 K).

The direct transfer free energy (DFE) protocol that was used for the physical reference cal-

culations (REF01 -REF08, EXT02, EXT05, EXT07, EXT08 ) directly computed the transfer

free energy between solvents without any gas phase calculation, whereas the IFE protocol

(discussed in Section ??) computed gas-to-solution phase solvation free energies in water and

octanol separately and then subtracted to obtain the transfer free energy.

To explore how solvent mixing would effect predicted values, water was included in the oc-

tanol phase for the majority of the reference calculations. A portion of the calculations

treated the octanol and water phase as completely immiscible for comparison. The experi-

mental mole fraction of water in octanol was measured as 0.2705 [117]. The solutions and
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calculations modeled each phase at infinite dilution, with only a single solute molecule in

each solvent.

The initial input files were made using the Solvation Toolkit (https://github.com/MobleyLab/

SolvationToolkit), which converts SMILES strings to parameterized molecules and builds

topology and coordinate files for use in molecular dynamics software packages. Solvation

Toolkit is a driver utility that utilizes the OpenEye toolkits (version 2018.10.1) for chem-

informatics (specifically file conversion and handling of molecular identities), and OEChem

for reading and writing files. AmberTools [34] was used to parameterize systems with the

General AMBER Force Field for organic molecules (version 2017.1.81) and water was param-

eterized with the TIP3P water model, AM1-BCC charges were assigned via Antechamber,

Packmol (version 18.169) [138] was used to build boxes, and lastly AMBER topology and

coordinate files were made with LEaP.

The SMILES string and the mole fraction of each compound in the system were used as

input. The “wet” octanol systems were generated using a mole fraction of 0.7295 for octanol

and 0.2705 for water, producing systems with about 200 octanol molecules and 74 water

molecules, depending on the solute size. The “dry” octanol systems had no water component

and about 211 octanol molecules. All of the water systems had 1497 molecules. The box

dimensions were about 40x40 Å in all cases.

The following equilibration stages were carried out using the GAFF forcefield (version

2017.1.81), the TIP3P water model and OpenMM (version 7.3.1) [55, 58], a molecular sim-

ulation toolkit.

For minimization, an energy tolerance of 10 kilojoules/mole was used and the systems were

minimized until convergence was reached. A Langevin integrator was used with a 0.5 fs

timestep. Minimization was followed by 100 ps of NVT using a Langevin integrator and 1.0

fs timestep, 100 ps of NPT using a Langevin integrator and 2.0 fs timestep, and lastly 500
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ns of NPT using a Langevin integrator and 2.0 fs timestep.

Three independent equilibrations were run starting from water and octanol phase systems of

the initial setup, in order to obtain three different sets of starting coordinates for replicate

transfer free energy calculations with YANK (version 0.24.0 [184]). The protocol for creating

systems with different force field and/or water model conditions (2.1) is detailed below.

Following equilibration, the resulting systems were saved to PDBs. For each solvent system, a

ParmEd Structure was created using the topology and positions from the equilibrated PDB,

with parameters coming from the original GAFF/TIP3P OpenMM System. The ParmEd

structure of the system was split into individual components or structures and then used

to create newly parameterized OpenMM systems. The water was parameterized with either

the TIP3P, TIP3P-FB or OPC water model, and the solute and solvent were parameterized

with the SMIRNOFF force field (smirnoff99Frosst version 1.0.7) or remained parameterized

with GAFF. In just the OPC case, a dummy atom was added to the water component

structure. After parameterization, the OpenMM systems of the solute-octanol and water

were converted back to ParmEd structures which maintained their new parameters. The

final OpenMM system was created using the particle mesh Ewald (PME) method for periodic

boundary conditions, an error tolerance of 1e-4 and a cutoff for nonbonded interactions was

set to 11 Å.

The resulting OpenMM Systems were saved as XMLs for use later on. Prior to using YANK,

the new systems were briefly equilibrated using the same setup described previously, exclud-

ing the 500 ns of NPT. The final equilibrated PDB and system XML files were used as

input files for solvation and transfer free energy calculations with YANK [16], a toolkit that

uses Hamiltonian replica exchange and can compute solvation free energies. For the YANK

simulations, hydrogen mass repartitioning (HMR) was used to allow a 3 fs timestep. HMR

works by slowing down the fastest motions in the simulation by reallocating mass from the

connected heavy atom to the hydrogens [84]. The temperature was set to 298.15 K (the
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experimental temperature), the pressure to 1.0 atm, and an anisotropic dispersion cutoff of

12.0 Å was used. There were 5000 iterations total and 335 steps per iteration. The overall

length of the YANK simulations were 5 ns for each replica.

In the octanol and water phase the electrostatic interactions of the solute with the solvent

were scaled off through a λ (lambda) parameter using the following lambda values where λ

= [1.00, 0.75, 0.50, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00, 0.00, 0.00, 0.00], and steric interactions were scaled using λ = [1.00, 1.00, 1.00, 1.00,

1.00, 0.95, 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10, 0.05, 0.00].

The direct transfer free energy was obtained from YANK [16], where the ∆Gtransfer was

equivalent to ∆Goctanol − ∆Gwater. This was then converted to log P using Equation 2.4.

The uncertainties of the log P predictions were calculated as the standard error of the mean

(SEM) of three replicate predictions. The SEM was estimated as SEM = σ/
√
N where σ

is the sample standard deviation and N is the size of the sample (in this case the number of

replicate predictions made). The model uncertainty was reported as 1.6 log units, based on

similar previous work [20].

Physical Reference Calculations - Indirect Solvation-Based Transfer Free Energy

Approach

We ran an additional set of reference calculations using a more traditional indirect solvation-

based transfer free energy method to see how it would compare to the direct transfer free

energy method (described in Section 2.9.3). Specifically, the IFE protocol calculates the

transfer free energy as the difference between the solvation free energy of the solute going

from the gas to the octanol phase, and the hydration free energy going from the gas to the

water phase. The direct transfer free energy method that was run with YANK had not

computed gas-to-water transfer free energies as previous work had done when computing
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log P and log D values and, while in principle this should be an unimportant methodological

detail, we wanted to assess whether this choice had negatively impacted results. Thus, we

ran the indirect solvation-based transfer free energy protocol described below.

The set of indirect solvation-based alchemical free energy calculations were run using Open-

Eye’s Orion cloud computing platform, also with the YANK software but with an alternate,

fully automated workflow. The Orion workflow utilizes a very similar approach to that

utilized above, except that it employs solvation free energy calculations for each molecule

in each phase, rather than computing transfer free energies. Details of equilibration and

simulation length are also different, as described below – with the largest difference being

equilibration protocol.

On Orion, the input for each calculation was the target solute (SMILES) and the target

solvent (SMILES), along with the temperature (298.15 K) and a guessed initial density

for each solution (here 1.0 g/mL for solutes in water, 0.83 g/mL for octanol, to match

experiment roughly). These settings are used on Orion, to prepare initial simulations via

an internal Orion workflow based on that used in SolvationToolkit. The GAFF version

used during parameterization on Orion was 1.8. In this Orion workflow, we also tested

several additional potential tautomers for some molecules. For each molecule, we conducted

a solvation free energy calculation of the solute in pure water and another in octanol. After

parameterization, equilibration stages were run with OpenMM (version 7.2.2.dev-32bc79a)

and free energy calculations were done with YANK (version 0.23.7 [185]). A cutoff for

nonbonded interactions was set to 9 Å, electrostatic interactions were computed using PME,

bonds involving hydrogen were constrained and HMR was used to allow for a 4 fs timestep.

The equilibration was carried out with OpenMM on Orion. The first step was 200 ps of

NVT simulation with the solute heavy atoms harmonically restrained with 2.0 kcal/(mol·Å2)

spring constants. The second step of equilibration was 200 ps of NPT simulation with har-

monic heavy atom restraints with a 0.1 kcal/(mol·Å2) spring constant. These equilibrated
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structures were then used in YANK [16] simulations. The length of the YANK simulations

were 5 ns for each replica. The electrostatic and steric interactions of the solute with the

solvent were scaled using the same λ parameters listed in the transfer free energy proto-

col previously. The OpenEye workflow was also different in that it employed the ELF10

AM1-BCC charging engine (https://docs.eyesopen.com/toolkits/python/quacpactk/

OEProtonClasses/OEAM1BCCELF10Charges.html, https://docs.eyesopen.com/applications/

quacpac/theory/molcharge_theory.html), and only syn conformers of neutral carboxylic

acids were retained for charging because, in OpenEye’s view, anti comformers result in

incorrect charges dominated by strong internal interactions which are not well suited for

MM applications. The only carboxylic acid studied was SM08, but the modification of the

charging procedure in this case (relative to that employed in our direct solvation free energy

approach) appears to have significantly impacted employed partial charges, likely for the

better, as performance on SM08 was markedly different with this protocol.

Empirical reference calculations

For all empirical calculations, the compounds were stripped of counter ions and neutralized.

The pyridone tautomer of SM08 was used, as given, and as it is assumed to be the most

stable tautomer.

The MOE/logP(o/w) model, the MOE/h_logP model, and the MOE/S_logP model are all

available within the graphical modeling program MOE (MOE, available from the Chemical

Computing Group, Montreal, www.chemcomp.com). The MOE/logP(o/w) model is based on

95 atom types, plus a few corrections for geminal halogens, 1-4 aromatic nitrogens, ethylene-

glycol ethers, alkane carbons, and amino acids. The individual contributions were obtained

from fitting to a data set of 1827 measurements, yielding an R2 of 0.931 and an RMSE of

0.393 (P. Labute, logP(o/w) model, unpublished).
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The MOE/h_logP model uses 8 2D-descriptors derived from Extended Huckel Theory (the

descriptors used are the sum of atomic EHT donor and acceptor strengths, the sum over log(1

+ pi-bond order), the sum over log(1+ d-orbital bond order), the Gerber ring number and

Gerber atomic surface area [70], and the number of hydrogens and number of hydrophobic

carbons (carbons with no heteroatom within 3 bonds). The contributions of these descriptors

were obtained by fitting to 1836 molecules yielding a model with an R2 of 0.084 and an RMSE

of 0.59 (P. Labute, MOE h_mr, h_logP, and h_logS models, unpublished). The MOE

program is available from the Chemical Computing Group, Montreal (www.chemcomp.com).

The MOE/S_logP model is described in this reference [225]. In this model, 68 different atom

types were defined based on element and nearest neighbors, e.g. 27 different carbon types

or 14 different nitrogen types. Then the atomic contributions were determined by fitting to

a training set of almost 10000 molecules.

The MoKa/logP methodology [MoKa-3.2.2, Molecular Discovery Ltd, London, www.moldiscovery.

com] builds on a similar approach as the corresponding pK a prediction [145]. The procedure

starts by calculating molecular interaction fields based on the GRID force field on a large

number of molecular fragments. The 3D energy fields of these fragments are then stored and

used to recompute any molecule as a summation of appropriate 3D fragments. Therefore

any molecule can be quickly approximated by 3D fields describing polar and hydrophobic

interaction with water and n-octanol. From these fields, VolSurf descriptors are computed

and used in a training scheme using a database of about 20000 compounds. From the train-

ing model, a final model is computed to make external predictions (G. Cruciani, personal

communication).
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Table 2.7: Method details of log P predictions with MM-based physical methods. Force fields, water models, and
octanol phase choice are reported. A dry octanol phase indicates the octanol phase was treated as consisting of pure octanol. A
wet octanol phase indicates the octanol phase was treated as a mixture of octanol and water. RMSE and Kendall’s Tau values
are reported as mean and 95% confidence intervals. A CSV version of this table can be found in SAMPL6-supplementary-
documents.tar.gz.
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Table 2.8: SMILES and InChI identifiers of SAMPL6 log P Challenge molecules. Experimental log P values can be
found in a separate paper reporting measurements [88]. A CSV version of this table can be found in SAMPL6-supplementary-
documents.tar.gz.
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Table 2.9: SMILES and InChI identifiers of extra molecules included in the evaluation of reference methods. A
CSV version of this table can be found in SAMPL6-supplementary-documents.tar.gz. Experimental log P values can be found
in a separate paper reporting measurements [202] and in machine readable format in https://github.com/samplchallenges/
SAMPL6/blob/master/physical_properties/logP/analysis_of_extra_molecules/logP_experimental_values.csv.
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Table 2.10: Evaluation statistics calculated for all methods. Methods are represented via
their SAMPL6 submission IDs which can be cross referenced with Table 2.3 for method details.
There are six error metrics reported: the root-mean-squared error (RMSE), mean absolute error
(MAE), mean (signed) error (ME), coefficient of determination (R2), linear regression slope (m),
and Kendall’s Rank Correlation Coefficient (τ). This table is ranked by increasing RMSE. A
CSV version of this table can be found in SAMPL6-supplementary-documents.tar.gz.

Submission ID RMSE MAE ME R2 m Kendall’s Tau

hmz0n 0.38 [0.23,0.55] 0.31 [0.19,0.46] -0.17 [-0.38,0.03] 0.77 [0.34,0.94] 0.94 [0.59,1.15] 0.64 [0.16,0.96]
gmoq5 0.39 [0.28,0.49] 0.34 [0.23,0.46] 0.01 [-0.21,0.25] 0.74 [0.39,0.92] 0.99 [0.66,1.33] 0.59 [0.10,0.88]
3vqbi 0.41 [0.28,0.53] 0.36 [0.24,0.48] -0.08 [-0.30,0.17] 0.66 [0.27,0.93] 0.78 [0.50,1.10] 0.56 [0.12,0.91]
sq07q 0.47 [0.33,0.58] 0.41 [0.28,0.54] 0.03 [-0.24,0.31] 0.64 [0.21,0.89] 0.92 [0.51,1.30] 0.56 [0.10,0.88]
j8nwc 0.47 [0.17,0.75] 0.31 [0.15,0.55] 0.07 [-0.16,0.38] 0.74 [0.33,0.97] 1.14 [0.84,1.38] 0.81 [0.44,1.00]
xxh4i 0.49 [0.34,0.62] 0.43 [0.29,0.57] 0.18 [-0.09,0.43] 0.54 [0.14,0.86] 0.60 [0.29,1.03] 0.51 [0.00,0.88]
hdpuj 0.49 [0.37,0.61] 0.44 [0.32,0.57] -0.29 [-0.51,-0.05] 0.74 [0.40,0.94] 1.02 [0.69,1.35] 0.67 [0.23,1.00]
dqxk4 0.49 [0.33,0.62] 0.42 [0.26,0.57] 0.30 [0.06,0.53] 0.69 [0.37,0.91] 0.83 [0.50,1.26] 0.67 [0.25,0.96]
vzgyt 0.50 [0.27,0.68] 0.38 [0.21,0.58] -0.35 [-0.57,-0.15] 0.72 [0.28,0.95] 0.76 [0.48,0.98] 0.64 [0.25,0.92]
ypmr0 0.50 [0.36,0.63] 0.44 [0.31,0.58] 0.07 [-0.23,0.35] 0.61 [0.25,0.89] 0.93 [0.54,1.52] 0.64 [0.23,0.92]
yd6ub 0.51 [0.32,0.66] 0.41 [0.23,0.59] 0.09 [-0.21,0.38] 0.63 [0.21,0.89] 0.99 [0.47,1.41] 0.53 [-0.02,0.87]
7egyc 0.52 [0.35,0.66] 0.44 [0.28,0.60] 0.27 [0.01,0.52] 0.57 [0.22,0.85] 0.50 [0.32,0.77] 0.45 [0.06,0.83]
0a7a8 0.53 [0.34,0.69] 0.43 [0.25,0.62] 0.32 [0.07,0.56] 0.62 [0.13,0.90] 0.74 [0.34,1.02] 0.45 [-0.14,0.84]
7dhtp 0.54 [0.33,0.70] 0.44 [0.26,0.62] 0.06 [-0.27,0.36] 0.49 [0.06,0.88] 0.73 [0.26,1.15] 0.56 [0.04,0.96]
qyzjx 0.54 [0.34,0.75] 0.46 [0.31,0.65] -0.15 [-0.41,0.19] 0.73 [0.33,0.97] 1.22 [0.89,1.50] 0.78 [0.45,1.00]
REF11 0.54 [0.25,0.80] 0.39 [0.19,0.64] 0.19 [-0.09,0.50] 0.59 [0.37,0.89] 0.90 [0.37,1.62] 0.67 [0.33,0.96]
REF13 0.55 [0.37,0.71] 0.47 [0.31,0.64] -0.27 [-0.55,0.02] 0.69 [0.31,0.93] 1.06 [0.55,1.55] 0.60 [0.08,0.96]
w6jta 0.56 [0.33,0.76] 0.46 [0.28,0.66] 0.32 [0.06,0.61] 0.53 [0.12,0.89] 0.62 [0.34,0.86] 0.51 [0.02,0.88]
REF12 0.60 [0.42,0.76] 0.52 [0.36,0.70] -0.08 [-0.43,0.26] 0.67 [0.23,0.90] 1.21 [0.76,1.53] 0.55 [0.06,0.88]
ji2zm 0.60 [0.43,0.75] 0.53 [0.38,0.70] 0.45 [0.22,0.67] 0.66 [0.32,0.90] 0.66 [0.43,0.96] 0.51 [0.11,0.84]
5krdi 0.60 [0.39,0.81] 0.51 [0.33,0.71] -0.30 [-0.60,0.01] 0.63 [0.24,0.91] 1.03 [0.59,1.51] 0.60 [0.14,0.92]
REF10 0.60 [0.39,0.83] 0.51 [0.33,0.72] -0.04 [-0.42,0.30] 0.38 [0.01,0.82] 0.65 [-0.03,1.21] 0.35 [-0.27,0.8]
gnxuu 0.61 [0.39,0.80] 0.51 [0.31,0.72] 0.40 [0.13,0.68] 0.53 [0.12,0.91] 0.57 [0.34,0.79] 0.51 [0.04,0.88]
tc4xa 0.62 [0.41,0.80] 0.51 [0.31,0.73] 0.17 [-0.18,0.53] 0.66 [0.17,0.90] 1.21 [0.52,1.65] 0.49 [-0.02,0.84]
6cdyo 0.65 [0.42,0.83] 0.54 [0.33,0.76] -0.24 [-0.60,0.10] 0.52 [0.20,0.81] 0.93 [0.48,1.70] 0.53 [0.17,0.87]
dbmg3 0.70 [0.47,0.89] 0.60 [0.39,0.82] 0.42 [0.09,0.74] 0.47 [0.03,0.80] 0.75 [0.12,1.29] 0.38 [-0.18,0.80]
kxsp3 0.74 [0.49,0.94] 0.62 [0.39,0.86] 0.48 [0.14,0.80] 0.36 [0.02,0.77] 0.54 [0.04,1.15] 0.35 [-0.20,0.80]
nh6c0 0.74 [0.56,0.93] 0.67 [0.48,0.87] 0.09 [-0.35,0.53] 0.62 [0.16,0.88] 1.34 [0.52,1.91] 0.49 [0.02,0.87]
kivfu 0.78 [0.35,1.08] 0.56 [0.27,0.90] -0.03 [-0.51,0.40] 0.41 [0.03,0.88] 0.97 [0.30,1.43] 0.45 [-0.02,0.84]
NULL0 0.79 [0.50,1.03] 0.66 [0.42,0.92] 0.42 [0.02,0.81] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
ujsgv 0.82 [0.56,1.06] 0.67 [0.39,0.95] -0.31 [-0.76,0.15] 0.33 [0.01,0.81] 0.80 [-0.02,1.45] 0.35 [-0.14,0.79]
REF09 0.82 [0.52,1.10] 0.68 [0.43,0.97] -0.26 [-0.73,0.20] 0.46 [0.08,0.89] 1.09 [0.44,1.78] 0.48 [-0.02,0.86]
wu52s 0.83 [0.57,1.05] 0.72 [0.49,0.97] 0.70 [0.43,0.97] 0.55 [0.11,0.99] 0.54 [0.24,0.88] 0.56 [-0.06,1.00]
g6dwz 0.85 [0.56,1.08] 0.72 [0.45,0.99] 0.35 [-0.11,0.80] 0.52 [0.07,0.85] 1.18 [0.47,1.70] 0.45 [-0.07,0.84]
5mahv 0.85 [0.42,1.19] 0.62 [0.31,0.99] -0.02 [-0.53,0.47] 0.34 [0.03,0.79] 0.90 [0.28,1.37] 0.24 [-0.33,0.72]
bqeuh 0.87 [0.51,1.17] 0.66 [0.34,1.01] 0.25 [-0.24,0.73] 0.01 [0.00,0.53] -0.05 [-0.42,0.49] 0.02 [-0.57,0.57]
d7vth 0.87 [0.62,1.10] 0.78 [0.56,1.01] -0.65 [-0.96,-0.30] 0.63 [0.21,0.93] 1.11 [0.73,1.39] 0.49 [0.02,0.85]
2mi5w 0.95 [0.64,1.24] 0.81 [0.54,1.12] -0.3 [-0.83,0.23] 0.18 [0.00,0.64] 0.61 [-0.12,1.25] 0.24 [-0.22,0.71]
kuddg 0.97 [0.73,1.18] 0.89 [0.67,1.12] 0.89 [0.67,1.12] 0.67 [0.26,0.95] 0.71 [0.44,1.04] 0.53 [-0.02,0.96]
qz8d5 0.97 [0.71,1.19] 0.84 [0.56,1.12] 0.77 [0.42,1.10] 0.53 [0.18,0.84] 0.93 [0.49,1.58] 0.48 [0.06,0.82]
y0xxd 1.04 [0.42,1.50] 0.72 [0.32,1.21] 0.37 [-0.18,1.00] 0.33 [0.00,0.93] 1.03 [-0.20,2.00] 0.42 [-0.14,0.91]
2ggir 1.04 [0.84,1.24] 0.98 [0.76,1.19] -0.36 [-0.88,0.27] 0.31 [0.00,0.93] 0.98 [-0.33,1.88] 0.49 [-0.02,0.92]
dyxbt 1.07 [0.79,1.34] 0.96 [0.70,1.23] 0.96 [0.70,1.23] 0.55 [0.11,0.9] 0.68 [0.22,1.15] 0.56 [0.12,0.92]
mm0jf 1.09 [0.91,1.24] 1.03 [0.81,1.22] 1.03 [0.81,1.22] 0.75 [0.44,0.98] 0.60 [0.39,0.82] 0.75 [0.38,1.00]
h83sb 1.12 [0.59,1.59] 0.87 [0.50,1.33] -0.21 [-0.91,0.40] 0.00 [0.00,0.57] -0.02 [-1.06,0.84] -0.16 [-0.69,0.42]
3wvyh 1.13 [0.48,1.75] 0.77 [0.35,1.33] 0.26 [-0.32,0.99] 0.37 [0.03,0.93] 1.24 [0.32,2.29] 0.55 [0.11,0.95]
f3dpg 1.17 [0.74,1.52] 0.92 [0.50,1.36] -0.85 [-1.33,-0.38] 0.11 [0.00,0.47] 0.36 [-0.18,0.85] 0.15 [-0.33,0.51]
25s67 1.21 [0.84,1.54] 1.06 [0.72,1.42] -0.97 [-1.39,-0.55] 0.63 [0.16,0.90] 1.33 [0.43,2.34] 0.45 [-0.14,0.88]
zdj0j 1.21 [0.98,1.41] 1.13 [0.86,1.37] 1.13 [0.86,1.37] 0.64 [0.26,0.94] 0.86 [0.41,1.31] 0.64 [0.18,0.96]
7gg6s 1.27 [0.81,1.62] 1.00 [0.55,1.47] -1.00 [-1.47,-0.55] 0.10 [0.00,0.46] 0.31 [-0.17,0.77] 0.16 [-0.33,0.55]
hwf2k 1.28 [0.57,1.90] 0.93 [0.49,1.50] -0.09 [-0.92,0.57] 0.12 [0.00,0.84] 0.68 [-0.77,1.60] 0.31 [-0.32,0.79]
pcv32 1.28 [1.00,1.53] 1.17 [0.84,1.47] 1.17 [0.84,1.47] 0.50 [0.14,0.89] 0.75 [0.26,1.38] 0.44 [-0.04,0.81]
v2q0t 1.31 [0.94,1.65] 1.16 [0.82,1.52] -1.15 [-1.52,-0.79] 0.70 [0.25,0.98] 1.31 [0.92,1.57] 0.64 [0.14,1.00]
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Table 2.11: [Table 2.10 continued.] Evaluation statistics calculated for all methods.
Methods are represented via their SAMPL6 submission IDs which can be cross referenced with
Table 2.3 for method details. There are six error metrics reported: the root-mean-squared
error (RMSE), mean absolute error (MAE), mean (signed) error (ME), coefficient of determi-
nation (R2), linear regression slope (m), and Kendall’s Rank Correlation Coefficient (τ). This
table is ranked by increasing RMSE. A CSV version of this table can be found in SAMPL6-
supplementary-documents.tar.gz.

