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Professor Elaheh Bozorgzadeh

Professor Fadi Kurdahi

2014



c© 2014 Yasaman Samei



DEDICATION

to my loved ones

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Embedded System Design Over Time . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Levels of Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 System Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 System-Level Design Methodologies . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Electronic System Level Design Process . . . . . . . . . . . . . . . . . . . . . 6

1.6.1 Y-Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.2 X-chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.3 Refinement-Based ESL Design Flow . . . . . . . . . . . . . . . . . . . 9

1.7 Low Power Design and Electronic System Level . . . . . . . . . . . . . . . . 10
1.7.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Dissertation Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10.1 Power Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.10.2 Power Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.10.3 Cycle-Accurate Power Estimators . . . . . . . . . . . . . . . . . . . . 18
1.10.4 Instruction Based Power Estimators . . . . . . . . . . . . . . . . . . . 19
1.10.5 Functional Based Power Estimators . . . . . . . . . . . . . . . . . . . 19

2 System Level Power Estimator 21
2.1 MAVO Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Power Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



2.1.3 Power API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.4 PowerMeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.5 Static & Dynamic Power . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.6 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.7 Monitor Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.8 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.9 Energy & Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.10 Annotator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Case Study: JPEG Image Encoder . . . . . . . . . . . . . . . . . . . . . . . 38

3 Accuracy and Fidelity Evaluation 42
3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Power Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Power-Aware Design Space Exploration 52
4.1 SpecC Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 System on Chip Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 MAVO Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Canny Edge Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Overview of Canny Edge Detector . . . . . . . . . . . . . . . . . . . . 56
4.4.2 System Level Modeling of Canny Edge Detector . . . . . . . . . . . . 58
4.4.3 Pipelined Canny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Design Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Pure Software Implementation . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Hardware Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Exploration Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Power Optimization 71
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Design Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Voltage and Frequency Scaling . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Balancing Power Dissipation by Scheduling . . . . . . . . . . . . . . . 73
5.2.3 Smoothing Power Spikes . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.4 Power Shut off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Power Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Case Study: Canny Edge Detector . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Canny: Design Modification . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.2 Canny: Adjusting Frequency . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.3 Canny: Power Aware Scheduling . . . . . . . . . . . . . . . . . . . . 79
5.4.4 Canny: Smoothing Power Spikes . . . . . . . . . . . . . . . . . . . . 79
5.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



6 Static Analysis of Power and Performance 83
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Related Work on Formal ESL Model-Checking . . . . . . . . . . . . . . . . . 85
6.3 The Static Analyzer Framework . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 Power and Performance Estimator Tool . . . . . . . . . . . . . . . . . 87
6.3.2 UPPAAL Model Generator . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 UPPAAL Model-Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Power and Performance Trade-off . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Conclusion 96
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 A System Level Power Estimator . . . . . . . . . . . . . . . . . . . . 97
7.1.2 Power-Aware Design Space Exploration . . . . . . . . . . . . . . . . . 98
7.1.3 Interactive Power Optimization Support . . . . . . . . . . . . . . . . 99
7.1.4 A Platform for Static Analysis of Power and Performance . . . . . . 99

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.1 Automated Power Optimization . . . . . . . . . . . . . . . . . . . . . 100
7.2.2 Extension for Reliability Analyzer . . . . . . . . . . . . . . . . . . . . 100
7.2.3 Efficient Static Analyzer for Power-Performance . . . . . . . . . . . . 100

7.3 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

v



LIST OF FIGURES

Page

1.1 Levels of abstraction in SoC design [35] . . . . . . . . . . . . . . . . . . . . . 4
1.2 Hardware and software design gaps versus time (Source[60]) . . . . . . . . . 5
1.3 Top-down system-level design in the Y-chart [31] (Source [83]) . . . . . . . . 7
1.4 Synthesis flow in the X-Chart (Source [36]) . . . . . . . . . . . . . . . . . . . 8
1.5 Refinement-based ESL design flow [26] . . . . . . . . . . . . . . . . . . . . . 9
1.6 Ability to impact and quantify power dissipation over the different design

