UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Understanding the Brain using Machine Learning and Enhancing Machine Learning with
Neuroscience

Permalink
https://escholarship.org/uc/item/3w0458n7]
Author

Xing, Jinwei

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3w0458n7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Understanding the Brain using Machine Learning and Enhancing Machine Learning with
Neuroscience

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Cognitive Sciences

by

Jinwei Xing

Dissertation Committee:

Professor Jeffrey L. Krichmar, Chair
Assistant Professor Aaron Bornstein
Associate Professor Sameer Singh

2023

(©) 2023 Jinwei Xing

TABLE OF CONTENTS

Page

LIST OF FIGURES \%
LIST OF TABLES xi
LIST OF ALGORITHMS xii
ACKNOWLEDGMENTS xiii
VITA Xiv
ABSTRACT OF THE DISSERTATION xvi
1 Introduction 1
2 Background 4
2.1 Reinforcement Learning L oL 4
2.2 Neuromodulation 6
2.3 Attention 8
2.4 Generative Modeling oL 9

3 Neuromodulated Patience for Robot and Self-Driving Vehicle Navigation 11

3.1 Imtroductiono 11
3.2 Methods 13
3.2.1 Navigation Task 13
3.2.2 Robot and Software Design L. 14
3.2.3 Waypoint Navigation and Model of Neuromodulated Patience 16
3.2.4 Road Following with Deep Reinforcement Learning 17
3.3 Results. 23
3.3.1 Waypoint Navigation in Encinitas Community park 24
3.3.2 Waypoint Navigation in Aldrich park 27
3.4 Discussion 28

4 Adapting to Environment Changes Through Neuromodulation of Rein-
forcement Learning 30
4.1 Introduction L 30
4.2 Problem 32

i

4.3 Method 33

4.3.1 ACh and NE Neuromodulation 33
4.3.2 Update of ACh and NE System 35
4.3.3 The Complete System 37
4.4 Experiments 37
4.5 Results 41
4.5.1 Reinforcement Learning Performance 41
4.5.2 Activity of Neuromodulatory System 43
4.6 Conclusion 44

Domain Adaptation in Reinforcement Learning via Latent Unified State

Representation 45
5.1 Imtroduction 45
5.2 Related Work 47
5.3 Domain Adaptation in Reinforcement Learning 49
54 Methods 50
5.4.1 LUSR Definition 51
5.4.2 Learning LUSR 52
5.5 Experiments 54
5.5.1 CarRacing 54
5.5.2 Autonomous Driving in CARLA 56
5.6 Results and Discussiono 57
5.6.1 CarRacing D7
5.6.2 Autonomous Driving in CARLA 62
5.7 Conclusion 65
Achieving Efficient Interpretability of Reinforcement Learning via Policy
Distillation and Selective Input Gradient Regularization 66
6.1 Introduction L 66
6.2 Background and Motivation oL 68
6.2.1 Policy Distillation L 68
6.2.2 Saliency Mapin RL 70
6.2.3 Motivationo 71
6.3 Method 72
6.4 Experimental Results 76
6.4.1 Setup 7
6.4.2 Effectiveness via Visual Illustrative Examples 78
6.4.3 Importance of Computational Efficiency 80
6.4.4 Saliency Dataset and Evaluation. 81
6.4.5 Policy Performance Maintenance 83
6.4.6 Improved Robustness to Attacks, .. 83
6.5 Conclusion 84

il

7 Linking Global Top-Down Views to First-Person Views in the Brain 86

7.1 Introduction 86
7.2 Results. e 88
7.2.1 Robot Simulation and Modeling Transformations 88
7.2.2 Spatial Representations in Latent Variables 90
7.2.3 Effect of Latent Variable Ablations 95
7.2.4 Effect of Environmental Perturbations 96
7.2.5 Alternative Models 99
7.3 Discussion e 101
7.3.1 Neurobiological Evidence for Transformations between Views 101
7.3.2 Modeling Transformations between Views 103
7.3.3 Applying Artificial Neural Networks to Neuroscience 104
7.4 Materials and Methods Lo 106
7.4.1 Robot Simulations 106

7.4.2 Variational Autoencoder Construction and Latent Variable Analysis . 107

8 Conclusions 111
8.1 Summary 111
8.2 Future Directions 112

Bibliography 114

v

List of Figures

1.1

2.1

3.1

3.2
3.3

3.4

3.5

3.6

Summary of research work conducted during my doctoral study. Four rect-
angle blocks (Applications/Tasks, Machine Learning, Brain Mechanisms and
Biological Evidence/Data) form the base of the diagram. The green and pur-
ple arrows represent their relationships (Brain mechanisms inspire machine
learning which solves tasks while machine learning also reinforces brain mech-
anisms which explain biological data). Each of them further derives a series
of examples/instances involved in my doctoral study.

Reinforcement learning illustration

Parks where robot navigation experiments were carried out. The left is an
image of Encinitas Community park and the right is an image of Aldrich park
at the University of California, Irvine. The labels denote the waypoints (i.e.,
WP1...WP10). Waypoints were approximately 50-60 meters apart. Imagery
from Google Maps, 2019.
Android Based Robot used for the experiments.
Probability of waiting function. Higher 5-HT levels shifted the curve to the
right resulting in longer wait times.
Examples of raw images and pixel-wise annotations in Aldrich Park dataset.
The size of each image is 320x240 pixels and each pixel has a label of either 1
(road) or 0 (non-road). In visualized annotations (lower half), the non-road
portion is shown in black and the road portion is in gray.
High level illustration of the data pipeline for the road following algorithm.
Images from the Android Based Robot’s (ABR) smartphone camera are sent
to a nearby laptop via a socket. The laptop runs a deep reinforcement learning
algorithm, which rewards staying on the road, and generates steering actions
for the robot.
Detailed illustration of the data pipeline for the road following algorithm.
ENet was used to segment road from non-road Paszke et al. [2016]. The
network gave a positive reward for actions that kept the robot on the road
and a penalty for actions that caused the robot to go off road. Training was
based on a DQN reinforcement learning paradigm Mnih et al. [2013]. Training
and testing were carried out online in Aldrich park.

Page

17

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

5.1

5.2

Robot navigation trials in the Encinitas Community park. The black dots are
the waypoint destinations (WP1 — WP10). There were 6 trials. Each color
represents an individual trial. Each colored marker denotes the robot reaching
awaypoint.o
Two representative navigation trials in the Encinitas Community park. All
the GPS points are shown. The markers in the figure correspond to the grey
markers in Figure 3.7.o
Five trials in Aldrich park with high 5-HT (upper figure) and five trials in
Aldrich park with low 5-HT (lower figure). Red traces are drawn from GPS
readings from the phone mounted on the robot. The robot went across all
waypoints one by one in trials with high 5-HT and took multiple shortcuts
when 5-HT was low.

Gridworld environment. Examples of three tasks (pickup-green, pickup-blue
and pickup-yellow) in Gridworld environment. In each task, the agent moves
towards the object with a specified color.
MuJoCo environment. Examples of three tasks (stand, walk and run) of
MuJoCo walker robot. The agent has unique behavior in each task.
Results of reinforcement learning performance with and without the neuro-
modulatory system. The bar on top of the figure represents the task se-
quence. The task sequence in Gridworld experiment is [pickup-green, pickup-
blue, pickup-yellow, pickup-green, pickup-blue, pickup-yellow] and the task
sequence in walker robot experiment is [‘walker-stand’, ‘walker-walk’, ‘walker-
run’, ‘walker-stand’, ‘walker-walk’, ‘walker-run’, ‘walker-stand’, ‘walker-walk’,
‘walker-run’]. ... L.
Dynamics of the activity of the ACh system in the two experiments. The bar
on top of the figure represents the task sequence.
Dynamics of the activity of the NE system in the two experiments. The bar
on top of the figure represents the task sequence.

Architectures of our method (LUSR) and other benchmarks (DARLA, CURL
and CycleGAN based image-to-image translation) used in this work for com-
parison. The architecture of VAE-Embedding could be considered as a special
case of DARLA that replaces 5-VAE with VAE and avoids the usage of DAE.
The learning of all these approaches could be divided into two stages. The
first stage is learning appropriate state representations that support domain
adaptation in RL and the second stage is doing RL training.
Variants of CarRacing games. A. The original version of CarRacing game
which is set as the source domain. B. The seen target domains of CarRac-
ing games whose observation states are collected for learning LUSR. C. The
unseen target domains of CarRacing games. These two domains are never
exposed to the agent, not only during RL training but also during latent state
representation learning. Lo Lo

vi

5.3

5.4

5.5

5.6

5.7

6.1

6.2

Experiment of the driving task in CARLA simulator. Examples of the driver
view (observation states) under three different weather conditions: evening,
clear noon and hard rain from left to right. 56
Results of Cycle-Consistent VAE. The first row are four random images from
the source domain and the second row are four random images from four seen
target domains respectively. The last row are reconstructed images that take

s* from the first row and 52 from the second row. H&
Domain adaptation performance during training in CarRacing comparing
LUSR to other benchmarks. 61

Examples of saliency maps generated by RL agents trained via DARLA,
LUSR, VAE-Embedding, CURL and CycleGAN. The RL agent trained with
LUSR has the most centralized attention and mainly attends to the center of
theroad. L 62
Demonstration of the disentanglement of domain-general embedding and domain-
specific embedding in related CARLA driving tasks. a. The workflow of gen-
erating paired observational states and extracting latent embeddings. b,c.
t-SNE plot of the domain-general and domain-specific embeddings from three

CARLA driving tasks. 63

(a). Different saliency maps on Red-Fecth-Green. All gradient-based saliency
maps (Vanilla Gradient, Guided Backprop, Grad-CAM, Integrated Gradient
and Smooth Gradient) produced by the PPO policy are noisy and show no-
ticeable saliency on task-unrelated features. Gaussian-Blur Perturbation (GB
Perturbation), SARFA saliency maps and saliency maps produced by DIGR
approach demonstrate saliency on the red agent and green target object only.
(b). The average time for each method to explain one action selection for
states of Red-Fetch-Green during policy deployment with a CPU of Intel i7-
9750H and a GPU of GeForce RTX 2080 Ti. We mark DIGR with purple and
use red and green colors to represent normal gradient-based and perturbation-
based saliency map methods.o 69
Framework of our approach. Policy 7y is used as the control policy and in-
teracts with the environment. The experienced states are saved into a replay
buffer and then sampled later for policy distillation. The training includes
two objectives. The first objective is using input gradient regularization to
regularize gradient-based saliency map Mg based on the perturbation-based
saliency map M;. The second objective is using policy distillation to make
sure the learning policy my has the same behavior as the trained policy ;. . 74

vil

6.3

6.4

6.5

6.6

6.7

6.8

Demonstration of our approach on Red-Fetch-Green. There are four sets
of examples and each set includes a state, a Vanilla Gradient saliency map
generated by the original policy (Original VG), a Gaussian-Blur perturbation-
based saliency map (GB Perturbation) generated by the original policy and
a Vanilla Gradient saliency map generated by the policy trained with DIGR.
The annotation of DIGR on the figure refers to Vanilla Gradient saliency maps
generated by the policy trained with DIGR. In all examples, GB Perturbation
and DIGR saliency maps show high saliency on the red agent and green target
while Original VG saliency maps are noisy and hard to interpret.
Demonstration of our approach on Breakout. VG and GB Perturbation
stand for Vanilla Gradient and Gaussian-Blur Perturbation. Both DIGR and
Gaussian-Blur perturbation-based saliency maps demonstrate high saliency
mainly on the paddle and ball while the Vanilla Gradient saliency maps gen-
erated by the original policy (Original VG) are noisier.
Demonstration of our approach on CARLA Autonomous Driving. VG and
GB Perturbation stand for Vanilla Gradient and Gaussian-Blur Perturbation.
In the left two sets of examples, DIGR and GB Perturbation methods demon-
strate high saliency on the vehicles that got close to the controlled vehicle.
In the top-right example, DIGR and GB perturbation methods show high
saliency on the vehicle and road curb. In the bottom-right example, DIGR and
GB perturbation methods show high saliency on two vehicles ahead. DIGR
and GB perturbation methods didn’t show saliency on the controlled vehicle
because the controlled vehicle is always at the same region of the images for
all states and is not salient to the performance. The saliency is demonstrated
on other features that may lead to a collision and affect the performance. In
all four sets of examples, Vanilla Gradient saliency maps generated by the
original policy (Original VG) are very similar and hard to distinguish.
Different types of saliency maps on a sequence of states in CARLA Driv-
ing. Vanilla Gradient saliency maps generated by the policy trained with
DIGR always demonstrate high saliency on the traffic vehicles while Vanilla
Gradient saliency maps generated by the original policy (original VG) are
noisy and just show saliency in the center region of all states. Gaussian-Blur
perturbation-based saliency maps show saliency behind the vehicle because of
the computation delay. The bar on the right represents the mapping between
saliency values and colors.
a. An example state in the saliency dataset of Red-Fetch-Green. b. Regions
whose saliency is important. c. Regions whose saliency is unimportant. . . .
The performance of DIGR policy could match the performance of the original
policy.

viii

79

6.9

7.1

7.2

7.3

7.4

7.5

Policies trained with DIGR achieve much stronger robustness to all four types
of adversarial attacks (FGSM, PGD, MI-FGSM and MAD) compared to the
policies trained with normal RL algorithms. Although policy distillation also
helps robustness slightly, selective input gradient regularization makes the
most contribution to the improved robustness. All results are averaged over
50 runs in Red-Fetch-Green and 20 runs in CARLA Autonomous Driving.
The shaded area represents one standard deviation.

Simulation setup and model architectures. A. Robot freely explored a square
arena, which had 3 colored cylinders. The robot is located on the middle
right facing the blue cylinder. The inset shows the robot’s camera view. Note
the camera view did not overlay the top-down images during data collection.
Robot was simulated using Webots [Webots, Michel, 2004]. B and C. Varia-
tional AutoEncoders (VAE) reconstruct images from robot simulation. The
latent variables between the Encoder and Decoder are analyzed to understand
the transformations and linkages between views. B. Takes first-person view
as input and reconstructs top-down view. C. Takes top-down view as input
and reconstructs first-person view.
Reconstruction loss during VAE training with 100 latent variables. The true
image is the VAE target and the other images are reconstructions at different
points in the training. A. TDV to FPV transformation. B. FPV to TDV
transformation. L
Representative latent variable responses during simulations with 100 latent
variables. A and B. Latent variables that responded similarly to head direction
cells. C and D. Latent variables that responded similarly to place cells. Note
that C was typical of a First-Person to Top-Down view transformation and D
was typical of a Top-Down to First-Person view transformation.
Spatial metrics for latent variables. The top row shows the distributions
of spatial information and the bottom row shows the distributions of spatial
coherence for simulations with 100 latent variables. The left column compares
the spatial metrics for FPV to TDV transformations (orange) with a random
distribution (blue) in which the location activity bins were shuffled. The
middle column compares the spatial metrics for TDV to FPV transformations
(orange) with a random distribution (blue). The right column compares TDV
to FPV transformations (orange) with FPV to TDV transformations (blue).
The TDV to FPV transformation had significantly stronger spatial metrics
then the FPV to TDV transformation for both information and coherence.

Spatial metrics for latent variables during early training. The top row shows
the distributions of spatial information and the bottom row shows the distri-
butions of spatial coherence for simulations with 100 latent variables after 20,
200, 2,000, and 20,000 epochs of training.

X

94

7.6

7.7

7.8

Relative loss during ablation studies of the top 25% latent variables that were
correlated with objects (Obj), heading (HD), or place (Plc). The figures show
the ratio of the ablation loss to the intact model loss for each image. In each
box, the central mark is the median (red), the edges of the box are the 25th
and 75th percentiles (blue), the whiskers extend to the most extreme data
points that are not considered outliers, and the outliers are plotted individ-
ually with a red plus sign.A. FPV to TDV transformation. B. TDV to FPV
transformation. All reconstruction losses for ablations were significantly larger
for TDV to FPV than for FPV to TDV transforms (p < 0.0000001, Wilcoxon
sign rank test). ...
Relative loss during perturbation experiments. The figures show the ratio of
the loss due to a perturbation loss to the intact model loss for each image.
Relative losses are shown for changing the background to mountains (Mtn),
removing the green cylinder (NoGrn), and removing both the green and blue
cylinders (NoGrnBlu). A. FPV to TDV transformation. B. TDV to FPV
transformation. All reconstruction losses for ablations were significantly larger
for TDV to FPV than for FPV to TDV transforms.
Loss comparison between a sequence of images and a single image used for
reconstruction. L. L L e e

List of Tables

3.1

4.1
4.2

5.1

5.2

6.1

7.1

7.2

Results of High/Low 5-HT Modulating Navigation

Hyperparameters of ACh and NE neuromodulatory systems.
Average time steps needed to achieve 90% performance recovery of each task
of our method and ablated studies. The results are averaged over 6 runs.

Domain adaptation performance of LUSR and benchmarks in CarRacing
games. We train 3 models for each approach and evaluate each model for
100 episodes in each domain after training. The average final score of 3 mod-
els are reported in the table for each approach. We also report the ratio of
scores achieved in target domains to the score achieved in the source domain
to demonstrate the policy transfer performance.
Domain adaptation performance of LUSR and benchmarks in CARLA au-
tonomous driving tasks. We train 3 models for each approach and choose
the best model for evaluation. Each model is evaluated for 10 episodes. The
average score and time steps spent in each episode are reported in the table.

Saliency results of Vanilla Gradient (VG), Guided Backpropagation (Guided
BP), Grad-CAM, Smooth Gradient (Smooth G), Integrated Gradient (Inte-
grated G), Gaussian-Blur Perturbation (GB Perturbation), SARFA of the
original policy and Vanilla Gradient of DIGR policy on Red-Fetch-Green.
Our method keeps a comparable amount of important saliency, reduces all
unimportant saliency, and achieves the highest AUC.

Percentage of strong correlations (p < 0.01). Asterisk denotes significantly
more strong correlations for that transformation direction (p < 0.01; Wilcoxon
rank sum test).
Remapping due to environmental perturbations (LV = 100). Table entries
show the % latent variables that became significant (p < 0.01) and table
entries in parentheses show the % latent variables that became insignificant (p
> (0.01) after the perturbation. Asterisk denotes significantly more remapping
for that transformation direction (p < 0.01; Wilcoxon rank sum test).

x1

60

1

2

LIST OF ALGORITHMS

Waypoint Navigation with Neuromodulated Patience .

Reinforcement Learning with Neuromodulatory System

xil

ACKNOWLEDGMENTS

Foremost, I would like to thank my advisor Professor Jeffrey L. Krichmar for his endless
guidance, support, inspiration, and patience during my PhD journey. Meeting and working
with my advisor is one of the luckiest things in my life. T also sincerely thank Professor Emre
Neftci for his constructive mentoring and kind support. His sharing and feedback are always
inspiring. I would also like to thank Professor Aaron Bornstein, Sameer Singh and Roy Fox
for serving on my committees and providing feedback to strengthen my work.

I also owe my thanks to the following people and/or organizations.

The Cognitive Anteater Robotics Laboratory (CARL). Tiffany Hwu, Hirak Kashyap, Xinyun
Zou, Kexin Chen, Ting-Shuo Chou, Tim Lui, Nicholas Alonso, Harrison Espino, Robert K
Bain, Seyed Amirhosein Mohaddesi, John Shepanski and Lars Niedermeier for sharing their
expert viewpoints and collaborating on diverse projects.

The Neuromorphic Machine Intelligence Lab (NMI). Takashi Nagata, Dan Barsever, Kenneth
Stewart and Yue Yin for sharing their interesting viewpoints and thoughtful discussions.

The funding sources that supported my Ph.D. studies: the National Science Foundation
(NSF), the Defense Advanced Research Projects Agency (DARPA), and the UCI School of

Social Sciences.
Trina Norden-Krichmar for her kind help in English speaking guidance and practice.

My family for supporting my dreams and for being always there with me physically or
remotely.

My wife and best friend, Jie Zhu, for always being by my side, encouraging me, and sharing
the journey with love and care. I am truly blessed to have you in my life.

xiil

VITA

Jinwei Xing

EDUCATION

Doctor of Philosophy in Cognitive Sciences
University of California, Irvine

Bachelor of Science in Computer Science
Sichuan University

WORK AND RESEARCH EXPERIENCE

Graduate Student Researcher
University of California, Irvine

Software Engineer Intern
Google

Research Scientist Intern
Amazon

Machine Learning Engineer
Lieluobo

TEACHING EXPERIENCE

Teaching Assistant
University of California, Irvine

PUBLICATIONS

Xing, J., Nagata, T., Zou, X., Neftci, E. and Krichmar, J.L., 2023.

2023
Irvine, California

2017
Chengdu, Sichuan

2018-2023
Irvine, California

2022
Sunnyvale, California

2021
Irvine, California

2017-2018
Shanghai, China

S’19, F’19, W’20, S’20, W’22

Irvine, California

Achieving efficient

interpretability of reinforcement learning via policy distillation and selective input gradient

regularization. Neural Networks, 161, pp.228-241.

Xing, J., Chrastil, E.R., Nitz, D.A. and Krichmar, J.L., 2022. Linking global top-down views
to first-person views in the brain. Proceedings of the National Academy of Sciences, 119(45),

p.e2202024119.

Xing, J., Zou, X., Pilly, P.K., Ketz, N.A. and Krichmar, J.L., 2022, September. Adapting
to Environment Changes Through Neuromodulation of Reinforcement Learning. In From
Animals to Animats 16: 16th International Conference on Simulation of Adaptive Behavior,

SAB 2022, Cergy-Pontoise, France, September 20-23, 2022, Proceedings (pp.

Xiv

115-126).

Cham: Springer International Publishing.

Nagata, T., Xing, J., Kumazawa, T. and Neftci, E., 2022, July. Uncertainty Aware Model
Integration on Reinforcement Learning. In 2022 International Joint Conference on Neural
Networks (IJCNN) (pp. 1-7). IEEE.

Niedermeier, L., Chen, K., Xing, J., Das, A., Kopsick, J., Scott, E., Sutton, N., Weber, K.,
Dutt, N. and Krichmar, J.L., 2022, July. CARLsim 6: An Open Source Library for Large-
Scale, Biologically Detailed Spiking Neural Network Simulation. In 2022 International Joint
Conference on Neural Networks (IJCNN) (pp. 1-10). IEEE.

Kopsick, J.D., Tecuatl, C., Moradi, K., Attili, S.M., Kashyap, H.J., Xing, J., Chen, K.,
Krichmar, J.L. and Ascoli, G.A., 2022. Robust resting-state dynamics in a large-scale spiking
neural network model of area ca3 in the mouse hippocampus. Cognitive Computation, pp.1-
21.

Xing, J., Nagata, T., Chen, K., Zou, X., Neftci, E. and Krichmar, J.L., 2021, May. Domain
adaptation in reinforcement learning via latent unified state representation. In Proceedings
of the AAAT Conference on Artificial Intelligence (Vol. 35, No. 12, pp. 10452-10459).

Chen, K., Hwu, T., Kashyap, H.J., Krichmar, J.L., Stewart, K., Xing, J. and Zou, X.,
2020. Neurorobots as a means toward neuroethology and explainable Al. Frontiers in Neu-
rorobotics, 14, p.570308.

Xing, J., Zou, X. and Krichmar, J.L., 2020, July. Neuromodulated patience for robot and
self-driving vehicle navigation. In 2020 International Joint Conference on Neural Networks
(LJCNN) (pp. 1-8). IEEE.

Chou, T.S., Kashyap, H.J., Xing, J., Listopad, S., Rounds, E.L., Beyeler, M., Dutt, N.
and Krichmar, J.L., 2018, July. CARLsim 4: An open source library for large scale, bio-
logically detailed spiking neural network simulation using heterogeneous clusters. In 2018
International joint conference on neural networks (IJCNN) (pp. 1-8). IEEE.

Xu, Y., Tang, H., Xing, J. and Li, H., 2017, November. Spike trains encoding and threshold
rescaling method for deep spiking neural networks. In 2017 IEEE Symposium Series on
Computational Intelligence (SSCI) (pp. 1-6). IEEE.

XV

ABSTRACT OF THE DISSERTATION

Understanding the Brain using Machine Learning and Enhancing Machine Learning with
Neuroscience

By
Jinwei Xing
Doctor of Philosophy in Cognitive Sciences
University of California, Irvine, 2023

Professor Jeffrey L. Krichmar, Chair

In recent years, machine learning and neuroscience are increasingly intertwined. On the one
hand, machine learning could benefit from the insights and inspiration provided by the dis-
coveries in neuroscience, as well as the integration of biologically-inspired components. On
the other hand, machine learning techniques can be used to enhance our knowledge of the
brain and its functions. In this dissertation, we demonstrate how they could benefit from each
other, with an emphasis on dynamic environments. We first introduce how machine learning
could benefit from neuroscience. We start with two projects that integrate neuromodula-
tory systems into machine learning systems to handle dynamic environment changes. In the
first project, we used a serotonergic (5-HT') neuromodulatory system to control the patience
level of a mobile robot navigating in outdoor environments, resulting in flexible behaviors
not typically found in traditional navigation solutions. The second project introduced a
reinforcement learning solution augmented with noradrenergic (NE) and cholinergic (ACh)
neuromodulation, enabling the agent to quickly adapt to dynamic environment changes.
Besides the utilization of neuromodulatory systems, in the third project, we proposed a
method of latent unified state representation (LUSR) to improve the domain adaptation
performance of reinforcement learning methods by addressing the adaptation problem from

the pixel domain to a latent space, inspired by the latent representation in brain. The

XVl

fourth project introduced a method of policy distillation with selective input gradient reg-
ularization, inspired by memory consolidation, to achieve computation efficiency and high
interpretability in explainable reinforcement learning. Finally, the dissertation discusses how
machine learning can contribute to the field of neuroscience. The last project studied the
transformation between the first-person view and global view, which utilized the machine
learning technique of variational autoencoder (VAE) to enhance our understanding of how
the brain conducts view transformation in a 3D environment. In summary, this dissertation
demonstrated the mutually beneficial relationship between the fields of machine learning
and neuroscience, highlighting how each field can help the other to achieve advancements in

theory and practice.

xXvii

Chapter 1

Introduction

The ability to interact with the environment and make decisions based on those interac-
tions is a key aspect of both artificial and biological intelligence. In recent years, research
in machine learning has made significant advances in agent-based reinforcement learning,
utilizing deep neural networks. However, most of these achievements have been in static en-
vironments, where the environment dynamics and reward feedback remain fixed. In reality,
the environment can be dynamic and undergo continuous changes, presenting a significant

challenge to handling such scenarios.

Decision making under uncertainty and quick adaptation to environment changes is a crucial
ability for human and animals to survive in the environment. To accomplish this, the brain
employs a variety of processes and mechanisms such as perception, prediction, attention,
and learning and memory. These mechanisms and processes could provide inspirations for
researchers to augment machine learning and reinforcement learning with brain-inspired com-
ponents and algorithms, which may assist in addressing the challenge of handling dynamic

environments.

Besides providing biological inspirations for machine learning, neuroscience could also benefit

< Brain to ML

LSTM, Transformer

t Natural Language
Processing

DQN, PPO, A2C,
DDPG, SAC, DAgger,
Decision
Transformer...