Submission ID RMSE MAE ME R2 m Kendall’s Tau

rdsnw 1.32 [0.88,1.71] 1.15 [0.80,1.54] 1.15 [0.80,1.54] 0.78 [0.39,0.97] 1.51 [1.16,1.77] 0.75 [0.37,1.00]
ggm6n 1.32 [0.95,1.64] 1.16 [0.79,1.54] -1.15 [-1.53,-0.76] 0.53 [0.12,0.84] 1.04 [0.46,1.67] 0.53 [0.08,0.87]
jjd0b 1.35 [0.89,1.74] 1.13 [0.71,1.57] -1.09 [-1.56,-0.63] 0.66 [0.24,0.91] 1.51 [0.81,2.04] 0.53 [0.02,0.91]
2tzb0 1.38 [0.94,1.79] 1.21 [0.85,1.62] 1.21 [0.85,1.62] 0.79 [0.42,0.97] 1.58 [1.21,1.86] 0.75 [0.36,1.00]
cr3hs 1.39 [0.58,2.10] 0.96 [0.46,1.61] 0.80 [0.21,1.52] 0.40 [0.01,0.79] 1.36 [-0.19,2.63] 0.35 [-0.33,0.84]
arw58 1.41 [0.81,1.89] 1.09 [0.60,1.63] 1.01 [0.45,1.61] 0.09 [0.00,0.54] -0.24 [-0.75,0.26] -0.20 [-0.64,0.36]
ahmtf 1.41 [1.13,1.69] 1.33 [1.07,1.62] 1.33 [1.07,1.62] 0.55 [0.11,0.89] 0.70 [0.23,1.16] 0.56 [0.11,0.92]
o7djk 1.42 [1.14,1.70] 1.34 [1.07,1.62] 1.34 [1.07,1.62] 0.55 [0.12,0.89] 0.70 [0.24,1.16] 0.56 [0.10,0.92]
fmf7r 1.44 [1.03,1.76] 1.25 [0.83,1.66] 0.26 [-0.56,1.08] 0.05 [0.00,0.57] 0.47 [-0.89,2.08] 0.10 [-0.5,0.64]
4p2ph 1.44 [0.81,1.94] 1.12 [0.61,1.68] 1.04 [0.47,1.64] 0.09 [0.00,0.55] -0.26 [-0.77,0.25] -0.26 [-0.68,0.29]
6fyg5 1.50 [1.27,1.70] 1.44 [1.18,1.67] 1.44 [1.18,1.67] 0.69 [0.32,0.96] 0.93 [0.50,1.51] 0.71 [0.28,1.00]
sqosi 1.69 [1.14,2.18] 1.42 [0.89,1.97] -1.40 [-1.97,-0.86] 0.51 [0.05,0.87] 1.40 [0.39,2.02] 0.45 [-0.06,0.84]
rs4ns 1.71 [1.12,2.23] 1.44 [0.92,2.01] 1.44 [0.92,2.01] 0.06 [0.00,0.50] -0.19 [-0.71,0.29] -0.22 [-0.69,0.34]
c7t5j 1.73 [1.14,2.24] 1.47 [0.94,2.02] 1.47 [0.94,2.02] 0.05 [0.00,0.49] -0.18 [-0.72,0.30] -0.16 [-0.66,0.40]
jc68f 1.74 [1.13,2.25] 1.47 [0.94,2.03] 1.47 [0.94,2.03] 0.05 [0.00,0.48] -0.18 [-0.71,0.30] -0.16 [-0.65,0.40]
03cyy 1.75 [0.57,2.73] 1.11 [0.43,2.01] 0.03 [-0.89,1.16] 0.00 [0.00,0.53] 0.12 [-1.15,1.49] 0.09 [-0.56,0.71]
hsotx 1.81 [1.22,2.32] 1.56 [1.03,2.11] 1.56 [1.03,2.11] 0.07 [0.00,0.49] -0.19 [-0.66,0.25] -0.20 [-0.67,0.36]
ke5gu 1.82 [1.31,2.25] 1.59 [1.07,2.09] -1.59 [-2.09,-1.07] 0.62 [0.17,0.89] 1.54 [0.74,2.16] 0.53 [-0.02,0.91]
mwuua 1.83 [1.48,2.12] 1.73 [1.39,2.07] -1.73 [-2.07,-1.39] 0.41 [0.01,0.77] 0.67 [0.07,1.13] 0.48 [0.02,0.84]
fe8ws 1.83 [1.24,2.34] 1.58 [1.06,2.13] 1.58 [1.06,2.13] 0.06 [0.00,0.48] -0.18 [-0.67,0.26] -0.16 [-0.64,0.41]
5t0yn 1.85 [1.26,2.37] 1.61 [1.09,2.15] 1.61 [1.09,2.15] 0.06 [0.00,0.49] -0.18 [-0.67,0.27] -0.16 [-0.65,0.41]
fyx45 1.85 [0.63,2.70] 1.25 [0.51,2.14] 0.65 [-0.3,1.74] 0.63 [0.17,0.92] 2.63 [1.09,3.88] 0.67 [0.14,1.00]
6nmtt 1.87 [1.33,2.45] 1.65 [1.16,2.20] -1.65 [-2.20,-1.16] 0.42 [0.02,0.92] 1.10 [0.23,1.56] 0.60 [0.06,1.00]
eufcy 1.99 [1.62,2.33] 1.88 [1.49,2.25] -1.77 [-2.25,-1.17] 0.54 [0.18,0.88] 1.43 [0.49,2.41] 0.66 [0.21,0.96]
tzzb5 2.12 [1.55,2.57] 1.87 [1.26,2.44] 1.43 [0.50,2.31] 0.20 [0.00,0.63] -0.76 [-1.61,0.17] -0.20 [-0.63,0.29]
3oqhx 2.14 [1.24,2.86] 1.64 [0.86,2.49] 1.11 [0.06,2.22] 0.03 [0.00,0.41] -0.44 [-1.90,1.03] 0.00 [-0.50,0.51]
bzeez 2.20 [1.83,2.51] 2.07 [1.57,2.46] -2.07 [-2.46,-1.57] 0.63 [0.17,0.95] 1.39 [0.77,2.03] 0.53 [0.00,0.91]
ynquk 2.26 [1.87,2.59] 2.13 [1.67,2.54] 2.13 [1.67,2.54] 0.08 [0.00,0.76] 0.25 [-0.25,0.61] 0.38 [-0.06,0.80]
5svjv 2.26 [1.84,2.66] 2.14 [1.69,2.58] -2.03 [-2.57,-1.36] 0.39 [0.03,0.91] 1.20 [0.44,1.77] 0.44 [-0.15,0.92]
odex0 2.29 [1.63,2.82] 1.98 [1.31,2.65] 1.73 [0.82,2.57] 0.09 [0.00,0.64] -0.53 [-1.76,0.68] -0.09 [-0.61,0.50]
padym 2.29 [1.63,2.81] 1.99 [1.31,2.64] 1.72 [0.78,2.57] 0.12 [0.00,0.69] -0.60 [-1.92,0.73] -0.13 [-0.69,0.48]
pnc4j 2.29 [1.68,2.88] 2.03 [1.42,2.67] 2.03 [1.42,2.67] 0.04 [0.00,0.64] 0.31 [-0.81,1.30] 0.20 [-0.37,0.70]
REF02 2.29 [1.07,3.53] 1.68 [0.95,2.73] -1.68 [-2.73,-0.95] 0.23 [0.00,0.91] 1.26 [0.02,2.29] 0.53 [0.06,0.92]
REF05 2.31 [1.20,3.47] 1.80 [1.15,2.76] -1.80 [-2.76,-1.15] 0.20 [0.00,0.91] 1.07 [-0.08,2.18] 0.45 [-0.04,0.85]
REF08 2.34 [1.04,3.65] 1.66 [0.92,2.77] -1.66 [-2.77,-0.92] 0.13 [0.00,0.81] 0.95 [-0.39,2.05] 0.42 [-0.04,0.75]
REF07 2.38 [1.03,3.73] 1.65 [0.84,2.80] -1.65 [-2.80,-0.84] 0.24 [0.01,0.93] 1.43 [0.07,2.65] 0.53 [0.09,0.88]
fcspk 2.40 [1.72,2.95] 2.10 [1.41,2.79] 1.97 [1.12,2.76] 0.11 [0.00,0.65] -0.50 [-1.60,0.61] -0.16 [-0.65,0.40]
6cm6a 2.41 [1.75,2.93] 2.10[1.40,2.78] 1.94 [1.04,2.74] 0.19 [0.00,0.69] -0.66 [-1.77,0.32] -0.27 [-0.72,0.29]
bq6fo 2.58 [1.68,3.34] 2.15 [1.35,3.01] 1.55 [0.30,2.74] 0.10 [0.00,0.56] 1.05 [-0.88,2.73] 0.09 [-0.39,0.60]
623c0 2.67 [2.13,3.20] 2.53 [2.08,3.04] -2.53 [-3.04,-2.08] 0.22 [0.00,0.80] 0.64 [-0.05,1.09] 0.38 [-0.14,0.84]
4nfzz 2.67 [1.98,3.35] 2.44 [1.83,3.10] -2.44 [-3.10,-1.83] 0.40 [0.05,0.87] 1.30 [0.56,1.85] 0.42 [-0.13,0.88]
eg52i 2.86 [2.01,3.56] 2.41 [1.52,3.32] 2.06 [0.88,3.21] 0.15 [0.00,0.55] -0.94 [-2.15,0.19] -0.16 [-0.59,0.35]
cp8kv 2.88 [2.31,3.60] 2.72 [2.27,3.35] -2.72 [-3.35,-2.27] 0.24 [0.01,0.93] 0.78 [-0.01,1.47] 0.59 [0.00.11,1]
5585v 2.88 [2.02,3.67] 2.55 [1.81,3.36] 2.40 [1.46,3.31] 0.04 [0.00,0.55] -0.41 [-1.97,0.62] -0.2 [-0.76,0.32]
j4nb3 2.89 [2.32,3.34] 2.63 [1.84,3.26] 2.63 [1.84,3.26] 0.01 [0.00,0.73] 0.12 [-0.74,0.90] 0.16 [-0.35,0.76]
REF04 3.22 [2.04,4.48] 2.76 [1.93,3.85] -2.76 [-3.84,-1.93] 0.19 [0.00,0.82] 1.20 [0.01,2.22] 0.42 [-0.08,0.84]
hf4wj 3.28 [2.49,4.11] 3.04 [2.36,3.83] -3.04 [-3.82,-2.36] 0.34 [0.03,0.85] 1.31 [0.48,1.95] 0.38 [-0.16,0.84]
REF01 3.33 [2.08,4.72] 2.82 [1.99,4.02] -2.82 [-4.02,-1.99] 0.24 [0.01,0.90] 1.46 [0.05,2.63] 0.49 [0.08,0.83]
REF06 3.64 [2.37,4.97] 3.10 [2.08,4.34] -3.10 [-4.33,-2.08] 0.16 [0.00,0.68] 1.24 [-0.50,2.68] 0.31 [-0.14,0.72]
REF03 4.01 [2.74,5.34] 3.58 [2.66,4.78] -3.58 [-4.78,-2.66] 0.17 [0.00,0.84] 1.20 [-0.53,2.54] 0.42 [-0.06,0.79]
pku5g 4.87 [4.06,5.68] 4.68 [3.90,5.49] 4.68 [3.90,5.49] 0.49 [0.03,0.90] 1.80 [0.28,2.99] 0.56 [0.00,0.96]
po4g2 5.46 [4.35,6.63] 5.17 [4.17,6.28] 5.17 [4.17,6.28] 0.51 [0.04,0.88] 2.33 [0.36,3.75] 0.56 [0.00,1.00]
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Figure 2.14: Varying the amount of water in the octanol phase has no significant
effect on the predicted log P in reference calculations, as discussed in section
2.5.2. Comparison of predicted log P values to the experimental values using wet (27%
water) and dry octanol phases and the (A) GAFF and (B) SMIRNOFF force field, from
non-blinded reference calculations performed for this paper, shows no statistically significant
difference in performance of methodologies. Comparison of the calculated log P using dry
and wet octanol phases for (C) the GAFF force field and (D) the SMIRNOFF force field
shows a small systematic difference.
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Table 2.12: Comparison of force field parameters of the TIP3P, TIP3P-FB
and OPC water models.

Water model qH(e)1 qO(e)1 ̸ HOH (deg) l1(Å)2 l2(Å)3 σLJ(Å)4 ϵLJ(kJ/mol)4

TIP3P 0.417 -0.834 104.52 0.9572 - 3.151 0.636
TIP3P-FB 0.424 -0.848 108.15 1.0118 - 3.178 0.652
OPTIMAL POINT CHARGE 0.679 -1.358 103.6 0.8724 0.1594 3.167 0.89
1 Corresponds to the hydrogen and oxygen charges.
2 Corresponds to the bond length between the oxygen and hydrogen atoms.
3 Corresponds to the length between the oxygen atom and virtual site.
4 Corresponds to the Lennard-Jones (LJ) parameters of the oxygen.
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Figure 2.15: Shown here are the 2- and 3D structures of SM08_micro011 with
the carboxylic acid in “anti” and “syn” conformation. The dihedral angle is indicated
by the arrow around the carbon and oxygen atom. The calculated log P is included for
comparison. The charges pertaining to each conformation are listed in Figure 2.13 and
transition data is available in Figure 2.16

.
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Table 2.13: Comparison of the charges assigned to the syn and anti conformation
of SM08_micro011 in the DFE protocol.

anti conformation syn conformation

atom number atom type atom name charge atom number atom type atom name charge

1 C1 C1 0.1252 1 C1 C1 -0.1205

2 C2 C2 -0.0073 2 C1 C2 -0.1322

3 C2 C3 0.0000 3 C1 C3 -0.1322

4 C2 C4 0.0000 4 C1 C4 -0.1112

5 C2 C5 -0.0074 5 C1 C5 -0.1112

6 C2 C6 -0.0118 6 C1 C6 -0.0742

7 C2 C7 0.0000 7 C1 C7 -0.1856

8 C2 C8 0.0236 8 C1 C8 -0.0653

9 C2 C9 -0.0196 9 C1 C9 -0.0839

10 C2 C10 0.3597 10 C1 C10 -0.1199

11 O1 O1 -0.2755 11 C1 C11 -0.1160

12 N1 N1 -0.1461 12 C1 C12 0.0947

13 C1 C11 0.0310 13 C1 C13 0.1024

14 C2 C12 0.3291 14 C1 C14 -0.1731

15 O1 O2 -0.1890 15 C1 C15 0.6987

16 O2 O3 -0.2911 16 C1 C16 0.6458

17 C2 C13 -0.0118 17 C2 C17 -0.0498

18 C2 C14 0.0000 18 C2 C18 -0.0780

19 C2 C15 0.0000 19 N1 N1 -0.4371

20 C2 C16 0.0000 20 O1 O1 -0.6386

21 C2 C17 0.0000 21 O1 O2 -0.5474

22 C2 C18 0.0000 22 O2 O3 -0.6145

23 H1 H1 -0.0393 23 H1 H1 0.1352

24 H1 H2 -0.0393 24 H1 H2 0.1377

25 H1 H3 -0.0393 25 H1 H3 0.1377

26 H2 H4 0.0000 26 H1 H4 0.1459

27 H2 H5 0.0000 27 H1 H5 0.1459

28 H2 H6 0.0000 28 H1 H6 0.1381

29 H3 H7 0.0865 29 H1 H7 0.1406

30 H1 H8 -0.0393 30 H1 H8 0.1469

31 H1 H9 -0.0393 31 H2 H9 0.0455

32 H4 H10 0.2010 32 H2 H10 0.0455

33 H2 H11 0.0000 33 H2 H11 0.0455

34 H2 H12 0.0000 34 H2 H12 0.1028

35 H2 H13 0.0000 35 H2 H13 0.1028

36 H2 H14 0.0000 36 H3 H14 0.3362

37 H2 H15 0.0000 37 H4 H15 0.4428
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Figure 2.16: For the DFE method, the starting conformation impacts the number
of C-O dihedral transitions for SM08_micro011, influencing sampling. Here is the
transition data for the C-O dihedral in Figure 2.15, with charges listed in Table 2.13, for the
DFE method (run in triplicate). In the “anti starting position” the torsion remains “anti”
throughout the simulation, while the “syn starting position” allows transitions.
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Chapter 3

Evaluation of log P , pK a, and log D

predictions from the SAMPL7 blind

challenge

Teresa Danielle Bergazin, Nicolas Tielker, Yingying Zhang, Junjun Mao, M. R. Gunner, Karol

Francisco, Carlo Ballatore, Stefan M. Kast, and David L. Mobley.
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3.1 Abstract

The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges focuses

the computational modeling community on areas in need of improvement for rational drug

design. The SAMPL7 physical property challenge dealt with prediction of octanol-water
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partition coefficients and pK a for 22 compounds. The dataset was composed of a series of

N-acylsulfonamides and related bioisosteres. 17 research groups participated in the log P

challenge, submitting 33 blind submissions total. For the pK a challenge, 7 different groups

participated, submitting 9 blind submissions in total. Overall, the accuracy of octanol-water

log P predictions in the SAMPL7 challenge was lower than octanol-water log P predictions

in SAMPL6, likely due to a more diverse dataset. Compared to the SAMPL6 pK a challenge,

accuracy remains unchanged in SAMPL7. Interestingly, here, though macroscopic pK a val-

ues were often predicted with reasonable accuracy, there was dramatically more disagreement

among participants as to which microscopic transitions produced these values (with meth-

ods often disagreeing even as to the sign of the free energy change associated with certain

transitions), indicating far more work needs to be done on pK a prediction methods.

3.1.1 Keywords

octanol-water partition coefficient · log P · blind prediction challenge · SAMPL · free energy

calculations · solvation modeling · pK a · Macroscopic pK a · Microscopic pK a · Macroscopic

protonation state · Microscopic protonation state · Relative free energy

3.1.2 Abbreviations

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands

log P log10 of the organic solvent-water partition coefficient (Kow) of neutral species

log D log10 of organic solvent-water distribution coefficient (Dow)

pK a −log10 of the acid dissociation equilibrium constant

SEM Standard error of the mean
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RMSE Root mean squared error

MAE Mean absolute error

τ Kendall’s rank correlation coefficient (Tau)

R2 Coefficient of determination (R-Squared)

QM Quantum Mechanics

MM Molecular Mechanics

DL Database lookup

LFER Linear free energy relationship

QSPR Quantitative structure-property relationship

ML Machine learning

LEC Linear empirical correction

3.2 Introduction

Computational modeling aims to enable molecular design, property prediction, prediction

of biomolecular interactions, and provide a detailed understanding of chemical and biolog-

ical mechanisms. Methods for making these types of predictions can suffer from poor or

unpredictable performance, thus hindering their predictive power. Without a large scale

evaluation of methods, it can be difficult to know what method would yield the most ac-

curate predictions for a system of interest. Large scale comparative evaluations of methods

are rare and difficult to perform because no individual group has expertise in or access to all

relevant methods. Thus, methodological studies typically focus on introducing new methods,

without extensive comparisons to other methods.
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The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges tackle

modeling areas in need of improvement, focusing the community on one accuracy-limiting

problem at a time. In SAMPL challenges, participants predict a target property such as

solvation free energy, given a target set of molecules. Then the corresponding experimental

data remains inaccessible to the public until the challenge officially closes. By focusing

on specific areas in need of improvement, SAMPL helps drive progress in computational

modeling.

Here, we report on a SAMPL7 physical property challenge that focused on octanol-water

partition coefficients (log P) and pK a. The pK a of a molecule, or the negative logarithm of

the acid–base dissociation constant, is related to the equilibrium constant for the dissociation

of a particular acid into its conjugate base and a free proton. The pK a also corresponds to

the pH at which the corresponding acid and its conjugate base each are populated equally

in solution. Given that the pK a corresponds to a transition between specific protonation

states, a given molecule may have multiple pK a values.

The pK a is an important physical property to take into account in drug development. The

pK a value is used to indicate the strength of an acid. A lower pK a value indicates a stronger

acid, indicating the acid more fully dissociates in water. Molecules with multiple ionizable

centers have multiple pK a values, and knowledge of the pK a of each of the ionizable moi-

eties allows for the percentage of ionised/neutral species to be calculated at a given pH (if

activity coefficients are known/assumed). pK a plays a particularly important role in drug de-

velopment because the ionization state of molecules at physiological pH can have important

ramifications in terms of drug-target interactions (e.g., ionic interactions) and/or by influ-

encing other key determinants of drug absorption, distribution, metabolism and excretion

(ADME) [132], such as lipophilicity, solubility, membrane permeability and plasma protein

binding [36].

Accurate pK a predictions play a critical role in molecular design and discovery as well since
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pK a comes up in so many contexts. For example, inaccurate protonation state predictions

impair the accuracy of predicted distribution coefficients such as those from free energy

calculations. Similarly, binding calculations can be affected by a change in protonation

state [11]. If a ligand in a protein-ligand system has a different protonation state in the

binding pocket compared to when the molecule is in the aqueous phase, then this needs to

be taken into account in the thermodynamic cycle when computing protein-ligand binding

affinities.

Multiprotic molecules, and those with multiple tautomeric states, have two types of pK a,

microscopic and macroscopic. The microscopic pK a applies to a specific transition or equi-

librium between microstates, i.e. for a transition between a specific tautomer at one formal

charge and that at another formal charge (e.g. two states at different formal charges in Fig-

ure 3.2). It relates to the acid dissociation constant associated with that specific transition.

As a special case, a microscopic pK a sometimes refers to the pK a of deprotonation of a

single titratable group while all the other titratable and tautomerizable functional groups of

the same molecule are held fixed, but this might possibly not reflect the dominant deproto-

nation pathway of a given acidic tautomer if the base state possesses energetically favored

alternate tautomers. There is no pK a between two tautomers with the same formal charge

because they have the same number of protons so their relative probability is independent

of pH. The pH-independent free energy difference between them determines their relative

population [190].

At some level, the macroscopic pK a can be thought of as describing the acid dissociation

constant related to the loss of a proton from a molecule regardless of which functional group

the proton is dissociating from, but it may be more helpful to think of it (in the case

of polyprotic molecules) as a macroscopic observable describing the collective behavior of

various tautomeric states as the dominant formal charge of the molecule shifts. In cases

where a molecule has only a single location for a titratable proton, the microscopic pK a
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becomes equal to the macroscopic pK a.

In the current challenge, we explored how well methods could predict macroscopic pK a’s

through microscopic pK a calculations.

The partition coefficient (log P) and the distribution coefficient (log D) are relevant to drug

discovery, as they are used to describe lipophilicity. Lipophilicity influences drug-target and

off-target interactions through hydrophobic interactions, and relatively high lipophilicity

results in reduced aqueous solubility and increased likelihood of metabolic instability [140].

Prediction of partitioning and distribution has some relevance to drug distribution. Partic-

ularly, partitioning and distribution experiments involve a biphasic system with separated

aqueous and organic phases, such as water and octanol, so such experiments have some of

the features of the interface between blood or cytoplasm and the cell membrane [74, 117]

and thus improved predictive power for partitioning and distribution may pay off with an

improved understanding of such in vivo events.

Methods to predict log P/log D may also use (and test) some of the same techniques which

can be applied to binding predictions. Both types of calculations can use solvation free en-

ergies and partitioning between environments (though this could be avoided by computing

the transfer free energy). Such solute partitioning models are simple test systems for the

transfer free energy of a molecule to a hydrophobic environment of a protein binding pocket,

without having to account for additional specific interactions which are present in biomolecu-

lar binding sites. Thus partitioning and distribution calculations allow separating force-field

accuracy from errors related to conformational sampling of proteins and protonation state

predictions of proteins and ligands.

The log P is usually defined as the equilibrium concentration ratio of the neutral state of a
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substance between two phases:

logP = log10Kow = log10
[unionized solute]octanol
[unionized solute]water

(3.1)

Strictly speaking, this definition of the partition coefficient P as a thermodynamic equi-

librium constant is independent of total solute concentration in the infinite dilution limit

only. This reference state is commonly assumed in physics-based prediction models. The

log P prediction challenge explores how well current methods are able to model the transfer

free energy of molecules between different solvent environments without any complications

coming from predicting protonation states.

3.2.1 Motivation for the log P and pK a challenge

Previous SAMPL challenges have looked at the prediction of solvation free energies [162,

81, 153, 69, 155], guest-host [159, 229, 186, 187, 14, 158, 100] and protein-ligand binding

affinities [154, 28, 67, 83, 113, 114, 49], pK a [90, 196, 21, 234, 207, 177, 179], distribution

coefficients [19, 191, 99, 106], and partition coefficients [87, 61, 233, 97]. These challenges

have helped uncover sources of error, pinpoint the reasons various methods performed poorly

or well and their strengths and weaknesses, and facilitate dissemination of lessons learned

after each challenge ends, ultimately leading to improved methods and algorithms.

Several past challenges focused on solvation modeling in order to help address this accuracy-

limiting component of protein-ligand modeling. The SAMPL0 through SAMPL4 challenges

included hydration free energy prediction, followed by cyclohexane-water distribution co-

efficient prediction in SAMPL5, and octanol-water distribution coefficient prediction in

SAMPL6. Large errors were observed in the SAMPL5 cyclohexane-water log D predic-

tion challenge due to tautomers and protonation states not being taken into account [? 176]

or adequately handled. Many participants reported log P predictions in place of log D pre-
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dictions, in part because the different ionization states of the molecules were thought not

to be particularly relevant in the challenge, but this proved not to be the case. Methods

that treated multiple protonation and tautomeric states and incorporated pK a corrections

(which relies on accurate pK a prediction) in their predictions performed better [176].