abstraction layers [83] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Design flow with MAVO framework . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Dynamic and static profiling report of behaviors Main, A and B . . . . . . . 25
2.3 Energy consumption and derived power dissipation . . . . . . . . . . . . . . 32
2.4 Power annotated system model with powerMeter for every behavior . . . . . 35
2.5 Power annotated system model with power meter per PE . . . . . . . . . . . 36
2.6 Power annotated system model with global powerMeter . . . . . . . . . . . . 37
2.7 JPEG image Encoder [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 Power dissipation of JPEG Image Encoder visualized and optimized by Pow-

erMeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Power estimation at different design abstraction levels . . . . . . . . . . . . . 43
3.2 Power Estimation Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Power dissipation (nJ ) for n ”add” operations . . . . . . . . . . . . . . . . . 47
3.4 Power evaluation fidelity for system level and RTL . . . . . . . . . . . . . . . 50

4.1 Top-Down System-Level Design Flow [36] . . . . . . . . . . . . . . . . . . . . 54
4.2 Canny Edge Detector [42] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Canny Edge Detector Specification model [42] . . . . . . . . . . . . . . . . . 57
4.4 Stimulus, Platform and Monitor in initial Specification Model (Source [42]) . 58
4.5 Canny Profile using SCE (Source [42]) . . . . . . . . . . . . . . . . . . . . . 59
4.6 5-Stage pipeline Canny Edge Detector . . . . . . . . . . . . . . . . . . . . . 60
4.7 Pure software implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Power dissipation in pure software implementation (4 images) . . . . . . . . 62
4.9 Synthesized Gaussian Smooth X hardware . . . . . . . . . . . . . . . . . . . 63
4.10 Power dissipation in Synthesized Gaussian Smooth X hardware architecture

(4 Images) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Synthesized Gaussian Smooth Y hardware . . . . . . . . . . . . . . . . . . . 65

vi



4.12 Power dissipation in Synthesized Gaussian Smooth Y hardware architecture
(4 images) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.13 Concurrent Gaussian Smooth X and Y hardware . . . . . . . . . . . . . . . . 66
4.14 Power dissipation in synthesized Gaussian Smooth X and Y hardware archi-

tecture (4 images) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.15 Concurrent Gaussian Smooth X and Y hardware . . . . . . . . . . . . . . . . 68
4.16 Power dissipation in Concurrent Gaussian Smooth X and Y hardware archi-

tecture (4 images) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Evaluation of different architectures for power and performance . . . . . . . 72
5.2 Adjusting PE clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Scheduling Power Dissipation with MAVO framework . . . . . . . . . . . . . 74
5.4 Smoothing power spikes with MAVO framework . . . . . . . . . . . . . . . . 74
5.5 Canny Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Adjusting Frequency for HW1 and HW2 using MAVO . . . . . . . . . . . . . 78
5.7 Adjusting work period for HW1 and HW2 using MAVO . . . . . . . . . . . . 79
5.8 Active processes power dissipation in CPU . . . . . . . . . . . . . . . . . . . 80
5.9 Smoothing power dissipation using MAVO . . . . . . . . . . . . . . . . . . . 80
5.10 Power dissipation of Canny Edge Detector visualized and optimized by MAVO 82

6.1 The Static Power and Performance Analyzer Framework Flow . . . . . . . . 86
6.2 Representation of power and performance annotation of a behavior in UPPAAL 89
6.3 Power & performance trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 JPEG Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5 Determine Power & performance trade-off for (a) Mono JPEG and (b) Color

JPEG Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vii



LIST OF TABLES

Page

1.1 Power estimators comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Time and power modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Dynamic and static energy values (nJ ) for operations & statements for ARM7
processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 MAVO speedup experimental result for JEPG, MP3 audio decoder and H.264
video codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Power estimation experimental result for JEPG, MP3 audio decoder and
H.264 video codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Exploration results for Canny edge detector . . . . . . . . . . . . . . . . . . 69

5.1 The delay & average power of pipeline stages . . . . . . . . . . . . . . . . . . 77
5.2 Timing and performance for Canny edge detector after applying each technique 81

6.1 Experimental result for JPEG applications . . . . . . . . . . . . . . . . . . . 93

viii



ACKNOWLEDGMENTS

It gives me great pleasure to take this opportunity to acknowledge all the people who sup-
ported me in the last four years of my PhD.