Supply Chain
Management

1 Document
Understanding

*Memory
Replay

*Neuromodulation

Semantic Segmentation,

Contrastive Learning,
Vision Transformer,

ResNet)

*Attention o

*Reinforcement Computer *Prediction

*Autonomous Learning Vision

Driving

*Video Games *Robot Control *Perception

Inspires

Applications/ Machine Brain Biological

Tasks Learning Mechanisms . Evidence/Data
Explains

Reinforces

*Generative q - -
Modeling Cognitive Map Place Cells
*Head Direction

Variational Autoencoder Cells

Diffusion Model
ML to Brain >

Figure 1.1: Summary of research work conducted during my doctoral study. Four rectan-
gle blocks (Applications/Tasks, Machine Learning, Brain Mechanisms and Biological Evi-
dence/Data) form the base of the diagram. The green and purple arrows represent their
relationships (Brain mechanisms inspire machine learning which solves tasks while machine
learning also reinforces brain mechanisms which explain biological data). Each of them fur-
ther derives a series of examples/instances involved in my doctoral study.

* denotes work covered in the thesis
1 denotes other work conducted during doctoral study

from the advancement of machine learning. Machine learning algorithms can be used to ana-
lyze complex neuroscience datasets, enabling the identification of patterns and relationships
that may not be easily detectable through traditional methods. Moreover, machine learn-
ing can reinforce existing theories of brain mechanisms by identifying similar mechanisms
in both artificial neural networks and the human brain. By leveraging machine learning,
researchers can gain new insights into the cognitive processes and functions, leading to a

better understanding of brain.

This dissertation covers a variety of machine learning methods augmented with brain-inspired
components and algorithms to address dynamic environments, and one study to understand

the cognitive function of spatial perspective transformation with machine learning models.

Much of the work presented in this thesis relies on reinforcement learning. Chapter 2 pro-
vides background on Al, machine learning, neuro-inspiration, and reinforcement learning.
Chapter 3 shows how an autonomous system augmented with patience-based neuromod-
ulation mechanism could navigate in outdoor environments and adjust behavior based on
the context and uncertainty of a situation[Xing et al., 2020]. Chapter 4 demonstrates how
prediction and neuromodulation modules allow rapid detection of environment changes and
achieve quick adaptation them [Xing et al., 2022¢]. Chapter 5 introduces a reinforcement
learning method to achieve seamless domain adaptation between multiple visually-different
environments, focusing on the perception [Xing et al., 2021]. Chapter 6 introduces a method
to improve the explanability and robustness of agent decision making, partially inspired by
memory replay[Xing et al., 2023]. Chapter 7 transitions to understanding the cognitive func-
tion of spatial perspective transformation using the machine learning method of variational
autoencoders (VAEs) [Xing et al., 2022a]. Finally, Chapter 8 discusses future directions and

conclusions in the neurorobotics of spatial navigation.

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning is concerned with how agents should take actions in an environment
in order to maximize their cumulative rewards. The environment is typically stated in the
form of a Markov decision process (MDP), which is expressed in terms of state s, action a
and numeric rewards r. At each time step ¢ in the MDP, the agent takes an action a; in
the environment based on current state s; and receives a reward 7,1 following P(ry1|s¢, a;)
and next state s;y1 following P(s;11|8¢, a;) (See Figure 2.1). The goal of the agent is to
find a policy m(s) to choose actions to maximize the discounted cumulative future rewards

Ty + Yrip1 + Y20 + ... where 7 is the discount factor ranges from 0 to 1.

Because of the MDP setting, the state-action value Q(s,a) could be recursively expressed
via the Bellman Equation [Bellman, 1966] which underlies most reinforcement learning al-

gorithms.

'J Agent
——

state reward
A R,

RHI (

s.. | Environment

\

]4_

action
A

Figure 2.1: Reinforcement learning illustration

Qn (st az) = re + Z P(sey1lse, ar)Qn(ste1, 7(141))

St+1

(2.1)

Based on the Bellman equation, there are two main classes of reinforcement learning algo-

rithms, which are known as model-based and model-free. Model-free reinforcement learning

focuses on approximating the value estimation of states or state-action pairs directly from

experiences. One option to learn value estimation is Monte-Carlo methods. In Monte-Carlo

methods, a batch of complete episodes are first generated and then the empirical mean

is calculated from this value estimation. Monte-Carlo methods rely on tracking complete

episodes which could be difficult especially when the episodes are very long. Temporal dif-

ference learning is proposed to solve this challenge. It could update the value estimation

from incomplete episodes with the equation below:

V(sy) = V(st) + alrimr + V(s1) — V(s))

where value is updated towards the estimated return and « is the learning rate.

Different from model-free reinforcement learning that learns value approximation only, model-

based reinforcement learning has access to or learns a model of the environment. The model
contains information of the transition dynamics of the environment which is P(s;.1, r¢|s¢, ar)-
The model allows the agent to do planning by thinking ahead, seeing what would happen
after different choices and deciding what action to take. When the model is accurate, it helps
the agent to do better decision making by allowing it to do planning and also improves sam-
ple efficiency since the model could be used to sample experiences for training just like the
real environment. However, modeling the environment can be very challenging, especially
when the state space is large. As a result, model-based reinforcement learning requires more
processing and time to reach a decision. Compared to model-based reinforcement learning,
model-free reinforcement learning is faster and takes less computation, but cannot reason

over complex problems.

2.2 Neuromodulation

Neuromodulation is a field of neuroscience that focuses on the study of the neural mecha-
nisms that regulate the activity of neuronal circuits in the brain. Neuromodulatory systems,
including the noradrenergic (NE), serotonergic (5-HT'), dopaminergic (DA), and cholinergic
(ACh) systems, track environmental signals and regulate various cognitive, emotional, and

physiological processes such as attention, learning and memory, arousal, and mood.

NE neurons exhibit a robust response to both unexpected environmental changes and task-
relevant stimuli. This suggests that they play a crucial role in triggering a "network reset”,
which leads to a broad reorganization of neuronal activity throughout the brain [Bouret
and Sara, 2005]. This process enables changes in behavior and cognition, facilitating the
adaptation to new circumstances. Xing et al. [2022c] used NE system to track the unexpected

uncertainty about the environment to allow rapid adaptation to environment changes.

5-HT neurons is believed to be important not only for regulating anxious behavior and harm
aversion, but also having an influence on patience control [Miyazaki et al., 2018]. 5-HT based
neuromodulatory system is applied in [Xing et al., 2020] for patience control in mobile robot’s
autonomous driving and navigation system. In a set of outdoor experiments, we showed how
changing the level of patience can affect the amount of time the robot will spend searching

for a desired location.

Dopamine neuromodulation is a vital mechanism in the brain that regulates reward, moti-
vation, and motor control. Theoretical and experimental evidence suggests that dopamine
neurons encode reward prediction error which is important for reward-based learning such
as reinforcement learning. Alternative hypotheses also suggest dopamine neurons respond to
salient or novel environmental events to discover novel actions, or contains the uncertainty

of alternative actions beliefs.

ACh plays an important role in memory consolidation [Hasselmo and McGaughy, 2004],
attention on sensory information [Zou et al., 2020] and uncertainty-mediated inference com-
putations [Yu and Dayan, 2005]. In our project, we used an ACh system to track the
expected uncertainty about the environment. Our ACh system was designed such that each
environment setting corresponded to a specific ACh neuron. The level of activation of the
ACh neuron was directly proportional to the likelihood of the corresponding environment
setting being the current state. As a result, the reinforcement learning agent could choose
appropriate actions based on the status of the ACh system which is particularly helpful when

the environment could dynamically change.

2.3 Attention

Attention is a crucial cognitive process in the human brain that enables us to selectively
focus on specific stimuli or tasks while ignoring irrelevant or distracting information which
is important due to the constraints of limited processing resources in brain. Attention is
frequently studied as arousal or alertness [Oken et al., 2006, Posner, 2008], a form of resource
selectively deployed to specific sensory inputs [Zhou and Desimone, 2011, Bichot et al., 2015]
and important components in executive control [Miller and Buschman, 2014] and memory

[Aly and Turk-Browne, 2017].

Attention mechanism is also widely studied in the field of machine learning for explainabil-
ity and computation. Saliency maps or attention maps are visualization techniques used
to identify and highlight the most relevant or important regions in an input data, such as
an image or text. These maps help to provide insights into the inner workings of machine
learning models, especially neural networks, by demonstrating which parts of the input data
contribute the most to the model’s decision-making process. There are several methods for
generating saliency maps in machine learning. Gradient-based methods [Simonyan et al.,
2013, Springenberg et al., 2014, Selvaraju et al., 2017] compute the gradient of the model’s
output with respect to the input data and use the resulting gradient values to indicate the
sensitivity of the model’s prediction to small changes in the input, allowing for the iden-
tification of important regions. Perturbation-based methods [Greydanus et al., 2018, Puri
et al., 2020, Xing et al., 2022b] systematically perturb or occlude parts of the input data and
measure the impact of these modifications on the model’s output. Compared to perturbation-
based methods, gradient-based methods normally are more computationally efficient but the
resulted saliency maps are more blurry. Xing et al. [2023] proposed a technique of distilla-
tion with selective input gradient regularization to achieve both computation efficiency and

explainability.

Attention mechanisms are also used in deep learning as a computation form to improve the
performance of deep learning models. It provides a way for models to weigh and prioritize
certain parts of the input data during the processing, enabling them to focus on the most
relevant features for a given task. It was first introduced to address the limitations of
sequence-to-sequence (seq2seq) models in natural language processing (NLP) tasks, such as
neural machine translation [Vaswani et al., 2017]. Traditional seq2seq models rely on fixed-
length context vectors to represent entire input sequences, which can lead to information loss
and difficulty in handling long sequences. Attention mechanisms were designed to alleviate
this issue by allowing the model to dynamically select and focus on specific parts of the input
sequence during the decoding process. More recently, the mechanism of self-attention was
developed to allow a model to focus on different parts of the input sequence relative to each
element within the sequence itself and has been the foundation for many state-of-the-art
models in natural language processing, such as BERT [Devlin et al., 2018] and GPT [Brown
et al., 2020].

2.4 Generative Modeling

Generative modeling is a powerful approach in machine learning that focuses on learning
the underlying structure and patterns of a given dataset. By understanding and represent-
ing the data’s distribution, generative models can generate new, previously unseen samples
that closely resemble the original data. Deep generative models, which leverage the expres-
sive power of deep neural networks, have played a significant role in advancing the state of
the art in generative modeling. By approximating complex probability distributions using
vast amounts of training data, deep generative models have demonstrated remarkable per-
formance in various applications such as image generation, text generation, text-to-image

conversion, speech synthesis and so on.

The successes of deep generative modeling come from the rapid development of model-
ing approaches such as Variational Autoencoders (VAE), Generative Adversarial Networks
(GANSs), Normalizing Flows, Diffusion Models and Transformer-based Generative Models.
This section focuses on the introduction of VAE as this is the main approach used in my

dissertation projects.

VAEs combine concepts from deep learning and probabilistic graphical models to create a
flexible, unsupervised learning framework. They can be used to learn a low dimensional
representation z of high dimensional data x such as images. The relationship between the
data input and the latent encoding vector can be parameterized with 0 where py(z), pa(z|2)
and pp(z|z) represent the priority probability of z, likelihood of z given z and posterior
probability of z given x. VAESs use ¢,(z|x) to approximate py(z|z) and optimize the Evidence
Lower BOund (ELBO), which is a lower bound on the log-likelihood of the data. The final

objective is:

Lyag (0, ¢) = —log po(x) + Dkr(qs(2[x)|[pe(2|x))
= —E,q, (%) log po(x2) + Dx1.(¢4(z|x)[ps(2))

0", ¢* = arg ngi(ﬁn Lyar

ps(2z|z) and gp(z|2) are represented by two neural networks respectively. The encoder py(z|z)
maps the input data to a lower-dimensional latent space and the decoder gy(z|z) reconstructs
the original data from the latent representation. By optimizing the ELBO, VAEs learn
to generate diverse and realistic samples while simultaneously learning meaningful latent
representations of the data. These latent representations can be used for various downstream

tasks, such as data visualization, clustering, transfer learning for supervised tasks and so on.

10

Chapter 3

Neuromodulated Patience for Robot

and Self-Driving Vehicle Navigation

(This chapter is reprinted with permission, from Jinwei Xing, Xinyun Zou and Jeffrey L.
Krichmar. Neuromodulated patience for robot and self-driving vehicle navigation. 2020

International Joint Conference on Neural Networks (LJCNN) (pp. 1-8). (©) IEEE.)

3.1 Introduction

Real-world environments can change due to the season, time of day, construction, or the
behavior of other agents. Furthermore, goals, motivations, or context can change due to
altered conditions. Uncertainty can arise due to sensor noise, unforeseen obstacles or uncer-
tain goals. An autonomous system needs to cope with these challenges and have the ability

to rapidly adapt its behavior based on the current situation.

For successful behavior in a dynamic world, an agent may need to tradeoff between patience

and assertiveness. For example, a self-driving car may get stuck at a four-way stop sign

11

because human drivers are not waiting their turn. A self-driving car that became impatient
would eventually assert itself, and move into the intersection. On the other hand, in a
dangerous driving situation (e.g., icy roads), an autonomous vehicle may need to slow down
and possibly delay its arrival time for safe travel. In this case, patience is a virtue. Or if
a search and rescue robot’s task is to locate as many injured people as possible, even if it
means the robot could run out of energy, patient search would be a priority. In these cases, a
signal dynamically regulating the patience, or impatience, of the autonomous system would

be beneficial.

Biological inspiration for regulating patience in autonomous systems could be obtained from
the mammalian nervous system, which has a number of neuromodulators that regulate con-
text, signal changes, and direct actions. The neuromodulator serotonin (5-HT) is thought
to have a role in harm aversion, anxious states, and temporal discounting [Avery and Krich-
mar, 2017]. Recently, Miyazaki and colleagues showed that optogenetically increasing 5-HT
levels caused mice to be more patient, especially when the timing of a reward was uncertain
[Miyazaki et al., 2018]. Based on these results, they developed a Bayesian decision model

for the probability to wait or quit.

Although great progress has been made in the robotics community for path planning, there
are still a number of open issues when it comes to flexible navigation under dynamic con-
ditions [Lavalle, 2011]. Classic path planning algorithms include Dijkstra’s algorithm, A
Star (A*), and D*. Dijkstra’s algorithm uses a cost function from the starting point to the
desired goal. A* additionally considers the distance from the start to the goal “as the crow
flies” [Hart et al., 1968]. D* extends the A* algorithm by working backward from the goal
toward the start position, and can readjust costs, allowing it to replan paths in the face of
obstacles [Stentz, 1994]. However, these cost functions are typically fixed or deterministic.
Neurobiolgically inspired algorithms have demonstrated the ability to readjust paths de-

pending on cost, such as our work on adaptive path planning [Hwu et al., 2017], and Erdem

12

and Hasselmo’s work that demonstrated the ability to take shortcuts [Erdem and Hasselmo,
2012]. The above algorithms do not consider motivation or context, and do not reflect the

flexibility observed in animal navigation.

In order to add context and flexibility to path planning, we apply the Miyazaki et al. [2018]
rodent model of patience to a ground robot. Specifically, our robot navigates through a
series of waypoints. The level of 5-HT dictates how patiently the robot will search for a
waypoint. We show that changing the 5-HT level can have dramatic effects on the robot’s
behavior. Such a system may be beneficial for adjusting autonomous behavior depending on

the context and uncertainty of a situation.

3.2 Methods

3.2.1 Navigation Task

Robot navigation tasks were carried out in two different outdoor parks with varying terrain
and features. Figure 3.1 shows satellite images of the two parks. Waypoints were GPS
coordinates placed on sidewalks in the park. The park on the left of Figure 3.1, Encinitas
Community park, was relatively flat. Waypoints were placed along the perimeter of the test
area on either sidewalks or the paved parking lot. In the middle of the test area was a grassy
region with some trees. The park on the right of Figure 3.1, Aldrich park at the University of
California, Irvine, was hilly with numerous obstacles (e.g., bushes, benches, and buildings).
It should be noted that the Aldrich park test area was in a sunken bowl surrounded by tall
buildings and trees. These features made GPS signals unreliable. For this reason, a road
following algorithm, which will be discussed below, was introduced to assist with navigation.

The waypoints were placed on the sidewalk that surrounded the inner grassy region.

13

Figure 3.1: Parks where robot navigation experiments were carried out. The left is an image
of Encinitas Community park and the right is an image of Aldrich park at the University
of California, Irvine. The labels denote the waypoints (i.e., WP1...WP10). Waypoints were
approximately 50-60 meters apart. Imagery from Google Maps, 2019.

In both parks, the robot’s task was to proceed to each waypoint in order. If the robot became
impatient, it would skip searching for the present waypoint and randomly choose a future

waypoint. However, the robot had to reach the last waypoint for a trial to be complete.

3.2.2 Robot and Software Design

For the robot experiments, we used the Android-Based Robotic platform [Hwu et al., 2017}, a
mobile ground robot constructed from off-the-shelf commodity parts and controlled through
an Android smartphone (see Figure 3.2). An IOIO-OTG microcontroller communicated
with an Android smartphone via a Bluetooth connection and relayed motor commands to
a separate motor controller for steering the Dagu Wild Thumper 6-Wheel Drive All-Terrain
chassis. Three ultrasonic sensors, which were used for obstacle avoidance, were connected
to the robot through the IOIO-OTG. A software application, which controlled the robot,
was written in Java using Android Studio and deployed on a Google Pixel XL smartphone.

The application utilized the phone’s built-in camera, accelerometer, gyroscope, compass, and

14

1 & g A

(a) Android Based Robot in Encinitas Park. (b) Android Based Robot in Aldrich Park.

Figure 3.2: Android Based Robot used for the experiments.
GPS for navigation.

For waypoint navigation, a GPS location was queried using the Google Play services location
API. The bearing direction from the current GPS location of the robot to a desired waypoint
was calculated using the Android API function bearingTo. A second value, the heading, was
calculated by subtracting declination of the robot’s location to the smartphone compass
value, which was relative to magnetic north. This resulted in an azimuth direction relative
to true North. The robot traveled forward and steered in attempt to minimize the difference
between the bearing and heading. The steering direction was determined by deciding whether
turning left or turning right would require the least amount of steering to match the bearing
and heading. The navigation procedure continued until the distance between the robot’s
location and the current waypoint was less than 20 meters, at which point the next waypoint

in the list was selected.

15

3.2.3 Waypoint Navigation and Model of Neuromodulated Pa-

tience

The robot proceeded through a list of waypoints as described above. However, if the robot
became impatient, it skipped the present waypoint and randomly chose a waypoint closer to

the final destination.

The likelihood to skip a waypoint was based on the Bayesian Decision Model given by
[Miyazaki et al., 2018]. Specifically, we calculated the probability to wait given the time

elapsed:

1
1+ expfSHTLE)

p(wait|t) = (3.1)

where 8 was equal to 50, and L(t) was the likelihood of reaching the waypoint at time ¢, and
5HT denoted the serotonin level. The likelihood was calculated with a Normal cumulative
distribution function having a mean of 40 seconds and a standard deviation of 20 seconds.
The likelihood function was multiplied by a scalar that represented the probability of receiv-
ing a reward. As in Miyazaki et al. [2018], we assumed that increasing 5-HT levels caused
an overestimation of the prior probability. Therefore, in our experiments low 5-HT equated
to a probability of a reward of 0.50 and high 5-HT equated to probability of a reward of 0.95
(see Miyazaki et al. [2018] for details). Figure 3.3 shows the resulting probability to wait,

p(Wait|t), curves.

The p(Wait|t) curves in Figure 3.3 were used to decide whether to keep searching for a
waypoint or to forego the desired waypoint and choose another. A random number between

0 and 1 was generated and if the number was greater than p(Wait|t), where ¢ was the time

16

elapsed that the robot had been searching for a waypoint, the robot stopped searching for
this waypoint. A new waypoint was randomly chosen that was closer to the final destination.
Note that if the robot was searching for the final destination waypoint or for a waypoint after
a skip, the p(Wait|t) curve was not referenced. That is, the robot had to reach the shortcut
waypoint or had to reach the final waypoint for a successful trial. See Algorithm 1 for

implementation details.

1.01 —— Low-5HT
High-5HT

o © o
& (o)) (o]
1 I I

Probability of Waiting

o
N
1

0.0 A

0 25 50 75 100 125 150 175 200
Time(seconds)

Figure 3.3: Probability of waiting function. Higher 5-HT levels shifted the curve to the right
resulting in longer wait times.

3.2.4 Road Following with Deep Reinforcement Learning

A road following algorithm based on deep reinforcement learning was used in the experiments
carried out in Aldrich park. This became necessary due to poor GPS reception in this

environment. We used a Deep Q-Network (DQN) for online learning of a driving policy on

the Aldrich park sidewalks [Mnih et al., 2013].

17

Algorithm 1 Waypoint Navigation with Neuromodulated Patience

Input: GPS and compass readings, N waypoints Initialize waypoint index w = 0 Initialize
time count ¢ = 0 Initialize shortcut = false Initialize finished = false while not finished

do

get the current GPS and compass readings if robot is within 20m of waypoint(w) then
if w == N then
| finished = true break

else
| w=w+11¢t=0
end
shortcut = false
end

f not shortcut and w /= N then
generate a random number rand_num and update p(Waitlt) if rand-num >
p(Wait|t) then

update w with a random integer in the range of [w + 1, N) t = 0 shortcut =

true
end

o

end
if not shortcut and in Aldrich park and on road then
| move forward toward waypoint(w) based on road following algorithm
else
| use GPS and compass to get bearing to waypoint(w) navigate toward waypoint(w)
end
t=t+1

end

18

Road Following DQN States and Actions

In reinforcement learning, an agent is acting in an environment. At each time step t, the
agent chooses an action a; € A in response to the current state s; € S. The system makes the
transition from s; to s;,1 with a reward r; based on the reward function R(s;,a;). The goal
of reinforcement learning algorithms is to learn a policy that maps a state s to an action
a, such that the expected sum of rewards E.[>",° 7'r’[s;, a;] is maximized where 7 is the
agent’s behavior function. v € [0, 1] is a discounting factor used to penalize the rewards in
the future. As a value-based deep reinforcement learning method, the DQN learns a state-
action value function (s, a) which outputs the expected discounted sum of future rewards
that will be received by following the policy. Some recent works used deep reinforcement
learning in robot navigation tasks Kahn et al. [2018], Faust et al. [2018], but all of them
are set in ideal indoor environments. To the best of our knowledge, our project is the first
work that trained the robots to navigate in complicated outdoor environments with deep

reinforcement learning.

In our experiments that utilized road following, the agent was the Android-Based Robot
and the environment was Aldrich Park (see figure 3.6). The state was represented by an
annotated camera image, as will be described in Section 3.2.4, from the smartphone that
was mounted on the robot. The reward was either 0.5 when the robot stayed on road or
0 when the robot went off road. In the beginning of each training episode, the robot was
initialized in the center of the road. When the robot was not on road, the episode ended
and the robot was reset to the center of the road for the next episode. In each step, the
robot moved forward for 0.6 seconds with a constant speed but a different steering angle
ranged from sharp left to slight left to straight to slight right and to sharp right. During the
training, the robot was reinforced by staying on the road. After around 15 episodes and 2

hours of training, roughly 2000 training steps, the robot learned to follow the road.

19

Example 1
"y T

Raw
Image

Pixel-wise
Annotation

Figure 3.4: Examples of raw images and pixel-wise annotations in Aldrich Park dataset.
The size of each image is 320x240 pixels and each pixel has a label of either 1 (road) or 0
(non-road). In visualized annotations (lower half), the non-road portion is shown in black
and the road portion is in gray.

Semantic Segmentation of Images

To evaluate the states of the robot in the environment and then generate rewards for the
deep reinforcement learning module, we used ENet [Paszke et al., 2016], a pixel-wise real-
time semantic segmentation neural network. ENet labeled each pixel of the image as road or
non-road. We used middle-bottom portion of the segmented image to evaluate if the robot
was on road. The image size in the experiment is 320x240 pixels and the size of middle-
bottom portion for evaluation is 80x32 pixels. If most pixels in that portion were labeled
as road, we judged that the robot was on road. Otherwise, the robot was thought to be

off-road.

The environment of Aldrich Park and camera setting in this project were very different from
those of popular datasets such as Kitti [Menze and Geiger, 2015] where road detection was
also involved. Therefore, we created a scene understanding dataset for the robot from data
collected in Aldrich Park. Smartphone camera frames were collected in Aldrich Park at dif-
ferent times (i.e., 2pm to 7pm) of day. We selected 418 distinct and representative pictures

and performed binary (road and non-road) pixel-wise labeling for these using the PixelAn-

20

notationTool from [Bréhéret, 2017]. Figure 3.4 shows examples of semantic segmentation
taken from the Aldrich Park dataset. The ENet model trained on the Aldrich Park dataset
allowed us to rapidly label road and non-road portions of a scene and generate rewards for

the deep reinforcement learning module.

Besides its necessity for reward generation, the semantic segmentation module provided two
other benefits. First, the segmented observation, which was fed to the deep reinforcement
module, removed noisy information from the original image and kept the most important
features (road or non-road). This simplified the task for deep reinforcement learning and thus
the training of the DQN was faster. Second, the semantic segmentation module increased
the generalization and adaptability of the self-driving navigation to handle dynamic char-
acteristics of outdoor environments such as lighting changes due to time of day or weather.
Examples in Figure 3.4 show some of the various lighting conditions in the park. Without
the semantic segmentation module, the DQN trained at 2pm could not work at 7pm because
sunlight differences. To solve this problem without the semantic segmentation module, we
would have needed to train under all different environment situations, which would be time
consuming and would need to deal with potential problems such as catastrophic forgetting.
Another case that demonstrates the advantage of semantic segmentation is that, the robot
could avoid a pedestrian automatically because the pedestrian would be labeled as non-road
and the robot would try to stay on road. The robot trained without semantic segmenta-
tion could not achieve this and would instead take random action since the appearance of a
pedestrian was a novel state for it. By separating the scene understanding task from rein-
forcement learning, semantic segmentation enables faster training and better generalization

capability [Hong et al., 2018].

21

Laptop ABR in Park

State
Semantic
Segmentation
Segmented | State Take | Action
Deep Q Learning ActionValucy g ABR Agent

Figure 3.5: High level illustration of the data pipeline for the road following algorithm.
Images from the Android Based Robot’s (ABR) smartphone camera are sent to a nearby
laptop via a socket. The laptop runs a deep reinforcement learning algorithm, which rewards
staying on the road, and generates steering actions for the robot.

22

Road Following Data Pipeline

Figure 3.5 shows the data pipeline. The Android Based Robot took pictures with the smart-
phone’s camera. Using a WiFi “hotspot”, the image was sent to a nearby laptop, which
performed real-time image segmentation of “road” versus “non-road”. The laptop also ran
a deep reinforcement learning network, based on the DQN, which processed the image and
outputted action values used by the agent to choose actions. The actions ranged from sharp
left to slight left to straight to slight right and to sharp right. The reward was also based
on the segmented state. A detailed illustration of the road following deep reinforcement
neural network is given in Figure 3.6. The laptop took about 400 ms to process the infor-
mation, generate an action, and update the network. This was adequate for online learning

in real-time.

The robot learned to follow the road after roughly 2000 training steps. The road following
algorithm was used in Aldrich park where waypoints were set along the sidewalk that sur-
rounded a hilly grass region (Figure 3.1, right). The robot could move to the next waypoint
by following the road. In the present experiments, we segmented road and non-road. But,
potentially, we could also segment people, trees, benches, etc. These object classes could be

used as further inputs for training the network and implementing more complex behavior.