In order to pinpoint sources of error in log D predictions, separate log P and pK a challenges

were organized for SAMPL6 [87, 91, 90, 88]. Better prediction performance was seen in the

SAMPL6 octanol-water log P challenge compared to the SAMPL5 cyclohexane-water log D

challenge. Performance improved in SAMPL6 for several reasons. First, the latter challenge

avoided the pK a prediction problem. Second, far more experimental training data was

available (aiding empirical and implicit QM methods). Finally, the more narrow chemical

diversity in SAMPL6 may have helped participants. For the present SAMPL7 physical

properties challenge, we focused on assessing the accuracy of log P and pK a predictions,

and then combined pK a and log P predictions to obtain log D predictions.

3.2.2 Historical SAMPL pK a performance

During the SAMPL6 challenge a broad range of conceptually different empirical and physics–

based computational methods were used to predict pK a values, as discussed in the overview

paper [91]. To provide some context for the results of the SAMPL7 challenge the main

results are summarized here.

The empirical approaches used during SAMPL6 can be divided into three categories, Database

Lookup (DL), Linear Free Energy Relationship (LFER), and Quantitative Structure–Property/Machine

Learning (QSPR/ML) approaches [155]. The physical approaches can be divided into pure

quantum–mechanical (QM) methods, QM with a linear empirical correction (QM+LEC) to

account for the free energy of the proton in solution or potential systematic errors caused

by the chosen method, and QM in combination with molecular mechanics (QM+MM). Gen-
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erally speaking, the empirical methods require significantly less computational effort than

their physics–based counterparts once they are parameterized.

The best–performing models included four empirical methods and one QM-based model.

These five methods were able to predict the acidity constants of the challenge compounds

to within 1 pK a unit. In fact, while most empirical models – except for the DL and two of

the five QSPR/ML approaches – were able to predict the acidity constants to within about

1.5 pK a units, the range of predictions was much wider for the QM-based models.

In SAMPL6, many groups submitted multiple predictions to test the performance of different

variations using the same basic methodology, such as exploring different levels of theory,

model parameters, or conformational ensembles.

Well–performing empirical models included both LFER methods, such as ACD/pKa Classic

(submission ID xmyhm) and Epik Scan (nb007 ), and QSPR/ML methods such as MoKa

(nb017 ) and S+pKa (gyuhx ), all performing with root mean square errors (RMSE) between

0.73 and 0.95 pK a units [1, 197, 156, 200]. These well-established tools thus demonstrated

their reliability and quality.

Among the physics–based models, the most straightforward approach involved calculation

of the acidity constants without any empirical corrections, including the experimental value

for the free energy of solvation of the proton [212]. One group applied different calculation

schemes to the compounds of the SAMPL6 challenge that differed in the use of gas phase

and/or solution phase geometries as well as additional high–level single point gas phase

calculations [234]. While the results achieved by this method were quite promising, with

an initial RMSE of 1.77 pK a units (ryzue) that could be improved to 1.40 by including a

standard state correction and a different value for the free energy of the proton, the authors

also showed the effectiveness of a simple linear regression scheme to correct the raw acidity

constants. In this case the RMSE of the best-performing model decreased further from 1.40
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to 0.73 pK a units after regression.

This type of empirical correction was used by most QM-based approaches, including the best–

performing method of the SAMPL6 challenge [91], improving some systematic deficiencies of

the QM level of theory and basis sets and accounting for the proton’s solvation free energy.

The best-performing QM+LEC method, xvxzd, achieved an RMSE of 0.68 pK a units during

the challenge using the COSMO-RS solvation model. This also made it the best–performing

model overall, with two other methods using the same solvation model only slightly worse

(yqkga and 8xt50, with RMSEs of 1.01 and 1.07 pK a units, respectively [91, 105, 177]).

A QM+LEC method using a different solvation approach, EC-RISM, only achieved an RMSE

of 1.70 pK a units for the submitted model (nb001 ), but a post-submission optimization of

the conformer generation workflow and the electrostatic interactions improved the RMSE to

1.13, which is more in line with the other well–performing QM+LEC methods [207]. The

CPCM implicit solvation model was used by one group [91, 196] and performed only slightly

worse than COSMO-RS (RMSEs from the paper do not agree with official numbers. Only

officially submitted ones are discussed here). For these two models, differing only by training

either a single LEC for all compounds (35bdm) or two separate LECs for deprotonations of

neutral compounds to anions and deprotonations of cations to neutral compounds (p0jba),

the RMSEs were 1.72 and 1.31 pK a units, respectively. These results show that accurate

pK a values can be predicted when using the QM+LEC approach with different solvation

models.

A slightly different approach was used by one participant (0wfzo) where QM calculations

of the free energy of deprotonation and thermodynamic integration, an MM method, were

combined to calculate the difference of the solvation free energies between the acid and its

conjugate base [179]. This approach yielded an average level of performance, with an RMSE

of 2.89 for the macroscopic acidity constants calculated from the submitted microscopic

acidity constants, excluding two compounds (SM14 and SM18) from the analysis as they
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exhibited multiple pK a values too close to each other.

3.2.3 Approaches to predicting small molecule pK a’s

Calculations of aqueous pK a values have a long history in computational chemistry, with

methods ranging from direct quantum-mechanical approaches for determining the free energy

of protonated and deprotonated species in solution using explicit, implicit, or hybrid solvation

models, to continuum electrostatics-based computations of relative pK a shifts, and empirical

or rule-based algorithms, as summarized in a number of review articles, e.g. Alongi et

al. [12],and Liao et al. [126] and in the SAMPL6 overview papers [90, 91].

Computational methods typically designate tautomeric states (“microstates”) for acid and

base forms of a compound separated by a unit charge upon (de-)protonation. Their free

energies can be linked individually in a pair-wise manner (“microstate transitions”) to yield

so–called microstate pK a values from which the macroscopic pK a can be determined [30].

Alternatively, the tautomer free energies, combined across the underlying conformational

states, contribute to the ratio of partition functions representing acid and base forms, allow-

ing the direct calculation of macroscopic acidity constants [206]. A complication arises if,

as is common practice with quantum-mechanical approaches, the difference of solution-state

(standard) free energies for differently charged species, G(A−
aq) and G(HAaq) for a general

reaction

HA → A− +H+ (3.2)

are scaled by a “slope” factor m and augmented by an intercept parameter b to account for

the free energy of the proton, yielding a regression equation, given here for microstate j of
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the base and k of the acid form, respectively,

pKa, jk = b+
m

RT ln 10
[Gj(A

−)−Gk(HA)] (3.3)

where slope and intercept are typically adjusted with respect to databases of experimental

pK a values [206] and RT has the usual thermodynamic meaning. Here G denotes the Gibbs

free energy, but a similar expression would hold for Helmholtz free energy depending on the

choice of ensemble.

As derived in Tielker et al. [206], statistics over all connected microstates (in the “state

transition” (ST) approach) and a priori partition function summation (in the “partition

function” (PF) approach) are identical if and only if m = 1, though in practice the difference

is usually negligible.

For the SAMPL7 pK a challenge, participants were required to submit predictions in a novel

format, reporting transition free energies between microstates as in the “∆G0” formalism

outlined in Gunner et al. [80] (and similar to the work of Selwa et al. [196]). Here, the pH–

dependent free energy change between “states” k and j is defined by rewriting the well-known

Henderson-Hasselbalch equation for, e.g., the general reaction (Eq. 3.3) in the form

∆Gjk (pH) = ∆mjkCunits (pH− pKa, jk) (3.4)

with Cunits = RT ln 10 and, for a transition away from the reference state which involves

loss of a proton, ∆mjk = −1, denoting the charge difference between the “reference state”

k (second index, usually taken as a selected neutral microstate, in this case HAaq) and the
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target state j.

For the thermodynamic standard state at pH = 0 we can write

∆G0
jk = −∆mjkCunitspKa, jk (3.5)

which shows that ∆G0
jk can be identified with a formal free energy of reaction. An advantage

of this approach is that closed thermodynamic cycles by summing over ∆G0
jk with identical

reference k would add to zero for consistent computational methods, which can serve as an

added value for testing theoretical frameworks [80].

The macroscopic pK a is obtained by computing the total fraction of all microstates with

charge q and j ∈ q via

xj∈q(pH) =
exp[−∆Gj∈q,k(pH)/RT ]∑

i exp[−∆Gik(pH)/RT ]
(3.6)

and solving, usually numerically, for the pH at which

xj∈q(1) (pH) = xj∈q(2) (pH) (3.7)

for adjacent net charges q(1) and q(2). At this pH, pKa = pH for these particular charge

states, and this approach constitutes a formal “titration”.

Outlining the connection between the ∆G0 and the ST and PF formalisms [206] is useful
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for practitioners who directly compute microstate free energies (including corresponding

tautomerization free energies for which no pK a is defined) or microstate transition pK a

values for single deprotonation reactions where a specific reaction direction is by definition

implied. The general algorithm is as follows, with subscript order pKa, jk implying the

reaction j → k− + H+ for any total charge on j and subscript order ∆G0
jk meaning the

reaction k(+mH+) → j(+nH+) with neutral k. For all states i not equal to the neutral

reference microstate k we have

a) If q(i) = 0, ∆G0
ik = m∆G0(k → i)

b) If q(i)− q(k) = +1 (the reaction is k +H+ → i+), then ∆G0
ik = −CunitspKa,ik

c) If q(i)− q(k) = −1 (the reaction is k → i− +H+), then ∆G0
ik = +CunitspKa,ki

d) If q(i) − q(k) = +2 (the reaction is k + 2H+ → i2+ via the individual reactions

k +H+ → j+ and j+ +H+ → i2+), then ∆G0
ik = −Cunits(pKa,jk + pKa,ij)

e) If q(i) − q(k) = −2 (the reaction is k → i2− + 2H+ via the individual reactions

k → j− +H+ and j− → i2− +H+), then ∆G0
ik = +Cunits(pKa,kj + pKa,ji)

This scheme is readily generalized to changes of more than two unit charges. The scaling by

the factor m in (a) guarantees consistency over closed thermodynamic cycles in the common

case of non-zero slope parameter for QM-based models.

To demonstrate how macroscopic pK a values computed this way relate to ST and PF results

it is instructive to treat the simple example of a two-tautomer acid in equilibrium with a

single-tautomer base, i.e.

HA1
Ka,1→ A− +H+,HA2

Ka,2→ A− +H+ (3.8)

101



for which Eq. ( 3.3) yields [206]

KST
a =

(
1

Ka,1

+
1

Ka,2

)−1

= 10−b exp[−mG(A−)/RT ]

exp[−mG(HA1)/RT ] + exp[−mG(HA2)/RT ]
(3.9)

Following the algorithm for ∆G0
jk above with HA1 assumed as neutral reference and aug-

menting the pH dependence according to Eq. (3.4) we have

∆G(HA1) = 0 (3.10)

∆G(HA2) = m[G(HA2)−G(HA1)] (3.11)

∆G(A−) = −Cunits(pH− pKa,1) = m[G(A−)−G(HA1)]− Cunits(pH− b) (3.12)

From Eq. 3.5 and equating neutral and charged molar fractions it follows from x(HA) =

x(A−)

1+exp {−m [G (HA2)−G (HA1)] /RT} = 10−b exp
{
+m

[
G (HA1)−G

(
A−)] /RT

}
/Ka

(3.13)

which, upon rearrangement and comparison with (3.9), yields
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Ka = KST
a (3.14)

Generalization to more complex tautomeric mixtures and arbitrary reference states is possi-

ble, the latter by recognizing that these would only imply cancelling additive constants. The

∆G0 and ST formalisms are therefore equivalent, as is the PF approach for m = 1.

3.2.4 Approaches to predicting log P

Approaches for predicting octanol-water log P values include physical modeling methods,

such as quantum mechanics (QM) and molecular mechanics (MM) approaches, and empirical

knowledge-based prediction methods, such as contribution-type approaches. We give some

brief background on these prediction methods.

QM approaches use a numerical solution of the Schrödinger equation to estimate solvation

free energies and partitioning. These approaches are not practical for larger systems, so

certain approximations need to be made so that they can be used for calculating transfer free

energies. Methods typically represent the solvent using an implicit solvent model and make

the assumption that the solute has a single or a small number of dominant conformations

in the aqueous and non-aqueous phase. The accuracy of predictions can be influenced by

the basis set, level of theory, and the tautomer used as input. Implicit solvent models are

used to represent both octanol and water, and these models are often highly parameterized

on experimental solvation free energy data. The abundance of training data contributes to

the success of QM methods, much like empirical prediction methods. Solvent models such

as SMD [136], the SM-n series of models [137], and COSMO-RS [127, 106, 104, 103, 107] are

frequently used by SAMPL participants.
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MM approaches use a force field which gives the energy of a system as a function of the atomic

positions and are usually used by SAMPL participants to compute solvation free energies

and log P values. Force fields can be fixed charge and additive, or polarizable [124, 99], and

typically include all atoms, though this need not always be the case. These approaches are

usually applied by integrating the equations of motion to solve for the time evolution of the

system. Force fields such as GAFF [219], GAFF2 [215], CGenFF [214], and OPLS-AA [51],

and water models such as TIP3P [98], TIP4P [98], OPC3 [93] are frequently used in SAMPL

challenges [87]. Free energy calculations can be combined with MM methods to give a par-

titioning estimate. These types of calculations often use alchemical free energy methods to

estimate phase transfer via a non-physical thermodynamic cycle. Some examples of alchem-

ical approaches include non-equilibrium switching [180, 96] and equilibrium alchemical free

energy calculations [235] analyzed via thermodynamic integration [102] or BAR/MBAR esti-

mation [27, 198], Such simulations can also use techniques like Hamiltonian replica exchange

molecular dynamics.

Some limitations of MM approaches include the accuracy of the force field and the limitation

that motions can only be captured in simulations that are faster than simulation timescales.

The state of the molecule that is used as input is also important– usually, a single tau-

tomer/protonation state is selected and held fixed throughout the simulation, which can

introduce errors if the wrong state was selected or if there are multiple relevant states.

Empirical prediction models are trained on experimental data and can be used to quickly

characterize large virtual libraries. These include additive group methods, such as fragment-

or atom-contribution approaches, and quantitative structure-property relationship (QSPR)

methods. In atom contribution approaches, the log P is equal to the sum of contribu-

tions from the individual atom types multiplied by the number of occurrences of each in

the molecule. These methods make the assumption that each atom contributes a certain

amount to the solvation free energy and that these contributions are additive to the log P
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. In fragment (or group) contribution approaches, the log P is equivalent to the sum of

the contributions from the fragment groups (more than a single atom), and typically uses

correction terms that consider intramolecular interactions. These approaches are generally

calculated by adding together the sum of the fragment contributions times the number of

occurrences and the sum of the correction contributions times the number of occurrences

in the molecule. The other class of empirical log P prediction approaches relies on QSPR.

In QSPR, molecular descriptors are calculated and then used to make log P predictions.

Descriptors can vary in complexity- some rely on simple counts of heteroatoms and carbon,

while others are derived from correlating the 3D shape, electrostatic, and hydrogen bond-

ing characteristics with the log P of the molecule. To find the log P , a regression model

gets derived by fitting the descriptor contributions to experimental data. Machine learning

approaches such as random forest models, deep neural network models, Gaussian processes,

support vector machines, and ridge regression [178, 195] belong under this category.

Empirical methods tend to benefit from a large and diverse training set, especially when

there’s a large body of experimental data to train on, such as octanol-water data like in

the present and previous log P challenge [87]. However, empirical methods can experience

problems if a training set has an underrepresented functional group. Additionally, these

techniques are geared towards partitioning predictions, and, unlike physical-based methods,

are not able to be applied to protein-ligand binding.

3.3 Challenge design and evaluation

3.3.1 General challenge structure

The SAMPL7 physical property challenge focused on pK a, partitioning, and permeability.

As reported separately, KF and CB collected a set of measured water-octanol log P , log D ,
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and pK a values for 22 compounds, along with PAMPA permeability values [64]. Since this

was our first time hosting a permeability challenge, and these calculations remain challenging

for many methods, we did not have enough participants to form meaningful conclusions (one

participant submitted two sets of predictions in total) so the challenge is not discussed in

this paper, but we provide a link to the challenge’s GitHub page (https://github.com/

samplchallenges/SAMPL7/tree/master/physical_property/permeability).

The SAMPL7 challenge molecules had weights that ranged from 227 to 365 Da, and varied

in flexibility (the number of non-terminal rotatable bonds ranged from 3-6). The dataset had

experimental log P values in the range of 0.58–2.96, pK a values in the range of 4.49–11.93,

and log D values in the range of -0.87–2.96. Information on experimental data collection is

presented elsewhere [64].

The physical properties challenge was announced on June 29th, 2020 and the molecules

and experimental details were made available at this time. Additional input files, instruc-

tions, and submission templates were made available afterward and participant submis-

sions were accepted until October 8th, 2020. Following the conclusion of the blind chal-

lenge, the experimental data was made public on October 9th, 2020, and results were dis-

cussed in a virtual workshop (on November 2-5, 2020) (SAMPL Community Zenodo page

https://zenodo.org/communities/sampl/?page=1&size=20)

A machine-readable submission file format was specified for blind submissions. The sub-

mission files included fields for naming the method of the computational protocol, listing

the average compute time across all of the molecules, detailing the computing and hardware

used, listing the major software packages and the versions that were used, and a free text

method section for providing the detailed documentation of each method, the values of key

parameters with units, and to explain how statistical uncertainties were estimated. There

was also a field where participants indicated whether or not they wanted their submission

formally evaluated. In addition to their predictions, participants were asked to estimate the
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statistical error (expressed as a standard error of the mean (SEM)) associated with their

predictions, and the uncertainty of their model. The SEM captures the statistical uncer-

tainty of a method’s predictions, and the model uncertainty corresponds to the method’s

expected prediction accuracy, which estimates how well a participant expects their predicted

values will agree with experiment. Historically, model uncertainty estimates have received

relatively little attention from participants, but we retain hope that participants may even-

tually predict useful model uncertainties since users benefit from knowing the accuracy of a

predicted value.

Participants had the option of submitting predictions from multiple methods, and were asked

to fill out separate template files for each different method. Each participant or organization

could submit predictions from multiple methods, but could only have one ranked submission.

Allowing multiple submissions gave participants the opportunity to submit prediction sets

to compare multiple methods or to investigate the effect of varying parameters of a single

method. All of the submissions were assigned a short descriptive method name based on

the name they provided for their protocol in their submission file. This descriptive method

name was used in the analysis and throughout this paper and is presented in Tables 3.1, 3.3,

and 3.5.

3.3.2 log P challenge structure

The SAMPL7 log P challenge consisted of predicting the water-octanol partition coefficients

of 22 molecules. Our goal was to evaluate how well current models can capture the transfer

free energy of small molecules between different solvent environments through blind pre-

dictions. challenge participants were asked to predict the difference in free energy for the

neutral form of each molecule between water and octanol. For the log P challenge, par-

ticipants were required to report, for each molecule, the SAMPL7 molecule ID tag (the
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Figure 3.1: Structures of the 22 molecules used for the SAMPL7 physical prop-
erty blind prediction challenge. Log of the partition coefficient between n-octanol and
water was determined via potentiometric titrations using a Sirius T3 instrument. pK a val-
ues were determined by potentiometric titrations using a Sirius T3 instrument. Log of the
distribution coefficient between n-octanol and aqueous buffer at pH 7.4 were determined
via potentiometric titrations using a Sirius T3 instrument, except for compounds SM27,
SM28, SM30-SM34, SM36-SM39 which had log D7.4 values determined via shake-flask assay.
PAMPA assay data includes effective permeability, membrane retention, and log of the ap-
parent permeability coefficient. Permeabilities for compounds SM33, SM35, and SM39 were
not determined. Compounds SM35, SM36 and SM37 are single cis configuration isomers.
All other compounds are not chiral.

challenge provided neutral microstate), the microstate ID or IDs that were considered, and

the predicted transfer free energy, transfer free energy SEM, and model uncertainty.

Participants were asked to categorize their methods as one of the five method categories—

physical (QM), physical (MM), empirical, or mixed. Participants were asked to indicate their

method based on the following definitions: Empirical models are prediction methods that

are trained on experimental data, such as QSPR, machine learning models, artificial neural

networks, etc. Physical models are prediction methods that rely on the physical principles

of the system such as MM or QM based physical methods to predict molecular properties.

Participants were asked to indicate whether their physical method was QM or MM based.
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Methods taking advantage of both kinds of approaches were asked to be reported as “Mixed”.

If a participant chose the “Mixed” category, they were asked to explain their decision in the

method description section in their submission file.

We highlighted that octanol may be found in the aqueous phase, in case participants wanted

to consider this in their predictions. The mole fraction of water in octanol was measured as

0.271±0.003 at 25◦C [117]

3.3.3 pK a challenge structure

The SAMPL7 pK a challenge consisted of predicting relative free energies between microstates

(microscopic pK a’s) to determine the macroscopic pK a of 22 molecules. Our goal for the

SAMPL7 pK a challenge was to assess how well current pK a prediction methods perform for

the 22 challenge molecules through blind predictions.

We chose to have participants report relative free energies of microstates for simplicity of

analysis. Particularly, for each molecule, participants were asked to predict the relative free

energy, including the proton free energy, between our selected neutral reference microstate

and the rest of the enumerated microstates for that molecule at a reference pH of 0 (see

Section 3.2.3 on approaches to calculating pK a).This can also be thought of as a reaction

free energy for the microstate transition where the reference state is the reactant and the

other microstate the product (though a proton may also be a product, depending on the

direction of the transition). As an example for one molecule, we asked for the reaction free

energy (relative free energy) associated with each of the reactions as seen in Figure 3.2.

This approach differs from that used in past pK a challenges, which typically focused on

macroscopic pK a predictions. The shift, here, helps resolve several key problems:

1. A macroscopic pK a can be reported for the wrong microstates, leading to predictions
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that are accidentally correct, but fundamentally wrong because the titration referred

to a different states of the molecule.

2. Analysis of pK a predictions requires pairing calculated macroscopic pK a values with

corresponding experimental macroscopic pK a values [91] and such pairing can be very

complex without information on which states are being predicted; while pairing is

still required when specific transitions are predicted, it is aided by knowing which

transitions are predicted (e.g. a -1 to 0 prediction from one participant can no longer

accidentally be compared with a 0 to +1 transition from another participant)

3. Ultimately, populations and free energy differences between states drive the experi-

mental measurements, so analysis ought to focus on state populations

In this work, all possible tautomers of each ionization (charge) state are defined as distinct

protonation microstates. For the pK a challenge, participants were required to report, for

each molecule and each microstate they considered, the microstate ID of the reference state

(selected by challenge organizers), the microstate ID of the microstate they were considering

a transition to, the formal charge for the target microstate, and the predicted free energy

change associated with a transition to the target microstate (Figure 3.2), the relative free

energy SEM, and the relative free energy model uncertainty. In many cases, the transitions

to be considered were a particular physical reaction involving a change in a single protonation

state or tautomer. However, in some cases transitions involved a change of multiple protons

(e.g. the F-A transition of Figure 3.2) and thus did not involve a single protonation or

deprotonation event. Additionally, all transitions were defined as away from the reference

state (and thus some involve gaining a proton, the opposite of a typical acid dissociation

event), a point which caused confusion for a number of participants.

All predictions were required to use free energy units, in kcal/mol, which was another point

which caused confusion for participants, as we received predictions in several different sets
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of units and had to handle unit conversion after the challenge close.

Participants were asked to define and categorize their methods based on the following

six method categories- experimental database lookup (DL), linear free energy relationship

(LFER) [155], quantitative structure-property relationship or machine learning (QSPR/ML) [155],

quantum mechanics without empirical correction (QM) models, quantum mechanics with

linear empirical correction (QM+LEC), and combined quantum mechanics and molecular

mechanics (QM+MM), or “Other”. If the “Other” category was chosen, participants were

asked to explain their decision in the beginning of the method description section in their

submission file.

Microstate enumeration

The SAMPL7 pK a challenge participants were asked to predict relative free energies between

microstates to determine the pK a of molecules. We define distinct protonation microstates

as all possible tautomers of each ionization (charge) state. Participants could consider any of

these microstates in their predictions, and had the option of submitting others. Participants

were provided a reference microstate for each compound, and asked to predict transition free

energies to all microstates they viewed as relevant, relative to this reference state.

Here, we provided some enumeration of potential microstates that participants might want

to consider. To do so, we used more than one toolkit to try and ensure all reasonable

tautomers and protomers were included. Our microstates were generated using RDKit [182]

and OpenEye QUACPAC [170] for protonation state/tautomer enumeration, and then cross

checked with ChemAxon Chemicalize [2] and Schrodinger Epik [197, 78] to ensure we had

not missed states. We also allowed participants to submit additional microstates they might

view as important, and received one set of such submissions, which resulted in us adding

a microstate with a +1 formal charge to molecules SM31 (SM31_micro002) and SM34
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Figure 3.2: For each molecule in the SAMPL7 pK a challenge we asked partici-
pants to predict the relative free energy between our selected neutral reference
microstate and the rest of the enumerated microstates for that molecule. In this
case, we asked for the relative state free energy including the proton free energy, which could
also be called the reaction free energy for the microstate transition which has the reference
state as the reactant and the alternate state as the product. Using SM43 as an example,
participants were asked to predict the relative free energy between SM43_micro000 (our se-
lected neutral microstate highlighted in yellow) and all of the other enumerated microstates
(SM43_micro001–SM43_micro005) for a total of 5 relative state free energies (∆GBA, ∆GCA,
∆GDA, ∆GEA, ∆GFA). Some transitions involved a change in a single protonation state (e.g.
the D-A transition of Figure 3.2) or tautomer (e.g. the C-A transition of Figure 3.2). A
few cases involved a change of multiple protons (e.g. the F-A transition of Figure 3.2). All
transitions were defined as away from the neutral reference state. Distinct microstates are
defined as all tautomers of each charge state. For each relative free energy prediction re-
ported, participants also submitted the formal charge after transitioning from the selected
neutral state to the other state. For example, the reported charge state after transitioning
from SM43_micro000 to SM43_micro001 would be -1, SM43_micro000 to SM43_micro004
would be 0 (these are tautomers of each other), SM43_micro000 to SM43_micro005 would
be +1, and SM43_micro000 to SM43_micro003 would be +2.
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(SM34_micro002). It is unclear why this state was not identified by the tools we used

to enumerate microstates.