First and for most I would like to express my gratitude to my supervisor Prof. Rainer Dömer,
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ABSTRACT OF THE DISSERTATION

Automated Power-Aware System-Level Design

with the MAVO Framework

By

Yasaman Samei

Doctor of Philosophy in Electrical Engineering and Computer Engineering

University of California, Irvine, 2014

Professor Rainer Dömer, Chair

For the past few decades, semiconductor capabilities have been improving as Moore’s law

predicted. Transistor size has been shrinking and technology size will be less than 20nm

in the near future. These improvements enable designers to come up with more complex

systems. However, this has made power dissipation a major design obstacle. Conventionally,

power consumption is considered in the later stages of the design process, like the architecture

level, Register Transfer Level (RTL), gate level, and physical level, where detailed information

about the design is available. Although there are many power-aware design tools at these

lower levels, the simulation and evaluation time are high and often beyond the time-to-market

requirements. To tackle the long simulation time as well as avoiding time consuming design

modifications at lower levels, designers are raising the level of abstraction to the system

level.

Over the last decade, research in Electronic System Level (ESL) design has resulted in

significant advances in addressing the rising design complexity and meeting the required

performance constraints. Now a major concern of system-level design is power dissipation

in System-on-Chip (SoC) which not only affects battery lifetime but also thermal aspects

and reliability of the end product. Although power aware design is crucial in ESL design,

xiii



System Level Description Languages (SLDL) are not supporting this feature natively.

Towards power-aware ESL design, in this dissertation we present MAVO, an automated

framework to Monitor, Analyze, Visualize and Optimize both power and performance at the

early stages of the design process. The proposed framework supports waveform-based power

estimation and optimization for rapid system-level design. MAVO is adapted for automated

SoC design and it is integrated to System-on-Chip Environment, a prototype ESL design

tool for rapid power-aware design.

We perform different experiments to evaluate the accuracy and fidelity of the framework,

including JPEG image encoder, MP3 audio decoder and H.264 video decoder and encoder.

Experimental results show that our developed framework can achieve a high degree of fidelity

while providing significant speedup.

We also examined MAVO for applying different power optimization mechanisms on a Canny

edge detector application. Our studies show large potential for design modification toward

power efficient design models at system-level. Additionally we applied MAVO along with

static analyzer tool in order to capture power and performance trade-offs and apply power

optimization techniques automatically.

Overall, our work provides an advanced power estimation infrastructure for power- and

performance-aware system model development. It can significantly help embedded system

designers to build low-power and reliable products in shorter time frame.
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Chapter 1

Introduction

1.1 Embedded Systems

Embedded systems are getting more and more attention every day through presenting smart-

ness in all sorts of devices from cellphones to household and office equipment. The embedded

computer systems are formally defined as special purpose information systems that are embed-

ded in larger systems to provide operations without human intervention [59], and informally

defined as a collection of programmable parts surrounded by Application-Specific Integrated

Circuits (ASICs) and other standard components, that interact continuously with an envi-

ronment through sensors and actuators [9].

Although embedded systems have emerged later in the field, they are dramatically moving

the semiconductor and electronics industry in new directions supporting growth and contin-

ued innovation. In semiconductor industry where the technology size is shrinking as Moore’s

law predicted and multi-tasking devices are the new trend to achieve higher performance,

embedded systems are getting more and more attention. Embedded systems have found a

widespread application in both hardware and software market across various industries such

1



as automotive, healthcare, telecommunications, military and aerospace. These extensive

markets for embedded systems demands for more design tasks, where these tasks need to be

performed quickly, efficiently, and reliably.

The above mentioned requirements have made embedded systems design a challenging pro-

cess and with increasing complexity of these systems, embedded systems design is the focus

of many research efforts.

In this chapter we look into embedded system design methodology, different design abstrac-

tion levels, low power design and related works in this area.