3.3 Results

Two sets of robot navigation experiments were carried out. One set was in the Encinitas
Community park (see Figure 3.1 left) and the other was in Aldrich park (see Figure 3.1
right). In both cases, the robot navigated through a set of waypoints with low and high 5-
HT levels. In Aldrich park, the navigation experiments were carried out with road following

activated.

23

Agent in Environment ENET

Take Observation Segmentation

Si

Rewarder Si

0 if not on road

fewardis { 0.5 if on road

Si

a;
Ti

san|ep uondy
19N UoIINjoAUO)

Q Learning Memory s;

Deep Q Network (si»ai, 7 Siv1)

T

Figure 3.6: Detailed illustration of the data pipeline for the road following algorithm. ENet
was used to segment road from non-road Paszke et al. [2016]. The network gave a positive
reward for actions that kept the robot on the road and a penalty for actions that caused the
robot to go off road. Training was based on a DQN reinforcement learning paradigm Mnih
et al. [2013]. Training and testing were carried out online in Aldrich park.

3.3.1 Waypoint Navigation in Encinitas Community park

We ran 6 trials for low 5-HT and 6 trials for high 5-HT in the Encinitas Community park
(see Figure 3.7). The waypoints were roughly 50-60 meters apart. In Figure 3.7, each
marker denotes the GPS location from the smartphone when the robot was within 20 meters
of a waypoint (different colors denote different trials). Note that this reading could vary

dramatically due to GPS inaccuracies.

The level of 5-HT affected the robot’s patience in finding a waypoint. Over the 6 trials, 9
waypoints were skipped when 5-HT was low, but only 2 waypoints were skipped when 5-HT
was high. The average time before skipping a waypoint was 68 seconds for low 5-HT and
97 seconds for high 5-HT (see Table 3.1). These experiments demonstrated how this model

could change route planning behaviors.

24

Low Serotonin Level — Taking shortcuts

* WP3
o o e
O
°Wp4 N
(@]
S &
[]
* WP5 - o
[e] @ .. .0
(e)
WP6 o wp10@
L]
°
° e
(0] (@]
(@] O~ .
o [
° > WP9
L]
WP7 Wps

High Serotonin Level — Staying on route

A
+WP3 f
ewps 4
A o WP2
&
C'N A‘§
A
"Wk WP1e
o
WP6 o
S48
A é
} LN
L]
WP7 WP

Figure 3.7: Robot navigation trials in the Encinitas Community park. The black dots are
the waypoint destinations (WP1 — WP10). There were 6 trials. Each color represents an
individual trial. Each colored marker denotes the robot reaching a waypoint.

Figure 3.8 shows all the GPS readings from two representative trials, one with high 5-HT

and the other with low 5-HT. In the high 5-HT trial, the robot reached every waypoint. In

the low 5-HT trial, the probability to wait was exceeded for reaching Waypoint 6 after 69

seconds and the robot skipped to Waypoint 9. A video of the robot performing waypoint

navigation with low 5-HT can be found at: https://youtu.be/6EcNchTGLKw, and a video

of the robot performing waypoint navigation with high 5-HT can be found at: https:

//youtu.be/q_mOgbVN6UE.

Table 3.1: Results of High/Low 5-HT Modulating Navigation

Encinitas Park (6 trials) | Aldrich Park (5 trials)
High 5-HT Low 5-HT High 5-HT | Low 5-HT
Navigation Time (s) | 525.521 413.549 414.905 389.625
Shortcuts 0.3 1.5 0.0 1.4
Waypoints Reached 9.67 6.5 8.0 6.0

25

https://youtu.be/6EcNchTGLKw
https://youtu.be/q_m0gbVN6UE
https://youtu.be/q_m0gbVN6UE

A\ High Serotonin

@ Low Serotonin

WP5

WP7 e WPS e

Figure 3.8: Two representative navigation trials in the Encinitas Community park. All the
GPS points are shown. The markers in the figure correspond to the grey markers in Figure
3.7.

26

High Serotonin

Low Serotonin

Figure 3.9: Five trials in Aldrich park with high 5-HT (upper figure) and five trials in Aldrich
park with low 5-HT (lower figure). Red traces are drawn from GPS readings from the phone
mounted on the robot. The robot went across all waypoints one by one in trials with high
5-HT and took multiple shortcuts when 5-HT was low.

3.3.2 Waypoint Navigation in Aldrich park

We ran 5 high 5-HT trials and 5 low 5-HT trials in Aldrich park (see Figure 3.9). Since the
area is sunken in a bowl surrounded by tall buildings and trees, the GPS readings were highly
inaccurate. In particular, the robot had difficulty finding Waypoints 2 and 3 due to the poor
GPS signal. As a result, we introduced the road following algorithm described in Section
3.2.4, which helped the robot stay on the sidewalk and increased the likelihood of finding a
waypoint within the probability of wait constraint. During road following based navigation,
the robot moved towards the waypoint by following the road. Since the waypoints were
placed along the outer ring of the test area, the robot tended to move closer to the next
waypoint by following the road. When the robot decided to take a shortcut because of being
impatient, the movement of the robot was based on GPS because the shortcuts took the
robot off the road and over the grassy interior of the test area. Once the shortcut waypoint

was reached, the road following algorithm took over again.

It should be noted that during road following, the robot took longer to complete the course

with high 5-HT (i.e., 420 seconds on average) than with low 5-HT (i.e., 390 seconds on

27

average) in which shortcuts were taken. However, since the robot was traveling over smoother
terrain with high 5-HT, it reached more waypoints and took less energy than when it took
shortcuts with low 5-HT (see Table 3.1). A video of the robot navigating using road following

can be found at: https://youtu.be/Dix0x02UafQ.

These results show the benefits and the tradeoffs associated with being patient versus being
impulsive during navigation. In both two parks, when 5-HT was high, the robot was more
patient when navigating towards waypoints, which meant it took less shortcuts and reached

more waypoints, but at the cost of taking longer to complete a trial (see Table 3.1).

3.4 Discussion

In the present paper, we showed how a concept from behavioral neuroscience could be applied
to robot navigation and possibly self-driving vehicles. It has been shown that 5-HT in the
brain affects impulsiveness in an animal’s behavior [Miyazaki et al., 2018]. The present model
applied this idea to waypoint navigation in autonomous robots. Specifically, we showed that
simulating high 5-HT led to increased search time for a desired location and that simulating
low 5-HT led to an increase in calling off the search for some waypoints. Even under high
5-HT conditions, if a waypoint was particularly difficult to find or there were environmental
challenges, there was a limit to how long the robot would try to reach a desired location
(see Figure 3.9). Our results showed that neuromodulated patience led to flexible behaviors,

which are not typically found in traditional navigation solutions [Lavalle, 2011, Stentz, 1994].

The goal of the present algorithm and demonstrations was not to achieve some benchmark,
but rather to suggest a neurobiologically inspired strategy that could complement other nav-
igation systems. The present approach could be applied to biomimetic navigation systems

[Milford and Schulz, 2014, Gaussier et al., 2019], as well as engineering approaches to navi-

28

https://youtu.be/DixOxO2UafQ

gation [Urmson et al., 2003, Wang et al., 2008]. In general, the probability to wait suggests
a level of urgency in the overall system. We imagine this could be applied to a number of

tasks where resource allocation is time critical.

Furthermore, the probability of waiting could be associated to some internal parameter in
the system (e.g., battery level or prioritizing goals). Presumably, the impulsiveness signal
in the rodent is closely tied to its natural foraging behavior. The animal will search for
food, but the time it will search depends on the food value and on the uncertainty of the
food resource. Such considerations could be beneficial for a robot navigation system or for

a self-driving vehicle.

The patience-based neuromodulated navigation algorithm adds another dimension to the
present navigation system. By giving the robot an alternative to point-to-point navigation,
the robot now must weigh the cost of staying on a smooth and reliable road that may take
longer to travel versus traversing over rough terrain that may be shorter but takes more
energy and could be potentially harmful to the robot. Since the deep reinforcement learning
introduced here is designed for online learning, these costs could be learned along with the
rewards for staying on the road. Ideally, the deep reinforcement learning algorithm could set

the 5-HT level dynamically.

The present algorithm is a step towards a complete navigation or self-driving system that

takes inspiration from neurobiology and behavioral neuroscience.

29

Chapter 4

Adapting to Environment Changes
Through Neuromodulation of

Reinforcement Learning

(This chapter is reprinted with permission, from Jinwei Xing, Xinyun Zou, Praveen K. Pilly,
Nicholas A. Ketz and Jeffrey L. Krichmar. Adapting to Environment Changes Through
Neuromodulation of Reinforcement Learning. From Animals to Animats 16. SAB 2022. ()

Springer.)

4.1 Introduction

Reinforcement learning (RL) is a learning technique that enables agents to select the ap-
propriate actions in an environment to maximize cumulative reward. In recent years, by
combining RL with deep neural networks, deep RL has achieved success in a wide range

of applications such as games [Silver et al., 2016, Mnih et al., 2015], robot control [Akkaya

30

et al., 2019, Lillicrap et al., 2015] and mobile autonomous driving [Kahn et al., 2021, Xing
et al., 2020]. Despite these successes, RL still faces challenges when applied to more practical

scenarios such as dynamic environments that contain uncertainty [Nagata et al., 2022].

In this work, we investigate how an RL agent can cope with uncertainty in dynamic environ-
ments. There are two challenges for the agent. First, the agent needs to rapidly detect the
environmental change. Without rapid detection, the knowledge learned before the change
could be tainted by the different reward feedback received by the agent after the change.
Furthermore, not recognizing the change could result in performance drops. Second, the
agent needs to remember the knowledge learned under each environment setting. This re-
quires the agent to not only detect the environment change but also identify whether the
changed environment has been interacted with before. When facing a familiar environment

setting, the agent needs to recall the knowledge and avoid learning from scratch again.

To address the challenges above, we take inspiration from humans and animals. Decision
making is a core competency for humans and animals to survive in the environment. In
the past several decades, neuroscience research in decision making tasks support the idea
that the brain uses a form of reinforcement learning to shape decision making [Montague
et al., 1996, Schultz et al., 1997, Hare et al., 2008, Parker et al., 2016]. However, humans
and animals face a similar problem of adapting to environment changes as the real world is
normally uncertain. We suggest that brain’s neuromodulatory system plays an important

role in coping with this uncertainty.

In prior work, we investigated how neuromodulated neural networks could rapidly adapt to
goal changes in classification tasks [Zou et al., 2020]. It was based on a Bayesian model
of neuromodulation to track the uncertainty of interactions with the environment [Yu and
Dayan, 2005 in which the cholinergic (ACh) system tracked expected uncertainty (i.e., the
known degree of unreliability of predictive relationships in the environment) and the nora-

drenergic (NE) system tracked unexpected uncertainty (i.e., large changes in the environment

31

that violate prior expectations). In addition, the NE system caused a rapid adaptation to

goal changes by triggering a ‘network reset’ [Bouret and Sara, 2005, Grella et al., 2019].

The present work extends Zou et al. [2020]’s goal-driven perception model to RL agents,
which must recognize changes to their reward function and adapt appropriately. Inspired by
the neuromodulation systems described above, we developed a reinforcement learning system
in which ACh system tracks the expected uncertainty of the current reward function while
NE system tracks the unexpected uncertainty which could increase when prior actions no
longer produce rewards. These two systems allow the agent to detect task changes rapidly
and identify whether a task is novel or not and thus decide whether and which knowledge
should be recalled. We show how this approach can improve the performance of RL agents

in a Gridworld environment and a MuJoCo walking robot.

4.2 Problem

In this work, we focus on the problem of how to enable reinforcement learning agents to

rapidly adapt to changes in the environment.

We focus on how to adapt when feedback from the environment changes of the reward
function R while other elements including state space S, action space A and state transition

function T" remain unchanged. Here we define a task as a MDP:

Task; =< S, A, T, R; > (41)

where ¢ is the identity of the task. All tasks share the same < S, A,T" > while each task

has its own R;. The environment change could be demonstrated as task switching in a task

32

sequence. As noted below, we define the environment to be composed of a sequence of tasks.

Env = [Tasky, Tasky, Tasks, .. Tasky] (4.2)

where N is the number of tasks in the sequence. Note that T'ask; and T'ask; may share the
same reward function, in which case R, = R;. This means a given task can occur multiple
times in the sequence, and so the agent needs to learn the task and re-utilize the learned

knowledge when exposed to the task again.

4.3 Method

We developed a bio-inspired neuromodulatory system to track the uncertainty of the envi-
ronment which facilitates rapid adaptation to environment changes. Similar to the model
in Zou et al. [2020], our system is composed of ACh and NE neuromodulatory systems. We

introduce their underlying equations below.

4.3.1 ACh and NE Neuromodulation

In our system, the ACh system has K ACh neurons where K is the number of tasks the
agent has detected and initialized as 1. As more tasks are detected by our neuromodulatory
system, the value of K increases accordingly. We use a vector to represent the activity of
ACh neurons, where ACh; represents the uncertainty of Task;. The higher ACh; is, the
more certain that the current task is Task;. A task change is detected when the maximum

ACh value is below a threshold chenange-

33

True if max(ACh) < chenange
Task_Change = (4.3)

False otherwise

Once a task change is detected, the agent needs to judge whether the task is a task that has
been learned before and thus previous knowledge should be recalled or the task is novel and
needs to be learned from scratch. We call this step a ‘task match’. A task match should
happen when the agent has low uncertainty on one task and high uncertainty on all other

tasks, as described below.

P i{xp(ﬁ * ACh;) (4.4)
S cap(B * ACH)

True it Pz > Pmatch
Task_Match; = (4.5)

False otherwise

where P; represents the certainty that the new task is Task;. Once P; goes above the
threshold of ppaien, the system matches the new task with Task; and Task_Match; is set
as True. The softmax function in Equation 4.4 allows the agent to take the complete ACh

system into consideration in task match.

In addition to the task change detection and task match based on ACh system, we use the
NE system to decide whether a new task is novel. The NE system consists of one NE neuron

whose activity represents the unexpected uncertainty on the environment. The activity of

34

the NE neuron increases when a task change is detected by the ACh system while the new
task cannot be matched with previous tasks. When the activity of the NE neuron goes above

a threshold nespresnoid, the new task is believed to be novel.

True if NE > némreshold
Task_Novel = (4.6)

False otherwise

4.3.2 Update of ACh and NE System

Since the only difference between tasks is the reward function R, the uncertainty about the
environment and the update of our neuromodulatory system are based on the difference
between the reward feedback expected by the agent and the actual reward, which is called
reward prediction error in this work. To produce the reward expectation, the agent learns a
reward predictor R; to approximate R; for each Task;. For a set of < s,a,r >, the reward
prediction error is defined as the difference between the predicted reward Ri(s, a) and the

true reward r is

RPE; = Ri(s,a) —r (4.7)

The expected uncertainty (ACh neuron activity) increases when the reward prediction error
is high and decreases when the reward prediction error is low. To simulate this, we use
RPFE,can and RPFE 4 to track the running mean and standard deviation, respectively, of

the reward prediction error and update the ACh system as follows:

35

True if abs(RPE; — RPE ean) < k% RPEgy
Expected; = (4.8)

False otherwise

man(chmaz, ACh; * Chegpected) if Expected;

maz(chumin, ACh; * Chypezpected) Otherwise

where Expected; represents whether the reward for T'ask; is expected by the agent. If so,
ACh; will increase. Otherwise, it will decrease. The hyperparameter k in Equation 4.8
controls the strictness of Expected;. chegpected and Chypegpected are scaling factors used to
increase or decrease ACh neuron activities while ch,,q, and ch,,;, represents their maximum

and minimum values.

The NE system tracks the unexpected uncertainty of the environment and can be used to
detect novel tasks that have have not been observed before. It is updated when a task change
is detected and increases when the task match is incorrect. If the current task is matched

with an old task, then the unexpected uncertainty is resolved and the NE neuron is reset.

min(nemaz, NE * Neynmatehea) if not any Task_Match
NE = (4.10)

NCinit otherwise

where ney pmatchea 1S @ hyperparameter bigger than 1 that is used to increase the NE neuron

activity. nemq. and ne;,; represent the maximum and initial values of the NE neuron.

36

4.3.3 The Complete System

The complete system of our work includes an agent conducting reinforcement learning and
a neuromodulatory system that helps it track the uncertainty of the environment and adapt
to environment changes. The agent needs to remember the knowledge learned in each task.
When a task is encountered again, the agent needs to conduct a task match based on the
neuromodulatory system and reactivate the knowledge once it’s matched to avoid learning
from scratch again. In this work, the knowledge includes the RL policy and reward predictor
that the agent learns for each task. We describe the complete system with the pseudocode

shown in Algorithm 2.

4.4 Experiments

We conducted two experiments to demonstrate the efficacy of our neuromodulatory system
for RL applications: 1. Gridworld (Fig. 4.1) and 2. bipedal walking with a MuJoCo robot
(Fig. 4.2).

The first experiment is based on a Gridworld Environment [Chevalier-Boisvert et al., 2018].
In this grid-based environment, there are four objects with unique colors where the red color
represents the agent while the green, blue and yellow colors represent objects that can be
picked up. The agent needs to navigate in the grid world and pick up the correct object.
Based on the target object to pick up, we define three tasks named as pickup-green, pickup-
blue and pickup-yellow. The agent receives non-zero reward only when picking up an object.

The reward is 1 if the agent picks up the correct object and is -1 if the wrong object is picked

up.

The second experiment is conducted on a MuJoCo simulated bipedal walker robot. Deep-

Mind control suite [Tassa et al., 2018] contains three walker-based tasks including walker-

37

Algorithm 2 Reinforcement Learning with Neuromodulatory System

IHPUt: Chinita Chmaaxa Chminy Cheacpected; Chunexpecteda ﬁ) k’, N€maz, NCinit; NE€threshold
N€ynmatched; max,step

Init: task < 1, AChy < chinit, NE < ne;ni, task_change < False, step < 0, K < 1

while step ; max_step do

Agent selects action and receives feedback from the environment
step < step + 1
if not Task_Change then

Agent stores experiences for RL training

Compute the reward predictor error RPFE} g // Equation 4.7
Update ACh system // Equations 4.8,4.9
Update T'ask_C'hange based on ACh system // Equation 5

if not Task_-Change then
Update RPFE,,cqn and RPFE g,

Train the RL agent
Train the reward predictor

else
| Save the learned knowledge for task

else
for 1 + 1 to K do
Compute T'ask_Match; // Equation 6, 7
if Task_Match; = True then
task < i
Task_Change < False
reactivate the saved knowledge for task i
reset neuromodulation system
Update NE system // Equation 12
Compute T'ask_Novel // Equation 8
if Task_Novel = True then
K+ K+1
task +— K

Task_Change < False
create a new policy and reward predictor for the novel task

reset neuromodulation system

stand, walker-walk and walker-run. In the walker-stand task, the reward is a combination
of terms encouraging an upright torso and some minimal torso height. The walker-walk and
walker-run tasks include a component encouraging forward velocity. We list the hyperpa-

rameters in two experiments in Table 4.1.

38

Hyperparameters GridWorld Worker Robot

Chinit 0.5 0.5
himac 1.0 1.0
Chehange 0.2 0.2
Chexpected 1.1 1.1
Chunexpected 0.9 0.9
Pmatch 0.5 0.5
B 2 2

Nemax 1.0 1.0
NEinit 0.1 0.1
NEynmatched 1.05 1.05
NE€threshold 0.9 0.9

Table 4.1: Hyperparameters of ACh and NE neuromodulatory systems.

In our experiments, the environment change is demonstrated as a task switch. For Gridworld,
we set the task sequence for the experiment of Gridworld as [pickup-green, pickup-blue,
pickup-yellow, pickup-green, pickup-blue, pickup-yellow|. For the MuJoCo robot, we set the
task sequence for the walker as [walker-stand, walker-walk, walker-run, walker-stand, walker-
walk, walker-run|. The task switch in each sequence requires the agent to quickly detect
environment changes while the recurrence of tasks requires the agent to achieve successful

task match and utilize prior learned knowledge.

Our neuromodulatory system is compatible with different types of reinforcement learning
algorithms and settings. In the Gridworld experiments, the agent has a discrete action space
and we use the Proximal Policy Optimization (PPO) algorithm Schulman et al. [2017],
which is an on-policy RL method. In the MuJoCo walker robot experiment, the agent has
a continuous action space and we use the Twin Delayed Deep Deterministic policy gradient

(TD3) Fujimoto et al. [2018], which is an off-policy RL method.

39

e

o

-
t

*

Figure 4.1: Gridworld environment. Examples of three tasks (pickup-green, pickup-blue and
pickup-yellow) in Gridworld environment. In each task, the agent moves towards the object
with a specified color.

walker-stand

walker-walk

walker-run

Figure 4.2: MuJoCo environment. Examples of three tasks (stand, walk and run) of MuJoCo
walker robot. The agent has unique behavior in each task.

40

4.5 Results

4.5.1 Reinforcement Learning Performance

In both experiments, the addition of our neuromodulatory system improved performance.
To demonstrate the efficacy of our method, we conducted an ablation study by disabling the
NE system or disabling both the ACh and the NE system. Since the NE system depends on
the ACh system, we cannot ablate ACh while keeping the NE system. We compared the per-
formance of the RL agent with and without ablations (Figure 4.3). The better performance
on novel tasks when neuromodulation was included due to the agent detecting environment
changes quickly and avoiding detrimental knowledge transfer between tasks. Meanwhile,
the immediate high score on recurring tasks demonstrates that the neuromodulatory system
allows the agent to recognize previously observed tasks and utilize prior knowledge. In the
ablation experiments, when the NE system is disabled, the agent cannot correctly detect a
new task after a task change. As a result, all new tasks were simply recognized as novel
tasks and the agent conducted learning from scratch every time a task change was detected.
When the ACh system is also removed, the agent cannot detect task changes and conduct
normal RL training throughout the whole task sequence. As a result, the agent would have
only one task policy and the knowledge learned in the previous task will all be transferred
to the next one. Its influence on the reward performance depends on the similarities of tasks
in the task sequence. For example, the knowledge transfer in Gridworld is negative since the
correct object to pick up in the last task will be wrong in the next task. As for tasks on
walker robot, knowledge transfer could be more positive since learning to run could benefit
from the knowledge of how to walk. However, in both two experiments, the RL agent with

our neuromodulatory system achieved the best performance.

Besides the general RL performance, we're also interested in the benefits of our neuromod-

ulatory system in fast performance recovery. In the experiments above, each task occurs

41

multiple times in the task sequence and the agent gradually improves performance via learn-
ing when interacting with each task. Although task changes regularly following the task
sequence, an intelligent agent should quickly recover the performance when encountering the
same task again. As a result, we compute the average time steps needed to recover 90% of
the performance when facing a task that has been learned before. As shown in Table 4.2,
our neuromodulatory system allows the agent to achieve much faster performance recovery

compared to the ablated agents.

1.0 10004

0.8 W
800

0.6

3

600 4

400 1 K:
0.0 Al

—— Ours 2004 —— Ours
-02 —— No NE, No ACh —— No NE, No ACh V
—— No NE —— No NE

-0.4

0.4

Reward Return

0.2

Reward Return

4 5 6 0 1 2 3 4 5 6 7 8 9

0 1 2 3
Steps 1e5 Steps 1e5

(a) RL Performance on Gridworld (b) RL Performance on walker robot

Figure 4.3: Results of reinforcement learning performance with and without the neuro-
modulatory system. The bar on top of the figure represents the task sequence. The
task sequence in Gridworld experiment is [pickup-green, pickup-blue, pickup-yellow, pickup-
green, pickup-blue, pickup-yellow] and the task sequence in walker robot experiment
is [‘walker-stand’, ‘walker-walk’, ‘walker-run’, ‘walker-stand’, ‘walker-walk’, ‘walker-run’,
‘walker-stand’, ‘walker-walk’, ‘walker-run’].

Time Steps of Performance Recovery

Ours(Intact) No NE No NE, No ACh

pickup-green 150.3 45060.5 59753.3
pickup-blue 130.7 25510.7 69535.2
pickup-yellow 143.3 29428.7 87605.6
walker-stand 796.0 311000.0 354500.0
walker-walk 1843.0 411500.0 598000.0
walker-run 1542.2 501000.0 585333.3

Table 4.2: Average time steps needed to achieve 90% performance recovery of each task of
our method and ablated studies. The results are averaged over 6 runs.

42

4.5.2 Activity of Neuromodulatory System

We examined the activity of the ACh and NE systems in these two experiments. As shown
in Figure 4.4, our ACh system is able to track the uncertainty on each task and always show

high certainty on the correct task. This allows the agent to efficiently identify the correct

task identity and adapt to task switches.

g
=}
|

Iy
=)
|
o
©
|

Wl

—— ACh_stand
—— ACh_walk
ACh_run

o

—— ACh_pickup-green
—— ACh_pickup-blue

ACh_pickup-yellow 4
| |_|
4 5 6 7

0 1 2 3

o
e}
ACh Activity
o
(=)}

ACh Activity
o
o
o
>

o
IS
|
o
[N]

o
N

8 9

o 1 2 _;, a : Steps le5
le5
stes : (b) ACh activity for the walker robot experi-
(a) ACh activity for the Gridworld experiment. ment.

Figure 4.4: Dynamics of the activity of the ACh system in the two experiments. The bar on
top of the figure represents the task sequence.

As shown in Figure 4.5, our NE system shows high activity for the first and second task
switches since the second and third tasks are novel. The activity of the NE system also
increased for other task switches but didn’t reach the threshold because those switched tasks
have been encountered before by the agent and were not novel. This demonstrates that our
NE system can track the unexpected uncertainty of the environment which allows the agent
to distinguish between novel and familiar tasks. This capability helps the agent to better

adapt to environment changes.

43

g
=}
|
g
=}
|

o
©
o
©
|

— NE
—-=- ne_threshold

— NE
—=- ne_threshold

NE Activity
<)
o
NE Activity
o
=

0.4 0.4
0.2 0.2
| I
0 1 2 3 4‘1 5 0 1 é 3 4 é 6 7 8 9
Steps le5 Steps le5
(a) NE activity for the Gridworld experiment. (b) NE activity for the walker robot experiment

Figure 4.5: Dynamics of the activity of the NE system in the two experiments. The bar on
top of the figure represents the task sequence.

4.6 Conclusion

We developed a system inspired by neuromodulation to track the uncertainty of the envi-
ronment and help reinforcement learning agents to quickly adapt to environment changes.
We demonstrated the efficacy of the neuromodulatory system in two reinforcement learning
experiments; namely, a Gridworld environment and a simulated walker robot. We believe
these results provide insights into how intelligent agents survive in uncertain environments

and also enable the deployment of artificial agents in complicated real-world applications.

44

Chapter 5

Domain Adaptation in Reinforcement
Learning via Latent Unified State

Representation

(This chapter is reprinted with permission, from Jinwei Xing, Takashi Nagata, Kexin Chen,
Xinyun Zou and Jeffrey L. Krichmar. Domain Adaptation In Reinforcement Learning Via
Latent Unified State Representation. Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. No. 12. 2021. (C) AAAL)

5.1 Introduction

Deep reinforcement learning has been successful in a series of control problems, such as
Atari 2600 video games [Mnih et al., 2013] and MuJoCo environments [Lillicrap et al.,
2015]. However, the advances of deep RL relies on a large amount of interactions with the

environment. In addition, the policy tends to specialize to the training domain and fails

45

to generalize to new domains even when these two domains are similar. It has been shown
that slight visual changes on pixel-based observations from Atari games could cause the well
trained policy totally break down [Gamrian and Goldberg, 2019]. These two limitations
make deep reinforcement learning algorithms inefficient when applied to sets of tasks. As a
result, efficient domain adaptation approaches are important for the applicability of Deep

RL.