We provided participants CSV (.csv) tables which included microstate IDs and their corre-

sponding canonical isomeric SMILES string, as well as individual MOL2 (.mol2) and SDF

(.sdf) files for each individual microstate. These are available in the SAMPL7 GitHub repos-

itory.

3.3.4 Combining log P and pK a predictions to estimate log D

In the SAMPL7 challenge, log P and pK a predictions were combined in order to estimate

log D . The relationship between partition and distribution coefficients at a given pH can be

computed via [211, 208]

logDpH = logP − log
(
1 + 10pKa−pH

)
(3.15)

for bases (if no deprotonation site is present or if pK b < pK a) and

logDpH = logP − log
(
1 + 10pH−pKa

)
(3.16)

for acidic compounds. The log D was calculated under the assumption that the ionic species

cannot partition into the organic phase [19], which may be important in some cases (e.g. in

compounds with high lipophilicity or in cases where pH is so extreme that partitioning of a

charged species might become important).
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3.3.5 Evaluation approach

We considered a variety of error metrics when analyzing predictions submitted to the SAMPL7

physical property set of challenges. We report the following 6 error metrics: the root-mean-

squared error (RMSE), mean absolute error (MAE), mean (signed) error (ME), coefficient

of determination (R2), linear regression slope (m), and Kendall’s Tau rank correlation co-

efficient (τ). Additionally, 95% confidence intervals were computed for these values using a

bootstrapping-over-molecules procedure (with 10,000 bootstrap samples), as in prior SAMPL

challenges [155].

Accuracy based performance metrics, such as RMSE and MAE, are more appropriate than

correlation-based statistics to evaluate methods because of the small dynamic range of ex-

perimental log P values (0.6-3.0). This is usually reflected in the confidence intervals on

these metrics. Calculated error statistics of all methods can be found in Tables 3.6, 3.8, and

3.9. Summary statistics were calculated for each submission for method comparison. Details

of the analysis and scripts are preserved on the SAMPL7 GitHub repository (described in

the “Code and data availability” section).

For each challenge we included a reference and/or null method set of predictions in the

analysis to provide perspective for performance evaluations of blind predictions. Null models

or null predictions employ a model that is not expected to be useful and can provide a

simple point of comparison for more sophisticated methods, as ideally, such methods should

improve on predictions from a null model. Reference methods are not formally part of the

challenge, but are provided as comparison methods. For the log P challenge we included

a null prediction set which predicts a constant log P value of 2.66 for every compound, as

described in a previous SAMPL paper [87]. For log D evaluation we included a set of null

predictions that all of the molecules partition equally between the water and octanol phase.

For the log P and pK a challenge and the log D evaluation, we provide reference calculations
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using ChemAxon’s Chemicalize [2], a commercially available empirical toolkit, as a point of

comparison. These include REF# in the method name in all of the Figures so that they

are easily recognized as non-blind reference calculations. The analysis is presented with and

without the inclusion of reference and/or null calculations in the SAMPL7 GitHub repository.

The Figures and statistics tables pertaining to the log P and pK a challenges and the log D

evaluation in this manuscript include reference calculations.

For the log P and pK a challenge, we list consistently well-performing methods that were

ranked in the top consistently according to two error and two correlation metrics: RMSE,

MAE, R2, and Kendall’s Tau. These are shown in Table 3.2 and 3.4.

For each challenge, we also evaluated the relative difficulty of predicting the physical property

of interest of each molecule in the set. We plotted the distributions of errors in prediction

for each molecule considering all prediction methods. We also calculated the MAE for each

molecule as an average of all methods, as well as for predictions from each method category.

Converting relative free energies between microstates to macroscopic pK a

In the pK a challenge, participants submitted predictions consisting of the free energy changes

between a reference microstate and every other relevant microstate for each compound.

Specifically, participants were asked to predict the relative free energy between a selected

neutral reference microstate and the rest of the enumerated microstates for that molecule

at a reference pH of 0. In order to compare participants’ predictions to experimental pK a

values, these predicted relative free energies had to be converted to macroscopic pK a values.

Here, we analyzed submissions using the titration method discussed above (Section 3.2.3).

This approach computes the population of each charge state as a function of pH and finds

the pH at which the population of one charge state crosses that of another (Figure 3.3); as

noted above this approach is equivalent to the transition and free energy approaches detailed
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Figure 3.3: Using the microstate probability to convert microscopic pK a predic-
tions to macroscopic pK a’s with the titration method pK a’s. Blue and orange lines
represent two states. Blue states have one more proton than the orange states, and thus
a formal charge higher by +1. The blue state has one tautomer and the orange state has
3, denoted by the dashed lines. The solid lines are the ensemble averaged state probability
for each group with a given charge. The crossing point between two ensemble lines is the
macroscopic pK a.

previously.

In our analysis Python code used in the present challenge we work from Equation 3.6 and

Equation 3.7 to find the pH at which populations of the two charge states are equal. Here,

we do this using fsolve from scipy in Python.

3.4 Results and Discussion

3.4.1 Overview of log P challenge results

A variety of methods were used in the log P challenge. There were 33 blind submissions

collected from 17 groups (Tables of participants and their predictions can be found in the

SAMPL7 GitHub Repository and in the Supporting Information.). In the SAMPL6 octanol-
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water log P challenge there were 91 blind submissions collected from 27 participating groups.

In the SAMPL5 Cyclohexane-Water log D challenge, there were 76 submissions from 18 par-

ticipating groups [19], so participation was lower than previous iterations. This modestly

decreased participation (by one group) was likely in part because of COVID-19-related dis-

ruptions and because this challenge had to be conducted on a short timescale with relatively

limited publicity because the experimental data was not generated specifically for SAMPL,

and thus staging of the SAMPL7 challenge required delaying submission of an experimental

study which was already complete.

Out of blind submissions of the SAMPL7 log P challenge, there were 10 in the physical

(MM) category, 10 in the physical (QM) category, and 12 in the empirical category. An

additional null and reference method were included in the empirical method category.

The following sections evaluate the performance of log P prediction methods. Performance

statistics of all the methods can be found in Table 3.6. Methods are referred to by their

method names, which are provided in Table 3.1.

Performance statistics to compare log P prediction methods

Some methods in the challenge achieved a good octanol–water log P prediction accuracy.

Figure 3.4 shows the performance comparison of methods based on accuracy with RMSE and

MAE. The uncertainty in the correlation statistics was too high to rank method performance

based on correlation, but we provide an overall correlation assessment for all methods in the

SI in Figure 3.19. 16 submissions achieved a RMSE ≤ 1.0 log P units, but no method

achieved a RMSE ≤ 0.5 log P units. Methods that achieved a RMSE ≤ 1.0 log P units were

mainly empirical, but some were QM-based. Prediction methods include 15 blind predictions

and one reference method.
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Figure 3.4: Overall accuracy assessment for all methods participating in the
SAMPL7 log P challenge shows that many methods did not exhibit statisti-
cally significant differences in performance and there was no single clear winner;
however, empirical methods tended to perform better in general. Both root-mean-
square error (RMSE) and mean absolute error (MAE) are shown, with error bars denoting
95% confidence intervals obtained by bootstrapping over challenge molecules. Empirical
methods outperform the majority of the other methods. Methods that achieved a RMSE ≤
1.0 log P units were mainly empirical based, and some were QM-based physical methods.
Submitted methods are listed in Table 3.1. The submission REF1 ChemAxon [2] was a
reference method included after the blind challenge submission deadline, and NULL0 mean
cLogP FDA is the null prediction method; all others refer to blind predictions.
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Table 3.1: Method names, category, and submission
type for all the log P calculation submissions. The
“submission type” column indicates if submission was a blind
submission (denoted by “Blind”) or a post-deadline reference
or null calculation (denoted by “Reference”). The table is
ordered from lowest to highest RMSE, although many con-
secutively listed methods are statistically indistinguishable.
All calculated error statistics are available in Table 3.6.

Method Name Category Submission Type

ClassicalGSG DB2 [68, 52, 53] Empirical Blind
TFE MLR [174] Empirical Blind
ClassicalGSG DB4 [68, 52, 53] Empirical Blind
Chemprop [118] Empirical Blind
TFE-SM8-vacuum-opt Physical (QM) Blind
GROVER Empirical Blind
ClassicalGSG DB1 [68, 52, 53] Empirical Blind
ffsampled_deeplearning_cl1 Empirical Blind
ClassicalGSG DB3 [68, 52, 53] Empirical Blind
COSMO-RS [224] Physical (QM) Blind
TFE_Attentive_FP Empirical Blind
ffsampled_deeplearning_cl2 Empirical Blind
TFE-SM12-vacuum-opt Physical (QM) Blind
TFE-SM8-solvent-opt Physical (QM) Blind
REF1 ChemAxon [2] Empirical Reference
TFE IEFPCM MST [217] Physical (QM) Blind
TFE MD neat oct (GAFF/TIP4P) Physical (MM) Blind
NULL0 mean clogP FDA [87] Empirical Reference
NES-1 (GAFF2/OPC3) G Physical (MM) Blind
NES-1 (GAFF2/OPC3) J Physical (MM) Blind
NES-1 (GAFF2/OPC3) B Physical (MM) Blind
MD (GAFF/TIP3P) [62] Physical (MM) Blind
TFE wet oct (GAFF/TIP4P) Physical (MM) Blind
MD (CGenFF/TIP3P) [62] Physical (MM) Blind
EC_RISM_wet [209] Physical (QM) Blind
TFE-SMD-vacuum-opt Physical (QM) Blind
MD-EE-MCC (GAFF-TIP4P-Ew) [60] Physical (MM) Blind
TFE b3lypd3 [66] Physical (QM) Blind
MD (OPLS-AA/TIP4P) [62] Physical (MM) Blind
MD LigParGen (OPLS-AA/TIP4P) [62] Physical (MM) Blind
TFE-SMD-solvent-opt Physical (QM) Blind
TFE-NHLBI-TZVP-QM Physical (QM) Blind
Ensemble EPI physprop Empirical Blind
Ensemble Martel Empirical Blind
QSPR_Mordred2D_TPOT_AutoML Empirical Blind
TFE-NHLBI-NN-IN Empirical Blind

A shortlist of consistently well-performing methods in the log P challenge

Here, many performance differences are not statistically significant, but we identified five

consistently well-performing ranked methods that appear in the top 10 according to two

accuracy based (RMSE and MAE) and two correlation based metrics (Kendall’s Tau and
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R2), as shown in Table 3.2. The resulting 5 best-performing methods were made up of three

empirical methods and two QM-based physical methods.

Method TFE MLR [174] was an empirical method that used a multi-linear regression (MLR)

made from experimental log P values from 60 sulfonamides obtained from PubChem [101]

and DrugBank [54]. The dataset was mainly composed of sulfonamide drugs and smaller

molecules with other classical functional groups. The following descriptors were used to

create the MLR: the frequency of functional groups, hydrogen bond acceptors, hydrogen bond

donors, molar refractivity, and topological polar surface area. The functional group frequency

was calculated with an in-house script from a modified function of Open Babel [169], the

rest was obtained from supplied Open Babel properties.

Method Chemprop was an empirical method which used the log P dataset of the OPERA

models in their approach [118]. Molecules from the Opera set were compared with the chal-

lenge molecules and those with an ECFP_6 fingerprint (extended connectivity fingerprint)

tanimoto coefficient (TC) greater than 0.25 were flagged as test molecules for a total of

233 testing molecules. The training set was created from the rest of the Opera data set by

filtering out molecules with a ECFP_6 TC >0.4 to test set molecules. Several models were

built using a Directed-Message Passing Neural Network (D-MPNN) [37, 228] to predict the

log P , which was then used to get the transfer free energy.

Submission ClassicalGSG DB3 is an empirical method that employed neural networks (NNs)

where the inputs are molecular features generated using a method called Geometric Scatter-

ing for Graphs (GSG) [68, 52, 53]. In GSG, atomic features are transformed into molecular

features using the graph molecular structure. For atomic features, predictions used 4 phys-

ical quantities from classical molecular dynamics forcefields: partial charge, Lennard-Jones

well depth, Lennard-Jones radius and atomic type. A training dataset was built from 7

datasets for a total of 44,595 unique molecules. Open Babel was used to convert RDKit

generated canonical SMILES to MOL2 files, which were then used as input into CGenFF to
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determine partial charges and Lennard-Jones parameters for all atoms in each molecule. The

generation of CGenFF atomic attributes failed for some molecules, so the final dataset had

41,409 molecules, and is referred to as the “full dataset”. A training set of 2,379 molecules

was obtained by filtering the full training set and keeping only those with sulfonyl functional

groups. This was done using the HasSubstructMatch function of the RDKit toolkit. The

log P values were predicted by the model trained on this training set.

Method COSMO-RS was a QM-based physical prediction approach [224].. First, this ap-

proach used COSMOquick [42] to generate tautomers and discarded irrelevant states due to

an internal energy threshold implemented in COSMOquick. The participants conducted a

conformational search of every microstate with COSMOconf [41] using up to 150 conform-

ers. Second, for each conformer they performed a geometry optimization using the BP86

functional with a TZVP basis set and the COSMO solvation scheme, followed by a single

point energy calculation using the BP86 functional with a def2-TZVPD basis set and the

FINE COSMO cavity. All density functional theory calculations were carried out with the

TURBOMOLE 7.5 program package [17, 213]. Third, a conformer selection was done by

applying COSMOconf (using internally COSMOtherm) to reduce the number of conformers

and tautomers for the neutral molecule sets. The final set of the neutral state contained only

those conformers and states that are relevant in liquid solutions. Fourth, the COSMOth-

erm software (version 2020) [43] was used to calculate the free energy difference for each

molecule set (from the second step described here) and to calculate the relative weight of the

microstates in water. All free energy calculations were carried out using the BP-TZVPD-

FINE 20 level of COSMO-RS in COSMOtherm. Within the used COSMO-RS, an ensemble

of conformers and microstates is automatically used and weighted according to the total free

energy in the respective liquid phase, i.e. different weights are used in water and octanol.

Submission TFE-NHLBI-TZVP-QM was a QM-based physical method that used the Def2-

TZVP basis set for all calculations. Calculations were performed in either Gaussian 09

121



or Gaussian 16. Structures were optimized with the B3LYP density functional and were

verified to be local minima via frequency calculations on an integration grid with harmonic

frequencies. Details of solvation handling were not included in the method description.

Figure 3.5 show predicted log P vs experimental log P value comparison plots of these 5

well-performing methods and also a method that represents average performance in this

challenge. Representative method NES-1 (GAFF2/OPC3) G was selected because it has

the median RMSE of all ranked methods analyzed in the challenge.

Table 3.2: Five consistently well-performing log P prediction methods based on
consistent ranking within the top 10 according to various statistical metrics.
Submissions were ranked according to RMSE, MAE, R2, and Kendall’s Tau. Many top
methods were found to be statistically indistinguishable when considering the uncertainties
of their error metrics. Additionally, the sorting of methods was significantly influenced by
the metric that was chosen. We determined which ranked log P prediction methods were
consistently the best according to all four chosen statistical metrics by assessing the top 10
methods according to each metric. A set of five consistently well-performing methods were
determined– three empirical methods and two QM-based physical methods. Performance
statistics are provided as mean and 95% confidence intervals. Correlation plots of the best
performing methods and one average method is shown in Figure 3.5. Additional statistics
are available in Table 3.6.

Method Name Category RMSE MAE R2 Kendall’s Tau

TFE MLR [174] Empirical 0.58 [0.34, 0.83] 0.41 [0.26, 0.60] 0.43 [0.06, 0.80] 0.56 [0.23, 0.83]
Chemprop [118] Empirical 0.66 [0.39, 0.89] 0.48 [0.30, 0.69] 0.41 [0.11, 0.76] 0.54 [0.25, 0.82]
ClassicalGSG DB3 [68, 52, 53] Empirical 0.77 [0.57, 0.96] 0.62 [0.43, 0.82] 0.51 [0.18, 0.77] 0.48 [0.14, 0.75]
COSMO-RS [224] Physical (QM) 0.78 [0.49, 1.01] 0.57 [0.36, 0.80] 0.49 [0.17, 0.80] 0.53 [0.25, 0.78]
TFE-NHLBI-TZVP-QM Physical (QM) 1.55 [1.19, 1.87] 1.34 [1.02, 1.76] 0.52 [0.19, 0.78] 0.51 [0.19, 0.78]

Difficult chemical properties for log P predictions

To learn about chemical properties that are challenging for log P predictions, we analyzed

the prediction errors of the molecules (Figure 3.6). We chose to use MAE for this analysis

because it is less affected by outliers compared to RMSE and is therefore more appropriate

for following global trends. Although methods varied in performance, as indicated by large

and overlapping confidence intervals, the MAE calculated for each molecule as an average
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Figure 3.5: Predicted vs. experimental value correlation plots of 5 best performing
methods and one representative average method in the SAMPL7 log P challenge.
Dark and light green shaded areas indicate 0.5 and 1.0 units of error. Error bars indicate stan-
dard error of the mean of predicted and experimental values. In some cases, log P SEM values
are too small to be seen under the data points. The best-performing methods were made up
of three empirical methods (ClassicalGSG DB3 [52], TFE MLR [174], Chemprop [118]) and
two QM-based physical methods (COSMO-RS [224], TFE-NHLBI-TZVP-QM ). Details of
the methods can be found in Section 3.4.1 and performance statistics are available in 3.2.
Method NES-1 (GAFF2/OPC3 G) was selected as the representative average method, which
has a median RMSE.

123



across all methods indicates that some of the molecules were better predicted than others

(Figure 3.6A). For reference, compound classes and structures of the molecules are available

in Figure 3.20. Molecules such as SM26, SM27, and SM28 were well predicted on average.

Molecules such as SM42, SM43, and SM36 were not well predicted on average.

Certain groups of molecules seem to be more challenging for log P predictions. Two of the

most poorly predicted molecules, SM42 and SM43, are isoxazoles. Isoxazoles are oxygen

and nitrogen-containing heteroaromatics. When we consider the calculated MAE of each

molecule separated out by method category, we find that predictions for 2 out of the 3

molecules (SM41 and SM43) belonging to the isoxazole compound class are less accurate with

MM-based physical methods than with QM-based physical and empirical method categories

(Figure 3.6B).

Figure 3.6C shows error distribution for each challenge molecule over all prediction methods.

Molecules such as SM33, SM36, SM41, SM42, and SM43 are shifted to the right, indicating

that methods likely had a tendency to overestimate how much these molecules favored the

octanol phase.

3.4.2 Overview of pK a challenge results

In the SAMPL7 pK a challenge there were 9 blind submissions from 7 different groups. Blind

submissions included 7 QM-based physical methods, 1 QM+LEC method, and 1 QSPR/ML

method. An additional reference prediction method was included in the QSPR/ML method

category.
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Figure 3.6: Molecule-wise prediction accuracy in the log P challenge point to isox-
azoles as poorly predicted, especially by MM-based physical methods. Molecules
are labeled with their compound class as a reference. (A) The MAE calculated for each
molecule as an average of all methods. (B) The MAE of each molecule separated by method
category. (C) log P prediction error distribution for each molecule across all prediction
methods.
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Table 3.3: Method names, category, and sub-
mission type for all the pK a submissions. The
“submission type” column indicates if submission was
a blind submission (denoted by “Blind”) or a post-
deadline reference calculation (denoted by “Reference”).
The table is ordered from lowest to highest RMSE, al-
though many consecutively listed methods are statis-
tically indistinguishable. All calculated error statistics
are available in Table 3.8.

Method Name Category Submission Type

REF00_Chemaxon_Chemicalize [2] QSPR/ML Reference
EC_RISM [209] QM Blind
IEFPCM/MST [217] QM Blind
DFT_M05-2X_SMD [66] QM Blind
TZVP-QM QM Blind
Standard Gaussian Process QSPR/ML Blind
DFT_M06-2X_SMD_implicit QM Blind
DFT_M06-2X_SMD_implicit_SAS QM Blind
DFT_M06-2X_SMD_explicit_water QM Blind
Gaussian_corrected QM+LEC Blind

pK a performance statistics for method comparison

Some methods in the SAMPL7 challenge achieved a good prediction accuracy for pK a’s.

Figure 3.7 shows the performance comparison of methods based on accuracy with RMSE

and MAE. Two submissions achieved a RMSE < 1.0 pK a units, no methods achieved a

RMSE ≤ 0.5 pK a units. One of the methods that achieved a RMSE < 1.0 pK a units was a

QM-based physical prediction method (EC_RISM [209]), and the other was a QSPR/ML

method that was submitted as a reference method (REF00_Chemaxon_Chemicalize [2]).

Correlation-based statistics methods provide a rough comparison of methods. Figure 3.8

shows R2 and Kendall’s Tau values calculated for each method, sorted from high to low

performance. It is not possible to truly rank these methods based on correlation due to the

high uncertainty of each correlation statistic. Over half of the methods have R2 and Kendall’s

Tau values equal to or greater than 0.5 and can be considered as the better half, however

individual performance is largely indistinguishable from one another. For R2, two methods

(EC_RISM, REF00_Chemaxon_Chemicalize), seem to have a greater ranking ability than
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the other methods.

There were six methods with an R2 ≥ 0.5— four of the methods were QM methods, one was

a QM+LEC method, and one was a QSPR/ML method. Seven methods had a Kendall’s

Tau ≥ 0.50. Of these, five were QM methods, one was a QM+LEC method, and one was a

QSPR/ML method.

A shortlist of consistently well-performing methods in the pK a challenge

We determined a group of consistently well-performing methods in the pK a challenge. When

looking at individual error metrics, many submissions are not different from one another in

a way that is statistically significant. Ranking among methods changes based on the chosen

statistical metric and does not necessarily lead to strong conclusions due to confidence inter-

vals that often overlap with one another. Here, we determined consistently well-performing

methods according to two accuracy (RMSE and MAE) and two correlation metrics (Kendall’s

Tau and R2). For ranked submissions, we identified two consistently well-performing meth-

ods that were ranked in the top three according to these statistical metrics. The list of

consistently well-performing methods are presented in Table 3.4. The resulting two best-

performing methods were both QM-based physical methods.

Submission EC_RISM was a QM-based physical method [209]. In this approach, multiple

geometries were generated for each microstate using the EmbedMultipleConfs function of

RDKit. These structures were pre-optimized with Amber 12 using GAFF 1.7 parameters

and AM1-BCC charges with an ALPB model to represent the dielectric environment of water.

Conformations with an energy of more than 20 kcal/mol than the minimum structure of that

microstate were discarded and the remaining structures clustered with a structural RMSD

of 0.5 Angstrom. The cluster representatives were then optimized using Gaussian 16revC01

with IEF-PCM using default settings for water at the B3LYP/6-311+G(d,p) level of theory.
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Figure 3.7: Overall accuracy assessment for all methods participating in the
SAMPL7 pK a challenge shows that two methods, one a Physical (QM) method
and one a QSPR/ML, performed better than other methods. Both root-
mean-square error (RMSE) and mean absolute error (MAE) are shown, with error bars
denoting 95% confidence intervals obtained by bootstrapping over challenge molecules.
REF00_Chemaxon_Chemicalize [2] is a reference method that was included after the blind
challenge submission deadline, and all other method names refer to blind predictions. Meth-
ods are listed out in Table 3.3 and statistics calculated for all methods are available in
Table 3.8.
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Figure 3.8: Overall correlation assessment for all methods participating in
the SAMPL7 pK a challenge shows that one Physical (QM) method and one
QSPR/ML reference method exhibited modestly better performance than oth-
ers. Pearson’s R2 and Kendall’s Rank Correlation Coefficient Tau (τ) are shown, with error
bars denoting 95% confidence intervals obtained by bootstrapping over challenge molecules.
Submission methods are listed out in Table 3.3. REF00_Chemaxon_Chemicalize [2] is
a reference method that was included after the blind challenge submission deadline, and
all other method names refer to blind predictions. Most methods have a statistically in-
distinguishable performance on ranking, however, for R2, two methods (EC_RISM [209],
REF_Chemaxon_Chemicalize), tend to have a greater ranking ability than the other meth-
ods. Evaluation statistics calculated for all methods are available in Table 3.8 of the Sup-
plementary Information.
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Additional stereoisomers were treated as if they were additional conformational states of

the same microstate so that for each microsate only up to 5 conformations with the lowest

PCM energies for each solvent were treated with EC-RISM/MP2/6-311+G(d,p) using the

PSE2 closure [206] and the resulting EC-RISM energies were corrected. To calculate the

relative free energies with respect to each neutral reference state, 4 different formulas were

used, depending on the difference in the protonation state. Macrostate pK a values were

calculated using the partition function approach of equation 5 found elsewhere [206].