1.2 Embedded System Design Over Time

The complexity growth in embedded systems does not allow designers to follow the old design

methodologies any more (The aggregation of models, components, guidelines and tools is

called design methodology [30]). During the last few decades three main methodologies have

been introduced in embedded systems design field [32]:

• Capture and Simulate Methodology

Embedded system design flow lacks tools and formal approaches for model generation,

simulation, synthesis and verification. Embedded systems are conventionally designed

in an ad hoc manner that is highly depend on previous products and designer’s experi-

ence. Originally the embedded systems manufacturers begin the design process based

on the specification of the design for hardware and software separately. The main de-

sign specifications and requirements were implemented at software side. Then hardware

engineers took over and develop the hardware side. However, matching sides, design

testing and verification was not possible until hardware side were complete. Therefore

the process was long and debugging and design modification were postponed to the

end of design-cycle.
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• Describe and Synthesis Methodology

To improve the design process, synthesis tools were introduced, which allow the de-

signers to develop their design behavior in forms of Boolean equations and Finite State

Machines (FSM) and automatically generate the corresponding structural model as a

gate netlist. However the order of complexity and size of embedded system was not

compatible with required equivalency check between behavioral and structural models

in this approach. The abstraction of gate level to RTL did not help to resolve the

design gap as well. As a result in early 2000s system-level design concept emerged to

tackle this deficiency.

• Specify, Explore and Refine Methodology

In this methodology initially the design model is specified and it goes through different

exploration and refinement steps to achieve the correctness, performance and timing

criteria. During this era system-level design was proposed to simplify the design flow.

In order to strengthen the system-level design through refinement, an explicit semantic

was needed in embedded system design languages which was absent in High Level (HL)

and Hardware Description Languages (HDL).

The Specify, Explore and Refine approach is also applied in this work and will be

described in details in next section.

1.3 Levels of Abstraction

The different level of abstractions are presented in Figure 1.1. As it is shown the higher

the level of abstraction goes the number of components available at each level becomes less

with an orders of magnitude or more. Therefore system modeling, design and verification

are all accelerated in correlate with the complexity of the models in different abstraction

levels. However, since the number of the components are reduced due to abstraction, less
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Figure 1.1: Levels of abstraction in SoC design [35]

information from the design and design libraries are available. Thus, in higher levels design

evaluation and constraints verification accuracy degrade to some extent accordingly.

1.4 System Level Design

The current semiconductor technology allows the designers to integrate hardware accelera-

tors, multiple processors, communication hierarchy and IO devices and drivers into a single

chip so called the Multi-processor System-on-chip (MPSoC). This strong suit is a great

potential for developing advanced embedded systems, however the design process can be

extremely sophisticated and requires design automation tools.

Not only different high volume of design specification and implementation concerns are

needed but also new design problems such as high power dissipation and reliability issues

are added to designers concerns list. Figure 1.2. shows a design process deficiencies which

is caused by the above mentioned capabilities. As it is shown by International Technology

Roadmap for Semiconductor (ITRS) [25] the embedded system design process is suffering

from the hardware and software design gap.

As it is shown the software productivity is far beyond the rapid hardware and technology

improvements. The current need for software gets doubled every 10 month where the current
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Figure 1.2: Hardware and software design gaps versus time (Source[60])

rate is 5 years. In semiconductor industry where all the focus was on improving technology,

now software productivity is the bottle neck of the design process. The current speed of

software development for SoCs cannot utilize the complexity of the available HW.

To simplify the specification, verification and implementation of system in both hardware

and software, accelerating the design space exploration process as well as narrowing down the

productivity gap, a new level of abstraction called System-Level is introduced. In system-

level design, specifications are implemented in SLDLs as executable models which can be

tested and verified. On the other hand, the structural models are described in higher level

of abstraction with computation and communication apart from each other.

1.5 System-Level Design Methodologies

Although system-level design proposed a better solution for embedded system design, the

design flow is still complex and time-consuming. To alleviate the problem Computer Aided

Design (CAD) tools are improving toward automating the design flow and lightening the

manual efforts which eliminates the human error as well.

There are three main techniques in design methodology; the bottom-up, top-down and meet-
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in-the-middle. In first method the design process start from lowest level of the design, the

transistor level, and design gets abstracted level by level through generating libraries, with

details on layout and floor plan. In top-down approach the exact opposite direction is taken.