Although state-of-the-art methods have demonstrated compelling performance in domain
adaptation in RL, these approaches all have their limitations. Domain randomization [Tobin
et al., 2017, Andrychowicz et al., 2020, Slaoui et al., 2020] relies on the availability of multiple
source domains for training and cannot be applied in one-to-many generalization scenarios.
Image-to-image translation approaches [Pan et al., 2017, Tzeng et al., 2020, Gamrian and
Goldberg, 2019] need a computationally expensive generator model for image translation.
The extra burden on computation brought by the generator model is impractical for real-time
applications such as autonomous driving. Other approaches utilize the latent embedding of
encoder-decoder models to extract internal state representation for better generalization
Higgins et al. [2017]. However, domain-specific variations are also compressed into the latent

embedding which could be problematic for zero-shot policy transfer.

To solve the problem of domain adaptation across related RL tasks and avoid limitations of
prior methods, we propose to learn a latent unified state representation (LUSR) for differ-
ent domains and then train RL agents in the source domain based on that. After the RL
training, zero-shot policy transfer is evaluated in target domains. To learn LUSR, we split
the latent state representation into domain-general embedding which contains information
existing in all domains and domain-specific embedding that compress domain specific infor-
mation. LUSR is composed of domain-general embedding only and thus is able to ignore

domain-specific variations and generalize across domains.

To empirically justify our approach, we conducted experiments in two car driving tasks

46

with different visual complexity. We first applied our approach in CarRacing games with
analysis of final domain adaptation performance, domain adaptation performance across
the training period, generalization to totally unseen domains and policy explanation with
saliency maps. Then we evaluated our approach in autonomous driving tasks in CARLA

simulator [Dosovitskiy et al., 2017a] with more challenging and realistic visual observations.

In comparison with other approaches, LUSR does not need RL training in multiple source
domains like domain randomization and thus is applicable to a wider range of tasks. In
addition, LUSR does not need computationally expensive generator models and can achieve
better training efficiency compared with image-to-image translation approaches that operate
in pixel-space. Finally, in contrast with other approaches that use latent state representa-
tion, LUSR filters out the factors of variation across domains and ensures the latent state

representation is unified across all domains.

5.2 Related Work

Related work either tried to tackle domain adaptation in RL by directly generalizing the

policy or learning generalized state representations.

Domain randomization is the most popular approach to directly learn a policy with general-
ization capability [Tobin et al., 2017, Andrychowicz et al., 2020, Slaoui et al., 2020, Laskin
et al., 2020a]. By training on many source domains, the RL agent learns to ignore irrelevant
factors of variation and attend to common features only. However, this approach relies on
the availability of multiple source domains for training and the complexity of this approach

scales with the number of variations.

Instead of learning a policy with generalization capability directly, other works focus on the

generalization of state representations. Some visual domain adaptation works use image-to-

47

image translation to map the pixel-based states in the target domain to the paired states
in the source domain [Pan et al., 2017, Tzeng et al., 2020, Gamrian and Goldberg, 2019].
This is generally achieved via adversarial methods such as Generative Adversarial Networks
(GANs) [Goodfellow et al., 2014], and Unaligned GANs [Liu et al., 2017, Zhu et al., 2017] in
the case where image pairs are lacking. While these methods provide promising results, the
image translation brings extra burden during inference time which is impractical in real-time

applications.

Other works take one step further and try to learn a generalized state representation by
mapping pixel-based states to a latent space [Higgins et al., 2017]. For example, the latent
embedding of variational autoencoder (VAE) can be used as an internal latent state repre-
sentation in RL. We call this method as VAE-Embedding. DARLA further extends the VAE
to B-VAE to encourage the disentanglement of the latent embedding and uses one internal
layer of a pre-trained Denoising AutoEncoder (DAE) [Vincent et al., 2010] as the recon-
struction target. Although disentanglement in latent state representation makes it easier for
RL agents to ignore irrelevant domain-specific features, the policy transfer performance is
not guaranteed because domain-specific features still reside in the latent state representation
and their contribution to the policy output cannot be generalized to other domains. CURL
extracts high-level features from raw pixels using contrastive learning and greatly improves

the sample efficiency [Laskin et al., 2020b].

In this work, we choose VAE-Embedding, DARLA, CURL and CycleGAN-based image-to-
image translation as benchmarks. To make it more clear how LUSR differs from them, we

use Figure 5.1 to demonstrate their frameworks.

48

Stage2:
Stage2: RL Training

RL Training

Contrastive
Stagel: Loss

Learn Contrastive .
Representation s / \
Encoder Momentum Encoder

DAE TD]

Stagel:

Learn to map s° to s*
via B-VAE and DAE

‘ B-VAE
Decoder

S\ -
/,/' B-VAE Encoder \ -

&
(b) CURL

Stage2: Stage2: Policy

RL Training RL Training
Stagel:
Learn image translation

Stagel: across domains

Learn LUSR Decoder 52/

(c) LUSR (ours) (d) CycleGAN Image Translation

Figure 5.1: Architectures of our method (LUSR) and other benchmarks (DARLA, CURL
and CycleGAN based image-to-image translation) used in this work for comparison. The
architecture of VAE-Embedding could be considered as a special case of DARLA that replaces
B-VAE with VAE and avoids the usage of DAE. The learning of all these approaches could
be divided into two stages. The first stage is learning appropriate state representations that
support domain adaptation in RL and the second stage is doing RL training.

5.3 Domain Adaptation in Reinforcement Learning

Reinforcement learning is an area that studies how agents should take actions in an environ-
ment in order to maximize their cumulative rewards. The environment is typically stated
in the form of a Markov decision process (MDP), which is expressed in terms of the tuple
(S, A, T, R) where S is the state space, A is the action space, T is the transition function
and R is the reward function. At each time step ¢ in the MDP, the agent takes an action a;
in the environment based on current state s; and receives a reward r;,; and next state s;.
The goal of the agent is to find a policy m(s) to choose actions that maximize the discounted
cumulative future rewards r; + y7¢41 + ¥?ri42 + ..., where 7 is the discount factor ranging

from 0 to 1.

49

To formalize domain adaptation scenarios in the setting of reinforcement learning, we define
the source and target domains as Dg and Dy. Each domain corresponds to a MDP defined
as tuple (S, A, T, R) and thus the MDPs in the source domain Dg and target domain Dp
are defined as (Sg, Ag,Ts, Rs) and (St, Ar, Tr, Rr), respectively. The source and target
domains could have distinct state spaces S, but their action spaces A should be the same
and their transition function 7" and reward function R should have similarity because of the

sharing internal dynamics. Namely, we focus on policy transfers where Ts =~ T, Rs ~ Ry,

AS = AT, but SS 7é ST.

Take autonomous driving as an example, different domains may correspond to different
weather conditions. For instance, the source domain is driving on a sunny day and the
target domain is driving on a rainy day. While state space S (visual observations) could
differ due to rain and different lighting conditions, the action space A (throttle and steering)
remains the same. As for the transition function 7" and reward function R, they should have
similarity since the state transition for both domains are governed by the traffic condition and
driving control while the reward function for both domains are determined by the movement

of the vehicle.

5.4 Methods

Our approach focuses on learning a latent unified state representation (LUSR) for states
from different domains in RL. In this section, we first introduce the definition of LUSR and

then introduce how to learn it.

50

5.4.1 LUSR Definition

We first introduce two notions for state space in RL which are the agent’s raw observation
state space S° and the agent’s internal latent state space S*. Raw observation states s°
consists of a grid of pixels while each unit in the internal latent state s* represents a high
level semantic feature. A mapping function F : §° — S* maps the observation state to
the corresponding internal latent state. In our work, high level semantic features in S* are
further divided into domain-specific ones (such as weather conditions in the driving task)
and domain-general ones (such as vehicle dynamics). Here we denote S* = (@,?) where
e represents domain-specific features and S* represents domain-general features. For state

representation in source and target domains, this is summarized as

S # S
Sz = (5%,9%); Si=(5z,5%) (5.1)

S;="57 Si#5;

In our setting of domain adaptation, the transition function 7" and reward function R only
depend on S* which is consistent across domains. Here we define the reward and transition
function that take s° as input as R° and T° while the reward and transition function that

take s* as input as R* and T”*. Then, we have

T4 Ty Ry + Ry
T; = T(53) = T(57) = T (5.2)

R§ = R(S3) = R(S7) = R}

51

Since S7 is consistent across domains and the reward structure (7' and R) depend only on
this representation (not on S\Z), the RL agent taking S* as input will be able to be trained
successfully and the trained agent also has the capability to adapt from the source domain
to target domains. As a result, the goal of our approach is learning the mapping function
F : S° — S7 that maps raw observation states to the latent unified state representation

which we call LUSR.

5.4.2 Learning LUSR

In this work, we choose to learn the mapping function F : S° — 5% via Cycle-Consistent
VAE [Jha et al., 2018] which is a non-adversarial approach to disentangle domain-general
and domain-specific factors of variation. Similar to VAE [Kingma and Welling, 2013], Cycle-
Consistent VAE is also composed of an encoder and a decoder. However, the output from the
encoder is split into domain-general and domain-specific embeddings. To learn the mapping
function F, a number of random observation states from a set of pre-defined domains are
first collected and then used as input for Cycle-Consistent VAE model training. Once the
model is trained, the encoder is able to map observation states s° from any domain in the
domain set to a latent state representation composed of 57 and s*. As a result, we use the

trained encoder as our mapping function F and keep only domain-general representation as

LUSR.

Cycle-Consistent VAE is based on the idea of cycle consistency whose intuition is that two
well trained forward and reverse transformations composed together in any order should ap-
proximate an identity function. For example, in the VAE, the encoder is a forward transfor-
mation that converts an input image to a latent vector while the decoder is the reverse trans-
formation that converts the latent vector back to a reconstructed image. Here we define the

forward cycle as: Dec(Enc(s°)) = s°7 and the reverse cycle as Enc(Dec(s%,57)) = (571, 571).

52

As indicated by the cycle consistency, s/ should be close to s° and also (577, 577) should be

close to (s%,57).

In the forward cycle of Cycle-Consistent VAE, for two observation states s7, s§ from the same
domain, Enc(s?) = 57,57 and Enc(s3) = s3, 5. Since both originate from the same domain
and s* contains only domain-specific information, swapping gf and 3A§ should have no effect
on the reconstruction loss which means we should get Dec(s3,57) ~ ¢ and Dec(s?,s3) & s9.

This operation ensures that domain-specific information and domain-general information are

compressed into s and s? separately.

In the reverse cycle, a randomly sampled s* is passed through the decoder in combination
with two domain-specific embeddings gf and 5\5 to obtain two reconstructed images s{/ and
s91. Since both s97 and s3/ are generated based on the same s?, their corresponding domain-

general latent embedding s/ and s3/ should also be the same.

As a result, the objective for Cycle-Consistent VAE to minimize is

»Ccyclic = Efofrward + 'Creverse (53)

where

‘Cforward = - Eq¢(s77sz|so)[10gp9(so|?, S/Z*)]
+ K L(gy(57|s%)[Ip(s7))

Lreverse =gz p(e9) 186 (Po (57, 1)) = Go(po (5%, 53)) 1]

L torward here is a modified variational upper-bound and L, cyerse is the loss for cycle con-
sistency. g4 and pg are parameterized functions of the encoder and decoder. We define g,
as g, that only keeps the domain general embedding as output. The latent embedding s*

is composed of 57 and s* which are domain-general and domain-specific latent embeddings

53

corresponding to observation state s°. s#x represents any random domain-specific embedding

from the same domain while sAtf and §§ are two different domain-specific embeddings.

5.5 Experiments

We first apply our approach to a set of CarRacing variants which allows manual manipula-
tions of the visual observations. This flexibility allows us to analyze the influence of different
categories of variations on the performance of domain adaptation in RL. After that, our
approach is applied in autonomous driving tasks in the CARLA simulator in which the ob-
servational states are much more complicated and helps us to evaluate the ability of our

approach to scale up to more challenging tasks.

5.5.1 CarRacing

We first apply our approach on variants of CarRacing game which is a continuous control
task to learn to drive from pixels. As shown in Figure 5.2, we divide all variants into
three categories: source domain, seen target domains and unseen target domains. We first
collect random observation states from the source domain and seen target domains to learn
the mapping function F which maps raw observation states to LUSR. In each domain, we
collect 100k images and thus have 500k images in total (one source domain and four seen
domains). The collected images are used as the dataset to train a Cycle-Consistent VAE
model whose encoder is the mapping function F we need. After that, we train the RL agent
in the source domain with LUSR for 10 millions steps via Proximal Policy Optimization
(PPO) [Schulman et al., 2017] algorithm. In this work, we use Ray RLIlib [Liang et al.,
2018] and RLCodebase [Xing, 2020] for the PPO implementation. After the RL training, we

test the RL agent’s performance of adapting to the seen target domains and unseen target

o4

Figure 5.2: Variants of CarRacing games. A. The original version of CarRacing game which is
set as the source domain. B. The seen target domains of CarRacing games whose observation
states are collected for learning LUSR. C. The unseen target domains of CarRacing games.
These two domains are never exposed to the agent, not only during RL training but also
during latent state representation learning.

domains.

With the ability of inducing manual manipulations over the observation states, we design two
types of variations. The first type is color change including changing the background color,
the car color and the road color. For example, the background color in all target domains is
different from that in the source domain. Another type of variation is inducing patterns. For
example, we induce a red blob at a fixed position in the fourth game of seen target domains
(B,). In summary, compared with the source domain A;, seen target domains B; and Bs
have color changes while B3 and B4 have both color changes and new patterns. For unseen
target domains, C'; combines all variations introduced in seen target domains and Cs uses a

totally new background color.

%)

Evening Clear Noon Hard Rain

Figure 5.3: Experiment of the driving task in CARLA simulator. Examples of the driver
view (observation states) under three different weather conditions: evening, clear noon and
hard rain from left to right.

5.5.2 Autonomous Driving in CARLA

Although CarRacing games are suitable to study the domain adaptation problem of RL
agents, the observation states are relatively simple compared to real world observations
during driving. To further evaluate the performance of our approach, we applied it in a much
more challenging task: autonomous driving in the CARLA simulator. In this experiment,
we first choose a start point and an end point in the map of town07 for the driving task.
To go from the start point to the destination, the vehicle must go through a curvy road and
avoid collisions and lane crossings. The action space is composed of two continuous values
for driving control (throttle and steering). At each step, the driving control is applied on
the vehicle for 0.1 simulation second. We use images captured by a camera attached to the
front end of the RL agent vehicle along with the current speed as the observation states.
Each episode terminates if the vehicle collides, runs out of the lane, reaches the destination,
or reaches the maximum episode timesteps (800 in this experiment). To make the CARLA
simulator compatible with RL training, we use a gym wrapper of CARLA in the experiment

[Chen et al., 2019].
To study domain adaptation, we test the model under different weather conditions and times

56

of day. Specifically, the RL agent is first trained in the late evening and then tested in the
weather of clear noon and hard rain. Examples of the driver view under these conditions are

shown in Figure 5.3.

Since CARLA aims to provide realistic simulations of urban driving, the observation states
in this driving task are much more complex and challenging for domain adaptation compared
to states in CarRacing games. Besides that, the complexity of environment dynamics also
makes the simulation of CARLA slower compared to CarRacing games. As a result, we set
the number of PPO training steps in this experiment as 50k. This further requires the RL
agent to have a high training efficiency to achieve good performance with limited number of

interactions with the environment.

5.6 Results and Discussion

In this section, we introduce the results of our approach in two experiments along with other

benchmarks.

5.6.1 CarRacing
LUSR Demonstration

We first demonstrate the effectiveness of LUSR. In our approach, the latent embedding is
split into domain-general embedding s? and domain-specific embedding s*. To verify that
these two embeddings are well disentangled, we first select random images from the source
domain and seen target domains and then extract their latent embeddings. For example,
we get 57 and 57 for image s¢, and 53 and 53 for image s3. If we feed the decoder with a

latent embedding composed of S,Af and s3, the reconstructed image s°/ should have visual

57

Figure 5.4: Results of Cycle-Consistent VAE. The first row are four random images from the
source domain and the second row are four random images from four seen target domains
respectively. The last row are reconstructed images that take $* from the first row and 57
from the second row.

58

features from both s{ and §. Furthermore, the shared features between s°/ and s{ should be
domain-specific while the shared features between s°/ and s should be domain-general. As
shown in Figure 5.4, the third row of images are generated with s* from the first row and
s# from the second row. As a result, their domain-specific features (color and patterns) are
the same as the first row of images while the domain-general features (road shape) are the

same as images in the second row.

Domain Adaptation After Training

After the RL training in the source domain, we evaluate the domain adaptation performance
of our approach and other benchmarks in both seen target domains and unseen target do-
mains (see table 5.1). The result shows that RL agents trained with LUSR are able to
generalize to all target domains almost without performance loss and achieve best scores in
most target domains. For DARLA, the choice of parameter [strongly affects the adaptation
performance. Furthermore, it generalizes better in target domains with only color variations
and could fail to adapt to domains with new patterns. VAE-Embedding has notable per-
formance loss for all target domains. CURL has the worst transfer performance among all
approaches and completely fails in most domains. Finally, CycleGAN can also adapt to all
target domains without performance loss. However, the final scores are not comparable to

other approaches that use latent embeddings as input for RL training.

Domain Adaptation During Training

Besides the domain adaptation performance after training, we’re also interested in the adap-
tation performance during the training period. Since the RL agent will be more and more
deterministic in action selection during the training, the domain adaptation performance

could also be affected. As a result, we evaluate the model adaptation performance every

59

Approach Source Domain Seen Target Domains Unseen Target Domains
CarRacing Al | CarRacing Bl CarRacing B2 CarRacing B3 CarRacing B4 | CarRacing C1 CarRfacing C2
Score Score(Ratio) ~ Score(Ratio) Score(Ratio) Score(Ratio) | Score(Ratio) Score(Ratio)
LUSR 805.13 803.52 (1.00) 807.37 (1.00) 803.11 (1.00) 781.94 (0.97) | 678.7 (0.84) 800.56 (0.99)
DARLA(S = 10) 845.87 645.81 (0.76) 250.85 (0.30) -72.99 (-0.09) -62.96 (-0.07) ()o 72 (-0.08) 631.09 (0.75)
DARLA(S = 30) 851.48 834.99 (0.98) 819.05 (0.96) -60.76 (-0.07) -73.18 (-0.09) 55 (-0.09) 806.76 (0.95)
DARLA(S = 100) 778.78 704.27 (0.90) 207.9 (0.27) 451.81 (0.58) 27.77 (0.04) 182 30 (0.23) 539.63 (0.69)
VAE-Embedding 816.74 616.89 (0.76) 282.71 (0.35) 484.57 (0.59) 223.88 (0.27) | 332.58 (0.41) 595.42 (0.73)
CURL 748.58 560.23(0.75) -44.24(-0.06) -55.29(-0.07) -32.45(-0.04) | -113.13(-0.15) -69.23(-0.09)
CycleGAN 709.12 707.64 (1.00) 704.33 (0.99) 713.86 (1.01) 711.85 (1.00) | 715.43(1.01) 671.67(0.96)

Table 5.1: Domain adaptation performance of LUSR and benchmarks in CarRacing games.
We train 3 models for each approach and evaluate each model for 100 episodes in each
domain after training. The average final score of 3 models are reported in the table for each
approach. We also report the ratio of scores achieved in target domains to the score achieved
in the source domain to demonstrate the policy transfer performance.

Approach Source Domain Target Domains
CARLA (Evening) | CARLA (Clear Noon) | CARLA (Hard Rain)

Score Steps Score Steps Score Steps
LUSR 1125.06 469.1 | 1175.61 565.3 1270.32 515.6
DARLA 841.59 342.0 194.41 134.2 187.97 119.9
VAE-Embedding | 1113.90 384.9 674.42 744.2 846.14 527.4
CURL 1112.42 521.2 44.34 42.4 73.63 60.2
CycleGAN 333.57 175.1 333.88 174.9 332.71 163.6

Table 5.2: Domain adaptation performance of LUSR and benchmarks in CARLA au-

tonomous driving tasks.

We train 3 models for each approach and choose the best model

for evaluation. Each model is evaluated for 10 episodes. The average score and time steps
spent in each episode are reported in the table.

60

|

0]
O

C

©

€ 0.8

e

O

D_0.6-

£ 0.44 LUSR \’-\
5 —— VAE-Embedding

© 0.21 — CycleGAN

I —— CURL

o

o
o

2 3 4 5 6 7 8 9 10
Train Frames (millions)

Figure 5.5: Domain adaptation performance during training in CarRacing comparing LUSR
to other benchmarks.

1 million frames of training for all approaches. Our result shows that both LUSR and
CycleGAN have consistent adaptation performance during the whole training period while
the adaptation performance of DARLA and VAE-Embedding gradually decrease (see Figure
5.5). This demonstrates that domain-specific features do contribute to the RL policy output
if they are included in the latent state representation and their influence will be more and

more problematic as RL training goes on.

Saliency Map

Saliency map is an approach to visualize and understand the behavior of RL agents. In this
work, we also use saliency maps [Greydanus et al., 2018] to visualize how RL agents trained
with different methods attend to the observation states (see Figure 5.6). The result shows
that RL agent trained with LUSR has more centralized attention and mainly attends to the

center of the road. In comparison, the saliency maps generated by other approaches are

61

DARLA LUSR VAE-Embedding CURL CycleGAN
Attention Attention Attention Attention Attention

Input Image

Figure 5.6: Examples of saliency maps generated by RL agents trained via DARLA, LUSR,
VAE-Embedding, CURL and CycleGAN. The RL agent trained with LUSR has the most
centralized attention and mainly attends to the center of the road.

much more diffused and attend more to the edges between road and grass rather than road
itself. Although it also makes sense to learn to drive based on the edges, the contrast between
them could also change when the color of grass changes and thus brings more challenges in
generalization. This may explain why LUSR has better generalization performance than

other benchmarks.

5.6.2 Autonomous Driving in CARLA

We further apply our approach in the autonomous driving task in CARLA simulator whose
observation states are more complicated and thus increase the difficulty of RL training and

generalization.

LUSR Demonstration

We also demonstrate the disentanglement of domain-specific embedding and domain-general

embedding for images in CARLA simulator (see Figure 5.7). We first collect paired ob-

62

)
2)

—
[’
Lk
@
=N
—

—
»

k]
wn

=N

)
)

A
w
25
»
[NVRY
-

RL

.85 > policy

Encoder

—
»
on
w
[N

)
2)

—
w»
Lon
w»
wn
~

—
&

Lon
&

@

e
&g - o)ﬁ - o
e Clear Noon & ™ a= s Clear Noon r
L] i . L] i
Hard Raln. - Hard Ram. » ‘f
e Late Evening b «® e Late Evening

(b) (c)

Figure 5.7: Demonstration of the disentanglement of domain-general embedding and domain-
specific embedding in related CARLA driving tasks. a. The workflow of generating paired
observational states and extracting latent embeddings. b,c. t-SNE plot of the domain-
general and domain-specific embeddings from three CARLA driving tasks.

servation images from three tasks by placing the vehicle at the same starting point in the
map and taking same actions in the driving. After collecting images, we extract their la-
tent domain-general and domain-specific embeddings via a trained encoder and show their
t-SNE plots in Figure 5.7b and 5.7c. It shows that domain-general embeddings from differ-
ent tasks do have close similarities while domain-specific embeddings from different tasks are
well clustered separately. The result demonstrates the disentanglement of domain-general
and domain specific embeddings for images in CARLA driving tasks and thus supports the

feasibility of LUSR in more challenging scenarios.

63

Domain Adaptation Performance

For domain adaptation in CARLA autonomous driving tasks (see Table 5.2), RL agents
trained with LUSR is able to achieve zero-shot policy transfer without performance loss for
both two target domains. It also achieves best scores in all domains compared with other

approaches which shows the training efficiency of LUSR.

Different from in CarRacing games, DARLA fails to adapt the trained policy in two target
domains in CARLA autonomous driving tasks. This may be due to DARLA increasing
the disentanglement of the latent embedding at the sacrifice of information accuracy. For
complicated observation states like images in CARLA, it’s much more difficult to achieve
good disentanglement of each latent unit and the problem of information loss in the latent
embedding is more serious. This causes the quality of the latent embedding in DARLA to
be worse than LUSR and VAE-Embedding. This argument is supported by the results that

higher 5 in DARLA leads to worse RL training performance.

VAE-Embedding achieves similar training performance in the source domain as LUSR while
its adaptation performance in target domains is worse. Besides that, its driving behavior in
target domains is very different from the behavior in the source domain. When adapting to
target domains, the RL agent drives much slower and frequently reaches the time limit of
each episode. As shown in table 5.2, compared to the result in the source domain, RL agents
trained with VAE-Embedding receive lower scores while spending more time steps in each

episode when driving in target domains.

Although CURL achieves comparable training performance in the source domain as other
approaches, it completely fails to generalize to the two target domains in CARLA. To un-
derstand the reason, we conducted a tSNE analysis for CURL. The result reveals clusters
based on domain labels. We believe the reason is that domain specific features are very use-

ful in learning to assign low similarities for two states from different domains during CURL

64

training and thus much domain specific information resides in the embedding of CURL. This

prevents generalization across domains.

CycleGAN is also able to generalize to target domains well. However, it relies on pixel-
wise input and the training efficiency is limited compared with other approaches that utilize

internal latent state representation.

5.7 Conclusion

In this work, we propose to disentangle domain-general embedding and domain-specific em-
bedding in the latent state representation of RL and theoretically formalize it in the scenario
of domain adaptation. We propose LUSR which utilizes the domain-general latent embed-
ding as state representation and prove its efficiency in two RL tasks with different visual
complexity. As a result, our work enhances the applicability of Deep RL to real-world tasks

that need both good domain adaptation performance and high training efficiency.

65

Chapter 6

Achieving Efficient Interpretability of
Reinforcement Learning via Policy
Distillation and Selective Input

Gradient Regularization

(This chapter is reprinted with permission, from Jinwei Xing, Takashi Nagata, Xinyun Zou,
Emre Neftci and Jeffrey L. Krichmar. Achieving efficient interpretability of reinforcement
learning via policy distillation and selective input gradient regularization. Neural Networks,

161, 228-241. (©) Neural Networks.

6.1 Introduction

Reinforcement learning (RL) systems have achieved impressive performance in a wide range

of simulated domains such as games [Mnih et al., 2015, Silver et al., 2016, Vinyals et al.,

66

2019, Wang et al., 2020], robotics [Lillicrap et al., 2015, Fujimoto et al., 2018, Haarnoja
et al., 2018], automatic control [Li et al., 2017, Wang et al., 2022] and computer vision tasks
[Le et al., 2021]. However, the interpretability of an agent’s decision making and robustness
to attacks need to be addressed when applying RL to real-world problems. For instance, in
a self-driving scenario, real-time interpretability could explain how an RL agent produces a
decision in response to its observed states and enable a safer deployment under real-world
conditions and adversarial attacks [Ferdowsi et al., 2018, McAllister et al., 2019, Bojarski

et al., 2018, Chen et al., 2020b].