Submission IEFPCM/MST was a QM-based physical method [217]. This approach used the

Frog 2.14 software [146, 65] to explore microstate conformations. The molecular geometries

of the compounds were fully optimized at the B3LYP/6-31G(d) level of theory, taking into

account the solvation effect of water on the geometrical parameters of the solutes, using

the IEFPCM version of the MST model. The resulting minima were verified by vibrational

frequency analysis, which gave positive frequencies in all cases. The relative energies of the

whole set of conformational species were refined from single-point computations performed

at the MP2/aug-cc-pVDZ levels of theory. In addition, the gas phase estimate of the free

energy difference for all microstates was derived by combining the MP2 energies with zero

point energy corrections. Finally, solvation effects were added by using the B3LYP/6-31G(d)

version of the IEFPCM/MST model, which is a quantum mechanical self-consistent contin-

uum solvation method. The pK a was determined using both the experimental hydration

free energy of the proton (-270.28 kcal/mol) and a Boltzmann’s weighting scheme to the

relative stabilities of the conformational species determined for the microstates involved in

the equilibrium constant for the dissociation reaction following the thermodynamic cycle

reported in previous studies [31].

Figure 3.9 show predicted pK a vs experimental pK a value comparison plots of the two well-

performing methods and also a method that represents average performance. Representative

average method DFT_M05-2X_SMD [66] was selected as the method with the median
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RMSE of all ranked methods analyzed in the challenge.

Table 3.4: Two consistently well-performing pK a prediction methods
based on consistent ranking within the top three according to vari-
ous statistical metrics. Ranked submissions were ranked/ordered according
to RMSE, MAE, R2, and Kendall’s Tau. Many methods were found to be statis-
tically indistinguishable when considering the uncertainties of their error metrics.
Additionally, the sorting of methods was significantly influenced by the metric
that was chosen. We determined which methods are repeatedly among the top
two according to all four chosen statistical metrics by assessing the top three
methods according to each metric. Two QM-based methods consistently per-
formed better than others. Performance statistics are provided as mean and 95%
confidence intervals. All statistics for all methods are in Table 3.8.

Method Name Category RMSE MAE R2 Kendall’s Tau

EC_RISM [209] QM 0.72 [0.45, 0.95] 0.53 [0.33, 0.75] 0.93 [0.87, 0.98] 0.81 [0.63, 0.96]
IEFPCM/MST [217] QM 1.82 [1.00, 2.69] 1.30 [0.84, 1.92] 0.56 [0.22, 0.87] 0.52 [0.22, 0.76]

Difficult chemical properties for pK a predictions

To learn about chemical properties that pose challenges for pK a predictions, we analyzed

the prediction errors of the molecules (Figure 3.10). For reference, compound classes and

structures of the molecules are available in Figure 3.20. We chose to use MAE for molecular

analysis because it is less affected by outliers compared to RMSE and is, therefore, more ap-

propriate for following global trends. When we consider the calculated MAE of each molecule

separated out by method category the prediction accuracy of each molecule varies based on

method category (Figure 3.10A). The MAE calculated for each molecule as an average of all

methods shows that SM25 was the most poorly predicted molecule. The QM+LEC method

category appears to be less accurate for the majority of the molecules compared to the

other method categories. Compared to the other two method categories, QSPR/ML meth-

ods performed better for molecules SM41-SM43, which are isoxazoles (oxygen and nitrogen

containing heteroaromatics), and molecule SM44-SM46, which are 1,2,3-triazoles (nitrogen

containing heteroaromatics). Physical QM methods performed poorly for molecules SM25

and SM26 (acylsulfonamide compound class). Figure 3.10B shows error distribution for each
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Figure 3.9: Predicted vs. experimental value correlation plots of 2 best performing
methods and one representative average method in the SAMPL7 pK a challenge.
Dark and light green shaded areas indicate 0.5 and 1.0 units of error. Error bars indicate
standard error of the mean of predicted and experimental values. Some SEM values are
too small to be seen under the data points. Method DFT_M05-2X_SMD [66] was selected
as the method with the median RMSE of all ranked methods analyzed in the challenge.
Performance statistics of these methods is available in Table 3.4

.

challenge molecule over all the prediction methods. Molecule SM25 has the most spread in

pK a prediction error.

Microscopic pK a performance

SAMPL7 challenge pK a participants were asked to report the relative free energy between

microstates, using a provided neutral microstate as reference. Microstates are defined as the

enumerated protomers and tautomers of a molecule. Details of how microstates were found

can be found in Section 3.3.3. Some molecules had 2 microstates, while others had as many

as 6 (Table 3.12).

Figure 3.12 shows the predicted free energy change between the reference state and each

microstate, on average, for all transitions across all predictions. Molecules are labeled

with their compound class as a reference. Predictions disagree widely for some transitions,

like those from the reference state to SM26_micro002, SM28_micro001, SM43_micro003,
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Figure 3.10: Molecule-wise prediction error distribution plots show the prediction
accuracy for individual molecules across all prediction methods for the pK a
challenge. Molecules are labeled with their compound class as a reference. (A) The MAE
of each molecule separated by method category suggests the most challenging molecules were
different for each method category. It is difficult to draw statistically significant conclusions
where there are large overlapping confidence intervals. The QM+LEC method category
appears to be less accurate for the majority of the molecules compared to the other method
categories. QSPR/ML methods performed better for isoxazoles (SM41-SM43) and 1,2,3-
triazoles (SM44-SM46) compared to the other two method categories. Physical QM-based
methods performed poorly for acylsulfonamides (SM26 and SM25). (B) Error distribution
for each molecule over all prediction methods. SM25 has the most spread in pK a prediction
error.
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SM46_micro003, while predictions for other transitions such as that from the reference mi-

crostate to SM26_micro004 are in agreement (as shown by small error bars in Figure 3.12A,

3.14).

Figure 3.14 shows examples of some microstate transitions where participants’ predicted

transition free energies disagree. We also examined how the microstate transition free ener-

gies (relative to the reference state) are distributed across predictions (Figure 3.12B). We find

that some transitions are much more consistently predicted than others, but in some cases

there is broad disagreement even about the sign of the free energy change associated with

the particular transition – so methods disagree as to which protonation state or tautomer is

preferred at the reference pH.

To further analyze which transitions were difficult, we focused on how consistently methods

agreed as to the sign of the free energy change for each transition. Particularly, we calculated

the Shannon Entropy (H) for the transition sign for each transition, shown in Figure 3.13.

For each microstate, we calculated H via:

H = −
∑
i

P iln(P i) (3.17)

where Pi is the probability of a particular outcome i; here, we use i to indicate a positive sign

or a negative sign for the predicted free energy change. So Ppositive is the fraction of positive

sign predictions, Pnegative is the fraction of negative sign predictions, and Pneutral is the fraction

of neutral sign predictions (which were somewhat frequent as a few participants predicted

a free energy change of exactly 0 for some transitions). For example, for SM25_micro001,

given the predictions we received, the Ppositive is 0.5, the Pnegative is 0.4 and the Pneutral is 0

(no neutral sign predictions). The Shannon entropy H is then −(0.5 ln(0.5)+0.4 ln(0.4)+0),
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which is roughly 0.7 and indicates predictions had difficulty agreeing on the sign.

While the Shannon entropy may not be a perfect tool for analyzing this issue, we find it

helpful here. For a particular transition, a value of 0 indicates all predictions agreed as to the

sign of the free energy change (whether positive, negative, or neutral), while values greater

than 0 reflect an increasing level of disagreement in the sign of the prediction. 32 of the

microstates had a H value of 0, 21 had a values that ranged from 0.5-0.7, and 3 microstates

had values greater than 0.9 (the highest level of disagreement). The 3 microstates with the

most disagreement belong to the thietane-1-oxide compound class (one from SM35, one from

SM36 and one from SM37).

Transitions that pose difficulty for participants involve a protonated nitrogen and keto-enol

neutral state tautomerism. Chemical transformations involving a protonated nitrogen in

terminal nitrogen groups, 1,2,3-triazoles, and isoxazoles were all found to occur in molecules

that have high levels of disagreement in sign prediction. Depictions of some of these types of

transitions are presented in Figure 3.11. Predictions for these transitions were substantially

divided on the predicted sign – roughly half of the methods predict a positive sign, while

the other half predict a negative sign. This means methods could not agree on the preferred

state at the reference pH. The number of positive, negative, and neutral sign predictions per

microstate is available in Table 3.10

In several cases, the SAMPL input files provided a reference microstate with unspecified

stereochemistry, then a separate but otherwise equivalent microstate with specified stere-

ochemistry (SM35_micro002, SM36_micro002, SM37_micro003). Experiments were done

on the compound with specified stereochemistry, so participants were instructed to assume

that the reference microstate (which had unspecified stereochemistry) had the same free

energy as the microstate with specified stereochemistry. However, many participants didn’t

use the microstate with specified stereochemistry as the reference state, and most ended up

predicting a nonzero relative free energy between the reference state and the microstate with
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Table 3.5: Method names, category, and submission type for all the log D
estimations. Method names are based off the submitted pK a and log P method
names, with the log P method name listed first followed by “+” and then the pK a

method name. The “submission type” column indicates if submission was a blind
submission (denoted by “Blind”) or a post-deadline reference calculation (denoted by
“Reference”). All calculated error statistics are available in Table 3.9.

Method Name Category Submission Type

REF0 ChemAxon Empirical Reference
TFE IEFPCM MST + IEFPCM/MST Physical (QM) Standard
NULL0 Empirical Reference
EC_RISM_wet + EC_RISM Physical (QM) Standard
TFE-NHLBI-TZVP-QM + TZVP-QM Physical (QM) Standard
TFE b3lypd3 + DFT_M05-2X_SMD Physical (QM) Standard
MD (CGenFF/TIP3P) + Gaussian_corrected Physical (MM) + QM+LEC Standard
TFE-SMD-solvent-opt + DFT_M06-2X_SMD_explicit_water Physical (QM) Standard

specified stereochemistry, despite instructions.

3.4.3 Overview of log D challenge results

In the SAMPL7 physical property prediction challenge, log P and pK a predictions were

combined in order to estimate log D , as described in Section 3.3.4.

There were 6 log D estimates and 2 reference methods. Methods are listed in Table 3.5 and

statistics for all log D prediction methods are available in Table 3.9. There were 5 methods

that belonged to the physical (QM) category, and 1 in the Physical (MM) + QM+LEC

category (this category used a MM-based physical method in the log P challenge, and a

QM+LEC method in the pK a challenge). The null and reference method were included in

the empirical method category.

log D performance statistics for method comparison

Figure 3.15 compares the accuracy of methods based on RMSE and MAE. No method

achieved a RMSE ≤ 1.0 log D units, and the overall RMSE ranged from 1.1 to 4.5 log D
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SM31_micro002 SM34_micro002 SM37_micro001 SM40_micro002 SM43_micro002 SM43_micro003

SM31_micro000 SM34_micro000 SM37_micro000 SM40_micro000 SM43_micro000 SM43_micro000

SM44_micro000

SM44_micro002

SM45_micro000

SM45_micro002

SM46_micro000

SM46_micro002

SM41_micro000

SM41_micro002

SM42_micro000

SM42_micro002

SM43_micro000

SM43_micro005

Transitions to a protonated terminal nitrogen

Transitions to a protonated 1,2,3-triazoles Transitions to a protonated isoxazoles

SM26_micro000

SM26_micro002

SM28_micro000

SM28_micro001

Keto to enol neutral state tautomer transitions

Figure 3.11: Chemical transformations that lead to common sign disagreements
among participants typically involve a protonated nitrogen in terminal nitrogen
groups, 1,2,3-triazoles, and isoxazoles. Shown are some chemical transformations that
repeatedly show up as having large disagreement on the sign of the relative free energy
prediction, as seen in Figure 3.13.
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Figure 3.12: The average relative microstate free energy predicted per microstate
and the distribution across predictions in the SAMPL7 pK a challenge show how
varied predictions were. Molecules are labeled with their compound class as a refer-
ence. (A) The average relative microstate free energy predicted per microstate. Error bars
are the standard deviation of the relative microstate free energy predictions. A lower stan-
dard deviation indicates that predictions for a microstate generally agree, while a larger
standard deviation means that predictions disagree. Predictions made for microstates such
as SM25_micro001, SM26_micro002, SM28_micro001, SM43_micro003, SM46_micro003
widely disagree, while predictions for microstates such as SM26_micro004 are in agreement.
(B) Distribution for each relative microstate free energy prediction over all prediction meth-
ods shows how prediction agreement among methods varied depending on the microstate.
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Figure 3.13: The Shannon entropy (H) per microstate transition shows that par-
ticipants disagree on many of the signs of the relative free energy predictions.
Microstates with entropy values greater than 0 reflect increasing disagreement in the pre-
dicted sign. Microstates with an entropy of 0 are not shown here, but indicate that methods
made predictions which had the same sign for the free energy change associated with a
particular transition. About 44% of all microstates predictions disagreed with one another
based on the sign, and the rest agreed. Roughly 5% of microstates strongly disagreed on
the sign of predictions– meaning that predicted relative free energies were fairly evenly split
between positive, neutral, and negative values. This indicates that these transitions were
particularly challenging.

units. Four methods had a RMSE between 1 and 2, and three methods had an RMSE

between 2 and 3. Accuracy is better than the previous log D challenge. In the SAMPL5

log D challenge, out of 63 submissions, no submissions had a RMSE below 2 log D units.

Here, eight methods were submitted and half of them achieved a RMSE below 2 log D units.

Overall, log D prediction accuracy has improved since SAMPL5.

When the best log P and pK a prediction methods are combined we find that the resulting

composite approach outperforms most of the other ranked methods, achieving a RMSE of

0.6 (see Figure3.17, method name TFE MLR + EC_RISM ).

When the experimental log P and pK a are combined to yield a log D (as in Section 3.3.4),

the resulting log D values do not perfectly match with the reported experimental log D

values, an inconsistency that requires further investigation.
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Figure 3.14: Structures of microstates where relative microstate free energy pre-
dictions disagree. Shown are some of the microstate transitions where participants pre-
dictions largely disagree with one another, based on Figure 3.12. The average relative free
energy prediction (∆G) along with the standard deviation are listed under each transition.
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A consistently well performing method in log D estimation

For ranked submissions, we identified a single consistently well-performing method that was

ranked in the top three according to RMSE, MAE, Kendall’s Tau, and R2 (all statistics

are available in Table 3.9). The best-performing method was TFE IEFPCM MST + IEF-

PCM/MST, which used a QM-based physical method for pK a and log P predictions [217].

The IEFPCM/MST model has previously been used to predict the log D of over 35 ioniz-

able drugs, where it achieved a RMSE of 1.6 [232], all little worse than a RMSE of 1.3 in

SAMPL7. The pK a prediction protocol used in the challenge is described in Section 3.4.2,

where it was ranked among the consistently well performing pK a methods.

3.5 Conclusions

Here, a community-wide blind prediction challenge was held that focused on partitioning and

pK a for 22 compounds composed of a series of N-acylsulfonamides and related bioisosteres.

Participants had the option of submitting predictions for both, or either, challenge.

In the SAMPL7 log P challenge, participants were asked to predict a partition coefficient for

each compound between octanol and water and report the result as a transfer free energy.

A total of 17 research groups participated, submitting 33 blind submissions total. Many

submissions achieved a RMSE around 1.0 or lower for log P predictions, but none were below

0.5 log P units. RMSEs ranged from 0.6 to 4 log P units– 15 methods achieved a RMSE

of 1.0 or lower, while a RMSE between 1 and 4 log units was observed for the majority of

methods. Many methods achieved an accuracy similar to the null model which had a RMSE

of 1.2 and predicted that each compound had a constant log P value of 2.66. A few methods

outperformed the null model (4 were empirical and 1 was an QM based method). In general,

empirical methods tended to perform better than other methods, which makes sense given
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Figure 3.15: Overall accuracy assessment for log D estimation. Both root-
mean-square error (RMSE) and mean absolute error (MAE) are shown, with error bars
denoting 95% confidence intervals obtained by bootstrapping over challenge molecules.
REF00_ChemAxon [2] is a reference method and NULL0 is a null method that was in-
cluded after the blind challenge submission deadline, and all other method names refer to
blind predictions. Methods are listed out in Table 3.5 and statistics calculated for all meth-
ods are available in Table 3.9.
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Figure 3.16: Predicted vs. experimental value correlation plots of all log D estima-
tion methods in the SAMPL7 challenge. Dark and light green shaded areas indicate
0.5 and 1.0 units of error. Error bars indicate standard error of the mean of predicted and
experimental values. Some SEM values are too small to be seen under the data points.
Performance statistics of all methods is available in Table 3.9

.

143



log
P_e

xp
eri

men
tal

 + 
EC_R

IS
M

log
P_e

xp
eri

men
tal

 + 
pK

a_
ex

pe
rim

en
tal

TFE M
LR

 + 
EC_R

IS
M

TFE M
LR

 + 
pK

a_
ex

pe
rim

en
tal

log
P_e

xp
eri

men
tal

 + 
DFT_M

05
-2X

_S
MD

REF0 C
he

mAxo
n

TFE IE
FPCM M

ST + 
IE

FPCM/M
ST

NES-1 
(G

AFF2/O
PC3) 

B + 
pK

a_
ex

pe
rim

en
tal

NULL
0

EC_R
IS

M_w
et 

+ E
C_R

IS
M

TFE-N
HLB

I-T
ZVP-Q

M + 
TZVP-Q

M

TFE b3
lyp

d3
 + 

DFT_M
05

-2X
_S

MD

MD (C
Gen

FF/TIP
3P

) +
 G

au
ss

ian
_c

orr
ec

ted

TFE-S
MD-so

lve
nt-

op
t +

 D
FT_M

06
-2X

_S
MD_e

xp
lic

it_
wate

r

method name

0

1

2

3

4

5

6

7

R
M

S
E

MM logP + QM+LEC pKa
Empirical (ref)
QM logP + QM pKa
MM logP + Experimental pKa
Empirical logP + Experimental pKa
Experimental logP + QM pKa
Empirical logP + QM pKa
Experimental logP + Experimental pKa
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typically superior. Shown is the RMSE in calculated log D values, with error bars de-
noting 95% confidence intervals from bootstrapping over challenge molecules. This plot is
similar to Figure 3.4.3A, except it includes some additional pK a and log P combinations
(for log D estimation). Method logP_experimental + EC_RISM combines the experimental
log P with the top performing pK a method (based on RMSE). Method logP_experimental
+ pKa_experimental combines the experimental log P and pK a value. Method TFE MLR
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Method TFE MLR + pKa_experimental combines the best performing (based on RMSE)
log P method with the experimental pK a. Method logP_experimental + DFT_M05-
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ure 3.4.3A.
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the availability of octanol-water log P training data.

Performance in the SAMPL7 log P challenge was poorer than in the SAMPL6 log P chal-

lenge. In the SAMPL6 log P challenge, 10 methods achieved a RMSE ≤ 0.5 log P units,

while here, none did. In general, the SAMPL7 molecules were more flexible, which may have

contributed to this accuracy difference. The chemical diversity in the SAMPL6 challenge

dataset was limited to 6 molecules with 4-amino quinazoline groups and 2 molecules with

a benzimidazole group. The SAMPL7 set was larger and more diverse, thus possibly more

challenging.

For ranked submissions, we identified 5 consistently well-performing methods for log P eval-

uations based on several statistical metrics. These particularly well performing methods

included three empirical methods, and two QM-based physical methods.

To see if any molecules posed particular challenges, we looked at log P prediction accuracy

for each molecule across all methods. Compounds belonging to the isoxazole compound class

had higher log P prediction errors.MM-based physical methods tended to make predictions

that were less accurate for molecules belonging to the isoxazole compound class compared

to QM-based physical and empirical method categories.

In the SAMPL7 pK a challenge, participants predicted free energies for transitions between

microstates. Predicted relative free energies were then converted to macroscopic pK a val-

ues in order to compare participants’ predictions to experimental pK a values and calculate

performance statistics of predictions. This format allowed us to avoid some of the chal-

lenges of matching microscopic transitions to macroscopic pK a values [91], making analysis

more straightforward. As noted above, some matching is still required, but this approach

eliminates uncertainty about which transitions are predicted.

Macroscopic pK a evaluations relied on accuracy and correlation metrics. No method achieved

a RMSE around 0.5 or lower for macroscopic pK a predictions for the challenge molecules
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which means methods did not achieve experimental accuracy, which is likely around 0.5

pK a units [63]. Methods had RMSE values between 0.7 to 5.4 pK a units. Compared

to the previous SAMPL6 pK a challenge, accuracy remains roughly the same. Out of all

submitted methods in SAMPL7, two methods achieved a RMSE lower than 1 pK a unit (one

of which was a commercially available method that we used as a reference method), while

a RMSE between 1.8 and 5.4 log units was observed for the majority of methods. In terms

of correlation, predictions had R2 values ranging from 0.03 to 0.93 and only two methods

achieved an R2 greater than 0.9.

We tested ChemAxon’s Chemicalize toolkit [2] as an empirical reference method to make

macroscopic pK a predictions and it performed better than other methods. Excluding the

reference method, the two best performing methods across several performance statistics

were both QM-based physical methods.

For microscopic pK a, we find that some transitions are much more consistently predicted

than others, but in some cases there is broad disagreement even about the sign of the

free energy change associated with a particular transition – so methods disagree as to which

protonation state or tautomer is preferred at the reference pH. Participants agreed on the sign

of predictions for roughly 56% of all microstates, while 38% disagreed on sign (predictions

were negative or positive). Certain chemical transformations were found to have a high level

of disagreement, especially protonation of nitrogens in 1,2,3-triazoles, isoxazoles, as well as

those in terminal nitrogen groups. Transitions involving keto-enol neutral state tautomerism

also often lead to sign disagreement.

The current challenge combined log P and pK a submissions in order to evaluate the current

state of log D predictions. In general we find that the accuracy of octanol-water log P pre-

dictions in SAMPL7 is higher than that of cyclohexane-water log D predictions in SAMPL5.

Half of the methods in the current challenge achieved a RMSE below 2 log D units, while

no submissions achieved this in the SAMPL5 challenge. Given the abundance of octanol-
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water partitioning and distribution data (compared to cyclohexane-water data in SAMPL5)

it makes sense that accuracy would be higher here in SAMPL7 since trained methods (i.e.

empirical methods and implicit solvent QM) are impacted by availability of training data.

3.6 Code and Data Availability

All SAMPL7 physical property instructions, submissions, experimental data and analysis

are available at

https://github.com/samplchallenges/SAMPL7/tree/master/physical_property.

Figures and supporting material for this paper can be found at

https://github.com/MobleyLab/sampl7-physical-property-challenge-manuscript. This

repository contains graphs and plots from the paper, some of which are available in the main

SAMPL7 physical property repository listed directly above, but also includes:

• A graph that shows the distribution of molecular properties of the 22 compounds from

the SAMPL7 physical property blind challenge.

• Details of MM-based physical methods that made log P predictions.

• A table that lists additional info for microscopic pK a predictions. The table lists the:

microstate, total number of relative free energy predictions, average relative free energy

prediction, average relative free energy prediction STD, Minimum relative free energy

prediction, maximum relative free energy prediction, number of (+) sign predictions,

number of (-) sign predictions, number of neutral (0) sign predictions, and Shannon

entropy (H).

• A table of the number of states per charge state for the microstates used in the SAMPL7

pK a challenge.
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• A table of the SAMPL7 molecule ID, compound class, and isomeric SMILES of SAMPL7

physical property challenge molecules.

• Structures of the molecules in the SAMPL7 physical property challenge grouped by

compound class.

• A figure showing an example of a relative free energy network.

• A figure showing chemical transformations that repeatedly show up as having large

disagreement on the sign of the relative free energy prediction in the pK a challenge.

• Structures of microstates where relative microstate free energy predictions disagree for

the pK a challenge.

• A figure showing the Shannon entropy per microstate transition in the pK a challenge.

3.7 Overview of Supplementary Information

Contents of Supplementary Information

• Table 3.18 Distribution of molecular properties of the 22 compounds from the SAMPL7

physical property blind challenge.

• Table 3.6 Evaluation statistics calculated for all methods in the log P challenge.

• Table 3.19 Overall correlation assessment for all methods participating in the SAMPL7

log P challenge.

• Table 3.7 Details MM-based physical methods that made log P predictions.

• Table 3.8 Evaluation statistics calculated for all methods in the pK a challenge.

• Table 3.10 Additional info for microscopic pK a predictions.
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• Table 3.12 Number of states per charge state for the microstates used in the SAMPL7

pK a challenge.

• Table 3.9 Evaluation statistics calculated for all log D estimates.

• Figure 3.20 SMILES and compound class of SAMPL7 physical property challenge

molecules.

• Table 3.11 Compound classes and structures of the molecules in the SAMPL7 physical

property challenge.
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Figure 3.18: Distribution of molecular properties of the 22 compounds from the
SAMPL7 physical property blind challenge. (A) Histogram of log P measurements
collected with Sirius T3 instrument. The ticks along the x-axis indicate the individual values.
Compounds have experimental log P values in the range of 0.58-2.96. (B) Histogram of pK a

measurements collected with Sirius T3 instrument.. Eight compounds have measured pK a’s
in the range of 4.49–6.62 and eleven in the range 9.58- 11.93. Two compounds are included
here as having pK a’s of 12, but actually had experimental values greater than 12, and were
therefore outside of the experimental detection range. (C) Histogram of log D measurements
between n-octanol and aqueous buffer at pH 7.4 were determined via potentiometric titrations
using a Sirius T3 instrument, except for compounds SM27, SM28, SM30-SM34, SM36-SM39
which had log D7.4 values determined via shake-flask assay. log D measurements ranged
from -0.87-2.96. (D) Histogram of molecular weights calculated for the compounds in the
SAMPL7 dataset. The molecular weight ranged from 227-365 Da. (E) Histogram of the
number of rotatable bonds in each molecule. The number of rotatable bonds in challenge
molecules ranged from 3-6.
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Table 3.6: Evaluation statistics calculated for all methods in the log P challenge. Submitted predictions are represented by their method name. There are six
error metrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed) error (ME), coefficient of determination (R2), linear regression
slope (m), and Kendall’s Rank Correlation Coefficient (τ), and error slope (ES). The mean and 95% confidence intervals of each statistic is presented. This table is ranked
by increasing RMSE.