Design flow starts from highest level of abstraction, system-level. At this level functional

description is prepared and goes through design decisions and refinements step to enrich with

more details. In the third method meet-in-the-middle, as it is implied by its name design

process start from both directions, highest and lowest level of abstraction simultaneously,

and then merged in one of the mid-levels like RTL or Gate level.

Each of these methods has their own advantage and disadvantages. In bottom-up approach

although the design constraints can be evaluated with highest level of accuracy, in order

to obtain the best design option every parameter needs to be altered in all the different

design models within different abstraction levels. In top-down approach, it is not possible

to evaluate the design constraints with high level of accuracy initially, since system-level

design model does not cover the detail information of the design. On the other hand design

customization and verification is easy and scalable. The meet-in-the-middle has both of the

mentioned disadvantages in other two methods, however, it is more accurate in compare to

top-down approach and requires fewer layouts than bottom-up.

Apart from these three methods, platform methodology, system methodology and FPGA

methodology are also evaluated in [30] which are popular in companies with in house design

tools.

1.6 Electronic System Level Design Process

In this work we are using a top-down approach for ESL design process. In this process we

are relying on Y-chart [31] for showing design flow and X-chart [36] for synthesis at each

design abstraction level.
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1.6.1 Y-Chart

The Y-chart is a well-known representation of different perspectives in the embedded system

design. It combines the presentation of the five hierarchy levels and three design description

domains. The axes of the chart are the domains and circles are the abstraction levels.

Figure 1.3: Top-down system-level design in the Y-chart [31] (Source [83])

In the Y-chart the domains are behavioral, structural and physical. The behavioral domain

describes the temporal and functional behavior of the system. The structural domain is

structured from subsystems which different subsystems and their interconnections are listed

for each level of abstraction. Finally the physical domain represents the geometric properties

of the system and its subsystems. At this domain models have detail information on size,

area and placement of the system.

The abstraction levels and their accuracy and relations are presented in Section 1.3. In

Figure 1.3, a top-down methodology flow is marked by red in the Y-chart. In this approach

the design methodology begins at system-level as the highest abstraction level to convert the

system-level description of the design to component netlist at each abstraction level. In this

flow design models are equipped with more details step by step in the design flow. In this

7



work we are using the top-down approach as well.

1.6.2 X-chart

During the synthesis process a specification is converted to an implementation [36]. Figure

1.4, demonstrates the synthesis flow in our work. Here synthesis starts with defining the

Figure 1.4: Synthesis flow in the X-Chart (Source [36])

specifying model behavior and design constraints. The behavioral model is the system func-

tionality, which can be generated based on different models of computations and in different

programming languages. According to model abstraction level, SLDLs, e.g., SpecC [34],

SystemC [2], or HDLs e.g., Verilog [3] or VHDL [4] can be used.

Design constrains need to be evaluated from different aspect. For instance, the available

resources, such as processors, number of them, different communication schemes or memory

hierarchies. The design constraints can also be performance, power or area limitations. All

these criterion should be defined for synthesis process.

Next base on the designer decisions and through one or multiple refinements steps, the specifi-

cation model will get converted to an implementation. The implementation model composed
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of a structural model and design quality evaluation numbers. The structural model reflects

the behavioral model and all the architectural decisions that have been applied, such as PE

allocations and mappings, scheduling and communication schemes.

1.6.3 Refinement-Based ESL Design Flow

In our method design process starts with high level description of the design which is usually

specified in one of the SLDLs, then the model get validated through simulation for correct-

ness and finally the model is refined through a CAD tool. These three steps are called:

specification, validation and refinement. This process can be iterated multiple times for de-

sign optimization and further changes in the design model. An overview of this approach is

presented in Figure 1.5.

Figure 1.5: Refinement-based ESL design flow [26]
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1.7 Low Power Design and Electronic System Level

Although the ESL design tools and models have alleviated the embedded system design

problems and reduced the design-cycle time enormously, due to complexity of the systems

and different kinds of constraints, such as physical constraints (size, weight etc.), functional

constraints (performance, throughput, power consumption, etc.), environment constraints

(humidity, temperature, etc.) and economic constraints (cost, time to market etc.) it is still

a complicated process.