Saliency maps in deep learning are used to interpret input features that are believed to be
important for the neural network output [Simonyan et al., 2013, Selvaraju et al., 2017, Fong
and Vedaldi, 2017, Smilkov et al., 2017, Sundararajan et al., 2017, Zhang et al., 2018, Nguyen
et al., 2019]. As the issue of interpretability in RL gets more attention, a number of methods
have been proposed to generate saliency maps to explain the decision making of RL agents.
Existing saliency map methods in RL either used gradients to estimate the influence of
input features on the output [Wang et al., 2016] (gradient-based methods) or computed the
saliency of an input feature by perturbing it and observing the change in output [Greydanus
et al., 2018, Iyer et al., 2018, Puri et al., 2020] (perturbation-based methods). Gradient-
based methods can compute saliency maps efficiently with backpropagation. However, the
quality of these gradient-based saliency maps was generally poor [Rosynski et al., 2020].
Perturbation-based methods are effective in highlighting the important features of the input,
but at a significant computational cost, which can make them ineffective when deployed on
systems with real-time constraints. As a result, existing RL agents cannot provide high

interpretability in a computation-efficient manner.

Different from previous work proposing new saliency calculation methods, we focus on im-
proving the natural interpretability of RL policies. Given an RL policy, we propose an

approach of Distillation with selective Input Gradient Regularization (DIGR) that uses pol-

67

icy distillation and input gradient regularization to retrain a new policy. In our approach,
input gradient regularization selectively regularizes gradient-based saliency maps of the pol-
icy to imitate its interpretable perturbation-based saliency maps. This allows the new RL
policy to generate high-quality saliency maps with gradient-based methods and thus achieve
both high interpretability and computational efficiency. At the same time, to ensure that
input gradient regularization does not cause task performance degradation, we use policy
distillation [Czarnecki et al., 2019] to constrain the output of the new RL policy to remain

close to the original RL policy.

We evaluate our method in three different tasks, which include an object fetching task
from MiniGrid [Chevalier-Boisvert et al., 2018], Breakout from Atari games and CARLA
Autonomous Driving [Dosovitskiy et al., 2017b]. The results show that RL policies trained
with our approach are able to achieve efficient interpretability while maintaining good task
performance. Selective input gradient regularization also improves the robustness of RL
policies to adversarial attacks. These two desired properties allow the RL policy to better

adapt to real-world scenarios.

To summarize, we demonstrate a novel approach to improve the efficient interpretability and
robustness on attacks on RL policies based on the utilization of saliency maps. Our approach

increases the applicability of RL to real-world problems.

6.2 Background and Motivation

6.2.1 Policy Distillation

Policy distillation [Rusu et al., 2015, Czarnecki et al., 2019] transfers knowledge from one

teacher policy m; to a student policy 7, by training the student policy to produce the same

68

D\GRI

Integrated Gradient Vanilla |
Gradient

Guided |
Backprop

Grad-CAM -

Vanilla Gradient ~ Guided Backprop Grad-CAM

state

Integrated |
Gradient

Smooth |
Gradient

s I
Perturbation

10°3 1072 101 10°
Seconds

(b) Saliency Map Generation
(a) Saliency Maps of Red-Fetch-Green Time

Figure 6.1: (a). Different saliency maps on Red-Fecth-Green. All gradient-based saliency
maps (Vanilla Gradient, Guided Backprop, Grad-CAM, Integrated Gradient and Smooth
Gradient) produced by the PPO policy are noisy and show noticeable saliency on task-
unrelated features. Gaussian-Blur Perturbation (GB Perturbation), SARFA saliency maps
and saliency maps produced by DIGR approach demonstrate saliency on the red agent and
green target object only. (b). The average time for each method to explain one action
selection for states of Red-Fetch-Green during policy deployment with a CPU of Intel i7-
9750H and a GPU of GeForce RTX 2080 Ti. We mark DIGR with purple and use red
and green colors to represent normal gradient-based and perturbation-based saliency map
methods.

behavior as the teacher policy. This is normally achieved by supervised regression to minimize

the following objective:

J = Bsor [D(mi(5), m5(5))]; (6.1)

where 7. is the control policy that interacts with the environment to produce states for
training, and D is a distance metric. There are multiple choices for both 7. and D. For
example, the control policy 7. could take the form of the teacher policy m; or student policy
s or even a combination of them. Suitable distance metrics could be mean squared error or

Kullback—Leibler divergence (KL divergence).

69

6.2.2 Saliency Map in RL

Addressing the interpretability of RL has attracted considerable attention in recent years.
One common category of methods used visualization techniques such as saliency maps [Wang
et al., 2016, Greydanus et al., 2018], attention mechanism [Mott et al., 2019] and object de-
tection [lyer et al., 2018] to explain deep neural network policies. Some other methods aimed
to learn intrinsically interpretable policies in the formats of decision tree [Silva et al., 2020,
Liu et al., 2021], programming language [Verma et al., 2018] or logic formulations [Zhang
et al., 2021]. Besides the methods above, researchers also enhanced the understanding of RL
decision making by using evidence-driven interpretation [Dao et al., 2018, 2021], contrastive
explanations [Lin et al., 2020], counterfactual analysis [Rupprecht et al., 2019, Atrey et al.,
2020] and state abstraction [Topin and Veloso, 2019]. In this work, we focus on saliency map

explanations.

Saliency map techniques are popular in computer vision and RL communities for interpreting
deep neural networks. Gradient-based methods calculate the gradient of some function f
with respect to inputs s based on the chain rule and then use the gradients to estimate the
influence of input features on the output. In RL, one common approach is the Jacobian
saliency map [Wang et al., 2016] which computes the saliency of input feature s; as \%ﬁf”
where function f could be calculated from either the state-action value Q(s, a) in Q-learning
or the action distribution 7(s) in actor-critic methods. Other gradient-based visualization
methods from the field of image classification are also explored [Greydanus et al., 2018,

Rosynski et al., 2020] but most of them didn’t work well in the RL domain.

Perturbation-based methods compute the saliency of an input feature by perturbing (e.g.
removing, altering or masking) the feature and observing the change in output. Given a state
input s, a perturbed state s’ could be generated by inducing a perturbation on input feature

s;. The approach of computing the change in output caused by the perturbation may vary

70

based on the form of RL agent. For example, in Q-learning, the network output is a scalar
and thus the saliency of s; could be defined as |Q(s,a) — Q(s’,a)|. In actor-critic methods,
the saliency of s; could be defined as Dy (mw(s)||m(s")) which is the KL divergence between
action distributions before and after the perturbation. Alternatively, [Greydanus et al., 2018]
considered the output of actor as a vector and computed the saliency as 3|[m(s) — 7 (s")|[%.
Puri et al. [2020] further proposed an approach of Specific and Relevant Feature Attribution

(SARFA) to address the specificity and relevance in perturbation-based saliency maps.

6.2.3 Motivation

We first introduce a simple fetching-object task in MiniGrid and demonstrate the results of
different saliency map methods on this task to motivate our method. In the fetching-object
task in MiniGrid, the environment is a room composed of 8x8 grids and 4 entities with
unique colors. The red agent needs to locate and pick up the green object, while the yellow
and blue objects are distractors. Based on the task rule, we name this task as Red-Fetch-
Green. We first use PPO [Schulman et al., 2017] to train an RL policy to solve the task and
then investigate the interpretability and computation efficiency of different saliency map
methods to explain the policy. Examples of gradient-based (Vanilla Gradient [Simonyan
et al., 2013], Guided Backprop [Springenberg et al., 2014], Grad-CAM [Selvaraju et al.,
2017], Integrated Gradient [Sundararajan et al., 2017], Smooth Gradient [Smilkov et al.,
2017]) and perturbation-based (Gaussian-Blur Perturbation [Greydanus et al., 2018] and
SARFA [Puri et al., 2020]) saliency maps for Red-Fetch-Green are shown in Figure 6.1a. We
also include an example of saliency maps generated by our DIGR approach for comparison.
In general, perturbation-based saliency maps mainly demonstrate high saliency on task-
relevant features (e.g. red agent and green target object) while gradient-based saliency maps
are noisier and harder to interpret. However, the high quality of perturbation-based saliency

maps is achieved with an increased cost of computation time. As shown in Figure 6.1b,

71

perturbation-based saliency map takes more time to generate compared to gradient-based
saliency maps and counterfactual analysis of ‘Represent And Mimic’(RAMi) [Liu et al., 2021].
The computation time of perturbation-based saliency maps is highly affected by the input
size and policy network architectures. This makes it incompatible with many real-world tasks
that require real-time interpretability such as autonomous driving. Thus, based on the result
in Figure 6.1, we find that normal gradient-based saliency maps are computationally more
efficient but hard to interpret while perturbation-based saliency maps are more interpretable
but come with a higher computation cost during deployment. This finding motivates us to
think about how we can keep the computation efficiency of gradient-based methods and the
high interpretability of perturbation-based methods while avoiding their limitations, and

thus propose DIGR.

How does DIGR generate interpretable saliency maps like perturbation-based methods while
only requiring a short generation time as the most efficient Vanilla Gradient saliency maps?
Is it possible for us to use gradient-based methods such as Vanilla Gradient method to
generate high-quality saliency maps as those from perturbation-based methods? We answer

these questions in the next section.

6.3 Method

Our approach to achieving both computational efficiency and high interpretability in RL
is to produce a policy whose gradient-based saliency maps are comparable to those of
perturbation-based methods. To achieve this, given a trained RL policy, we set its perturbation-
based saliency maps as supervisory signals and update the weights of the policy so that its
gradient-based saliency maps match the perturbation-based saliency maps. Since the com-
putations involved in gradient-based saliency maps are differentiable, we can use stochastic

gradient descent to conduct the training. The idea of optimizing gradient-based saliency

72

maps has a close connection with input gradient regularization which imposes constraints
on how input gradients behave. For example, Ross and Doshi-Velez [2018] penalized in-
put gradients based on an expert annotation to prevent the network from “attending” to
certain parts of the input in an image classification task. Inspired by this, the training of
the gradient-based saliency map in our approach is conducted by selectively penalizing the

gradients of input features that have low perturbation-based saliency.

One challenge of selective input gradient regularization is that optimizing gradient-based
saliency maps may also affect the policy output and thus degrade the task performance. To
avoid this, we conduct policy distillation to ensure that the new policy maintains the same

task performance. We give a more formal introduction of our method below.

Given an RL policy 7 and input s, we define the function g as the method used in gen-
erating gradient-based saliency map M, and function f as the method used in generating
perturbation-based saliency map M,. Both M, and M, have the same size as input s. Each

element in the saliency map, Mgy, and M, are computed as

gfsim) =1 Y wlals) AL
“g(sji’ﬂ) (6.2)
Moi = max g(s, J,m)
f(s,i,m) = Dgp(m(s)||m(m(s, 1))
 f(siym) (6.3)
Mri = ax f(s,j,m)

where ¢(s,i,m) and f(s,7,m) compute the gradient-based and perturbation-based saliency

values of input feature s; given policy 7. These saliency values are then normalized between

73

l

Offline Perturbation Selective Input Gradient
Saliency Dataset Regularization

M
—»—»

Policy Distillation
Online Policy
Distillation
State Buffer

Figure 6.2: Framework of our approach. Policy 7y is used as the control policy and interacts
with the environment. The experienced states are saved into a replay buffer and then sampled
later for policy distillation. The training includes two objectives. The first objective is using
input gradient regularization to regularize gradient-based saliency map Mga based on the
perturbation-based saliency map M;. The second objective is using policy distillation to
make sure the learning policy 7y has the same behavior as the trained policy 7.

0 and 1 to form saliency maps that contain N elements in each map. In this work, pertur-
bation function m induces a Gaussian blur on the input with the input feature of interest
s; as the center [Greydanus et al., 2018]. It’s worth mentioning that, besides perturbation-
based saliency maps, DIGR could be easily extended to utilize other saliency data (e.g.
saliency maps from expert annotation) as supervisory signals. In this work, we focus on
using perturbation-based saliency maps for input gradient regularization as they show high

interpretability and can be computed as long as we have access to the policy and states.

After introducing the process of generating two types of saliency maps given an RL policy
and state input, we introduce how they are used in DIGR. Given a trained RL policy m,
DIGR aims to produce a new policy my with parameters ¢ that can generate interpretable
saliency maps using a gradient-based method. Given a state input s, the saliency map
could differ based on the generation method (gradient-based vs perturbation-based) and the
policy (m; vs mp) used to generate them. For clarity, we define these 4 types of saliency
maps as Mgt, Mge, Mpt, Mp9 where the subscript of g represents gradient-based saliency

maps and p represents perturbation-based saliency maps. The superscript of ¢ represents

74

the saliency map is generated by the original teacher policy 7, and 6 represents the saliency
map is generated by policy trained with DIGR (mp). In DIGR, we use the perturbation-
based saliency maps generated by the teacher policy (M,") to provide supervisory signals to
regularize the gradient-based saliency maps generated by the DIGR policy (Mga). Then the

loss function for input gradient regularization is

N
1
L =Eua, [> Lo (A = ML) x M) (6.4)
=1

where d, is the state distribution following policy mg and N is the number of input features
in the saliency map. M," and Mge have the same size and are both indexed by i. Threshold
A is used in the indicator function 1 to determine whether one input gradient should be
penalized. The indicator function 1 returns 1 if A — Mpf > (0 and 0 otherwise. In other
words, if the perturbation-based saliency for an input feature is below threshold A, the
loss penalizes its gradient-based saliency. This selective penalization allows the model to
only keep high saliency on task-relevant features selected by the perturbation-based saliency

maps.

The final loss function in our approach is a weighted combination of selective input gradient
regularization and policy distillation. In practice, generating perturbation-based saliency
maps online for input gradient regularization could be time-consuming and slow down the
overall training. To address this, we build an offline perturbation saliency dataset D which
contains states sampled from d,, and the corresponding perturbation-based saliency maps
generated in advance. Because of the policy similarity brought by policy distillation, we use

D to approximate d,, for input gradient regularization. As a result, the loss function for

1)

DIGR is

N
1
Lpier = ESND[N Z Ljoc)(A = Myp) X M|
=1

~
Input Gradient Regularization

(6.5)
+aEsd,, [Drcr(mi(s)||mo(s))]

. S

~
Policy Distillation

where « is a weighting parameter used to balance the loss of input gradient regularization

and policy distillation. We show the complete architecture of our approach in Figure 6.2.

6.4 Experimental Results

We conduct experiments on three tasks including Red-Fetch-Green in MiniGrid, Breakout
in Atari games and CARLA Autonomous Driving to demonstrate the effectiveness of our
approach. In Red-Fetch-Green, the red agent needs to locate and pick up the green object
while avoiding picking up other distractors in a room composed of 8x8 grids. In Breakout,
the paddle is controlled to move at the bottom to ricochet the ball against the bricks and
eliminate them for rewards. Besides these two tasks, we designed a CARLA Autonomous
Driving task in which the agent needs to control an autonomous car driving on a highway
while avoiding collisions. Since CARLA’s simulation clock can be matched with the real
time, we use it to show how the high quality and computation efficiency of our approach in

interpreting RL policies could be important in real-world scenarios.

76

6.4.1 Setup

RL Training

In our experiments, we first use PPO algorithm to train RL policies on Red-Fetch-Green,
Breakout and CARLA Autonomous Driving. The trained RL policies, which are used to
generate offline perturbation saliency datasets for input gradient regularization, also serve
as the teacher policy in policy distillation and generate saliency maps for comparison. In all
three tasks, we used similar network architectures composed of 3 convolutional layers and
2 linear layers but with different layer sizes. The trained RL policies achieved reasonably
good performance in each task: The policy in Red-Fetch-Green solves the task with a success
rate of 100%; the policy in Breakout achieves an average score of 320; the policy in CARLA
Autonomous Driving could drive smoothly and learned to steer to avoid collision with other

vehicles. We include more details of RL training in the appendix.

Offline Perturbation Saliency Dataset

To conduct selective input gradient regularization, we generate an offline perturbation saliency
dataset by sampling states experienced by the trained RL policy 7; and generating the corre-
sponding Gaussian-Blur perturbation saliency maps [Greydanus et al., 2018]. The perturba-
tion saliency datasets of Red-Fetch-Green, Breakout, and CARLA Autonomous Drivinghe
1k, 10k, and 2.5k pairs of states and saliency maps. Although our method still needs to
generate perturbation-based saliency maps, the computation happens in the training stage
without affecting the computation efficiency during deployment. Also, the computation
problem could be mitigated by the limited size of the dataset (e.g. 1k, 10k, and 2.5k states
in Red-Fetch-Green, Breakout, and CARLA respectively) and the potential utilization of

parallel computing with multiple machines.

7

DIGR Training

DIGR uses selective input gradient regularization and policy distillation to produce a new
policy that achieves efficient interpretability while maintaining task performance. In all
three experiments, we randomly initiate the new policy my. To further stabilize the training,
we consider the training of selective input gradient regularization and policy distillation
as a multi-objective optimization problem and used the technique of projecting conflicting
gradients (PCGrad) [Yu et al., 2020] to mitigate gradient interference. More hyperparameters

of training are included in the appendix.

6.4.2 Effectiveness via Visual Illustrative Examples

State Original VG GB Perturbation DIGR State Original VG GB Perturbation DIGR
a -]

=] =]

State Original VG GB Perturbation DIGR State Original VG GB Perturbation DIGR

4] (4]
a
- |

Figure 6.3: Demonstration of our approach on Red-Fetch-Green. There are four sets of
examples and each set includes a state, a Vanilla Gradient saliency map generated by the
original policy (Original VG), a Gaussian-Blur perturbation-based saliency map (GB Per-
turbation) generated by the original policy and a Vanilla Gradient saliency map generated
by the policy trained with DIGR. The annotation of DIGR on the figure refers to Vanilla
Gradient saliency maps generated by the policy trained with DIGR. In all examples, GB
Perturbation and DIGR saliency maps show high saliency on the red agent and green target
while Original VG saliency maps are noisy and hard to interpret.

The main goal of our approach is to allow RL policies to generate interpretable saliency maps
with computationally efficient gradient-based methods. To demonstrate the effectiveness of
our approach, we provide examples of the most computationally-efficient Vanilla Gradient

saliency maps before and after our method, and Gaussian-Blur perturbation saliency maps

78

State Original VG~ GB Perturbation DIGR State Original VG~ GB Perturbation DIGR

. - ..

State Original VG GB Perturbation DIGR State Original VG GB Perturbation DIGR

. i ..
ek r
#

Figure 6.4: Demonstration of our approach on Breakout. VG and GB Perturbation stand
for Vanilla Gradient and Gaussian-Blur Perturbation. Both DIGR and Gaussian-Blur
perturbation-based saliency maps demonstrate high saliency mainly on the paddle and ball
while the Vanilla Gradient saliency maps generated by the original policy (Original VG) are
noisier.

State Original VG~ GB Perturbation DIGR State Original VG~ GB Perturbation DIGR
E -té B egidny
- & | 4
AN O -

State Original VG GB Perturbation DIGR State Original VG GB Perturbation DIGR

> -4

b :»t d.“...
= S| - a :— |
e A :‘ | / A .S

Figure 6.5: Demonstration of our approach on CARLA Autonomous Driving. VG and GB
Perturbation stand for Vanilla Gradient and Gaussian-Blur Perturbation. In the left two
sets of examples, DIGR and GB Perturbation methods demonstrate high saliency on the
vehicles that got close to the controlled vehicle. In the top-right example, DIGR and GB
perturbation methods show high saliency on the vehicle and road curb. In the bottom-right
example, DIGR and GB perturbation methods show high saliency on two vehicles ahead.
DIGR and GB perturbation methods didn’t show saliency on the controlled vehicle because
the controlled vehicle is always at the same region of the images for all states and is not
salient to the performance. The saliency is demonstrated on other features that may lead to
a collision and affect the performance. In all four sets of examples, Vanilla Gradient saliency
maps generated by the original policy (Original VG) are very similar and hard to distinguish.

that work as supervisory guidance in Figures 6.3, 6.4, and 6.5.

Our results show that Vanilla Gradient saliency maps generated by original RL policies are

noisy and hard to interpret. However, after the optimization with our approach, we can use

79

the same saliency map method to generate much more interpretable saliency maps which
reduces a large amount of unexplainable saliency and demonstrate high saliency on task-
relevant features only. The saliency maps generated by our approach also have a close simi-
larity to Gaussian-Blur perturbation-based saliency maps which demonstrates the successful
saliency guidance. We provide more visual examples containing saliency maps produced by

other gradient-based methods for comparison in the appendix.

6.4.3 Importance of Computational Efficiency

State

DIGR

0.6

04
Original VG

0.2

GB Perturb

Figure 6.6: Different types of saliency maps on a sequence of states in CARLA Driving.
Vanilla Gradient saliency maps generated by the policy trained with DIGR always demon-
strate high saliency on the traffic vehicles while Vanilla Gradient saliency maps generated
by the original policy (original VG) are noisy and just show saliency in the center region of
all states. Gaussian-Blur perturbation-based saliency maps show saliency behind the vehicle
because of the computation delay. The bar on the right represents the mapping between
saliency values and colors.

In this section, we further show the importance of our approach by demonstrating that
missing either computation efficiency or high interpretability makes it difficult to achieve
interpretable RL in real-world scenarios. We take Autonomous Driving as an example and

show the results of utilizing different saliency maps to explain a sequence of RL decision

80

making in Figure 6.6. In our experiments, the state of CARLA Autonomous Driving is
a 128x128 RGB image taken every 0.05 seconds by a camera attached to the ego vehicle.
Although Gaussian-Blur perturbation-based saliency maps show high interpretability as seen
in Figure 6.5, it takes 0.9740.02 seconds to generate one saliency map with a GPU of RTX
2080Ti. This means there’s a delay of almost one second between meeting the state and the
availability of the corresponding saliency map and all saliency maps for states experienced
during the delay will be missed. In contrast to Gaussian-Blur perturbation-based saliency
maps each takes 0.97 seconds to generate on average, Vanilla Gradient saliency maps are
much more efficient to compute and take only 0.0021£0.0001 seconds for each state with the
same machine. However, Vanilla Gradient saliency maps generated by normal RL policies
are hard to interpret and only our approach achieves both computation efficiency and high

interpretability.

6.4.4 Saliency Dataset and Evaluation

Besides illustrative examples, we also aim to provide a quantitative evaluation of saliency
maps generated by different approaches and thus introduce a new saliency dataset based
on Red-Fetch-Green. Different from previous work that relies on expert annotations and
classifies each state element as either an important or unimportant feature [Puri et al., 2020],
we focus on features whose saliency importance is certain. There are six types of objects
in Red-Fetch-Green including the red agent, the green target object, the blue and yellow
distractors, grey walls, and black empty grids. Based on the roles of objects, we assume
the red agent and green target are important features as they have the most important
information required for optimal decision making and assume the empty tiles as unimportant
features since they do not provide any information. The two distractors and grey walls are
not included in the dataset because their influence on decision making is either uncertain or

only exists in a small subset of state space. We collected 10k states in the saliency dataset

81

and provide an example in Figure 6.7.

(b) important (¢) unimportant
(a) state saliency saliency

Figure 6.7: a. An example state in the saliency dataset of Red-Fetch-Green. b. Regions
whose saliency is important. c¢. Regions whose saliency is unimportant.

Saliency on Red-Fetch-Green

important unimportant AUC

VG 56.04 278.10 0.840
Guided BP 82.84 35.67 0.993
Grad-CAM 43.12 364.97 0.686
Smooth G 83.05 84.76 0.991

Integrated G 67.79 232.09 0.900
GB Perturbation 86.11 77.81 0.989
SARFA 58.40 42.17 0.895
DIGR 72.52 0.00 0.997

Table 6.1: Saliency results of Vanilla Gradient (VG), Guided Backpropagation (Guided BP),
Grad-CAM, Smooth Gradient (Smooth G), Integrated Gradient (Integrated G), Gaussian-
Blur Perturbation (GB Perturbation), SARFA of the original policy and Vanilla Gradient
of DIGR policy on Red-Fetch-Green. Our method keeps a comparable amount of important
saliency, reduces all unimportant saliency, and achieves the highest AUC.

To evaluate the quality of different saliency maps, we compute the average amount of impor-
tant saliency and unimportant saliency in each saliency map. Furthermore, we also compare
different saliency maps with Area under the Receiver Operating Characteristic Curve (AUC),
which is a popular metric used to evaluate saliency maps [Iyer et al., 2018, Puri et al., 2020].
As shown in Table 6.1, our approach keeps a comparable amount of important saliency,
reduces all unimportant saliency and achieves the highest AUC compared with other ap-
proaches. The decreased amount of unimportant saliency is in line with our expectation

since our approach works by penalizing the saliency that is not helpful for interpretation.

82

As a result, our approach utilizes gradient-based and perturbation-based saliency maps for

training and finally achieves even better saliency maps.

6.4.5 Policy Performance Maintenance

The objective of optimizing gradient-based saliency maps may change the action selection
of the original policy and thus cause the policy performance to degrade. In DIGR, we use
policy distillation to constrain the output of the new RL policy to remain close to the original
policy. To verify its effectiveness, we plot the performance of DIGR policy during training
and compare it with the results of the original policy. As seen in Figure 6.8, the policy

trained with our approach could achieve similar performance as the original policy.

Red-Fetch-Green Breakout CARLA Driving
1.0 = —— 350 A 70 4 wd
300 A
0.8 60 -
250 1
J 50 4
o 0.6 200 A
o
40 4
& 0.4+ 150 1
30 A
0.2 100 A
50 4 20 A
0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0 1 2
Train Steps led Train Steps le5 Train Steps led
DIGR Policy = == QOriginal Policy

Figure 6.8: The performance of DIGR policy could match the performance of the original
policy.

6.4.6 Improved Robustness to Attacks

Due to the importance of robustness of neural networks [Zheng et al., 2016, Cheney et al.,
2017, Carlini and Wagner, 2017] and recent research findings of a deep entanglement between
adversarial attacks and interpretability of deep neural network (DNN) models [Tao et al.,
2018, Ignatiev et al., 2019], we are also interested in DIGR’s influence on policy’s robustness

to attacks. To study that, we evaluate the robustness of RL policies before and after applying

83

FGSM + Red-Fetch-Green PGD + Red-Fetch-Green MI-FGSM + Red-Fetch-Green MAD + Red-Fetch-Green

1.00 1.00 1.00 10

0.75 0.75 0.75 0.8

o 050 0.50 050 06

§ 025 0.25 2‘22 04
0.00

0.00 ons 02

-0.25 _025

-0.50

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
le-2 £ le-2 £ le-3 £ le-2

-0.50

FGSM + CARLA Driving PGD + CARLA Driving MI-FGSM + CARLA Driving MAD + CARLA Driving
80 80 80 80

70
60 60 60 0
50
40 40 40
40
20 20 20 30
0 1 2 3 4 5

le-2 £ le-2 £ le-3 £ le-2

Score

DIGR Policy == Original Policy == Distillation-Only Policy

Figure 6.9: Policies trained with DIGR achieve much stronger robustness to all four types
of adversarial attacks (FGSM, PGD, MI-FGSM and MAD) compared to the policies trained
with normal RL algorithms. Although policy distillation also helps robustness slightly, selec-
tive input gradient regularization makes the most contribution to the improved robustness.
All results are averaged over 50 runs in Red-Fetch-Green and 20 runs in CARLA Autonomous
Driving. The shaded area represents one standard deviation.