Method Name Category Submission Type RMSE MAE ME R2 m Kendall’s Tau ES

ClassicalGSG DB2 Empirical Blind 0.55 [0.38, 0.69] 0.44 [0.31, 0.58] 0.05 [-0.20, 0.26] 0.51 [0.18, 0.82] 0.71 [0.36, 1.06] 0.51 [0.18, 0.78] 0.81 [0.62, 1.03]
TFE MLR Empirical Blind 0.58 [0.34, 0.83] 0.41 [0.26, 0.60] -0.04 [-0.30, 0.19] 0.43 [0.06, 0.80] 0.60 [0.21, 0.95] 0.56 [0.23, 0.82] 1.38 [1.27, 1.45]
ClassicalGSG DB4 Empirical Blind 0.65 [0.50, 0.78] 0.55 [0.41, 0.69] 0.25 [0.01, 0.50] 0.51 [0.19, 0.76] 0.82 [0.39, 1.22] 0.45 [0.15, 0.71] 0.57 [0.46, 0.85]
Chemprop Empirical Blind 0.66 [0.39, 0.88] 0.48 [0.30, 0.68] -0.17 [-0.44, 0.08] 0.41 [0.11, 0.76] 0.69 [0.31, 1.08] 0.54 [0.25, 0.82] 1.03 [0.79, 1.21]
TFE-SM8-vacuum-opt Physical (QM) Blind 0.67 [0.45, 0.86] 0.51 [0.33, 0.69] 0.15 [-0.13, 0.42] 0.45 [0.11, 0.75] 0.80 [0.33, 1.23] 0.50 [0.18, 0.76] 0.99 [0.75, 1.20]
GROVER Empirical Blind 0.69 [0.41, 0.96] 0.49 [0.31, 0.71] -0.21 [-0.50, 0.05] 0.33 [0.04, 0.70] 0.56 [0.18, 0.92] 0.37 [0.05, 0.66] 0.87 [0.62, 1.09]
ClassicalGSG DB1 Empirical Blind 0.76 [0.56, 0.96] 0.62 [0.45, 0.82] 0.10 [-0.23, 0.40] 0.28 [0.06, 0.60] 0.61 [0.26, 0.99] 0.36 [0.04, 0.63] 0.63 [0.43, 0.85]
ffsampled_deeplearning_cl1 Empirical Blind 0.77 [0.44, 1.04] 0.51 [0.29, 0.77] -0.25 [-0.58, 0.04] 0.31 [0.05, 0.70] 0.63 [0.24, 1.05] 0.42 [0.06, 0.74] 0.99 [0.72, 1.19]
ClassicalGSG DB3 Empirical Blind 0.77 [0.57, 0.96] 0.62 [0.43, 0.82] -0.15 [-0.46, 0.16] 0.51 [0.18, 0.78] 1.08 [0.55, 1.59] 0.48 [0.15, 0.75] 0.60 [0.42, 0.89]
COSMO-RS Physical (QM) Blind 0.78 [0.49, 1.01] 0.57 [0.36, 0.80] -0.30 [-0.61, -0.01] 0.49 [0.17, 0.79] 0.97 [0.49, 1.45] 0.53 [0.25, 0.78] 0.97 [0.74, 1.18]
TFE_Attentive_FP Empirical Blind 0.79 [0.47, 1.07] 0.57 [0.36, 0.82] -0.18 [-0.53, 0.12] 0.19 [0.00, 0.61] 0.44 [0.04, 0.87] 0.34 [-0.02, 0.69] 0.93 [0.69, 1.13]
ffsampled_deeplearning_cl2 Empirical Blind 0.82 [0.48, 1.11] 0.56 [0.32, 0.83] -0.37 [-0.69, -0.08] 0.36 [0.07, 0.72] 0.73 [0.31, 1.16] 0.40 [0.07, 0.69] 0.94 [0.67, 1.15]
TFE-SM12-vacuum-opt Physical (QM) Blind 0.82 [0.61, 1.02] 0.66 [0.47, 0.87] 0.28 [-0.06, 0.60] 0.41 [0.08, 0.72] 0.90 [0.36, 1.42] 0.39 [0.05, 0.67] 0.88 [0.65, 1.09]
TFE-SM8-solvent-opt Physical (QM) Blind 0.97 [0.71, 1.20] 0.78 [0.55, 1.02] 0.65 [0.35, 0.94] 0.42 [0.10, 0.70] 0.83 [0.35, 1.31] 0.44 [0.13, 0.69] 0.71 [0.47, 0.94]
REF1 ChemAxon Empirical Reference 1.00 [0.79, 1.20] 0.85 [0.63, 1.08] 0.46 [0.08, 0.83] 0.39 [0.10, 0.70] 0.98 [0.45, 1.53] 0.40 [0.09, 0.68] 0.13 [-0.00, 0.29]
TFE IEFPCM MST Physical (QM) Blind 1.03 [0.65, 1.41] 0.80 [0.56, 1.10] -0.07 [-0.53, 0.33] 0.27 [0.01, 0.68] 0.85 [0.12, 1.50] 0.42 [0.10, 0.70] 1.07 [0.88, 1.23]
TFE MD neat oct (GAFF/TIP4P) Physical (MM) Blind 1.11 [0.74, 1.43] 0.83 [0.52, 1.15] -0.74 [-1.10, -0.40] 0.56 [0.24, 0.82] 1.25 [0.64, 1.83] 0.58 [0.27, 0.82] 1.30 [1.19, 1.40]
NULL0 mean clogP FDA Empirical Reference 1.20 [0.94, 1.42] 1.01 [0.73, 1.28] -0.96 [-1.26, -0.64] 0.00 [0.00, 0.00] 0.00 [-0.00, 0.00] nan [nan, nan] 0.18 [0.04, 0.32]
NES-1 (GAFF2/OPC3) G Physical (MM) Blind 1.21 [0.92, 1.51] 1.03 [0.78, 1.31] -0.13 [-0.63, 0.37] 0.22 [0.01, 0.59] 0.88 [0.15, 1.59] 0.34 [0.02, 0.63] 1.23 [1.11, 1.33]
NES-1 (GAFF2/OPC3) J Physical (MM) Blind 1.28 [0.97, 1.58] 1.08 [0.81, 1.38] 0.01 [-0.54, 0.53] 0.21 [0.01, 0.63] 0.92 [0.09, 1.76] 0.33 [0.00, 0.64] 1.21 [1.08, 1.33]
NES-1 (GAFF2/OPC3) B Physical (MM) Blind 1.42 [1.02, 1.81] 1.13 [0.79, 1.51] -0.51 [-1.08, 0.05] 0.27 [0.02, 0.65] 1.11 [0.30, 1.91] 0.36 [0.05, 0.65] 1.17 [1.01, 1.31]
MD (GAFF/TIP3P) Physical (MM) Blind 1.43 [1.15, 1.71] 1.30 [1.06, 1.56] -1.30 [-1.56, -1.06] 0.48 [0.22, 0.79] 0.77 [0.45, 1.12] 0.55 [0.28, 0.80] 0.94 [0.80, 1.09]
TFE wet oct (GAFF/TIP4P) Physical (MM) Blind 1.47 [1.16, 1.77] 1.30 [1.03, 1.60] -1.30 [-1.60, -1.03] 0.42 [0.10, 0.75] 0.80 [0.30, 1.30] 0.47 [0.14, 0.75] 1.15 [1.03, 1.27]
TFE-NHLBI-TZVP-QM Physical (QM) Blind 1.55 [1.19, 1.88] 1.34 [1.02, 1.67] 1.32 [1.00, 1.67] 0.52 [0.19, 0.78] 1.16 [0.59, 1.65] 0.51 [0.19, 0.78] 0.05 [-0.00, 0.17]
0.05 MD (CGenFF/TIP3P) Physical (MM) Blind 1.63 [1.25, 1.98] 1.41 [1.08, 1.76] -1.38 [-1.74, -1.02] 0.54 [0.26, 0.82] 1.26 [0.81, 1.76] 0.52 [0.26, 0.76] 0.90 [0.70, 1.07]
[HTML]EFEFEF EC_RISM_wet Physical (QM) Blind 1.84 [1.31, 2.36] 1.49 [1.07, 1.96] -1.49 [-1.96, -1.06] 0.29 [0.05, 0.68] 0.96 [0.37, 1.57] 0.38 [0.08, 0.67] 0.67 [0.45, 0.90]
TFE-SMD-vacuum-opt Physical (QM) Blind 1.96 [1.60, 2.30] 1.76 [1.42, 2.13] 1.76 [1.42, 2.13] 0.44 [0.12, 0.68] 1.04 [0.46, 1.59] 0.41 [0.03, 0.70] 0.68 [0.50, 0.87]
[HTML]EFEFEF MD-EE-MCC (GAFF-TIP4P-Ew) Physical (MM) Blind 2.06 [1.48, 2.59] 1.61 [1.09, 2.17] -0.93 [-1.70, -0.17] 0.03 [0.00, 0.28] 0.47 [-0.53, 1.49] 0.11 [-0.16, 0.38] 0.76 [0.51, 1.03]
MD (OPLS-AA/TIP4P) Physical (MM) Blind 2.19 [1.69, 2.65] 1.82 [1.31, 2.34] -1.35 [-2.03, -0.60] 0.28 [0.06, 0.58] 1.47 [0.58, 2.55] 0.36 [0.07, 0.62] 0.73 [0.48, 0.97]
[HTML]EFEFEF TFE b3lypd3 Physical (QM) Blind 2.19 [1.76, 2.57] 1.98 [1.59, 2.37] 1.98 [1.59, 2.37] 0.40 [0.10, 0.67] 1.06 [0.47, 1.64] 0.45 [0.11, 0.72] 0.22 [0.09, 0.41]
MD LigParGen (OPLS-AA/TIP4P) Physical (MM) Blind 2.28 [1.80, 2.71] 1.95 [1.46, 2.44] 0.35 [-0.60, 1.29] 0.07 [0.00, 0.37] 0.83 [-0.51, 2.26] 0.19 [-0.14, 0.50] 0.65 [0.42, 0.88]
[HTML]EFEFEF TFE-SMD-solvent-opt Physical (QM) Blind 2.39 [1.97, 2.78] 2.19 [1.79, 2.60] 2.19 [1.79, 2.60] 0.40 [0.09, 0.67] 1.09 [0.45, 1.67] 0.42 [0.09, 0.68] 0.51 [0.34, 0.68]
Ensemble EPI physprop Empirical Blind 2.73 [2.27, 3.16] 2.54 [2.13, 2.98] 2.54 [2.13, 2.98] 0.33 [0.04, 0.64] -0.30 [-0.49, -0.10] -0.35 [-0.60, -0.03] -0.00 [-0.00, -0.00]
Ensemble Martel Empirical Blind 3.29 [2.89, 3.68] 3.16 [2.78, 3.55] 3.16 [2.78, 3.55] 0.39 [0.05, 0.73] -0.25 [-0.40, -0.09] -0.46 [-0.72, -0.14] -0.00 [-0.00, -0.00]
QSPR_Mordred2D_TPOT_AutoML Empirical Blind 3.64 [3.01, 4.24] 3.36 [2.80, 3.96] 3.36 [2.80, 3.96] 0.39 [0.10, 0.71] -0.72 [-1.12, -0.33] -0.37 [-0.65, -0.04] -0.00 [-0.00, -0.00]
TFE-NHLBI-NN-IN Empirical Blind 3.97 [3.57, 4.34] 3.85 [3.45, 4.25] 3.85 [3.45, 4.25] 0.00 [0.00, 0.15] 0.02 [-0.30, 0.34] 0.02 [-0.23, 0.27] 0.01 [-0.00, 0.02]
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Figure 3.19: Overall correlation assessment for all methods participating in the SAMPL7 log P challenge show
that the uncertainty of each correlation statistic is quite high, not allowing a true ranking based on correlation.
Pearson’s R2 and Kendall’s Rank Correlation Coefficient Tau (τ) are shown, with error bars denoting 95% confidence inter-
vals obtained by bootstrapping over challenge molecules. Submitted methods are listed in Table 3.1. The submission REF1
ChemAxon was a reference method included after the blind challenge submission deadline, and NULL0 mean cLogP FDA is the
null prediction method; all others refer to blind predictions. Most methods have a statistically indistinguishable performance
on ranking because of the small dynamic range of the dataset. Evaluation statistics calculated for all methods are available in
Table 3.6 of the Supplementary Information.
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Table 3.7: Details of MM-based physical methods in the log P prediction challenge. Force fields, water models,
and octanol phase choice are reported. A dry octanol phase indicates the octanol phase was composed of only octanol.
A wet octanol phase indicates the octanol phase was treated as a mixture of octanol and water. RMSE, MAE, R2, and
Kendall’s Tau values are reported as mean and 95% confidence intervals.

Method Name Force Field Water Model Octanol Phase RMSE MAE R2 Kendall’s Tau

TFE MD neat oct (GAFF/TIP4P) GAFF TIP4P dry 1.11 [0.74, 1.43] 0.83 [0.52, 1.15] 0.56 [0.24, 0.82] 0.58 [0.27, 0.82]
NES-1 (GAFF2/OPC3) G GAFF2 OPC3 dry 1.21 [0.92, 1.51] 1.03 [0.78, 1.31] 0.22 [0.01, 0.59] 0.34 [0.02, 0.63]
NES-1 (GAFF2/OPC3) J GAFF2 OPC3 dry 1.28 [0.97, 1.58] 1.08 [0.81, 1.38] 0.21 [0.01, 0.63] 0.33 [0.00, 0.64]
NES-1 (GAFF2/OPC3) B GAFF2 OPC3 dry 1.42 [1.02, 1.81] 1.13 [0.79, 1.51] 0.27 [0.02, 0.65] 0.36 [0.05, 0.65]
MD (GAFF/TIP3P) GAFF TIP3P dry 1.43 [1.15, 1.71] 1.30 [1.06, 1.56] 0.48 [0.22, 0.79] 0.55 [0.28, 0.80]
TFE wet oct (GAFF/TIP4P) GAFF TIP4P wet 1.47 [1.16, 1.77] 1.30 [1.03, 1.60] 0.42 [0.10, 0.75] 0.47 [0.14, 0.75]
MD (CGenFF/TIP3P) CGenFF TIP3P dry 1.63 [1.25, 1.98] 1.41 [1.08, 1.76] 0.54 [0.26, 0.82] 0.52 [0.26, 0.76]
MD-EE-MCC (GAFF-TIP4P-Ew) GAFF TIP4P-eW dry 2.06 [1.48, 2.59] 1.61 [1.09, 2.17] 0.03 [0.00, 0.28] 0.11 [-0.16, 0.38]
MD (OPLS-AA/TIP4P) OPLS-AA TIP4P dry 2.19 [1.69, 2.65] 1.82 [1.31, 2.34] 0.28 [0.06, 0.58] 0.36 [0.07, 0.62]
MD LigParGen (OPLS-AA/TIP4P) OPLS-AA TIP4P dry 2.28 [1.80, 2.71] 1.95 [1.46, 2.44] 0.07 [0.00, 0.37] 0.19 [-0.14, 0.50]
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Table 3.8: Evaluation statistics calculated for all methods in the pK a challenge. Submitted predictions are represented by their method name. There
are six error metrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed) error (ME), coefficient of determination
(R2), linear regression slope (m), Kendall’s Rank Correlation Coefficient (τ), and error slope (ES). The mean and 95% confidence intervals of each statistic
is presented. This table is ranked by increasing RMSE.

Method Name Category Submission Type RMSE MAE ME R2 m Kendall’s Tau ES

REF00_Chemaxon_Chemicalize QSPR/ML Reference 0.71 [0.50, 0.90] 0.56 [0.38, 0.76] 0.09 [-0.23, 0.38] 0.91 [0.86, 0.96] 0.88 [0.72, 1.02] 0.73 [0.51, 0.90] 0.83 [0.58, 1.04]
EC_RISM QM Blind 0.72 [0.45, 0.95] 0.53 [0.33, 0.75] 0.20 [-0.10, 0.50] 0.93 [0.87, 0.98] 0.80 [0.72, 0.91] 0.81 [0.63, 0.96] 1.32 [1.19, 1.42]
IEFPCM/MST QM Blind 1.82 [1.00, 2.69] 1.30 [0.84, 1.92] 0.25 [-0.46, 1.09] 0.56 [0.22, 0.87] 0.86 [0.53, 1.18] 0.52 [0.22, 0.76] 1.00 [0.80, 1.17]
DFT_M05-2X_SMD QM Blind 2.90 [2.04, 3.69] 2.28 [1.53, 3.10] -0.78 [-2.02, 0.41] 0.03 [0.00, 0.37] 0.15 [-0.32, 0.53] 0.17 [-0.22, 0.54] 0.55 [0.31, 0.81]
TZVP-QM QM Blind 2.90 [2.52, 3.25] 2.75 [2.34, 3.14] 1.20 [0.02, 2.33] 0.23 [0.03, 0.60] -0.11 [-0.20, -0.04] -0.14 [-0.49, 0.23] -0.00 [-0.00, -0.00]
Standard Gaussian Process QSPR/ML Blind 3.49 [2.76, 4.12] 2.91 [2.06, 3.75] 2.47 [1.38, 3.55] 0.30 [0.10, 0.69] -0.05 [-0.09, -0.02] -0.42 [-0.70, -0.08] 1.11 [0.96, 1.24]
DFT_M06-2X_SMD_implicit QM Blind 4.16 [2.00, 6.38] 2.80 [1.76, 4.33] -0.07 [-1.61, 1.95] 0.52 [0.39, 0.78] 1.70 [0.80, 2.77] 0.70 [0.48, 0.88] 0.50 [0.30, 0.70]
DFT_M06-2X_SMD_implicit_SAS QM Blind 4.16 [2.03, 6.44] 2.81 [1.80, 4.36] -0.20 [-1.71, 1.85] 0.50 [0.36, 0.77] 1.64 [0.72, 2.72] 0.56 [0.28, 0.81] 0.14 [0.02, 0.31]
DFT_M06-2X_SMD_explicit_water QM Blind 5.12 [1.19, 7.92] 2.56 [0.96, 4.76] -0.35 [-2.62, 1.93] 0.20 [0.00, 0.81] 1.10 [-0.39, 2.50] 0.46 [0.06, 0.78] 0.52 [0.29, 0.77]
Gaussian_corrected QM+LEC Blind 5.36 [4.70, 5.95] 5.12 [4.42, 5.79] 5.12 [4.42, 5.79] 0.76 [0.63, 0.88] 0.35 [0.27, 0.45] 0.60 [0.42, 0.76] 0.00 [-0.00, 0.00]
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Table 3.9: Evaluation statistics calculated for all log D estimates. Predictions are represented a name based on method names participants submitted to the and log P challenges.
There are six error metrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed) error (ME), coefficient of determination (R2), linear regression
slope (m), Kendall’s Rank Correlation Coefficient (τ), and error slope (ES). The mean and 95% confidence intervals of each statistic is presented. This table is ranked by increasing
RMSE.

Method Name Category Submission Type RMSE MAE ME R2 m Kendall’s Tau ES

REF0 ChemAxon Empirical Reference 1.06 [0.82, 1.27] 0.91 [0.68, 1.14] 0.28 [-0.14, 0.70] 0.27 [0.01, 0.58] 0.54 [0.10, 0.90] 0.31 [-0.02, 0.61] 0.12 [-0.00, 0.28]
TFE IEFPCM MST + IEFPCM/MST Physical (QM) Standard 1.27 [0.85, 1.64] 0.98 [0.67, 1.33] 0.24 [-0.28, 0.75] 0.55 [0.17, 0.87] 1.31 [0.71, 1.70] 0.57 [0.27, 0.82] 1.16 [0.89, 1.25]
NULL0 Empirical Reference 1.59 [1.22, 1.93] 1.35 [1.00, 1.71] 1.23 [0.81, 1.65] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] nan [nan, nan] 0.65 [0.44, 0.87]
EC_RISM Physical (QM) Standard 1.69 [1.30, 2.05] 1.43 [1.07, 1.82] -1.43 [-1.81, -1.07] 0.53 [0.20, 0.77] 0.95 [0.54, 1.29] 0.51 [0.21, 0.74] 0.84 [0.64, 1.02]
TFE-NHLBI-TZVP-QM + TZVP-QM Physical (QM) Standard 1.72 [1.30, 2.12] 1.47 [1.12, 1.86] 1.26 [0.78, 1.75] 0.25 [0.01, 0.64] 0.64 [0.08, 1.25] 0.38 [0.02, 0.70] 0.05 [-0.00, 0.18]
TFE b3lypd3 + DFT_M05-2X_SMD Physical (QM) Standard 2.15 [1.56, 2.71] 1.78 [1.31, 2.31] 1.78 [1.31, 2.31] 0.32 [0.04, 0.66] 0.80 [0.27, 1.30] 0.41 [0.05, 0.72] 0.42 [0.27, 0.70]
MD (CGenFF/TIP3P) + Gaussian_corrected Physical (MM) + QM+LEC Standard 2.27 [1.97, 2.55] 2.13 [1.80, 2.45] 1.84 [1.21, 2.35] 0.62 [0.35, 0.84] 1.53 [0.93, 2.18] 0.62 [0.36, 0.82] 0.88 [0.75, 1.00]
TFE-SMD-solvent-opt + DFT_M06-2X_SMD_explicit_water Physical (QM) Standard 4.54 [2.09, 7.15] 2.92 [1.88, 4.57] 2.88 [1.80, 4.55] 0.25 [0.11, 0.76] 1.92 [0.53, 4.45] 0.55 [0.22, 0.80] 0.55 [0.38, 0.73]
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Table 3.10: Additional info for microscopic pK a predictions.

Microstate
Total number
of relative free
energy predictions

Average relative free
energy prediction

Average relative free
energy prediction STD

Minimum relative free
energy prediction

Maximum relative free
energy prediction

Number of (+) sign
predictions

Number of (-) sign
predictions

Number of neutral (0)
sign predictions

Shannon
entropy (H)

SM25_micro001 9 -0.6 13.2 -15.6 16.3 4 5 0 0.7
SM25_micro002 8 8.8 10.6 -7.5 20.4 6 2 0 0.6
SM25_micro003 8 9.6 2.7 4.5 12.6 8 0 0 0.0
SM25_micro004 2 -8.9 4.5 -12.1 -5.8 0 2 0 0.0
SM25_micro005 2 -0.8 2.1 -2.3 0.7 1 1 0 0.7
SM26_micro001 9 7.3 2.4 3.0 10.7 9 0 0 0.0
SM26_micro002 8 -6.7 20.5 -31.7 22.1 3 5 0 0.7
SM26_micro003 8 20.9 12.0 0.9 32.4 8 0 0 0.0
SM26_micro004 2 4.3 0.7 3.8 4.8 2 0 0 0.0
SM26_micro005 2 8.1 2.6 6.3 10.0 2 0 0 0.0
SM27_micro001 9 13.4 4.9 6.1 19.0 9 0 0 0.0
SM28_micro001 9 -5.7 25.0 -39.0 23.5 4 5 0 0.7
SM28_micro002 8 17.1 8.0 8.2 26.5 8 0 0 0.0
SM28_micro003 8 0.9 8.3 -10.0 12.6 4 4 0 0.7
SM28_micro004 2 25.1 9.1 18.7 31.5 2 0 0 0.0
SM29_micro001 9 12.6 4.3 6.3 18.7 9 0 0 0.0
SM30_micro001 9 12.3 4.2 5.9 17.7 9 0 0 0.0
SM31_micro001 9 13.2 4.4 6.0 18.1 9 0 0 0.0
SM31_micro002 3 -0.6 6.6 -8.1 4.5 2 1 0 0.6
SM32_micro001 9 12.8 4.6 5.9 18.9 9 0 0 0.0
SM33_micro001 9 11.9 3.9 5.2 17.1 9 0 0 0.0
SM34_micro001 9 13.0 4.6 5.7 19.7 9 0 0 0.0
SM34_micro002 3 -0.9 6.4 -8.1 4.4 2 1 0 0.6
SM35_micro001 9 11.7 4.5 3.2 16.2 9 0 0 0.0
SM35_micro002 8 0.2 1.4 -1.9 2.5 5 2 1 0.9
SM35_micro003 8 12.2 5.6 3.2 18.1 8 0 0 0.0
SM36_micro001 9 10.8 3.1 5.2 14.9 9 0 0 0.0
SM36_micro002 8 1.2 1.8 0.0 4.4 4 1 3 1.0
SM36_micro003 8 10.7 3.3 5.2 14.7 8 0 0 0.0
SM37_micro001 9 0.1 9.4 -11.7 13.7 5 4 0 0.7
SM37_micro002 8 9.8 2.9 3.7 12.7 8 0 0 0.0
SM37_micro003 8 0.7 1.8 -1.5 4.2 4 3 1 1.0
SM37_micro004 8 8.9 3.0 3.8 12.4 8 0 0 0.0
SM37_micro005 7 -2.7 7.6 -10.6 11.0 3 4 0 0.7
SM38_micro001 9 11.6 4.6 5.2 17.5 9 0 0 0.0
SM39_micro001 9 10.1 3.1 5.1 14.6 9 0 0 0.0
SM40_micro001 9 10.8 3.3 5.0 15.7 9 0 0 0.0
SM40_micro002 8 -1.8 10.3 -15.5 11.8 4 4 0 0.7
SM41_micro001 9 8.4 3.5 2.2 14.8 9 0 0 0.0
SM41_micro002 8 -0.5 9.9 -12.9 13.9 4 4 0 0.7
SM42_micro001 9 5.5 4.6 0.2 12.3 9 0 0 0.0
SM42_micro002 8 -0.2 8.6 -10.8 14.3 4 4 0 0.7
SM42_micro003 3 -2.0 3.0 -5.1 1.0 1 2 0 0.6
SM43_micro001 9 5.9 4.4 0.5 13.4 9 0 0 0.0
SM43_micro002 8 0.1 9.4 -11.0 11.0 4 4 0 0.7
SM43_micro003 8 -11.6 38.1 -60.9 38.2 4 4 0 0.7
SM43_micro004 2 -3.6 2.2 -5.2 -2.1 0 2 0 0.0
SM43_micro005 2 0.1 0.4 -0.2 0.4 1 1 0 0.7
SM44_micro001 9 9.5 2.9 4.3 12.9 9 0 0 0.0
SM44_micro002 8 -1.1 7.4 -10.3 9.9 4 4 0 0.7
SM45_micro001 9 9.6 3.1 4.4 14.7 9 0 0 0.0
SM45_micro002 8 -1.0 7.8 -11.0 9.6 4 4 0 0.7
SM46_micro001 9 9.9 4.1 4.0 18.4 9 0 0 0.0
SM46_micro002 8 -0.7 7.5 -9.6 10.5 4 4 0 0.7
SM46_micro003 8 -12.2 37.1 -63.5 39.0 4 4 0 0.7
SM46_micro004 3 6.3 4.5 2.4 11.3 3 0 0 0.0
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Table 3.11: SMILES and compound class of SAMPL7 physical property challenge molecules. A view of the
compounds and their classes can be found in Figure 3.20.