One of the major design concerns which is getting more and more critical due to reduction

in technology size is power. The advances in CMOS technology can accommodate more

computing elements on chip and more applications on hardware. The integration of all these

elements has resulted in high power dissipation in embedded systems. The silicon technology

advance has produced more reliability, variability and leakage power challenges [65]. The

ITRS [70] is predicting that the power consumption of stationary devices increase by a fac-

tor of two and the leakage and dynamic power consumption will be equal for both logic and

memory parts.

Conventionally power reduction techniques and power optimization solutions are applied and

inserted in lower level of the design such as RTL, Gate Level and Transistor Level, since in

lower level more information are available and therefore power analysis is more accurate.

On the contrary, in ESL power analysis, accuracy is degraded due to abstraction, since less

design information is available or partially known, such as design characterization, switching

activity, and application test-bench of hardware resources.

On the other hand the power saving opportunity is reduced from about 10X-50X at system-

level to 10%-50% at transistor level [66] as it is shown in Figure 1.6. Therefore, postponing

the power analysis to lower level of the design will disregard the great opportunity of power

optimization at ESL.
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Another encouraging point about initiating power evaluation during ESL design is the expec-

tation of accuracy at ESL. Due to the fact that at ESL design the main concern is to make

the correct design decisions, the concept of relative accuracy or in another word fidelity can

replace the absolute accuracy. Fidelity is used as a quality metric for estimator evaluation.

It is defined as the percent of correct estimations for pairs of design implementation [33].

The accuracy-speed trade-off along with fidelity requirements in ESL design have been the

motivation of this thesis. Our main goal in this thesis is to improve the effectiveness of power

evaluation and provide an automated framework for power optimization at ESL.

Ability to impact  
power consumption 

Accuracy 

10X 

10% 

Speed p

A

p p

X

10%

System Level 
Component Selection, Pipeline balancing, ..  

Algorithm/Arch. Level 
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Clock Gating, micro-architecture, Multiple Vdd 

Gate Level 
Sizing, Clock tree optimization,.. 

Circuit Level 
Transistor Sizing, Placement, Routing,… 
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Figure 1.6: Ability to impact and quantify power dissipation over the different design ab-
straction layers [83]

The speed, accuracy, and fidelity are the main evaluation metrics for system-level estimators

and we examined MAVO framework against them in Chapter 3. Among these metrics we

can improve the speed and preserve the fidelity of our system-level power estimator, but the

accuracy is expected to degrade in compare to lower levels power estimators, Figure 1.6.
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1.7.1 Power

The power dissipation in embedded systems has different sources, all the resources activity

and interactions, as well as environmental factors have an impact on power consumption.

The power dissipation is usually grouped in: Dynamic Power, Static Power and Short-Circuit

Power.

• Dynamic Power

Dynamic power dissipation or active power is due to activity and switching frequency.

Charging and discharging the capacitors are the main reasons for dynamic power dis-

sipation. The dynamic power consumption can be formulated as [65]:

PDynamic =Cswitched × V 2
DD × f (1.1)

Where Cswitched is the switched capacitance, VDD is the power supply voltage and f is

the activity frequency. The unit of the resulted metric is Watt( Joule/sec).

Dynamic power is highly dependent on application and applied architecture and it is

the dominant source of power consumption in embedded systems [7]. At system-level,

there is a huge potentials for reducing power dissipation of hardware design through

altering capacitance and activity profile of the design via hardware changes.

• Static Power

Static power is not depend on device activity, at it is dissipated while device is in

non-conducting state. Static power can be expressed as:

PStatic = VDD × Ileakage (1.2)

Where VDD is the power supply voltage and Ileakage is the leaked current. The major

factors in static power dissipation are sub-threshold leakage, junction leakage and gate
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leakage in transistors. The fact that transistors are working as imperfect switches is the

main cause of static power dissipation. With traditional technologies the contribution

of dynamic power was about 80% to 90%, however for deep submicron (below 65nm)

wiring the capacitor is the major power dissipation source [38] and it is increasing

exponentially [7].