DIGR to four types of adversarial attacks including Fast Gradient Sign Method (FGSM)
[Huang et al., 2017], Projected Gradient Descent (PGD) [Madry et al., 2018], Momentum
Iterative Fast Gradient Sign Method (MI-FGSM) [Dong et al., 2018] and Maximum Action
Difference (MAD) [Zhang et al., 2020] in Red-Fetch-Green and CARLA Autonomous Driving
tasks. Since both policy distillation and input gradient regularization in our approach could
affect the robustness of RL policies, we further include an ablation study by conducting policy
distillation only to understand their own influence on robustness. As shown in Figure 6.9, our
approach significantly improves the robustness of RL policies. Although policy distillation
also improves the robustness slightly, selective input gradient regularization contributes the

most to the significant robustness gains.

6.5 Conclusion

We propose an approach called DIGR to improve the efficient interpretability of RL by re-

training a policy with selective input gradient regularization and policy distillation. Our

84

approach allows RL policies to generate highly interpretable saliency maps with compu-
tationally efficient gradient-based methods. We further show that our approach is able to
improve the robustness of RL policies to multiple adversarial attacks. Interpretable decision-
making and robustness to attacks are two challenges in deploying RL to real-world systems.
We believe our approach could help to build trustworthy agents and benefit the deployment

of RL policies in practice.

85

Chapter 7

Linking Global Top-Down Views to

First-Person Views in the Brain

(This chapter is reprinted with permission, from Jinwei Xing, Elizabeth R Chrastil, Douglas
A Nitz and Jeffrey L. Krichmar. Linking global top-down views to first-person views in
the brain. Proceedings of the National Academy of Sciences 119.45 (2022): €2202024119.

QPNAS

7.1 Introduction

Humans are able to translate their location and navigational goals on an external map into
decision making behaviors in the environment. A glance at a map can help place you in
your local surroundings. Conversely, when looking at one’s local surroundings, one can place
oneself on a global map. The ability to seamlessly move between top-down (TDVs) and
first-person views (FPVs) may be important for navigation and memory formation, as well

as many cognitive tasks (e.g., building a cabinet from a plan drawn on paper, or finding an

86

extra screw after the cabinet is constructed and referring back to the plan to find out where
the screw should go). Evidence from other animals suggests that they also have the ability
to translate their position from one spatial reference frame to another [Alexander and Nitz,
2015, Meister and Buffalo, 2018, Meister, 2018, Geva-Sagiv et al., 2015]. In particular, bats
appear to have the ability to take translate a TDV while flying above the landscape to a
FPV when navigating on the ground or foraging for food [Ulanovsky and Moss, 2007, Omer
et al., 2018, Sarel et al., 2017, Geva-Sagiv et al., 2015].

Studies suggest that the entorhinal cortex (EC), retrosplenial cortex (RSC), subiculum
(SUB), posterior parietal cortex (PPC), and hippocampus (HPC) could play significant
roles in linking locations and orientations relative to one view to locations and orientations
relative to another [Alexander and Nitz, 2015, Byrne et al., 2007, Chrastil et al., 2018, Clark
et al., 2018, Epstein et al., 2017, Oess et al., 2017, Meister and Buffalo, 2018]. The compu-
tations and neural implementations that manifest this cognitive ability have scarcely been
addressed despite numerous navigation experiments in humans and rodents. Computational
modeling suggests that these transformations and linkages could be accomplished through
specific encoding of parameters [Bicanski and Burgess, 2018, Byrne et al., 2007, Oess et al.,
2017], or mixed selectivity that responds to multiple variables [Rounds et al., 2018]. How-
ever, it is unclear whether mechanisms for linkage and transformation among perspectives
operate to form a single mapping of location from both perspectives, or serve to link anal-
ogous locations in two different mappings. Mapping of location and orientation is robustly
observed in the rodent EC, HPC and SUB [Danjo et al., 2018, Derdikman and Moser, 2010,
Kim et al., 2012, Sharp, 1997], which provide input to RSC and other brain regions. The
PPC provides egocentric information to the RSC [Wilber et al., 2014]. Furthermore, the
visual system plays an important role in driving spatial activity [Meister, 2018]. Still, the
exact role of these brain regions and their neural computations, especially in the context of

viewpoint transformations, remain poorly understood.

87

In the present article we attempt to answer the following open questions: 1) What architec-
tures might support these transformations and linkages? 2) What are the computations and
neural implementations underlying linkages and transformations between TDVs and FPVs?
3) What cues or landmarks are required to make these transformations and linkages? To
answer these questions, we take a model-free approach by using Variational AutoEncoders
(VAEs) to reconstruct the FPV from the TDV of a robot simulation, and vice versa [Kingma
and Welling, 2019]. The latent variables, which make a transformation between the encoding

network layers and the decoding network layers, will be compared with brain responses.

In contrast to neurobiologically inspired models of these transformations [Bicanski and
Burgess, 2018, Byrne et al., 2007], which suggest that the computations in each direction
utilize the same circuit by inverting the transformation operation, our results indicate that
each direction of transformation is dictated by different computations carried out by separate
circuits. Whereas going from a TDV to FPV required specific representations of place and
objects, going from a FPV to a TDV tended to use mixed representations and strong head
direction signaling. In both cases, one view was accurately reconstructed from the other. In
addition, both neural codes were flexible and adaptive to perturbations. We suggest that

this is a possible neural implementation that could support important navigation functions.

7.2 Results

7.2.1 Robot Simulation and Modeling Transformations

To test the ability to link TDV to FPV and vice versa, data was collected with the Webots
[Webots, Michel, 2004] robot simulation environment (Fig. 7.1A). The simulated robot was a
Khepera with a camera, and proximity sensors to detect objects and boundaries. The robot

freely explored its space. Approximately every second, the overhead view of simulation

88

2]

B. (Uz

-

i s — Encoder —[> — Decoder ﬁEﬂ
— L z

CRS SN -

Fully Fully
convolution convolution Flatten Connected C 1

]
Eﬂ — Encoder ‘ _ Decoder — il
F_

I]
TTFTTFTFF“ aawrf

Fully Fully
convolution convolution Flatten Connected C lution deconvolution

Figure 7.1: Simulation setup and model architectures. A. Robot freely explored a square
arena, which had 3 colored cylinders. The robot is located on the middle right facing the
blue cylinder. The inset shows the robot’s camera view. Note the camera view did not
overlay the top-down images during data collection. Robot was simulated using Webots
[Webots, Michel, 2004]. B and C. Variational AutoEncoders (VAE) reconstruct images from
robot simulation. The latent variables between the Encoder and Decoder are analyzed to
understand the transformations and linkages between views. B. Takes first-person view as
input and reconstructs top-down view. C. Takes top-down view as input and reconstructs
first-person view.

(TDV), the robot’s camera image (FPV), position, heading, and distance to the 3 cylinders
were saved. 10,000 data points were collected: 8000 for training and 2000 for testing. In
all conditions, even when environmental conditions changed (e.g., removing an object or
changing the background) the robot position, heading and trajectory were identical for the

10,000 data points.

Two VAEs were constructed; one for reconstructing the TDV of the simulation environment
from the FPV of the robot (Fig. 7.1B), and another for reconstructing the FPV from the
TDV (Fig. 7.1C). The number of latent variables (i, o, and z in Figures 1B and 1C) varied
from 30, 50, and 100. In the results presented below, only the 2000 testing data points were

used for analysis.

89

The VAE was able to reconstruct a top-down view (TDV) from a first-person view (FPV) and
vice versa. Figure 7.2 shows how the reconstructions improved as the loss decreased during
training with 100 latent variables. After 20,000 epochs of training, the median reconstruction
losses for the FPV to TDV and the TDV to FPV transformations were less than 0.01. The
process was repeated five times with different random number generator seeds. All 5 runs
for each number of latent variables were used for analysis. Supplemental figures 1-3 show the
loss for simulations with 30, 50, and 100 latent variables. Although the medians were roughly
similar for both types of transformations (e.g., with 100 latent variables, the median was
0.0078 for FPV to TDV and 0.0084 for TDV to FPV in supplemental figure 3), the TDV to
FPV transformation had more outliers (i.e., images it had difficulty reconstructing). Because
of this, the two distributions for all numbers of latent variables were significantly different
(p < 0.000001; Wilcoxon sign rank test). Supplemental figures 4 and 5 show examples of

the reconstructions after training.

7.2.2 Spatial Representations in Latent Variables

We wondered whether the latent variables of the VAEs had similar qualities to spatial repre-
sentations observed in RSC, HPC, and SUB recordings. Indeed, many latent variables were
sensitive to place, heading and objects. We looked at how well a latent variable correlated
with the robot’s distance to a cylinder, to an idealized head direction cell (cosine tuning
curve with one of 16 preferred directions), or to an idealized place cell (2D Gaussian with
one of 16 preferred locations). Table 7.1 shows the percentage of significant correlations in
each case. The TDV to FPV transformations had significantly more latent variables that
were strongly correlated with distance to the cylinder objects, and significantly more latent
variables strongly correlated with place fields than the FPV to TDV transformations. In
contrast, the FPV to TDV transformations had significantly more latent variables sensitive

to head direction than the TDV to FPV transformation. Supplemental Figure 6, which

90

0.008

0.006

Reconstruction Loss

0.004

0.002

0025
0.020

0015

Reconstruction Loss

0010

0.005

nstructed FPV
(Loss = 0.0220)

5000

nstructed Reconstructed FPV
(Loss = 0.0148)

(Loss = 0.0067)

"'l

Reconstructed FPV.
(Loss = 0.0034)

'
'
'
i
'
'
v
v
il
'
'
'
v
i
'
'
'
v
v
'
'
'
v

>

2500

7500

I
12500 15000 17500
Epochs

20000

Reconstructed TDV

Reconstructed TDV
(Loss =0.0010)

10000

Figure 7.2: Reconstruction loss during VAE training with 100 latent variables. The true
image is the VAE target and the other images are reconstructions at different points in the

12500 15000 17500
Epochs

training. A. TDV to FPV transformation. B. FPV to TDV transformation.

91

Table 7.1: Percentage of strong correlations (p < 0.01). Asterisk denotes significantly more
strong correlations for that transformation direction (p < 0.01; Wilcoxon rank sum test).

v Hdg Hdg Obj Obj Plc Plc
(FPV to TDV) (TDV to FPV) (FPV to TDV) (TDV to FPV) (FPV to TDV) (TDV to FPV)

30 49%* 33% 50% 73%* 50% 73%

50 54%* 26% 49% 73%* 47% T0%*

100 55%%* 30% 49% 67%* 47% 69%*

plots the correlations for all latent variables, shows these trends, especially in the tails of the

distributions where latent variables were strongly positively and negatively correlated.

Fig. 7.3 shows representative latent variable examples of head direction and location-specific
tuning. Interestingly, the place fields for TDV to FPV tended to be sharp, whereas the FPV
to TDV tended to be more diffuse. Even though there were fewer head direction sensitive
latent variables in the TDV to FPV transformation, the shape of the head direction latent
variables was similar for both transformation directions (see Supplemental Figures 7 and 8
for more examples). In contrast, FPV to TDV latent variables that were strongly correlated
with place tended to be more diffuse than those in the TDV to FPV direction. For example,
compare the FPV to TDV place fields in Supplemental Figure 11 to the TDV to FPV place

fields in Supplemental Figure 12.

To understand the difference in spatial coding between transformation directions, we mea-
sured the spatial information [Skaggs et al., 1996] and spatial coherence [Kubie et al., 1990]
of the latent variables. In general, spatial information measures the extent to which activity
rates are high across a small subset of locations and low or non-existent across the remainder
of an environment. Coherence measures the extent to which high activity rates cluster in a
single location, as in ”place fields” of HPC neurons. Together they provide a good metric
for how strongly the latent variables encode locations. Figure 7.4 shows the distributions
for these spatial metrics in simulations with 100 latent variables. For both transformation
directions, the spatial information and spatial coherence were significantly larger than a

random distribution containing the same latent variables with their positions shuffled (p <

92

A.1 FPV to TDV: Head Direction Cell B.1 TDV to FPV: Head Direction Cell

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0
0 PI/2 Pl 3PI2 2Pl 0 PI/2 Pl 3PI/2 2PI

C. FPV to TDV: Place Cell D. TDV to FPV: Place Cell

Figure 7.3: Representative latent variable responses during simulations with 100 latent vari-
ables. A and B. Latent variables that responded similarly to head direction cells. C and D.
Latent variables that responded similarly to place cells. Note that C was typical of a First-
Person to Top-Down view transformation and D was typical of a Top-Down to First-Person
view transformation.

0.000001; Wilcoxon sign rank test). Furthermore, the spatial metrics were significantly larger
for the TDV to FPV transformation than the FPV to TDV transformation (p < 0.000001;
Wilcoxon sign rank test). Latent variable place fields were distributed throughout the envi-
ronment with some tendency for the centers of place fields to be on the borders and corners
(Supplemental Figure 36). The sparsity metric [Skaggs et al., 1996], which is roughly the
fraction of the environment that the latent variable was active, ranged from very specific
to broad (Supplemental Figure 37). Together, these measures suggest that both VAEs had
strong spatial tuning and that the TDV to FPV had stronger spatial tuning than FPV to
TDV. Overall, these results suggest that the TPV to FPV transformation relied more on
place specific coding, whereas the FPV to TPV transformation relied more on head direction

coding with diffuse place fields.

Spatial representations, such as place cells, grid cells, and head direction cells appear early

93

200

[Rand [E Rand (B Info-FPV2TDV
Info-FPV2TDV | | 150 [iInfo-TDV2FPV 150 [Info-TDV2FPV

#LVs
#LVs

00+ 005 008 01 o012 o o002 o004 005 008 o1 o012 002 004 005 008
Information (bits/ts) Information (bits/ts) Information (bits/ts)

120 120 120
‘ [Rand [Rand [0 Coh-FPV2TDV
oh-FPV2TDV oh-TDV2FPV [Coh-TDV2FPV
100 =lc | 100 =G 100 P
80 1 80

#LVs
|

#LVs

|

|

#LVs
o B8 &8 8 8
°l

02 03 04 05 06 01 02 03 04 05 06 08 04
Coherence Coherence Coherence

Figure 7.4: Spatial metrics for latent variables. The top row shows the distributions of
spatial information and the bottom row shows the distributions of spatial coherence for
simulations with 100 latent variables. The left column compares the spatial metrics for
FPV to TDV transformations (orange) with a random distribution (blue) in which the
location activity bins were shuffled. The middle column compares the spatial metrics for
TDV to FPV transformations (orange) with a random distribution (blue). The right column
compares TDV to FPV transformations (orange) with FPV to TDV transformations (blue).
The TDV to FPV transformation had significantly stronger spatial metrics then the FPV to
TDV transformation for both information and coherence.

in rodent development [Wills et al., 2010] and almost immediately upon entering a new
environment [Frank et al., 2004]. We looked at the spatial metrics of the latent variables
in the VAE model at 20, 200 and 2,000 epochs of training (Fig. 7.5). At each of these
training stages, the spatial information and coherence were significantly larger than random
in both transformation directions (Wilcoxon signed rank test p < 0.001). At 20 epochs, the
spatial information was bimodal with many latent variables close to zero. By 200 epochs and
continuing to the end of training (20,000 epochs), the spatial information had a high degree
of overlap with the end of training (Fig. 7.5 top). After 20 epochs of training coherence was
extremely low. Similar to spatial information, from 200 epochs until the end of training,
the coherence had a high degree of overlap with the end of training (Fig. 7.5 bottom).
Supplemental figures 43 through 54 show example latent variables that respond to place and
head direction after 20, 200, and 2,000 training epochs. Given the spatial metric values and
low reconstruction loss by 200 training epochs, it appears the model can support spatial

navigation after limited environmental exposure.

94

FPV to TDV TDV to FPV
450 450

400 [20 epochs 400 [20 epochs
71200 epochs 21200 epochs
350 12K epochs 350 12K epochs
300 [20K epochs 300 [20K epochs
£ 250 4
270 3
3= 200 3
150
100
50 HH
o sa=ui B N 0
0 002 004 006 008 0. 0 002 004 006 008 0.1
Information (bits/ts) Information (bits/ts)
FPV to TDV TDV to FPV
450 450
400 [20 epochs 400 [20 epochs
71200 epochs 71200 epochs
350 12K epochs 350 []2K epochs
300 [20K epochs 300 [20K epochs
& 250 & 250
3 2
3= 200 3= 200
150
100
50
4 — 0
02 0 0.2 0.4 0.6 02 0 0.2 0.4 0.6
Coherence Coherence

Figure 7.5: Spatial metrics for latent variables during early training. The top row shows the
distributions of spatial information and the bottom row shows the distributions of spatial
coherence for simulations with 100 latent variables after 20, 200, 2,000, and 20,000 epochs
of training.

7.2.3 Effect of Latent Variable Ablations

We next tested how sensitive reconstruction was to particular latent variables. We ablated
(i.e., set to zero) the most sensitive (top 25%) latent variables to environmental features.
Fig. 7.6A shows the relative FPV to TDV reconstruction losses and Fig. 7.6B shows the
relative TDV to FPV reconstruction losses. Relative loss was calculated by dividing the
ablation loss by intact loss for each image. For the sensitivity to cylinders, head direction
and location, the loss was significantly greater for the TDV to FPV transformation when the
top 25% latent variables were ablated. This may be due to different representation schemes;
whereas TDV to FPV rely more on specific selectivity, which could be sensitive to ablations,

FPV to TDV may rely on a more distributed population code.

95

A. First-Person View to Top-Down View

~
=]

M
Bk
+4

+ 4+ +

n
=]

Ratio of Loss per Image (Ablation:Intact)
3

P
f
f

B. Top-Down View to First-Person View

~
=]

+ +
60 [+ +
i :

t

n @ IS
<] S S

Ratio of Loss per Image (Ablation:Intact)
3

o

S 2=

Figure 7.6: Relative loss during ablation studies of the top 25% latent variables that were
correlated with objects (Obj), heading (HD), or place (Plc). The figures show the ratio of
the ablation loss to the intact model loss for each image. In each box, the central mark is
the median (red), the edges of the box are the 25th and 75th percentiles (blue), the whiskers
extend to the most extreme data points that are not considered outliers, and the outliers are
plotted individually with a red plus sign.A. FPV to TDV transformation. B. TDV to FPV
transformation. All reconstruction losses for ablations were significantly larger for TDV to
FPV than for FPV to TDV transforms (p < 0.0000001, Wilcoxon sign rank test).

7.2.4 Effect of Environmental Perturbations

We wondered how the VAEs would respond to perturbation of local and distal cues in the
environment. Therefore, we ran simulations where the robot took the same trajectory for
10000 data points, but some aspect of the environment was changed. For example, the

original background, which was a ballroom (Fig. 7.1A), was changed to mountains while

96

leaving everything else the same. This was an example of perturbing distal cues. In the
other cases, we perturbed local cues by rendering the green cylinder to be invisible, or by
rendering both the green and blue cylinders invisible. We then examined how the VAE,
which was trained on the original environment, responded to the 2000 test data points in

the perturbed environment (Fig. 7.7).

A. First-Person View to Top-Down View

® o 2 R 2
o o o o o
- ;

+ 4+

Ratio of Loss per Image (Perturbation:Intact)
N
o

20 i
Mtn NoGm NoGmBIu

B. Top-Down View to First-Person View
£ : :

+

80 [

60 [

=== ' ' =

Mtn NoGm NoGmBIu

Ratio of Loss per Image (Perturbation:Intact)

Figure 7.7: Relative loss during perturbation experiments. The figures show the ratio of
the loss due to a perturbation loss to the intact model loss for each image. Relative losses
are shown for changing the background to mountains (Mtn), removing the green cylinder
(NoGrn), and removing both the green and blue cylinders (NoGrnBlu). A. FPV to TDV
transformation. B. TDV to FPV transformation. All reconstruction losses for ablations were
significantly larger for TDV to FPV than for FPV to TDV transforms.

Perturbing the local and distal cues had three effects. First, the relative loss was significantly

greater for the TDV to FPV than the FPV to TDV transformation for both distal and local

97

cues (p < 0.0000001; Wilcoxon sign rank test). In fact, the median loss for FPV to TDV when
the green cylinder was zero, meaning that there was no loss in many cases. This makes sense
since images in the FPV do not always contain a cylinder. Second, in both transformation
directions the loss due to the background change was significantly larger than removing
cylinders, and the loss due to removing the green and blue cylinder was significantly greater
than removing just the green cylinder. Large loss due to background change makes sense
since more pixels in the images are affected. Third, in most cases the transformation losses
were relatively small suggesting that with the exception of outliers, the VAEs were able to
recover many features in a view image (see Supplemental Figures 25 to 32). Furthermore, at
the population level, these perturbations appeared to have a minimal effect on latent variable
sensitivity to the distance to an object, heading or place (see Supplemental Figures 33 to
35). The range of correlation values (i.e., many latent variables had strong correlations) and

the trends observed in the intact model were preserved.

Perturbations of local and distal cues led to substantial remapping. Table 7.2 shows the per-
centage of latent variables that were not correlated before the perturbation, but remapped
to be significantly correlated with spatial features after the perturbation, and those latent
variables that were previously correlated with spatial features prior to the perturbation and
remapped to not be correlated with spatial features after the perturbation. There was signif-
icantly more remapping when the distal cues changed during FPV to TDV transformations
(see top row in Table 7.2), and there tended to be more remapping during FPV to TDV
transformations when local cues changed (see bottom two rows in Table 7.2). Such adapta-
tion and remapping has been observed in the retrosplenial cortex [Alexander and Nitz, 2015,

Rounds et al., 2018].

98

Table 7.2: Remapping due to environmental perturbations (LV = 100). Table entries show
the % latent variables that became significant (p < 0.01) and table entries in parentheses
show the % latent variables that became insignificant (p > 0.01) after the perturbation.
Asterisk denotes significantly more remapping for that transformation direction (p < 0.01;
Wilcoxon rank sum test).

Obj Obj Hdg Hdg Plc Plc
(FPV to TDV) (TDV to FPV) (FPV to TDV) (TDV to FPV) (FPV to TDV) (TDV to FPV)

Mountains 30%* (18%*) 14% (12%) 28%* (19%*) 8% (10%) 28%* (19%*) 13% (11%)
No green cylinder 2% (2%) 13%* (16%*) 1% (1%) 8% (11%*) 2% (1%) 12%* (15%*)

N :
nobliegz(;/i?nder 6% (4%) 13%* (17%*) 2% (3%) 8% (11%*) 6% (4%) 13%* (15%*)

Perturbation

7.2.5 Alternative Models

Benefit of Sequences for Linking Views

Unlike the nervous system, the model presented here does not have a temporal component.
Rather, a single image from one view is linked to another. We wondered whether a sequence
of image views would benefit the ability to link different view perspectives. We created VAEs
that took as input a sequence of 5 images from one view and output a reconstruction of the
last image in the other view (see Supplemental Figures 38 and 39). Interestingly, the loss
was roughly the same for a TDV to a FPV transformation, but the loss was reduced when
a sequence of FPVs was used to reconstruct the TDV (Fig. 7.8). This makes intuitive sense
because a sequence of FPVs would provide more varied information than a sequence of TDV
images. Despite these differences, the reconstruction loss was small in both cases and the
spatial metrics in both cases were similar (see Supplemental Figure 41 for spatial metrics
and Supplemental Figures 55 through 58 for example place and head direction sensitive
latent variables). Although this may be important for a living organism, the computational
overhead may outweigh the benefit of using sequences if this model were deployed on a

system like a navigating robot.

99

%107 FPV to TDV TDV to FPV

9.4 T 1 0.02 T
]
o |$ _ 0.019
0.018 —_
|
w 2 » 0.017 |
8 — 8
-1 8.8 I] 2 0.016
0.015 L
8.6 1 L
T 0.014
|
8.4 L 1 0.013
Single Image Sequence of Images Single Image Sequence of Images

Figure 7.8: Loss comparison between a sequence of images and a single image used for
reconstruction.

Combined VAE that Reconstructs FPV to TDV and TDV to FPV Simultane-

ously

An open issue is whether a single VAE could perform the linkage of views in both direc-
tions. We constructed a VAE to test this by interleaving FPVs and TDVs as inputs, while
conducting the training for reconstructing the transformed view (see Supplemental Figure
40). This combined model had nearly identical spatial information and coherence as the two
separate VAEs (see Supplemental Figure 42). As before, the spatial information and the
coherence of latent variables was higher going from a TDV to a FPV than from a FPV to
a TDV. Furthermore, many latent variables responded to head direction. Example latent
variables that are sensitive to place and heading for the combined model can be seen in
Supplemental Figures 59 through 62). It should be noted that although the reconstruction
loss going from TPV to FPV was similar, the loss going from FPV to TDV was significantly
higher in the combined model (Wilcoxon signed rank test p < 0.001). These results suggest
that one system could perform this function, but that there may be advantages to having a

separate system for each transformation direction.

100

7.3 Discussion

Using tools from machine learning and artificial intelligence (i.e., Variational AutoEncoders
or VAEs), we investigated a fundamental cognitive computation, which is the ability to
change one’s perspective from a global mental map to an egocentric sensory experience,
and vice versa. This is an important, but oftentimes overlooked, aspect of the cognitive
map [Tolman, 1948]. Our results suggest that two types of neural activity can support
this transformation: 1) Specific representations of locations and objects were observed when
reconstructing a first-person view (FPV) from a top-down view (TDV), and 2) Specific
representations of heading with more diffuse representations of location were observed when
reconstructing a TDV from a FPV. The response of the hidden variables in the present
VAEs have similarities to those observed in the brain, with latent variables resembling head
direction cells, place cells and cells that encode the distance to objects. Critically, we did
not explicitly create such cell types in our model, rather these responses, which resemble

place and head direction cells, emerge from the way our model solves this problem.

7.3.1 Neurobiological Evidence for Transformations between Views

Studies with humans and non-human primates have revealed neural correlates for trans-
formations between views or perspectives. In humans, evidence suggests that retrosplenial
cortex (RSC) activity is related to route learning from an egocentric viewpoint [Wolbers
et al., 2004] and to navigating from a first-person perspective after looking at a top-down
map perspective [Sherrill et al., 2013, Zhang et al., 2012]. Although RSC is more active in
first-person navigation compared with top-down navigation [Sherrill et al., 2013], the evi-
dence for a transformation is indirect, and there are multiple factors to which the RSC could
be responding. Within the first-person perspective, RSC is involved in changing viewpoints

to different locations. For example, mentally rotating one’s viewpoint to the position of an

101

avatar or an arrow yields activation in RSC and parietal-occipital sulcus [Lambrey et al.,
2012]. In addition, RSC activity is related to the amount of viewpoint change relative to
the environmental frame [Sulpizio et al., 2013] and RSC activity is modulated by the magni-
tude of a viewpoint shift [Sulpizio et al., 2016]. Furthermore, RSC responds to perspective
changes when the magnitude of the shift is unknown ahead of time, indicating that it is

helpful in making online perspective changes.

Human intracranial recordings in the medial temporal lobe revealed boundary-anchored
neural representations that were modulated by one’s own as well as another individual’s
spatial location [Stangl et al., 2021], and recordings of the EC in monkey revealed neurons
that represent gaze position in multiple spatial reference frames [Meister and Buffalo, 2018].
These findings more broadly indicate that multiple brain regions in the primate play a role
in orienting and processing view-based information from different perspectives [St Jacques

et al., 2017, 2018].