SAMPL7 Molecule ID Compound Class Isomeric SMILES

SM25 acylsulfonamide O=C(NS(C1=CC=CC=C1)(=O)=O)CCC2=CC=CC=C2
SM26 acylsulfonamide O=S(CCC1=CC=CC=C1)(NC(C)=O)=O
SM27 oxetane O=S(CCC1=CC=CC=C1)(NC2(C)COC2)=O
SM28 thietane-1,1-dioxide O=S(CC1(NC(C)=O)CCC2=CC=CC=C2)(C1)=O
SM29 oxetane CS(NC1(COC1)CCC2=CC=CC=C2)(=O)=O
SM30 oxetane O=S(NC1(COC1)CCC2=CC=CC=C2)(C3=CC=CC=C3)=O
SM31 oxetane O=S(NC1(COC1)CCC2=CC=CC=C2)(N(C)C)=O
SM32 thietane CS(NC1(CSC1)CCC2=CC=CC=C2)(=O)=O
SM33 thietane O=S(NC1(CSC1)CCC2=CC=CC=C2)(C3=CC=CC=C3)=O
SM34 thietane O=S(NC1(CSC1)CCC2=CC=CC=C2)(N(C)C)=O
SM35 thietane-1-oxide CS(N[C@@]1(C[S+]([O-])C1)CCC2=CC=CC=C2)(=O)=O
SM36 thietane-1-oxide O=S(N[C@@]1(C[S+]([O-])C1)CCC2=CC=CC=C2)(C3=CC=CC=C3)=O
SM37 thietane-1-oxide O=S(N[C@@]1(C[S+]([O-])C1)CCC2=CC=CC=C2)(N(C)C)=O
SM38 thietane-1,1-dioxide CS(NC1(CS(C1)(=O)=O)CCC2=CC=CC=C2)(=O)=O
SM39 thietane-1,1-dioxide O=S(NC1(CS(C1)(=O)=O)CCC2=CC=CC=C2)(C3=CC=CC=C3)=O
SM40 thietane-1,1-dioxide O=S(NC1(CS(C1)(=O)=O)CCC2=CC=CC=C2)(N(C)C)=O
SM41 isoxazole O=S(NC1=NOC(C2=CC=CC=C2)=C1)(C)=O
SM42 isoxazole O=S(NC1=NOC(C2=CC=CC=C2)=C1)(C3=CC=CC=C3)=O
SM43 isoxazole O=S(NC1=NOC(C2=CC=CC=C2)=C1)(N(C)C)=O
SM44 1,2,3-triazole O=S(NC(N=N1)=CN1C2=CC=CC=C2)(C)=O
SM45 1,2,3-triazole O=S(NC(N=N1)=CN1C2=CC=CC=C2)(C3=CC=CC=C3)=O
SM46 1,2,3-triazole O=S(NC(N=N1)=CN1C2=CC=CC=C2)(N(C)C)=O
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Figure 3.20: Compound classes and structures of the molecules in the SAMPL7
physical property challenge. SMILES of the compounds are in Table 3.20.
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Table 3.12: Number of states per charge state for the microstates used in the
SAMPL7 pK a challenge. The total number of microstates (protomers and tautomers) is
listed. Some of the molecules have up to 6 microstates, while others have only 2.

Charge State

+2 +1 0 -1 Total #
SM25 0 1 3 2 6
SM26 0 1 3 2 6
SM27 0 0 1 1 2
SM28 0 1 2 2 5
SM29 0 0 1 1 2
SM30 0 0 1 1 2
SM31 0 1 1 1 3
SM32 0 0 1 1 2
SM33 0 0 1 1 2
SM34 0 1 1 1 3
SM35 0 0 2 3 5
SM36 0 0 2 3 5
SM37 0 2 2 2 6
SM38 0 0 1 1 2
SM39 0 0 1 1 2
SM40 0 1 1 1 3
SM41 0 1 1 1 3
SM42 0 1 2 1 4
SM43 1 2 2 1 6
SM44 0 1 1 1 3
SM45 0 1 1 1 3
SM46 1 2 1 1 5
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4.1 Abstract

Water molecules can be found interacting with the surface and within cavities in proteins.

However, water exchange between bulk and buried hydration sites can be slow compared

to simulation timescales, thus leading to the inefficient sampling of the locations of water.
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This can pose problems for free energy calculations for computer-aided drug design. Here,

we apply a hybrid method that combines nonequilibrium candidate Monte Carlo (NCMC)

simulations and molecular dynamics (MD) to enhance sampling of water in specific areas

of a system, such as the binding site of a protein. Our approach uses NCMC to gradually

remove interactions between a selected water molecule and its environment, then translates

the water to a new region, before turning the interactions back on. This approach of gradual

removal of interactions, followed by a move and then reintroduction of interactions, allows

the environment to relax in response to the proposed water translation, improving acceptance

of moves and thereby accelerating water exchange and sampling. We validate this approach

on several test systems including the ligand-bound MUP-1 and HSP90 proteins with buried

crystallographic waters removed. We show that our BLUES (NCMC/MD) method enhances

water sampling relative to normal MD when applied to these systems. Thus, this approach

provides a strategy to improve water sampling in molecular simulations which may be useful

in practical applications in drug discovery and biomolecular design.

4.1.1 Keywords

Molecular Dynamics simulations · Monte Carlo · NCMC · nonequilibrium candidate Monte

Carlo · enhanced sampling · water sampling · buried binding sites · buried cavity · buried

water · Major Urinary Protein · Heat Shock Protein 90

4.1.2 Abbreviations

BLUES Binding modes of Ligands Using Enhanced Sampling

MD Molecular Dynamics

NCMC Nonequilibrium Candidate Monte Carlo
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MUP-1 Major Urinary Protein

HSP90 Heat Shock Protein 90

4.2 Introduction

Proteins are found in aqueous environments where water plays a major role in determining

their structure, function, and dynamics [123, 18]. Water molecules can also be found in

cavities in proteins [141, 171, 59] where they play a variety of roles, such as facilitating

receptor-ligand recognition and contributing to the stability of proteins [204, 171, 25, 123,

22].

Classical molecular dynamics (MD) simulations can be used to understand the motions and

interactions of biomolecular systems, including how proteins interact with water. However,

water exchange between bulk and buried hydration sites can be slow compared to simulation

timescales [44, 150, 139]. This leads to the inefficient sampling of the locations of water and

water’s role in binding events [50]. Simulations that do not account for these water motions

will give an incomplete picture of the binding process and any downstream predictions will

thus risk being in error [150, 50].

Several methods may better sample water occupancy and rearrangements in the cavities of

proteins. Monte Carlo (MC) methods can substantially accelerate water sampling via large

translational water moves around a system, but these MC moves can be difficult to get

accepted due to steric clashes in the system. For example, grand canonical Monte Carlo [9,

10], which works by insertion and deletion of water to maintain a specific chemical potential,

has been applied to sample water configurations and accelerate occupancy of buried sites [227,

116, 188]. However, this approach has been shown to be inefficient due to steric clashes which

results in a high rejection of the proposed moves [143, 189]. Another approach integrates
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Metropolis MC translational water moves with traditional MD to equilibrate water across

steric barriers and into buried hydration sites that are not accessible with pure MD [26].

Here, we seek to enhance the sampling of water rearrangements through extension of our

Binding Modes of Ligands Using Enhanced Sampling (BLUES) approach [75], which com-

bines hybrid nonequilibrium candidate Monte Carlo (NCMC) [167] with MD simulations.

BLUES has been shown to enhance ligand sampling efficiency by more than two orders of

magnitude compared to classical MD when applied to a model test system [75]. In BLUES,

NCMC alchemically scales off the electrostatic and steric interactions until a water molecule

is no longer interacting with its environment and then translates it to a new location before

scaling the interactions back on. This results in a proposed NCMC move which is either ac-

cepted or rejected based on the integrated work during this process. After this, the NCMC

move is followed by traditional molecular dynamics. By mixing NCMC translational water

sampling moves with classical MD simulations, we improve water sampling in a selected

region, such as a binding site of a protein, where water motions are known to be challeng-

ing or slow to sample and likely to pose problems for calculations of interest, such as free

energy calculations [50]. In this work, we use the BLUES framework to exchange waters

around a specified region of a system. Here, we focus on testing it in specific contexts where

water rearrangements can pose challenges for MD sampling, such as buried binding sites in

proteins.

4.3 Methods

We introduce a method that integrates NCMC translational water moves with classical MD,

allowing water molecules to hydrate buried sites. Here, we detail how this approach is

implemented and tested.
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A B

D E F
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Figure 4.1: Molecular interactions between atoms are turned off and on during
a NCMC move to translate a water molecule. In this cartoon, water molecules are
represented here by red and white spheres for the oxygen and hydrogen atoms. The black-
filled water represents a fully interacting water molecule that has been selected to be moved.
Gray-filled water represents intermediate levels of interaction and white-filled represents the
fully non-interacting water molecule. A) The water molecule (in black) is fully interacting
with its surrounding environment, and in this case, other water molecules. B) The water’s
interactions are partially off, allowing the other water molecules to slightly relax. C) The
water’s interactions are fully turned off. D) The water is randomly translated to somewhere
else in the system (indicated by a black arrow) with its interactions remaining off. E)
The water’s interactions are partially turned on and the propagation steps of NCMC allow
relaxation of the translated water and its surroundings to resolve clashes. F) At the end of
the NCMC protocol, the water molecule is once again in the fully interacting state and in
a new location. This entire process comprises a proposed NCMC move, which is accepted
or rejected based on the nonequilibrium work done in this process, and then followed by
conventional MD.
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4.3.1 Implementation of NCMC/MD in BLUES

BLUES (Binding Modes of Ligands Using Enhanced Sampling), which combines NCMC with

classical MD, was originally created to enhance the sampling of ligand binding modes [75], but

has begun applying the same techniques to enhance sampling of other degrees of freedom

also important in ligand binding, such as sidechain rearrangements [33] and, here, water

motions.

A BLUES iteration consists of a NCMC move followed by regular MD. A NCMC move

consists of a series of NCMC steps sandwiching a perturbation to the system, such as a

translational water move. The NCMC steps are a series of alchemical steps where the elec-

trostatic/steric interactions are gradually turned off and then back on. While the interactions

are completely turned off, a perturbation provided by a translational water move occurs.

Some of our key terminology here is as follows:

• BLUES iteration — an NCMC move followed by a series of regular MD steps.

• NCMC move — a series of NCMC steps sandwiching a perturbation to the system.

• NCMC steps — a series of alchemical steps where the electrostatic/steric interactions

are gradually turned off and then scaled back on.

• MD steps — a number of steps to advance the MD simulation.

In BLUES, NCMC moves are executed through a switching protocol that is comprised of

a series of perturbation and propagation/relaxation steps involving structural and dynamic

degrees of freedom [167]. This process helps lower possible steric or electrostatic clashes by

allowing the environment surrounding the perturbed region to relax around the proposed

state.
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NCMC moves are implemented by alchemically “turning off” the interactions between an

object in the system and its surrounding environment before the move, followed by turning

the interactions back on, as detailed in Figure 4.1. First, the electrostatic and then the steric

interactions are turned off (and then later back on) by scaling λ, a variable that controls

the strength of nonbonded interactions, from 1 (fully interacting state) to 0 (noninteracting

state) over a user-determined number of n NCMC steps (Figure 4.1.A-C). At the point

where the object is noninteracting (Figure 4.1.C), the target object’s atoms are repositioned

(Figure 4.1.D) and then the interactions are scaled back on (Figure 4.1.D-F) until λ=1 in

reverse order (first sterics and then electrostatics). When the target object’s atoms are

repositioned the internal coordinates/conformation remain the same during the move.

The total work done during this process is summed and used to either accept or reject

the proposed move (following a modified Metropolis-Hastings acceptance criterion [141] to

maintain detailed balance). The NCMC move is then followed by a user-determined number

of MD steps. Additional details of BLUES are described in the work of Gill et al. [75].

A proposed NCMC move is either accepted or rejected based on the total work w[X] done

during the nonequilibrium process X, estimated as

w[X] ≡
T∑
t=1

[ut(xt)− ut−1(xt)] + wshadow[X] (4.1)

where xt is a microstate at a simulation step t and ut is the reduced potential energy.

The total work includes both “protocol work” and “shadow work” [201]. In the equation

above, the first term is the protocol work and the second term is the shadow work which
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accounts for errors introduced by the use of finite-time-step Langevin integrators [193, 201].

The protocol work is computed every time there is a perturbation to the system, so after

changing lambda, we track the potential energy change between the states before and after

lambda is changed and add this difference to the protocol work. Accumulation would also

happen during translational moves, except that the water is non-interacting and the proposed

move is just a rigid body translation move, so the system’s energy does not change and thus

no protocol work is accumulated during the translational move. The shadow work can be

tracked in a similar fashion, except the total energy differences (potential and kinetic) would

be taken into account during the propagation phase. However, use of a BAOAB integrator

allows us to neglect the shadow work contribution without introducing large errors (the

explanation for this is in the original BLUES paper [75]).

To maintain detailed balance, the acceptance probability A[X] is determined using a modified

Metropolis-Hastings criterion [82]

A[X] = min
{
1, e−wprotocol(X)

}
(4.2)

After each accepted or rejected NCMC move, velocities are randomly reassigned based on the

Maxwell–Boltzmann distribution in order to maintain detailed balance [75]. The amount of

relaxation used does not affect whether this procedure preserves the correct distribution. The

NCMC move is followed by a series of conventional MD steps, using a Langevin integrator

to relax the entire system. This process of proposing (and accepting or rejecting) a NCMC

move then conducting a series of MD steps is then repeated many times. This process of a

NCMC move, followed up by traditional MD, is what we refer to as a BLUES iteration.
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Figure 4.2: Example of a user-defined radius that covers a particular area of
interest. Here, the MUP-1 protein-ligand system is shown. The radius used (indicated by
the black dashed line) defines a sphere around a user-selected atom (represented by a blue
star) in the system, such as an atom inside the binding site of a protein.

4.3.2 Translational water moves with BLUES

Here, we build upon the BLUES framework by incorporating “water hopping” moves where

random water molecules can be translated between bulk and within a region via NCMC move

proposals. Water hopping moves were created in order to enhance sampling of key hydration

sites such as in water bridging locations between a protein and ligand, and particularly in

buried cavities inaccessible from bulk water.

To define a region within which the water hops occur, the user selects an atom as the

center and defines a radius to generate a sphere which encompasses the area of interest

(Figure 4.2). Additionally, the sampling region can be set to automatically span from the

center of mass of a protein or ligand, rather than manually defining a specific atom. This

area of interest must be large enough to include some bulk water to allow water exchange.

Our algorithm will subsequently use this radius to select a random water molecule and
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Cycle repeated for n BLUES iterations

Generate a uniform random 
point inside the user defined 

radius

Perform a NCMC move: 
scale off the interactions, 

propose a translational water 
move to that new location, 
scale on the interactions

Is the water molecule still 
inside the area defined by the 

original radius?

The NCMC move is accepted 
or rejected and the positions 

are updated

The NCMC move 
is rejected

Run an interval of traditional 
MD

Select a random water within 
the user defined radius

Take in system and 
identify the water and 

protein residues

No

Yes

Figure 4.3: Workflow of a BLUES iteration with translational water hopping move
proposals. Before any water is translated to a new location, the user first selects an atom
and picks a radius defining a sphere encompassing an area of interest around the position of
the atom and BLUES identifies all the water and protein residues in the system. Afterward,
BLUES goes through a number of BLUES iterations n number of times, where each BLUES
iteration is as shown inside the dashed box. A schematic of the NCMC move process is
shown in Figure 4.1.
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propose moving it to a random new position within this region. During a BLUES iteration,

a random water molecule is selected, a random point in this region is generated, then a

NCMC move proposal is performed. During the NCMC move proposal the interactions are

scaled off between the atoms of the water molecule and its surrounding environment, then

the water molecule is translated to the new location defined by the random point, and then

the interactions are scaled back on. This the NCMC move proposal process is depicted

in Figure 4.1. The work done during this NCMC move proposal is accumulated and the

move is either accepted or rejected using the Metropolis-Hastings acceptance criterion [141].

Afterwards, an interval of regular MD is run. A workflow a BLUES iteration is depicted in

Figure 4.3. Further water hopping implementation details used in this work are available

in python scripts deposited in the Supporting Information. More documentation, details,

and the full BLUES package are available on GitHub at https://github.com/MobleyLab/

blues, in the BLUES documentation (https://mobleylab-blues.readthedocs.io), and

detailed in the work of Gill et al. [75].

4.3.3 Comparing sampling efficiency using the number of force eval-

uations

BLUES simulations consist of intervals of both classical MD and NCMC moves, so comparing

a BLUES simulations to classical MD simulation requires accounting for the cost of the

switching protocol that occurs during the NCMC move. We account for the additional cost

from NCMC by considering the number of force evaluations rather than the aggregated

simulation time in nanoseconds or microseconds.

NCMC carries out a single force evaluation for each perturbation or propagation/relaxation

step. The perturbation steps are the instantaneous perturbation of the water molecules

coordinates (or for turning off/on the alchemical parameters), and this is combined with
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Figure 4.4: Systems used to test the ability of BLUES (NCMC/MD) water hop-
ping to allow the exchange of water. (A) A C60 buckyball with a single trapped water
molecule. (B) The buried hydration site of the MUP-1 protein with a bound ligand. (C)
The hydration site of the HSP90 protein bound to a ligand. The protein-ligand systems have
internal water(s) (indicated by the black dashed line) that do not easily exchange with bulk.

propagation steps via Langevin dynamics [75]. In other words, perturbation steps modify

the system or its potential, and propagation steps propagate the dynamics. A BLUES

simulation consists of NCMC and MD, so a BLUES simulation will have a total cost in force

evaluations of:

Total force evaluations = ( nSteps MD + nSteps NCMC ) × nIter (4.3)

where nSteps MD is the number of MD steps per BLUES iteration, nSteps NCMC is the

number of NCMC steps per BLUES iteration and nIter is the number of BLUES iterations,

which consists of a NCMC move proposal followed by a series of regular MD. The total cost

in force evaluations for classical MD is equivalent to the total number of MD steps.
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4.3.4 Test cases and simulation details

We used a C60 buckyball, a water box system with dividing graphene sheets, Major Urinary

Protein (MUP-1) and Heat Shock Protein 90 (HSP90) as systems to test the ability of the

BLUES (NCMC/MD) water hopping moves to enhance the sampling of water molecules

in desired regions. Many of these systems were also used in a similar study to validate

Metropolis MC translational water moves with traditional MD [26].

The first system was a C60 buckyball with a water molecule trapped inside (Figure 4.4.A).

This water molecule is unable to interact with bulk water and cannot form any hydrogen

bonds with the buckyball’s carbon atoms. Hence, it is in an energetically unfavorable envi-

ronment, but it is unable to diffuse out. We chose a sampling region that was centered on

a carbon atom in the buckyball and extended 12 Å out, such that the region included the

entire buckyball and some bulk water. The box size was ∼44 x 44 x 44 Å3, and had a total

of 213 water molecules.

The second system was a rectangular water box divided into two regions by impermeable

planar graphene sheets (Figure 4.5.A). These two regions had initially different water den-

sities where the outer and inner region had densities of about 21.5 water/nm3 and 18.5

water/nm3, respectively. The rectangular box was ∼32 × 32 × 85 Å3 and the system had a

total of 1915 water molecules. The initially differing densities between the outer and inner

region tested the ability of the BLUES (NCMC/MD) water hopping method to equalize

the water densities between the sheets. We chose a sampling region that was centered on a

carbon atom in the middle of one of the sheets and extended 15 Å out so that the sampling

region covered the same amount of area in the inner and outer regions. This choice was

important to ensure that we didn’t make dramatically more move proposals to one region

relative to the other. Additionally, we chose our sampling region so that it did not extend

outside of the simulation box, thus avoiding issues where we might place waters in the same
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region more than once due to periodic boundary conditions, leading to artifacts.

The third and fourth systems tested the method’s ability to exchange water between bulk

and buried sites in two proteins. The third system was the MUP-1 protein [203] which

contains a buried crystallographic water molecule that bridges between the ligand and the

protein (Figure 4.4.B). The crystallographic water molecule was removed in order to test

the ability of our water hopping moves to hydrate the buried cavity and reform the water

bridging interaction. We chose a sampling region that was centered on a carbon atom in

the ligand and extended 20 Å out to include some bulk water (Figure 4.2). The box was

∼70 x 70 x 70 Å3 the system had a total of 8,678 water molecules. The fourth system was

the HSP90 protein (PDBID:5J64) [13] bound to a ligand which forms interactions with the

protein through three bridging water molecules, as shown in Figure 4.4.C. The box was ∼82

x 82 x 82 Å3 and the system had a total of 13,831 water molecules. We chose a sampling

region that was centered on a carbon atom in the ligand, and extended 15 Å out to include

some bulk water.

The simulation boxes were built using tleap from AmberTools [35]. All of the systems used,

where appropriate, the protein and ligand force field parameters from AMBER ff14SB [86,

131] and GAFF [219], respectively. The water molecules were parameterized using the TIP3P

water model [98] in all cases. MD and BLUES simulations were performed using OpenMM

(version 7.1.1) [55, 58]. The systems were minimized until forces were below a tolerance

of 10 kJ/mol. Long-range electrostatics were calculated using Particle Mesh Ewald [46].

Simulations were run using the hydrogen mass repartitioning scheme with 4 femtosecond

timesteps [85].

To focus on water exchange the α-Carbons and ligands in the protein ligand systems were

restrained with a force constant of 5 kcal/mol · Å2, thus keeping the protein cavities from

quickly collapsing. The carbon atoms in the buckyball and graphene walls in the water

box system were also restrained with the same force constant as the protein-ligand systems,

175



which held the buckyball in place and kept the graphene walls from collapsing/folding.

The temperature was set to 300 K in all cases except the water box with graphene sheets,

which was set to 500 K so that the water in the system was less dense than liquid water and

wouldn’t form water droplets; thus, increasing the NCMC move acceptance rate so that any

errors due to the method would be obvious because the density in the two boxes would not

reach equilibrium. For the Buckyball system, equilibration consisted of 250 ps of NVT MD

and 10 ns of NPT MD of equilibration. For the water box with dividing graphene sheets,

equilibration consisted of 5 ns NVT MD. The MUP-1 system was equilibrated for 1 ns of

NVT MD and 10ns NPT MD. The MD production run for the water box with dividing

graphene sheets and the MUP-1 system was for 40 ns in the NPT ensemble. The HSP90

system was equilibrated for 1 ns of NVT MD and 80 ns NPT MD. The MD production run

for HSP90 was for 285 ns in the NPT ensemble.

A BLUES simulation consists of a number of BLUES iterations, where each iteration of

BLUES is composed of a NCMC move and traditional MD. Each NCMC move is comprised

of a certain number of NCMC perturbation and propagation/relaxation steps (wherein the

electrostatic and steric interactions are alchemically scaled off/on, as depicted in Figure 4.1).

Here, we used the same amount of NCMC steps for all of the systems (except MUP-1, detailed

below). For the water box system with dividing graphene sheets, BLUES with translational

water moves was executed for 240,000 BLUES iterations, with each iteration consisting of

2,500 NCMC steps and 1,000 MD steps. The buckyball system was simulated for a total of

1,000 BLUES iterations, using 2,500 NCMC steps and 1,000 MD steps per iteration. Both

of the solvated MUP-1 and HSP90 systems were simulated for a total of 10,000 BLUES

iterations. For the MUP-1 system, 1,250, 2,500, 5,000 and 30,000 NCMC steps per iteration

were tested to see how the number of NCMC steps affects the rate of water transfer from

from bulk to the internal hydration site. The number of MD steps in all cases was 1,000 MD

steps per iteration. For the HSP90 system, each BLUES iteration consisted of 2,500 NCMC
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Figure 4.5: Impermeable graphene sheets divide a box into separate regions with
initially different densities, testing the ability of water hopping moves to equili-
brate the density. (A) The water box system with dividing graphene sheets. (B) Shown
here are the water densities between the two sheets (blue) and outside the sheets (orange).
The densities in the two regions reach equilibrium and stabilize with this approach, serving
to validate our implementation.

steps and 1,000 MD steps. Further simulation details are available in scripts deposited in

the SI.

4.4 Results and Discussion

The hybrid BLUES (NCMC/MD) approach described here accelerates water sampling during

simulations by incorporating translational water moves during the NCMC component of each

BLUES iteration. We refer to these translational water moves in BLUES as “water hopping”.

Here, we tested these water hopping moves in a range of systems. Particularly, we use a

C60 buckyball, water box system with dividing graphene sheets, MUP-1 and HSP90 protein-

ligand systems to validate the water hopping methodology. Across all of the systems tested,

we find that BLUES water hopping moves allowed water exchange between regions, while
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Figure 4.6: Increasing the amount of NCMC steps increases the rate of water
transfer from bulk to the internal hydration site in MUP-1. Ten replicate simula-
tions with different random seed numbers were run for each NCMC step value. All of the
BLUES simulations were run for 10,000 BLUES iterations, with each iteration consisting of
a certain number of steps of NCMC and MD. The different colors indicate various amounts
of NCMC steps used. The success rate is equivalent to the ratio of the number of replicate
simulations where the MUP-1 site (Figure 4.4.B) has been hydrated relative to the total
number of replicate simulations. (A) shows that using a lower NCMC step amount increases
the number of BLUES iterations for the cavity to become hydrated, such as 1,250 (green)
and 2,500 (orange) NCMC steps. The inset, (B), zooms in on the success rate at low itera-
tion number and shows that increasing the amount of NCMC steps decreases the number of
iterations needed. 5,000 (blue) NCMC steps needed a little more than 400 BLUES iterations
to hydrate the cavity and 30,000 (pink) NCMC steps needed no more than 250 BLUES
iterations to hydrate the cavity.

178



Table 4.1: Increasing the number of NCMC steps generally increases the accep-
tance rate of all moves in the MUP-1 protein-ligand system. Here is the average
acceptance rate of all BLUES moves, the average number of force evaluations across 10-12
replicates for the buried cavity in the MUP-1 system to become hydrated, and the average
wallclock time in hours for BLUES to hydrate MUP-1. Each simulation was run for 10,000
BLUES iterations, where each iteration consisted of a single NCMC move (consisting of n
NCMC steps) and 1,000 MD steps.

n NCMC steps Average acceptance rate
of all BLUES moves

Average number of force evaluations
to hydrate the MUP-1 cavity

Average wallclock time
to hydrate the MUP-1 cavity

1,250 0.1% 7.9x106 50 hours
2,500 0.3% 2.6x106 12 hours
5,000 1.1% 1.1x106 3 hours

30,000 2.8% 2.5x106 4 hours

plain MD did not.

The first test system was a C60 buckyball simulated in bulk water, with a single water

molecule housed inside (Figure 4.4.A). For the buckyball, it is very unfavorable to have

the water inside the buckyball because the water molecule is in an energetically unstable

environment relative to a water molecule in bulk. Having a water molecule inside of the

buckyball is a state which should not be sampled (to any significant degree) at equilibrium,

and we deliberately started with the water in this state to test if BLUES would allow it to

escape relatively efficiently. As expected, we find that water hopping moves can relocate

the water molecule from the inside of the buckyball to bulk water. Since the trapped water

molecule is unable to interact with bulk water or form hydrogen bonds with the buckyball’s

carbon shell, it is thermodynamically favorable for it to escape, but it is unable to do so with

conventional MD. We chose a sampling region centered on a carbon atom in the buckyball so

that the sampling region encompassed the buckyball and some bulk water. While the water

molecule is not able to escape the buckyball with plain MD [26], water hopping allowed

the water molecule to escape, returning it to the surrounding bulk water after 2.1x105 force

evaluations. The buckyball remains unoccupied after the water molecule leaves. Since we

expect unidirectional transitions, we did not explore how the amount of relaxation affects

the acceptance rate.
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The second test system was a water box system divided into two regions by impermeable

graphene sheets (Figure 4.5.A), with each region having different initial water densities.

We find that water hopping successfully equalizes the water between the two regions (Fig-

ure 4.5.B). We chose a sampling region centered on a carbon atom in the middle of one of the

graphene sheets, such that the sampling region encompassed equivalent amounts of both the

inner and outer regions. The relative densities of each region initially differed, but should

become uniform over time if BLUES is allowing waters to hop between the two regions.

Standard MD does not allow water to enter the inner region between the graphene sheets

because the sheets act as barriers that prevent water from passing through them. However,

we find that translational water moves in BLUES allow water molecules to hop across the

sheets, causing the densities to gradually equalize in both regions (Figure 4.5.B). Here we

found this took 4.2x108 force evaluations.

Next, we examined a buried hydration site in MUP-1, which has a buried crystallographic

water molecule that bridges between the ligand and the protein (Figure 4.4.B). The crystal-

lographic water molecule was removed from the buried site and water hopping successfully

rehydrated it. We chose a sampling region that was centered on an atom in the ligand and

extended out to include some bulk water (such as in Figure 4.2), such that the sampling

region encompassed the buried hydration site and had access to bulk. With plain MD the

water did not resume its crystallographic bridging position even after 1.5 µs, equivalent to

3.8x108 force evaluations and 120 wallclock hours. However, BLUES was able to recover

the crystallographic water. On average (across 11 replicates), it took BLUES 2.6x106 force

evaluations and 12 wallclock hours to hydrate the site (using 2,500 NCMC steps and 1,000

MD steps per BLUES iteration, as shown in Table 4.1), and no BLUES moves were ac-

cepted that dehydrated the site. Additionally, we tested how the number of NCMC steps

per BLUES iteration affects the rate of water transfer to the hydration site by simulating

with 1,250, 2,500, 5,000, and 30,000 NCMC steps per BLUES iteration, and used 1,000 MD

steps per BLUES iteration for each. As expected, increasing the number of NCMC steps per
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BLUES iteration increases the rate of water transfer from bulk to the buried hydration site

in MUP-1, as shown in Figure 4.6. Here, 30,000 NCMC steps is worse than 5,000 NCMC

steps because it will take 6x the number of NCMC steps, but the success rate is certainly

not 6x higher (it’s only about 2x higher). On the other hand, running 2,500 NCMC steps

per BLUES iteration is certainly better than 1,250 NCMC steps. Although it takes 2x the

number of NCMC steps, the success rate ends up being more than 2X higher- it’s roughly

4.7X higher. Similarly, running 5,000 NCMC steps per BLUES iteration is better than 2,500

NCMC steps because the success rate is about 4x higher.

Although increasing the number of NCMC steps per BLUES iteration decreases the number

of BLUES iterations required for the site to become hydrated, we find that increasing the

number of NCMC steps per BLUES iteration can also start to negatively effect the efficiency

in terms of force evaluations of the water hopping in hydrating the cavity (Table 4.1). Even-

tually, the increase in efficiency from allowing more relaxation is swamped by the associated

increase in computational cost. However, relatively small amounts of relaxation have consid-

erable payoff, resulting in a sort of sweet spot in terms of amount of relaxation. To ensure

water hopping is as efficient as possible in terms of force evaluations, we recommend keeping

the number of NCMC steps in the lower range, such as 1,250, 2,500, or 5,000.

In terms of wallclock time, 5,000 NCMC steps takes roughly the same amount of time to

hydrate the cavity as 30,000 NCMC steps. 2,500 NCMC steps requires 4x less wallclock time

to hydrate the cavity compared to 1,250 NCMC steps, and using 5,000 NCMC steps takes

4x less wallclock time to hydrate the cavity compared to 2,500 NCMC steps. Based on this,

5,000 NCMC steps seems to be the most efficient in terms of wallclock time.

Lastly, we examined three hydration sites in the binding site region of the HSP90 protein-

ligand system (Figure 4.4.C). All three crystallographic water molecules were removed from

the hydration site in the HSP90 system and water hopping successfully rehydrated each

hydration site. We chose a sampling region that was centered on a ligand atom and extended
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out to encompass the buried hydration site, ligand and some bulk water. With plain MD,

only one out of the three water molecules were able to resume the crystallographic bridging

positions within 285 ns, which is equivalent to 7.1x107 force evaluations. This water molecule

moved in from a starting position in bulk water. It took BLUES 5.9x106 force evaluations

on average (across 4 replicates) to occupy all three of the hydration sites. After the buried

cavity had been hydrated, no NCMC moves were accepted that removed any of the water

molecules, indicating that the occupancy of these sites is favorable. We did not explore how

the amount of relaxation would affect the acceptance rate as we already explored this in

the MUP-1 system and found that, in general, increasing the amount of NCMC increases

the acceptance rate of all moves (Table 4.1). In terms of wallclock time, the 285 ns MD

simulation took about 54 hours and was unable to completely fill the cavity. However,

BLUES only took 31 hours to completely rehydrate the cavity.

In both of the protein-ligand systems studied, we restrained the proteins and ligands with a

force constant of 5 kcal/mol · Å2 and artificially removed the crystallographic water, which

is highly favorable in its place. Therefore, once the water returned to its crystallographic

position, it did not transition out of the binding site again.

The sampling region used for the protein-ligand systems encapsulates the binding pocket

and some bulk water. Relative to MD, we find that we can increase efficiency by making

the area of interest the focal point of NCMC move attempts. Making the sampling region

just large enough to cover a specific ligand-binding site and bulk water allows us to speed up

the equilibration of water between these two regions, and this strategy has been successfully

used elsewhere [26]. If the sampling region covered a greater amount of bulk water in these

cases, the efficiency would decrease because the equilibration of water between regions would

be slower as more water moves would move water molecules around in just bulk water. In

general, we recommend setting the radius to be as small as possible while ensuring that the

particular area of interest and some bulk is covered, thus increasing efficiency. In some cases,
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a larger sampling region may be more desirable, such as a protein with multiple hydration

cavities, and this would simply require defining a larger sampling region which covers all of

the cavities. Additionally, the user must be careful when defining the sampling region when

using periodic boundary conditions. If the radius is set to encompass any area outside of

the box, and periodic boundary conditions are used, there could be overlapping regions in

the sampling area and this will result in more water moves being proposed to those areas,

creating problems as noted above.

Water hopping could be used to discover important hydration sites in proteins. Crystallog-

raphy does not always provide an accurate view of water positions and occupancies [168].

Only relatively highly ordered waters can be resolved in crystal structures, which may be

a small subset of all waters which are present. Additionally, partial and weak density can

obscure determination of where water molecules are present. At the same time, waters can

be critical in protein dynamics [194, 231] and for the thermodynamics of ligand binding

[230, 8, 161, 160, 144, 7, 172, 23, 125], meaning that treatment of such waters — even when

not obvious from experimental data — can be critical. Our method could explore such

feasible hydration sites as well as the orientation of critical water molecules in cases where

structural data is ambiguous.

4.5 Conclusions and Future Work

In this study, we implemented water hopping moves within our BLUES (NCMC+MD) frame-

work to enhance the sampling of water rearrangements relative to traditional MD for systems

that have buried hydration sites.

We validated BLUES with translational water moves on a water box with dividing graphene

sheets, a buckyball with an energetically unfavorable water trapped inside, and both the
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MUP-1 and HSP90 proteins bound to a ligand with crystallographic bridging water removed.

We then evaluate the efficiency of BLUES in hydrating the sites in the protein-ligand systems,

based on the number of force evaluations. Overall, we demonstrate that NCMC enhances

sampling relative to normal MD.

This water hopping approach can be used to find areas that are likely to be populated

by waters in protein binding sites and sample water rearrangements potentially more effi-

ciently than traditional MD. Water hopping moves could be combined with additional types

of BLUES moves such as ligand [75, 193] or sidechain [33] rotational moves for broader

applications.

The size of the sampling region is an important parameter in our method, and one we intend

to optimize in the future. In the future, additional work could be done to help improve the

acceptance of water hopping moves. To improve the acceptance and increase the efficiency of

BLUES translational water moves, move proposals could be made to be more selective. In the

current work, the move proposals can be made anywhere that is encompassed by the radius.

To make the move more efficient, water hopping could be redesigned to help reduce move

proposals that only move water molecules around in bulk, thus focusing on move proposals

to the interior of the protein using methods like those detailed in the work of Ben-Shalom

et al. [26]. Additional work could also include comparisons of BLUES (NCMC/MD) water

hopping to MC/MD water hopping, allowing us to test whether or not NCMC enhances

sampling relative to MC; here, we compared only with traditional MD.

Previous work from Gill et al. compared the speed of non-equilibrium relaxation and MC for

ligand rearrangements and found that NCMC provided benefits over doing large numbers of

pure MC attempts [75]. We speculate that the same may be true here. Compared to previous

work from Ben-Shalom et al. [26], where MC/MD was run on the same MUP-1 protein-ligand

system to hydrate the site, we found that BLUES (NCMC/MD) more efficiently hydrates

the crystallographic site. There seems to be a 3-4x increase in efficiency using BLUES
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(NCMC/MD) based on average number of force evaluations. We believe this increase in

efficiency will extend out to other systems, but this needs exploring. Within our current

framework, direct comparisons to MC are not feasible (there is a the low acceptance rate

and the need to run a large number of trials) because MC evaluations with OpenMM need

to be done off-GPU, making the MC move proposals unreasonably slow. This is something

that can be explored in future work.

Overall, here, we introduced and validated our new water hopping approach to enhanced

sampling of water rearrangements in BLUES, and find it is more efficient than standard MD

on a by-force-evaluation basis for the systems considered here.

4.6 Code and Data Availability

The Supporting Information is available free of charge on https://github.com/MobleyLab/

blues-water-hopping-paper and includes the code, scripts and input files used in this work.
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4.8 Supplementary Information

4.8.1 Supplementary tables
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Table 4.2: Acceptance ratios of the replicate simulations at different NCMC step amounts for the MUP-1 system.
Each simulation was run for 10,000 BLUES iterations. The number of NCMC steps were varied from 1,250 to 30,000 steps and
the number of MD steps was 1,000 steps in all cases
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Table 4.3: Acceptance ratios of all attempted moves for each replicate simulation
of the HSP90 protein-ligand system. Shown is the acceptance ratio for four replicate
simulations. It took an average of 1693 BLUES iterations to hydrate the cavity.

n NCMC steps Replicate 1 Replicate 2 Replicate 3 Replicate 4

2,500 0.004 0.002 0.002 0.002

Table 4.4: Shown here are the average acceptance rate of all BLUES moves, the
average number of force evaluations across 4 replicates for the buried cavity in
the HSP90 system to become hydrated, and the average wallclock time in hours
for BLUES to hydrate HSP90. It took an average of 1693 BLUES iterations to hydrate
the HSP90 cavity, and each BLUES iteration consisted of a single NCMC move (consisting
of 2,500 NCMC steps) and 1,000 MD steps.}

n NCMC steps Average acceptance rate
of all BLUES moves

Average number of force evaluations
to hydrate the HSP90 cavity

Average wallclock time
to hydrate the HSP90 cavity

2,500 0.2% 5.9x106 31 hours
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Chapter 5

Progress towards improving host-guest

binding free energy calculations by

refitting host force field parameters

5.1 Introduction

There are three main areas that the statistical assessment of modelling of proteins and

ligands (SAMPL) series of challenges focuses on; physical property challenges, guest-host

binding, and protein-ligand binding. This section focuses on guest-host binding. Molecular

recognition in host-guest complexes is a particularly simple case of molecular recognition,

where the complex is held together through non-covalent bonding.

Hosts have fewer conformations to sample than proteins since they are smaller and have far

fewer degrees of freedom, reducing potential error from inadequate conformational sampling.

This allows the evaluation of other possible sources of error. It has been found that the results

of host-guest binding free energy calculations are very sensitive to torsion parameters, which
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can change binding free energy predictions by 3–4 kcal/mol [14].

Recently, the OpenFF group (https://openforcefield.org/) has developed the Bespoke-

fit toolkit, which builds custom parameters for individual molecules. Here, I use the OpenFF

BespokeFit toolkit to refit the tetra-endomethyl OctaAcid (TEMOA)(Figure 5.1) hosts’ tor-

sion force field parameters. Afterward, I run host-guest binding free energy calculations

with and without the updated host parameters. I then benchmark the results to see what

difference the customs torsions made and how they impacted host-guest binding predictions.

5.2 Methods

The BespokeFit toolkit is a tool that automates the workflow for creating new parame-

ters for individual molecules. More information on the OpenFF BespokeFit toolkit can be

found here https://openff-bespokefit.readthedocs.io/en/latest/ and here https:

//github.com/openforcefield/openff-toolkit.

OpenFF BespokeFit can only refit torsions for small molecules because conformer and charge

generation is difficult for larger macrocycles. Therefore BespokeFit was not able to be run on

an entire host. Instead, the host of interest (TEMOA) needed to be split into its repeating

units, and then BespokeFit was applied to the unit. Afterward, the parameters were applied

to the entire host system.

To break TEMOA up, the host was visualized and modified in Chimera ( https://www.

rbvi.ucsf.edu/chimera/). Once the host was cleaved into a repeating unit, the cleaved

bonds were capped with methyl groups (so that it would be able to be run through the

toolkit). Afterward, BespokeFit was applied to the fragment, and custom parameters were

made for the host fragment. To make sure the new parameters correctly mapped back

to the whole host molecule, the generated SMIRKS were manually modified and cross-
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checked against the host structure. The SMIRKS were also cross-checked against the guest

structures(Figure 5.2) to ensure the guest molecules would not be parameterized with any

of the custom made parameters that were only meant to be applied to the host structure.

The preparation of host-guest binding free energy calculations and the calculations for run-

ning the calculations were carried out as described in [15]. To see how BespokeFit would

impact binding free energy results, calculations using a BespokeFit-parameterized host were

compared to calculations where the host was parameterized with the OpenFF Parsley (ver-

sion 1.2.0) force field, which is a general small molecule force field [95]. Specifically, one set of

calculations used the Bespoke-parameterized TEMOA with Parsley-parameterized SAMPL8

guest molecules, and the other set of calculation used a Parsley-parameterized TEMOA host

and SAMPL8 guest molecules.

Files for the SAMPL8 TEMOA host and five guest files are available here: https://github.

com/samplchallenges/SAMPL8/tree/master/host_guest/GDCC.

5.3 Results and Discussion

To evaluate the performance of the custom host parameters on guest-host binding free energy

calculations, results were benchmarked against calculations where the host did not have

custom torsion parameters.

In term of overall accuracy, the methods don’t have a statistically significant difference in

RMSE (Figure 5.3), however, the custom parameters do appear to reduce the amount of

systematic error in calculations and make predictions that tend to be closer to experimental

values on a point-by-point basis compared to the calculations using the Parsley force field,

as shown in Figure 5.4.
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Figure 5.1: The structure of the tetra-endomethyl OctaAcid (TEMOA) host.
Host files are available here: https://github.com/samplchallenges/SAMPL8/tree/
master/host_guest/GDCC.

Figure 5.2: The structure of the five guests used in binding free energy prediction.
Files for the guest molecule are available here: https://github.com/samplchallenges/
SAMPL8/tree/master/host_guest/GDCC.
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Figure 5.3: Average prediction error in binding free energy calculations using the
new host parameters (Bespoke) and original host parameters (Parsley) show
there isn’t a statistically significant difference between the two methods.
Besides the host parameters, everything between the two methods was kept identical (setup,
equilibration, production, etc.). Error bars denote 95% confidence intervals obtained by
bootstrapping over guest molecules.

One way of looking at the difference between the two methods is by comparing the motion

of the host. When the ligand is not inside the host, which happens when the ligand is in

the “release” phase of the free energy calculations, it’s been noted that the host can make

“breathing motions” where the basket shape of the host collapses. To measure this collapsing,

the distance ratio was calculated by measuring the distance between opposite (diagonal)

phenyl groups, then dividing the distance between one pair by that between the other pair.

A distance ratio less than or greater than 1 indicates the host is exhibiting a breathing

or collapsing motion. A value of about 1 means the host is not exhibiting a breathing or

collapsed motion and is symmetrical. We find that the BespokeFit–parameterized host forms

a collapsed stance less often than the Parsley–parameterized host (as shown in figures 5.6,

5.7, 5.8, and 5.9, suggesting BespokeFit tends to “soften” the breathing motion of the host.

For future work it would be interesting to test BespokeFit on additional hosts to see how the

movements of the host are effected, and to see what changes it makes to guest-host binding

free energy predictions.
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Figure 5.4: Predicted vs experimental value correlation plots of the two methods.
The set of calculations that used the updated parameters (Bespoke/BespokeFit, green
square) seems to have less systematic error than calculations using the original force field
parameters for the host (Parsley, red triangle).
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Figure 5.5: The BespokeFit host is less likely to be in the collapsed stance com-
pared to the Parsley host when the ligand is not in the host cavity
Here, the distance ratio is a measure of the collapsing or “the breathing motions” of the host,
where the distance of the diagonal upper cavity phenyl groups are measured. The distance
ratio was calculated by measuring the distance of opposite (diagonal) phenyl groups, then
dividing them. A value around 1 indicates the host does not collapse/remains symmetrical.
In other words, it doesn’t exhibit breathing motions. A distance ratio greater than or less
than 1 indicates the host collapsed/exhibiting the breathing motion. We find that BespokeFit
prevents the breathing motion of the host when the ligand is out of the cavity for all guests,
except guest 5 (It’s unknown why the host exhibits breathing motions in this case). The
timeseries of the distance ratio of the distances of the diagonal upper cavity phenyl groups for
the BespokeFit–parameterized and Parsley–parameterized host are available in figures 5.6,
5.7, 5.8, 5.9, and 5.10.
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Figure 5.6: Shown is the timeseries of the distance ratio of the distances of the di-
agonal upper cavity phenyl groups for the BespokeFit–parameterized host (blue)
and the Parsley–parameterized host (orange) when guest number # 1 is not in
the binding pocket.
The Parsley–parameterized host shows a distance ratio that indicates the host frequents
a collapsed position (a distance ratio around 1.2–1.3 and 0.7–0.8) more often than the
BespokeFit–parameterized host. The distance ratio between the phenyl groups was cal-
culated for each frame in the trajectory of the “release” phase of the free energy calculations.
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Figure 5.7: Shown is the timeseries of the distance ratio of the distances of the di-
agonal upper cavity phenyl groups for the BespokeFit–parameterized host (blue)
and the Parsley–parameterized host (orange) when guest number # 2 is not in
the binding pocket.
The Parsley–parameterized host shows a distance ratio that indicates the host frequents
a collapsed position (a distance ratio around 1.2–1.3 and 0.7–0.8) more often than the
BespokeFit–parameterized host. The distance ratio between the phenyl groups was cal-
culated for each frame in the trajectory of the “release” phase of the free energy calculations.
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Figure 5.8: Shown is the timeseries of the distance ratio of the distances of the di-
agonal upper cavity phenyl groups for the BespokeFit–parameterized host (blue)
and the Parsley–parameterized host (orange) when guest number # 3 is not in
the binding pocket.
The Parsley–parameterized host shows a distance ratio that indicates the host frequents
a collapsed position (a distance ratio around 1.2–1.4 and 0.7–0.9) more often than the
BespokeFit–parameterized host. The distance ratio between the phenyl groups was cal-
culated for each frame in the trajectory of the “release” phase of the free energy calculations.
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Figure 5.9: Shown is the timeseries of the distance ratio of the distances of the di-
agonal upper cavity phenyl groups for the BespokeFit–parameterized host (blue)
and the Parsley–parameterized host (orange) when guest number # 4 is not in
the binding pocket.
The Parsley–parameterized host shows a distance ratio that indicates the host frequents
a collapsed position (a distance ratio around 1.1–1.4 and 0.7–0.8) more often than the
BespokeFit–parameterized host. The distance ratio between the phenyl groups was cal-
culated for each frame in the trajectory of the “release” phase of the free energy calculations.
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Figure 5.10: Shown is the timeseries of the distance ratio of the distances of
the diagonal upper cavity phenyl groups for the BespokeFit–parameterized host
(blue) and the Parsley–parameterized host (orange) when guest number # 5 is
not in the binding pocket.
The BespokeFit–parameterized host shows a distance ratio that indicates the host frequents
a collapsed position about as frequently as the Parsley–parameterized host. It is unknown
why the distance ratio differs from the ditance ratio’s seen in the timeseries in figures 5.6,
5.7, 5.8, and 5.9. The distance ratio between the phenyl groups was calculated for each frame
in the trajectory of the “release” phase of the free energy calculations.
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