In the rat, neurons have been observed that respond to specific spatial frames of reference
(e.g., allocentric, egocentric or route-centric), as well as multiple spatial reference frames
[Alexander and Nitz, 2015, Jacob et al., 2017, Nitz, 2012]. Some RSC neurons have place
specific responses, and the activity of a population of RSC neurons is sufficient to predict
the location of a rat in a maze [Alexander and Nitz, 2015]. RSC neurons are sensitive
to distance and orientation relative to boundaries [Alexander et al., 2020a]. RSC in both
humans [Chrastil et al., 2015, 2016] and rodents [Alexander and Nitz, 2017] has been im-
plicated in mapping distance to other locations in the environment. RSC head direction
neurons encode allocentric orientation relative to environmental boundaries [Cho and Sharp,
2001]. RSC activity is sensitive to distance and orientation relative to boundaries and to
left versus right turning actions [Alexander et al., 2020b, Alexander and Nitz, 2017]. PPC
neurons have been observed to simultaneously map position in multiple external frames of

reference. [Nitz, 2012]. Still, none of these studies have put the rodent in situations where it

102

had multiple viewpoints, which would be difficult to undertake. One study, which is a step
in this direction, recorded from the rodent hippocampus and showed place cell responses to

itself and to another rat it was observing [Danjo et al., 2018].

However, these studies only involve changes between different first-person viewpoints. Ex-
tending this, our simulations suggest a neural solution that uses strong heading signals plus
a mixture of place responses to link FPVs to TDVs and more specific place responses with

heading to link TDVs to FPVs.

An interesting parallel to the task carried out in our simulations is studies with freely behav-
ing bats. Place cells, head direction cells, and grid cells have been observed in the bat both
on the ground when crawling and in the air when flying [Geva-Sagiv et al., 2015, Ulanovsky
and Moss, 2007, Sarel et al., 2017]. Similar to [Danjo et al., 2018], social place cells have been
found when the bats are viewing other bats [Omer et al., 2018]. GPS tracking of foraging
bats over long time periods have demonstrated the ability to use landmarks and take novel
routes from a TDV [Toledo et al., 2020, Harten et al., 2020]. Taken together, there is evi-
dence suggesting that encoding and utilizing different spatial perspectives during navigation
and memory is a common cognitive function across multiple organisms and multiple brain

regions.

7.3.2 Modeling Transformations between Views

Computational neuroscience models have attempted to simulate transformations between
allocentric position and orientation in the real world and the egocentric, retina-framed view
at that location and orientation. In one influential model, head direction or gaze direction
cells modulated activity in RSC by rotating environmental variables [Bicanski and Burgess,
2018, Byrne et al., 2007]. This modulation converted allocentric border or object vector cells

into an egocentric bearing to boundaries and objects, and vice versa. Such gain modulated

103

fields have been postulated and observed in PPC [Pouget and Sejnowski, 1997, Snyder et al.,
1998]. In another model, RSC acted as an arbitrator, which depending on the model’s
confidence in the current task, would activate an allocentric reference frame in the HPC
or an egocentric frame in the PPC [Oess et al., 2017]. While these models and others
have been useful in suggesting the pathways and neural activity that might produce these
transformations, they make assumptions on the underlying computations. For example,
Byrne, Becker and Burgess [Byrne et al., 2007] and later Bicanski and Burgess [Bicanski
and Burgess, 2018] suggested that the same circuit computed the transformation for both

directions. In addition, they did not specifically examine the linkages between FPVs and

TDVs.

The present model attempts to be agnostic on how these computations are implemented.
Rather than creating a neural network model based on the known responses or connectiv-
ity in specific brain regions, we used VAEs to solve the transformation task [Kingma and
Welling, 2019], and then tested their feasibility by comparing their responses (i.e., hidden
layers and latent variables) to empirical experiments. The latent variables in these VAEs
indicate different responses and computations depending on the transformation direction.
Furthermore, the separate models for each transformation had less reconstruction loss than
a combined model. Whereas strong spatial coding by individual latent variables were ob-
served in TDV to FPV transformations, head direction coding and diffuse place coding were

more prevalent in FPV to TDV transformations.

7.3.3 Applying Artificial Neural Networks to Neuroscience

Neuroscientists are turning to Artificial Intelligence (AI) methods to explain their data [Chen
et al., 2020a]. For instance, using deep convolutional neural networks (CNNs) as models of

hierarchical feature representation in the ventral visual stream can show different cortical

104

responses in the hidden layers [Cichy and Kaiser, 2019, Giiglii and van Gerven, 2015, Yamins
and DiCarlo, 2016]. Moreover, CNNs have shown cortical responses in the dorsal visual
stream [Mineault et al., 2021]. Others proposed similar models to synthesize control images
to maximally activate specific neuron sites in the monkey V4 [Bashivan et al., 2019]. In
a somewhat related robotics study, a deep learning network used the robot’s local views
and geographic hints, such as satellite images or road maps, to plan paths over a variety of
environments [Shah and Levine, 2022]. In the present work, these TDVs were used to predict
FPV, and vice versa. This might be an alternative method to localization and mapping in

robotics.

The present work compared the sensitivity of latent variables with neural responses. Simi-
larly, latent representations have been used to model the human visual system during working
memory tasks [Hedayati et al., 2021]. In another modeling study, a latent factor analysis
using dynamical systems was applied to monkey and human motor cortex data to accurately
predict behavioral variables and neural dynamics [Pandarinath et al., 2018]. Deep VAEs
have been used to interpret fMRI data where there is a lack of labeled data [Qiang et al.,
2021]. Our work is another example of how VAEs can be used to model the nervous sys-
tem and make valuable predictions about the computations and implementations underlying

cognitive function.

The present modeling work suggests a means to link a FPV to a TDV and vice versa.
Although the modeling work is not based in neurobiology, the different encodings depending
on the transformation direction may be compatible with the RSC anatomy [Vann et al., 2009].
Whereas the dysgranular RSC has greater connectivity with cortical regions, such as visual
cortex, which provide first-person information [Makino and Komiyama, 2015], granular RSC
interacts more with the hippocampal formation and subiculum, which is more sensitive to
the allocentric coordinates [Alexander et al., 2020a, Alexander and Nitz, 2017, Olson et al.,

2017]. In our simulations, we showed that the model can recover from perturbations, without

105

retraining, much like place cells in the hippocampus. Moreover, the system did not collapse
when large proportions of latent variables were ablated. These perturbation and ablation
simulations, suggest that the model can flexibly and rapidly adapt to change, which is a

hallmark of neural systems.

In summary, we present a computational model for linking perceptual views, which sug-
gests a potential neural implementation for this cognitive function. Furthermore, it makes
predictions regarding the functional anatomy suggesting separate encodings depending on
the direction of the view transformation, and the ability to adapt without retraining when
challenged with perturbations. Although this model provides a possible implementation, we
do not yet know exactly how the mammalian brain carries out such a task. Therefore, it will
be of interest to follow up this modeling study with similar experiments tailored for humans
and other animals. Furthermore, linking different views, as in [Shah and Levine, 2022], may

be applicable to robot navigation.

7.4 Materials and Methods

7.4.1 Robot Simulations

The Webots robot environment [Webots, Michel, 2004] was used to simulate an animal
freely exploring its environment (Fig. 7.1). The Khepera robot, which is a two-wheeled
robot produced by K-Team, was used for the simulations. During exploration, the robot
had a 50% chance of moving straight, 25% chance of veering (i.e., an arcing turn) toward
the left, and 25% chance of veering to the right. The robot has 8 distance sensors that
were used to detect the arena walls and the cylinders. If detected, the robot rotated, with
a 50% chance, either clockwise or counterclockwise until the front facing distance detectors

were clear. A camera was mounted on top of the robot for the FPV. Every update cycle,

106

the camera frame was converted into a 64x64 RGB image (FPV) and a simulated overhead
camera took a JPEG image (TDV) of the robot in its environment. During the exploration,
the TDV from the simulator, the FPV from the robot’s camera, and other environmental
parameters (e.g., place, heading, distance to object) were collected and saved. The ”entrance
hall” was used as a default background. In the perturbation experiments, this was replaced
with the "mountains” background which was a desert scene with mountains in the distance.
During the local cue perturbation experiments, either the green cylinder or both the green
and blue cylinders were rendered invisible using the transparency setting in Webots. The
Khepera’s distance sensors still detected the object, but they were not visible by the camera.
The same random number generator seed was used on all simulation runs to ensure that the
robot’s trajectory was the same in each condition. The software used to run the simulation

will be made available on GitHub upon publication.

7.4.2 Variational Autoencoder Construction and Latent Variable

Analysis

VAEs [Kingma and Welling, 2019] were constructed to transform between TDV and FPV.
Briefly, the VAE design is as follows. The perspective transformation model used in the
preliminary results is based on standard VAE training whose loss includes a reconstruction
loss term and a KL divergence term. The reconstruction term optimizes the network so
that the input could be reconstructed while the KL divergence term is used to constrain the
latent representation close to the prior distribution. To promote stable training, we used KL
annealing to gradually increase the weight of the KL term from 0 to 1 [Bowman et al., 2016].
The model was trained for 20,000 epochs. In the first 50 epochs, the KL term increased
linearly from 0 to 1. After 50 epochs, the KL term weight was kept at 1. After the VAE
was trained, TDVs or FPVs were presented to the model. We then can measure the latent

variable sensitivity by examining how much each latent variable changes with environmental

107

changes. More details are given in the supplemental materials.
The VAE’s latent variables were analyzed for sensitivity to objects, heading, and place.

Object sensitivity was measured by Pearson’s correlation of the latent variable to the distance
from the robot to the red, green and blue cylinder. The distance function was given by eqn.

7.1:

T 3
dCyly; =Y) ||(loc, — cyly) | (7.1)

t=1 =1

Where ||(loc; — cyl;)||, is the Euclidean distance between the location of the robot, loc, and
the location of cylinder, cyl. The distance, dC'yl, was calculated for each i cylinder at time
t with T equal to 2000 time steps. This created a vector of length 2000 of the distances to
each cylinder object (dCyl) in the simulation. The sensitivity of each latent variable to the

cylinder objects was then given by eqn. 7.2:

3

N
cylp; = Z Z corr(lvy,, dCyl;) (7.2)

n=1 =1

Where N is the number of latent variables, 7 is the preferred direction, lv,, is the response of
the latent variable n for the 2000 time steps. The resulting cyl,; are correlation coefficients

for each latent variable to the red, green, and blue cylinder objects.

Head direction sensitivity was measured by Pearson’s correlation of the latent variable to a
cosine tuning curve with one of 16 preferred directions, which were evenly spaced from 0 to

2. The cosine tuning curve was given by (eqn. 7.3):

108

T 16

rHDy; = Z Z max (0.0, cos(rot; — pd;)) (7.3)

t=1 i=1

Where the expected cosine tuning response for each ¢ preferred direction pd was calculated
based on the robot’s heading rot at data point ¢ with T equal to 2000 time steps. This
created a vector of length 2000 of expected head direction responses for each preferred

direction (rH D). The sensitivity of each latent variable to head direction was then given by

eqn. 7.4:
N 16
hd,; = Z Z corr(lv,, rHD;) (7.4)
n=1 i=1

Where N is the number of latent variables, i is the preferred direction index, and lv,, is the
response of the latent variable n for the 2000 time steps. The resulting hd,,; are correlation

coeflicients for each latent variable for each of the 16 idealized head direction cells.

Place cell sensitivity was measured by Pearson’s correlation of the latent variable to a 2-
dimensional Gaussian centered at one of 16 locations, which were evenly spaced across the

robot’s arena. The Gaussian function was given by eqn. 7.5:

rPley = i =7 (_”(ZO? = ctry)l) (7.5)

t=1 i=1

Where ||(loc; — ctr;)]|, is the Euclidean distance between the location of the robot, loc, and

the centroid of the place cell, ctr, and ¢ was set to 0.33. The response, rPlc, was calculated

109

for each ¢ place at time ¢ with 7" equal to 2000 time steps. This created a vector of length
2000 of expected place cell responses for each location (rPlc). The sensitivity of each latent

variable to place was then given by eqn. 7.6:

N 16

plcn; = Z Z corr(lv,, rPle;) (7.6)

n=1 i=1

Where N is the number of latent variables, 7 is the preferred direction, lv,, is the response of
the latent variable n for the 2000 time steps. The resulting plc,; are correlation coefficients

for each latent variable for each of the 16 idealized place cells.

110

Chapter 8

Conclusions

8.1 Summary

In recent years, there has been a growing convergence between machine learning and neuro-
science. On the one hand, machine learning could benefit from the insights and inspiration
provided by the discoveries in neuroscience, as well as the integration of biologically-inspired
components. On the other hand, machine learning techniques can also be used to enhance

our knowledge of the brain and its functions.

The projects introduced in this dissertation all involve machine learning techniques and neu-
roscience findings. For the projects of neuromodulated patience control for robot navigation
(Chapter 3) and reinforcement learning with neuromodulation systems for dynamic environ-
ment adaptation (Chapter 4), we integrated 5-HT, NE and ACh neuromodulation systems
to help the self-driving mobile robot and reinforcement learning agents to achieve better
performance. Inspired by the latent representation in brain, we proposed a method called
LUSR to improve the domain adaptation performance of reinforcement learning algorithms

by addressing the adaptation problem from the pixel domain to a latent space (Chapter

111

5). Furthermore, inspired by memory consolidation in the cortex, we introduced a method
of policy distillation with selective input gradient regularization to achieve both computa-
tion efficiency and high interpretability for explainable reinforcement learning (Chapter 6).
These chapters showed how inspiration from neuroscience could improve machine learning.
In contrast to the other chapters, , my work of linking first-person views and global views
utilized the machine learning technique of VAE to enhance our understanding about how

brain may conduct the view transformation in a 3-D environment (Chapter 7).

Overall, this dissertation demonstrated the mutual beneficial relationship between the fields
of machine learning and neuroscience. The successful integration of machine learning and
brain mechanisms/findings in the projects encourage more developments of bio-inspired ma-

chine learning and Al-augmented neuroscience research.

8.2 Future Directions

The bio-inspired machine learning projects in this defense focus on the utilization of bio-
inspired components (e.g. neuromodulation systems) and high-level intuitions (e.g. memory
consolidation) to help the machine learning system. One limitation of projects introduced
in Chapter 3 and 4 is that the machine learning and bio-inspired components are trained or
updated separately. For example, in the project of utilizing neuromodulation systems to help
reinforcement learning agents to adapt to dynamic environment changes, the training of re-
inforcement learning policies and the update of NE and ACh neuromodulation systems were
conducted separately. To further utilize neuroscience inspirations, one future direction is
integrating them into the learning of machine learning techniques. For example, dopamine
neuromodulation is a vital mechanism in the brain that regulates reward and dopamine
neurons play a key role in reinforcement learning. We may try to integrate dopamine neu-

romodulation into the learning method of reinforcement learning.

112

A potential area of future research involves expanding upon the project presented in Chapter
5, which deals with the problem of domain adaptation in reinforcement learning. In Chapter
5, the assumption was made that the test domains are visually distinct from the training do-
main, but share the same underlying dynamics. This assumption restricts the applicability
of our approach. To overcome this limitation, we could broaden the problem to encompass
transfer learning. In doing so, the test domains would not be required to share the same un-
derlying dynamics as the training domain. However, this approach raises a broader question
of how to effectively transfer the knowledge acquired from the policy trained in the original
domain to the new domains. One possible solution to this question is to use the technique of
policy distillation, which was introduced in Chapter 6. However, further research is needed

to fully address this issue.

Future research could also build upon the perspective transformation project, which utilized
a standard variational autoencoder (VAE) to learn latent encodings within a simulated robot
environment. To advance this work, the experiment could be upgraded from a simulated
robot to a real mobile robot navigating in an outdoor park. This would require the use
of more advanced deep learning techniques to handle the complex real-world environment.
For example, advanced attention mechanisms, transformer architectures, or diffusion models
could be induced into the neural network models. Such improvements in the experiment

setting and deep learning techniques may lead to further advancements in the findings.

113

Bibliography

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving
rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

A. S. Alexander and D. A. Nitz. Retrosplenial cortex maps the conjunction of internal
and external spaces. Nat Neurosci, 18(8):1143-51, 2015. ISSN 1546-1726 (Electronic)
1097-6256 (Linking). doi: 10.1038/n1.4058,

A. S. Alexander and D. A. Nitz. Spatially periodic activation patterns of retrosplenial cortex
encode route sub-spaces and distance traveled. Curr Biol, 27(11):1551-1560 e4, 2017. ISSN
1879-0445 (Electronic) 0960-9822 (Linking). doi: 10.1016/j.cub.2017.04.036.

A. S. Alexander, L. C. Carstensen, J. R. Hinman, F. Raudies, G. W. Chapman, and M. E.
Hasselmo. Egocentric boundary vector tuning of the retrosplenial cortex. Sci Adv, 6(8):
caaz2322, 2020a. ISSN 2375-2548 (Electronic) 2375-2548 (Linking). doi: 10.1126/sciadv.
aaz2322.

A. S. Alexander, J. C. Robinson, H. Dannenberg, N. R. Kinsky, S. J. Levy, W. Mau, G. W.
Chapman, D. W. Sullivan, and M. E. Hasselmo. Neurophysiological coding of space and
time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain Neurosci
Adv, 4:2398212820972871, 2020b. ISSN 2398-2128 (Electronic) 2398-2128 (Linking). doi:
10.1177/2398212820972871.

Mariam Aly and Nicholas B Turk-Browne. How hippocampal memory shapes, and is shaped
by, attention. The hippocampus from cells to systems: structure, connectivity, and func-
tional contributions to memory and flexible cognition, pages 369-403, 2017.

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mec-
Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al.
Learning dexterous in-hand manipulation. The International Journal of Robotics Research,
39(1):3-20, 2020.

Akanksha Atrey, Kaleigh Clary, and David Jensen. Exploratory not explanatory: Coun-
terfactual analysis of saliency maps for deep reinforcement learning. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rk13m1BFDB.

114

https://openreview.net/forum?id=rkl3m1BFDB
https://openreview.net/forum?id=rkl3m1BFDB

Michael C Avery and Jeffrey L Krichmar. Neuromodulatory systems and their interactions:
a review of models, theories, and experiments. Frontiers in neural circuits, page 108, 2017.

P. Bashivan, K. Kar, and J. J. DiCarlo. Neural population control via deep image synthesis.
Science, 364(6439), 2019. ISSN 1095-9203 (Electronic) 0036-8075 (Linking). doi: 10.1126/
science.aav9436.

Richard Bellman. Dynamic programming. Science, 153(3731):34-37, 1966.

A. Bicanski and N. Burgess. A neural-level model of spatial memory and imagery. FElife, 7,
2018. ISSN 2050-084X (Electronic) 2050-084X (Linking). doi: 10.7554 /eLife.33752.

Narcisse P Bichot, Matthew T Heard, Ellen M DeGennaro, and Robert Desimone. A source
for feature-based attention in the prefrontal cortex. Neuron, 88(4):832-844, 2015.

Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Bernhard Firner, Larry J
Ackel, Urs Muller, Phil Yeres, and Karol Zieba. Visualbackprop: Efficient visualization
of cnns for autonomous driving. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 4701-4708. IEEE, 2018.

Sebastien Bouret and Susan J Sara. Network reset: a simplified overarching theory of locus
coeruleus noradrenaline function. Trends in neurosciences, 28(11):574-582, 2005.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning, pages 10-21. Association for
Computational Linguistics, 2016. doi: 10.18653/v1/K16-1002.

Amaury Bréhéret. Pixel annotation tool. https://github.com/abreheret/
PixelAnnotationTool, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural information processing systems,
33:1877-1901, 2020.

P. Byrne, S. Becker, and N. Burgess. Remembering the past and imagining the future: a
neural model of spatial memory and imagery. Psychol Rev, 114(2):340-75, 2007. ISSN
0033-295X (Print) 0033-295X (Linking). doi: 10.1037/0033-295X.114.2.340.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 ieee symposium on security and privacy (sp), pages 39-57. IEEE, 2017.

Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. Model-free deep reinforcement learning
for urban autonomous driving. In 2019 IEEFE Intelligent Transportation Systems Confer-
ence (ITSC), pages 2765-2771. IEEE, 2019.

115

https://github.com/abreheret/PixelAnnotationTool
https://github.com/abreheret/PixelAnnotationTool

Kexin Chen, Tiffany Hwu, Hirak J. Kashyap, Jeffrey L. Krichmar, Kenneth Stewart, Jinwei
Xing, and Xinyun Zou. Neurorobots as a means toward neuroethology and explainable
ai. Frontiers in Neurorobotics, 14(70), 2020a. ISSN 1662-5218. doi: 10.3389/fnbot.2020.
570308.

Kexin Chen, Tiffany Hwu, Hirak J Kashyap, Jeffrey L. Krichmar, Kenneth Stewart, Jinwei
Xing, and Xinyun Zou. Neurorobots as a means toward neuroethology and explainable ai.
Frontiers in Neurorobotics, 14:570308, 2020b.

Nicholas Cheney, Martin Schrimpf, and Gabriel Kreiman. On the robustness of convolu-
tional neural networks to internal architecture and weight perturbations. arXiv preprint
arXiv:1705.08245, 2017.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld envi-
ronment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

J. Cho and P. E. Sharp. Head direction, place, and movement correlates for cells in the rat
retrosplenial cortex. Behav Neurosci, 115(1):3-25, 2001. ISSN 0735-7044 (Print) 0735-7044
(Linking). doi: 10.1037/0735-7044.115.1.3.

E. R. Chrastil, K. R. Sherrill, M. E. Hasselmo, and C. E. Stern. There and back again: Hip-
pocampus and retrosplenial cortex track homing distance during human path integration.
J Neurosci, 35(46):15442-52, 2015. ISSN 1529-2401 (Electronic) 0270-6474 (Linking). doi:
10.1523/INEUROSCI.1209-15.2015.

E. R. Chrastil, K. R. Sherrill, M. E. Hasselmo, and C. E. Stern. Which way and how
far? tracking of translation and rotation information for human path integration. Hum
Brain Mapp, 37(10):3636-55, 2016. ISSN 1097-0193 (Electronic) 1065-9471 (Linking). doi:
10.1002/hbm.23265.

E. R. Chrastil, S. M. Tobyne, R. K. Nauer, A. E. Chang, and C. E. Stern. Converging
meta-analytic and connectomic evidence for functional subregions within the human ret-
rosplenial region. Behav Neurosci, 132(5):339-355, 2018. ISSN 1939-0084 (Electronic)
0735-7044 (Linking). doi: 10.1037/bne0000278. URL https://www.ncbi.nlm.nih.gov/
pubmed/30321025.

R. M. Cichy and D. Kaiser. Deep neural networks as scientific models. Trends Cogn Sci, 23
(4):305-317, 2019. ISSN 1879-307X (Electronic) 1364-6613 (Linking). doi: 10.1016/j.tics.
2019.01.009.

B. J. Clark, C. M. Simmons, L. E. Berkowitz, and A. A. Wilber. The retrosplenial-
parietal network and reference frame coordination for spatial navigation. Behav Neu-
rosci, 132(5):416-429, 2018. ISSN 1939-0084 (Electronic) 0735-7044 (Linking). doi:
10.1037/bne0000260.

Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz
Swirszcz, and Max Jaderberg. Distilling policy distillation. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1331-1340. PMLR, 2019.

116

https://github.com/maximecb/gym-minigrid
https://www.ncbi.nlm.nih.gov/pubmed/30321025
https://www.ncbi.nlm.nih.gov/pubmed/30321025

T. Danjo, T. Toyoizumi, and S. Fujisawa. Spatial representations of self and other in the
hippocampus. Science, 359(6372):213-218, 2018. ISSN 1095-9203 (Electronic) 0036-8075
(Linking). doi: 10.1126 /science.aa03898.

Giang Dao, Indrajeet Mishra, and Minwoo Lee. Deep reinforcement learning monitor for
snapshot recording. In 2018 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 591-598. IEEE, 2018.

Giang Dao, Wesley Houston Huff, and Minwoo Lee. Learning sparse evidence-driven inter-
pretation to understand deep reinforcement learning agents. In 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1-7. IEEE, 2021.

D. Derdikman and E. I. Moser. A manifold of spatial maps in the brain. Trends Cogn Sci, 14
(12):561-9, 2010. ISSN 1879-307X (Electronic) 1364-6613 (Linking). doi: 10.1016/j.tics.
2010.09.004.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo
Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 9185-9193, 2018.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference
on Robot Learning, pages 1-16, 2017a.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
Carla: An open urban driving simulator. In Conference on robot learning, pages 1-16.

PMLR, 2017h.

R. A. Epstein, E. Z. Patai, J. B. Julian, and H. J. Spiers. The cognitive map in humans:
spatial navigation and beyond. Nat Neurosci, 20(11):1504-1513, 2017. ISSN 1546-1726
(Electronic) 1097-6256 (Linking). doi: 10.1038/nn.4656.

U. M. Erdem and M. Hasselmo. A goal-directed spatial navigation model using forward
trajectory planning based on grid cells. Fur. J. Neurosci., 35:916-931, 2012.

Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia, Marek
Fiser, and James Davidson. Prm-rl: Long-range robotic navigation tasks by combining
reinforcement learning and sampling-based planning. In 2018 IEEFE International Confer-
ence on Robotics and Automation (ICRA), pages 5113-5120. IEEE, 2018.

Aidin Ferdowsi, Ursula Challita, Walid Saad, and Narayan B Mandayam. Robust deep
reinforcement learning for security and safety in autonomous vehicle systems. In 2018

21st International Conference on Intelligent Transportation Systems (ITSC), pages 307—
312. IEEE, 2018.

117

Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful
perturbation. In Proceedings of the IEEE International Conference on Computer Vision,
pages 3429-3437, 2017.

Loren M. Frank, Garrett B. Stanley, and Emery N. Brown. Hippocampal plasticity across
multiple days of exposure to novel environments. Journal of Neuroscience, 24(35):7681—
7689, 2004. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.1958-04.2004.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587-1596.
PMLR, 2018.

Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement learning
tasks via image-to-image translation. In International Conference on Machine Learning,
pages 2063-2072, 2019.

Philippe Gaussier, Jean Paul Banquet, Nicolas Cuperlier, Mathias Quoy, Lise Aubin, Pierre-
Yves Jacob, Francesca Sargolini, Etienne Save, Jeffrey L Krichmar, and Bruno Poucet.
Merging information in the entorhinal cortex: what can we learn from robotics experiments

and modeling? Journal of Experimental Biology, 222(Suppl_1):jeb186932, 2019.

M. Geva-Sagiv, L. Las, Y. Yovel, and N. Ulanovsky. Spatial cognition in bats and rats: from
sensory acquisition to multiscale maps and navigation. Nat Rev Neurosci, 16(2):94-108,
2015. ISSN 1471-0048 (Electronic) 1471-003X (Linking). doi: 10.1038/nrn3888.

[an Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 26722680, 2014.

Stephanie L Grella, Jonathan M Neil, Hilary T Edison, Vanessa D Strong, Irina V Odintsova,
Susan G Walling, Gerard M Martin, Diano F Marrone, and Carolyn W Harley. Locus

coeruleus phasic, but not tonic, activation initiates global remapping in a familiar envi-
ronment. Journal of Neuroscience, 39(3):445-455, 2019.

Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and under-
standing atari agents. In International Conference on Machine Learning, pages 1792-1801,
2018.

Umut Giiglii and Marcel A. J. van Gerven. Deep neural networks reveal a gradient in the
complexity of neural representations across the ventral stream. The Journal of Neuro-
science, 35(27):10005-10014, 2015. doi: 10.1523/JNEUROSCI.5023-14.2015.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Interna-
tional Conference on Machine Learning, pages 1861-1870. PMLR, 2018.

Todd A Hare, John O’doherty, Colin F Camerer, Wolfram Schultz, and Antonio Rangel.
Dissociating the role of the orbitofrontal cortex and the striatum in the computation of
goal values and prediction errors. Journal of neuroscience, 28(22):5623-5630, 2008.

118

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEFE Trans. Syst. Sci. Cybern, 4:100-107, 1968.

Lee Harten, Amitay Katz, Aya Goldshtein, Michal Handel, and Yossi Yovel. The ontogeny
of a mammalian cognitive map in the real world. Science, 369(6500):194, 2020. doi:
10.1126 /science.aay3354.

Michael E Hasselmo and Jill McGaughy. High acetylcholine levels set circuit dynamics
for attention and encoding and low acetylcholine levels set dynamics for consolidation.
Progress in brain research, 145:207-231, 2004.

Shekoofeh Hedayati, Ryan O’Donnell, and Brad Wyble. Memory for latent representations:
An account of working memory that builds on visual knowledge for efficient and detailed
visual representations. bioRxiv, 2021.02.07.430171:1-59, 2021. doi: 10.1101/2021.02.07.
430171.

Irina Higgins, Arka Pal, Andrei A Rusu, Loic Matthey, Christopher P Burgess, Alexander
Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving
zero-shot transfer in reinforcement learning. arXiv preprint arXiv:1707.08475, 2017.

Zhang-Wei Hong, Chen Yu-Ming, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, Hsuan-
Kung Yang, Brian Hsi-Lin Ho, Chih-Chieh Tu, Yueh-Chuan Chang, Tsu-Ching Hsiao,
et al. Virtual-to-real: Learning to control in visual semantic segmentation. arXiv preprint
arXiw:1802.00285, 2018.

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Tiffany Hwu, Alexander Y Wang, Nicolas Oros, and Jeffrey L Krichmar. Adaptive robot
path planning using a spiking neuron algorithm with axonal delays. [EEE Transactions
on Cognitive and Developmental Systems, 10(2):126-137, 2017.

Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On relating explanations and
adversarial examples. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/7392eadca76ad2fb4c9c3bbabecbel3le3-Paper. pdf.

Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia Sycara.
Transparency and explanation in deep reinforcement learning neural networks. In Pro-
ceedings of the 2018 AAAI/ACM Conference on Al, Ethics, and Society, pages 144150,
2018.

P. Y. Jacob, G. Casali, L. Spieser, H. Page, D. Overington, and K. Jeffery. An indepen-
dent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat
Neurosci, 20(2):173-175, 2017. ISSN 1546-1726 (Electronic) 1097-6256 (Linking). doi:
10.1038 /nn.4465.

119

https://proceedings.neurips.cc/paper/2019/file/7392ea4ca76ad2fb4c9c3b6a5c6e31e3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7392ea4ca76ad2fb4c9c3b6a5c6e31e3-Paper.pdf

Ananya Harsh Jha, Saket Anand, Maneesh Singh, and VSR Veeravasarapu. Disentangling
factors of variation with cycle-consistent variational auto-encoders. In European Confer-
ence on Computer Vision, pages 829-845. Springer, 2018.

Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-
supervised deep reinforcement learning with generalized computation graphs for robot
navigation. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 1-8. IEEE, 2018.

Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr: An autonomous self-supervised
learning-based navigation system. IEEE Robotics and Automation Letters, 6(2):1312-1319,
2021.

S. M. Kim, S. Ganguli, and L. M. Frank. Spatial information outflow from the hippocampal
circuit: distributed spatial coding and phase precession in the subiculum. J Neurosci,
32(34):11539-58, 2012. ISSN 1529-2401 (Electronic) 0270-6474 (Linking). doi: 10.1523/
JNEUROSCI.5942-11.2012.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXw:1312.6114, 2013.

Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foun-
dations and Trends in Machine Learning, 12(4):307-392, 2019. ISSN 1935-8237. doi:
10.1561/2200000056.

J. L. Kubie, R. U. Muller, and E. Bostock. Spatial firing properties of hippocampal theta
cells. J Neurosci, 10(4):1110-23, 1990. ISSN 0270-6474 (Print) 0270-6474 (Linking).

S. Lambrey, C. Doeller, A. Berthoz, and N. Burgess. Imagining being somewhere else: neural
basis of changing perspective in space. Cereb Corter, 22(1):166-74, 2012. ISSN 1460-2199
(Electronic) 1047-3211 (Linking). doi: 10.1093/cercor/bhr101.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020a.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised repre-

sentations for reinforcement learning. In International Conference on Machine Learning,
pages 5639-5650. PMLR, 2020b.

S.M. Lavalle. Motion planning: Part ii: Wild frontiers. IEFE Robot. Autom. Mayg., 18:
108-118, 2011.

Ngan Le, Vidhiwar Singh Rathour, Kashu Yamazaki, Khoa Luu, and Marios Savvides. Deep
reinforcement learning in computer vision: a comprehensive survey. Artificial Intelligence
Review, pages 1-87, 2021.

Hongliang Li, Derong Liu, and Ding Wang. Manifold regularized reinforcement learning.
IEEE Transactions on neural networks and Learning Systems, 29(4):932-943, 2017.

120

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforce-
ment learning. In International Conference on Machine Learning, pages 3053-3062, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Zhengxian Lin, Kim-Ho Lam, and Alan Fern. Contrastive explanations for reinforcement
learning via embedded self predictions. arXww preprint arXiw:2010.05180, 2020.

Guiliang Liu, Xiangyu Sun, Oliver Schulte, and Pascal Poupart. Learning tree interpre-
tation from object representation for deep reinforcement learning. Advances in Neural
Information Processing Systems, 34:19622-19636, 2021.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation
networks. In Advances in neural information processing systems, pages 700-708, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=rJzIBfZAb.

H. Makino and T. Komiyama. Learning enhances the relative impact of top-down processing
in the visual cortex. Nat Neurosci, 18(8):1116-22, 2015. ISSN 1546-1726 (Electronic) 1097-
6256 (Linking). doi: 10.1038/nn.4061.

Rowan McAllister, Gregory Kahn, Jeff Clune, and Sergey Levine. Robustness to out-of-
distribution inputs via task-aware generative uncertainty. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 2083-2089. IEEE, 2019.

M. Meister. Memory system neurons represent gaze position and the visual world. J Fxp
Neurosci, 12:1179069518787484, 2018. ISSN 1179-0695 (Print) 1179-0695 (Linking). doi:
10.1177/1179069518787484.

M. L. R. Meister and E. A. Buffalo. Neurons in primate entorhinal cortex represent gaze
position in multiple spatial reference frames. J Neurosci, 38(10):2430-2441, 2018. ISSN
1529-2401 (Electronic) 0270-6474 (Linking). doi: 10.1523/JNEUROSCI.2432-17.2018.

Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

O. Michel. Webots: Professional mobile robot simulation. Journal of Ad-
vanced Robotics Systems, 1(1):39-42; 2004. URL http://www.ars-journal.com/
International-Journal-of-Advanced-Robotic-Systems/Volume-1/39-42.pdf.

Michael Milford and Ruth Schulz. Principles of goal-directed spatial robot navigation in
biomimetic models. Philosophical Transactions of the Royal Society B: Biological Sciences,
369(1655):20130484, 2014.

121

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf

Earl K Miller and Timothy J Buschman. Neural mechanisms for the executive control of
attention. 2014.

Patrick J Mineault, Shahab Bhaktiari, Blake A Richards, and Christopher C Pack. Your
head is there to move you around: Goal-driven models of the primate dorsal pathway.
bioRziv, DOIL: 10.1101/2021.07.09.451701, 2021. doi: 10.1101/2021.07.09.451701. URL
https://www.biorxiv.org/content/early/2021/07/19/2021.07.09.451701.

Katsuhiko Miyazaki, Kayoko W Miyazaki, Akihiro Yamanaka, Tomoki Tokuda, Kenji F
Tanaka, and Kenji Doya. Reward probability and timing uncertainty alter the effect of
dorsal raphe serotonin neurons on patience. Nature communications, 9(1):2048, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiw:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533,
2015.

P Read Montague, Peter Dayan, and Terrence J Sejnowski. A framework for mesencephalic

dopamine systems based on predictive hebbian learning. Journal of neuroscience, 16(5):
1936-1947, 1996.

Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo
Jimenez Rezende. Towards interpretable reinforcement learning using attention aug-
mented agents. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/e9510081ac30ffa83f10b68cdelcac07-Paper.pdf.

Takashi Nagata, Jinwei Xing, Tsutomu Kumazawa, and Emre Neftci. Uncertainty aware
model integration on reinforcement learning. In 2022 International Joint Conference on
Neural Networks (IJCNN), pages 1-7. IEEE, 2022.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Understanding neural networks via feature
visualization: A survey. In Ezplainable Al: interpreting, explaining and visualizing deep
learning, pages 55—76. Springer, 2019.

D. A. Nitz. Spaces within spaces: rat parietal cortex neurons register position across three
reference frames. Nat Neurosci, 15(10):1365-7, 2012. ISSN 1546-1726 (Electronic) 1097-
6256 (Linking). doi: 10.1038/nn.3213.

T. Oess, J. L. Krichmar, and F. Rohrbein. A computational model for spatial navigation
based on reference frames in the hippocampus, retrosplenial cortex, and posterior parietal
cortex. Frontiers in Neurorobotics, 11, 2017. ISSN 1662-5218. doi: 10.3389/fnbot.2017.
00004.

122

https://www.biorxiv.org/content/early/2021/07/19/2021.07.09.451701
https://proceedings.neurips.cc/paper/2019/file/e9510081ac30ffa83f10b68cde1cac07-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e9510081ac30ffa83f10b68cde1cac07-Paper.pdf

Barry S Oken, Martin C Salinsky, and SM2865224 Elsas. Vigilance, alertness, or sustained
attention: physiological basis and measurement. Clinical neurophysiology, 117(9):1885—
1901, 2006.

J. M. Olson, K. Tongprasearth, and D. A. Nitz. Subiculum neurons map the current axis
of travel. Nat Neurosci, 20(2):170-172, 2017. ISSN 1546-1726 (Electronic) 1097-6256
(Linking). doi: 10.1038/nn.4464.

D. B. Omer, S. R. Maimon, L. Las, and N. Ulanovsky. Social place-cells in the bat hippocam-
pus. Science, 359(6372):218-224, 2018. ISSN 1095-9203 (Electronic) 0036-8075 (Linking).
doi: 10.1126/science.aa03474.

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinforcement learning
for autonomous driving. arXiv preprint arXiv:1704.03952, 2017.

Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D.
Stavisky, Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I. Ryu,
Leigh R. Hochberg, Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott, and David
Sussillo. Inferring single-trial neural population dynamics using sequential auto-encoders.
Nature Methods, 15(10):805-815, 2018. ISSN 1548-7105. doi: 10.1038/s41592-018-0109-9.

Nathan F Parker, Courtney M Cameron, Joshua P Taliaferro, Junuk Lee, Jung Yoon Choi,
Thomas J Davidson, Nathaniel D Daw, and [lana B Witten. Reward and choice encoding in

terminals of midbrain dopamine neurons depends on striatal target. Nature neuroscience,
19(6):845-854, 2016.

Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A
deep neural network architecture for real-time semantic segmentation. arXiv preprint
arXiw:1606.02147, 2016.

Michael I Posner. Measuring alertness. Annals of the New York Academy of Sciences, 1129
(1):193-199, 2008.

A. Pouget and T. J. Sejnowski. Spatial transformations in the parietal cortex using ba-
sis functions. J Cogn Neurosci, 9(2):222-37, 1997. ISSN 0898-929X (Print) 0898-929X
(Linking). doi: 10.1162/jocn.1997.9.2.222.

Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji
Krishnamurthy, and Sameer Singh. Explain your move: Understanding agent actions
using specific and relevant feature attribution. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SJgzLkBKPB.

N. Qiang, Q. Dong, F. Ge, H. Liang, B. Ge, S. Zhang, Y. Sun, J. Gao, and T. Liu. Deep
variational autoencoder for mapping functional brain networks. IEEE Transactions on
Cognitive and Developmental Systems, 13(4):841-852, 2021. ISSN 2379-8939. doi: 10.
1109/ TCDS.2020.3025137.

123

https://openreview.net/forum?id=SJgzLkBKPB

Andrew Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretabil-
ity of deep neural networks by regularizing their input gradients. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

Matthias Rosynski, Frank Kirchner, and Matias Valdenegro-Toro. Are gradient-based
saliency maps useful in deep reinforcement learning? In ”I Can’t Believe It’s Not Better!”
NeurIPS 2020 workshop, 2020. URL https://openreview.net/forum?id=ZF4KyC2zz6x.

E. L. Rounds, A. S. Alexander, D. A. Nitz, and J. L. Krichmar. Conjunctive coding in an
evolved spiking model of retrosplenial cortex. Behavioral Neuroscience, 132(5):430-452,
2018. ISSN 0735-7044. doi: 10.1037/bne0000236.

Christian Rupprecht, Cyril Ibrahim, and Christopher J Pal. Finding and visualizing weak-
nesses of deep reinforcement learning agents. arXiv preprint arXiv:1904.01318, 2019.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell.
Policy distillation. arXiv preprint arXiw:1511.06295, 2015.

A. Sarel, A. Finkelstein, L. Las, and N. Ulanovsky. Vectorial representation of spatial goals in
the hippocampus of bats. Science, 355(6321):176-180, 2017. ISSN 1095-9203 (Electronic)
0036-8075 (Linking). doi: 10.1126/science.aak9589.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXww preprint arXiv:1707.06347, 2017.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and
reward. Science, 275(5306):1593-1599, 1997.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEFE international conference on com-
puter vision, pages 618-626, 2017.

Dhruv Shah and Sergey Levine. Viking: Vision-based kilometer-scale navigation with geo-
graphic hints. arXiv, 2202.11271 [cs.RO], 2022.

P. E. Sharp. Subicular cells generate similar spatial firing patterns in two geometrically
and visually distinctive environments: comparison with hippocampal place cells. Behav
Brain Res, 85(1):71-92, 1997. ISSN 0166-4328 (Print) 0166-4328 (Linking). doi: 10.1016/
s0166-4328(96)00165-9.

Katherine R. Sherrill, Ugur M. Erdem, Robert S. Ross, Thackery I. Brown, Michael E.
Hasselmo, and Chantal E. Stern. Hippocampus and retrosplenial cortex combine path
integration signals for successful navigation. The Journal of Neuroscience, 33(49):19304,
2013. doi: 10.1523/JNEUROSCI.1825-13.2013.

124

https://openreview.net/forum?id=ZF4KyC2zz6x

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Op-
timization methods for interpretable differentiable decision trees applied to reinforcement
learning. In International conference on artificial intelligence and statistics, pages 1855—
1865. PMLR, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484-489, 2016.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiw:1312.6054, 2013.

W. E. Skaggs, B. L. McNaughton, M. A. Wilson, and C. A. Barnes. Theta phase preces-
sion in hippocampal neuronal populations and the compression of temporal sequences.
Hippocampus, 6(2):149-72, 1996. ISSN 1050-9631 (Print) 1050-9631 (Linking). doi:
10.1002/(SICI)1098-1063(1996)6:2(149::AID-HIP06)3.0.CO;2-K.

Reda Bahi Slaoui, William R. Clements, Jakob N. Foerster, and Sébastien Toth. Robust
domain randomization for reinforcement learning, 2020. URL https://openreview.net/
forum?id=H1xSOTVtvH.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

L. H. Snyder, K. L. Grieve, P. Brotchie, and R. A. Andersen. Separate body- and world-
referenced representations of visual space in parietal cortex. Nature, 394(6696):887-91,
1998. ISSN 0028-0836 (Print) 0028-0836 (Linking). doi: 10.1038/29777.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striv-
ing for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

P. L. St Jacques, K. K. Szpunar, and D. L. Schacter. Shifting visual perspective during
retrieval shapes autobiographical memories. Neuroimage, 148:103-114, 2017. ISSN 1095-
9572 (Electronic) 1053-8119 (Linking). doi: 10.1016/j.neuroimage.2016.12.028.

P. L. St Jacques, A. C. Carpenter, K. K. Szpunar, and D. L. Schacter. Remembering and
imagining alternative versions of the personal past. Neuropsychologia, 110:170-179, 2018.
ISSN 1873-3514 (Electronic) 0028-3932 (Linking). doi: 10.1016/j.neuropsychologia.2017.
06.015.

M. Stangl, U. Topalovic, C. S. Inman, S. Hiller, D. Villaroman, Z. M. Aghajan, L. Christov-
Moore, N. R. Hasulak, V. R. Rao, C. H. Halpern, D. Eliashiv, I. Fried, and N. Suthana.
Boundary-anchored neural mechanisms of location-encoding for self and others. Nature,
589(7842):420-425, 2021. ISSN 1476-4687 (Electronic) 0028-0836 (Linking). doi: 10.1038/
s41586-020-03073-y.

125

https://openreview.net/forum?id=H1xSOTVtvH
https://openreview.net/forum?id=H1xSOTVtvH

A. Stentz. Optimal and efficient path planning for partially-known environments. In Pro-
ceedings of the 1994 IEEE International Conference on Robotics and Automation, pages
3310-3317 vol.4, May 1994. doi: 10.1109/ROBOT.1994.351061.

V. Sulpizio, G. Committeri, S. Lambrey, A. Berthoz, and G. Galati. Selective role of lin-
gual /parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint
changes relative to the environmental reference frame. Behav Brain Res, 242:62-75, 2013.

ISSN 1872-7549 (Electronic) 0166-4328 (Linking). doi: 10.1016/j.bbr.2012.12.031.

V. Sulpizio, G. Committeri, S. Lambrey, A. Berthoz, and G. Galati. Role of the human
retrosplenial cortex/parieto-occipital sulcus in perspective priming. Neuroimage, 125:108—
119, 2016. ISSN 1095-9572 (Electronic) 1053-8119 (Linking). doi: 10.1016/j.neuroimage.
2015.10.040.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
In International Conference on Machine Learning, pages 3319-3328. PMLR, 2017.

Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. Attacks meet in-
terpretability: Attribute-steered detection of adversarial samples. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
b994697479cb5716eda77e8e9713e5£0f-Paper. pdf.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiw:1801.00690, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 23-30. IEEE, 2017.

Sivan Toledo, David Shohami, Ingo Schiffner, Emmanuel Lourie, Yotam Orchan, Yoav Bar-
tan, and Ran Nathan. Cognitive map—based navigation in wild bats revealed by a new high-
throughput tracking system. Science, 369(6500):188, 2020. doi: 10.1126/science.aax6904.

E. C. Tolman. Cognitive maps in rats and men. Psychological Review, 55(4):189-208, 1948.
ISSN 0033-295X. doi: Do0i10.1037/H0061626.

Nicholay Topin and Manuela Veloso. Generation of policy-level explanations for reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 2514-2521, 2019.

Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate
Saenko, and Trevor Darrell. Adapting deep visuomotor representations with weak pairwise
constraints. In Algorithmic Foundations of Robotics XII, pages 688—703. Springer, 2020.

126

https://proceedings.neurips.cc/paper/2018/file/b994697479c5716eda77e8e9713e5f0f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/b994697479c5716eda77e8e9713e5f0f-Paper.pdf

N. Ulanovsky and C. F. Moss. Hippocampal cellular and network activity in freely moving
echolocating bats. Nat Neurosci, 10(2):224-33, 2007. ISSN 1097-6256 (Print) 1097-6256
(Linking). doi: 10.1038/nn1829.

Christopher Urmson, Reid Simmons, and Issa Nesnas. A generic framework for robotic
navigation. In Proceedings of the IEEE Aerospace Conference, volume 5, pages 2463~
2470. Citeseer, 2003.

S. D. Vann, J. P. Aggleton, and E. A. Maguire. What does the retrosplenial cortex do? Nat
Rev Neurosci, 10(11):792-802, 2009. ISSN 1471-0048 (Electronic) 1471-003X (Linking).
doi: 10.1038/nrn2733.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural infor-
mation processing systems, 30, 2017.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat
Chaudhuri. Programmatically interpretable reinforcement learning. In International Con-
ference on Machine Learning, pages 5045-5054. PMLR, 2018.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol,
and Léon Bottou. Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion. Journal of machine learning research, 11
(12), 2010.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575
(7782):350-354, 2019.

Ding Wang, Mingming Ha, and Mingming Zhao. The intelligent critic framework for ad-
vanced optimal control. Artificial Intelligence Review, 55(1):1-22, 2022.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth
Stanley. Enhanced poet: Open-ended reinforcement learning through unbounded inven-
tion of learning challenges and their solutions. In International Conference on Machine
Learning, pages 9940-9951. PMLR, 2020.

Yang Wang, David Mulvaney, Ian Sillitoe, and Erick Swere. Robot navigation by waypoints.
Journal of Intelligent and Robotic Systems, 52:175-207, 2008.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference
on machine learning, pages 1995-2003. PMLR, 2016.

Webots. http://www.cyberbotics.com. URL http://www.cyberbotics.com. Open-source
Mobile Robot Simulation Software.

127

http://www.cyberbotics.com

A. A. Wilber, B. J. Clark, A. J. Demecha, L. Mesina, J. M. Vos, and B. L. McNaughton.
Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the
rat. Front Neural Circuits, 8:146, 2014. ISSN 1662-5110 (Electronic) 1662-5110 (Linking).
doi: 10.3389/fncir.2014.00146.

Tom J. Wills, Francesca Cacucci, Neil Burgess, and John O’Keefe. Development of the
hippocampal cognitive map in preweaning rats. Science, 328(5985):1573-1576, 2010. doi:
10.1126/science.1188224.

Thomas Wolbers, Cornelius Weiller, and Christian Biichel. Neural foundations of emerging
route knowledge in complex spatial environments. Cognitive Brain Research, 21(3):401-
411, 2004. ISSN 0926-6410. doi: https://doi.org/10.1016/j.cogbrainres.2004.06.013.

Jinwei Xing. Rlcodebase: Pytorch codebase for deep reinforcement learning algorithms.
https://github.com/KarlXing/RLCodebase, 2020.

Jinwei Xing, Xinyun Zou, and Jeffrey L. Krichmar. Neuromodulated patience for robot and
self-driving vehicle navigation. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1-8. IEEE, 2020.

Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar.
Domain adaptation in reinforcement learning via latent unified state representation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 10452—
10459, 2021.

Jinwei Xing, Elizabeth R Chrastil, Douglas A Nitz, and Jeffrey L Krichmar. Linking global
top-down views to first-person views in the brain. Proceedings of the National Academy
of Sciences, 119(45):62202024119, 2022a.

Jinwei Xing, Takashi Nagata, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar. Policy
distillation with selective input gradient regularization for efficient interpretability. arXiv
preprint arXiw:2205.08685, 2022b.

Jinwei Xing, Xinyun Zou, Praveen K Pilly, Nicholas A Ketz, and Jeffrey L. Krichmar. Adapt-
ing to environment changes through neuromodulation of reinforcement learning. In From
Animals to Animats 16: 16th International Conference on Simulation of Adaptive Be-
havior, SAB 2022, Cergy-Pontoise, France, September 20-23, 2022, Proceedings, pages
115-126. Springer, 2022c.

Jinwei Xing, Takashi Nagata, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar. Achieving
efficient interpretability of reinforcement learning via policy distillation and selective input
gradient regularization. Neural Networks, 161:228-241, 2023.

D. L. Yamins and J. J. DiCarlo. Eight open questions in the computational modeling of higher
sensory cortex. Curr Opin Neurobiol, 37:114-120, 2016. ISSN 1873-6882 (Electronic) 0959-
4388 (Linking). doi: 10.1016/j.conb.2016.02.001.

Angela J Yu and Peter Dayan. Uncertainty, neuromodulation, and attention. Neuron, 46
(4):681-692, 2005.

128

https://github.com/KarlXing/RLCodebase

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 5824-5836. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper . pdf.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-
Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on state
observations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 21024-21037. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
£0eb6568eal14babe293£f903¢c34d7488-Paper . pdf.

Hui Zhang, Milagros Copara, and Arne D. Ekstrom. Differential recruitment of brain net-
works following route and cartographic map learning of spatial environments. PLOS ONE,
7(9):e44886, 2012. doi: 10.1371/journal.pone.0044886.

Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan
Sclaroff. Top-down neural attention by excitation backprop. International Journal of
Computer Vision, 126(10):1084-1102, 2018.

Li Zhang, Xin Li, Mingzhong Wang, and Andong Tian. Off-policy differentiable logic rein-
forcement learning. In Joint Furopean Conference on Machine Learning and Knowledge
Discovery in Databases, pages 617-632. Springer, 2021.

Stephan Zheng, Yang Song, Thomas Leung, and lan Goodfellow. Improving the robustness
of deep neural networks via stability training. In Proceedings of the ieee conference on
computer vision and pattern recognition, pages 4480-4488, 2016.

Huihui Zhou and Robert Desimone. Feature-based attention in the frontal eye field and area
v4 during visual search. Neuron, 70(6):1205-1217, 2011.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2223-2232, 2017.

Xinyun Zou, Soheil Kolouri, Praveen K Pilly, and Jeffrey L. Krichmar. Neuromodulated
attention and goal-driven perception in uncertain domains. Neural Networks, 125:56-69,
2020.

129

https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f0eb6568ea114ba6e293f903c34d7488-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f0eb6568ea114ba6e293f903c34d7488-Paper.pdf

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Reinforcement Learning
	Neuromodulation
	Attention
	Generative Modeling

	Neuromodulated Patience for Robot and Self-Driving Vehicle Navigation
	Introduction
	Methods
	Navigation Task
	Robot and Software Design
	Waypoint Navigation and Model of Neuromodulated Patience
	Road Following with Deep Reinforcement Learning

	Results
	Waypoint Navigation in Encinitas Community park
	Waypoint Navigation in Aldrich park

	Discussion

	Adapting to Environment Changes Through Neuromodulation of Reinforcement Learning
	Introduction
	Problem
	Method
	ACh and NE Neuromodulation
	Update of ACh and NE System
	The Complete System

	Experiments
	Results
	Reinforcement Learning Performance
	Activity of Neuromodulatory System

	Conclusion

	Domain Adaptation in Reinforcement Learning via Latent Unified State Representation
	Introduction
	Related Work
	Domain Adaptation in Reinforcement Learning
	Methods
	LUSR Definition
	Learning LUSR

	Experiments
	CarRacing
	Autonomous Driving in CARLA

	Results and Discussion
	CarRacing
	Autonomous Driving in CARLA

	Conclusion

	Achieving Efficient Interpretability of Reinforcement Learning via Policy Distillation and Selective Input Gradient Regularization
	Introduction
	Background and Motivation
	Policy Distillation
	Saliency Map in RL
	Motivation

	Method
	Experimental Results
	Setup
	Effectiveness via Visual Illustrative Examples
	Importance of Computational Efficiency
	Saliency Dataset and Evaluation
	Policy Performance Maintenance
	Improved Robustness to Attacks

	Conclusion

	Linking Global Top-Down Views to First-Person Views in the Brain
	Introduction
	Results
	Robot Simulation and Modeling Transformations
	Spatial Representations in Latent Variables
	Effect of Latent Variable Ablations
	Effect of Environmental Perturbations
	Alternative Models

	Discussion
	Neurobiological Evidence for Transformations between Views
	Modeling Transformations between Views
	Applying Artificial Neural Networks to Neuroscience

	Materials and Methods
	Robot Simulations
	Variational Autoencoder Construction and Latent Variable Analysis

	Conclusions
	Summary
	Future Directions

	Bibliography