• Short-Circuit Power

Short-circuit power is power dissipation due to stacked effect when P and N devices

in a CMOS logic gate are in ON state simultaneously [7]. The short-circuit power can

be minimized by matching the rise and fall times of the input and output signals in

transistors [65]. However the power dissipation due to short circuit can be addresses

more effectively in lower levels of the design where more design details are available.

Over all the power dissipation in embedded system hardware design can be summarized as

[65]:

Power =Energy per Transition × Transition Rate + StaticPower (1.3)

We relied on this formula for power estimation in MAVO framework.

1.8 Dissertation Goals

The CMOS technology is continuously scaling and multiple processors, intellectual proper-

ties, and on-chip memories are fully integrated on a small die of a single chip. Therefore, the

large-scale MPSoC s requires advance design techniques and efficient design flow. The design

flow should support the time-to-market requirements as well as effective design constraints

evaluation such as power and performance.

One other major concern that rises along increasing density of transistors is power. The
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power evaluation and dissipation is one of the hottest topic, not only for battery power

devices but also for other application domain and high performance computing. Key to

designing power efficient and reliable system is to initiate power dissipation at highest level

of abstraction, the ESL.

This dissertation aims at developing a framework for power estimation and analysis at

system-level. The MAVO framework will be presented as a simulation-based power estima-

tion tool to Monitor, Analyze, Visualize and Optimize power behavior of the system-level

models . The major contributions of this dissertation are:

• Provide an automated power dissipation Monitor to profile the activity of the system-

level specification models.

• Develop a power API to support power analysis in ANSI-C based SLDLs and design a

model annotator to generate power- and performance-aware models, the Analyzer.

• Implement a power Visualizer to extract text and graphical report of power dissipation

in specification models.

• Improve the observability of power activity in the models for power optimization and

design modifications as well as presenting a platform for power-performance design

space exploration via integrating the power framework into System-on-Chip design

Environment.

• Propose a formal method for capturing power-performance trade-off in different design

options rapidly
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1.9 Dissertation Overview

This dissertation is organized as follow: In the rest of the chapter 1 the related work and

research background will be presented. In chapter 2, the MAVO framework will be presented

along with its embedded modules. The JPEG platform is used as a case study in MAVO

framework. In Chapter 3, the accuracy and fidelity of the proposed approach is evaluated.

A simplified power modeling approach is presented to build a default power models library.

The canny application is used for Design space exploration within the MAVO framework

in chapter 4. Chapter 5 present different power optimization technique, followed by a case

study on Canny application. Chapter 6 describes a static analysis of power-performance at

ESL model via ESL model checking. Finally Chapter 7 summarizes the contribution of the

work in the dissertation and concludes with a brief discussion on the future work.
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1.10 Related Work

There has been large body of work and research efforts on low-power design, power optimiza-

tion techniques, and power aware Electronic Design Automation (EDA) tools, for design at

different levels of abstraction. For power and performance estimation at system level, two

common steps within all these studies are: generating power models and tracing model simu-

lation to extract information needed by power models. In the following we look in to related

works in these two steps.

1.10.1 Power Modeling

The power modeling and characterization has been studied on all sort of computing devices

such as general purpose processors, SoCs and Field Programmable Gate Array(FPGA). The

power in SoC is the summation of power consumption in all of the integrated components

to the chip, the embedded processors, memory and caches, on-chip Buses, etc.. In order to

achieve reasonable power accuracy at system level, all these components are needed to be

studied for power modeling and power dissipation influencing factors under different work-

load. Investigating the power dissipation of these units needs a considerable effort, therefore

designers are usually rely on models that are provided by the manufacturers. The commer-

cial CAD tools also have built-in Intellectual Properties (IP) with power model libraries,

since extracting them is not possible without knowing the internals of such components and

even with black box solutions [50] [56] [79] it is beyond the time-to-market requirements for

designers.

The common technique to extract the power models at ESL are analytical or regression-based

[68]. These approaches can be used for all kinds of design components such as processors,

custom hardware, interconnections and memories. The power modeling technique can de-
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veloped in any of design abstraction levels with different accuracy.

In analytical approach power dissipation is formulated using the structure of the compo-

nents. Due to complicated nature of investigating the structural details of each components,

this approach is usually suitable for well-organized blocks such as memories and caches [57]

[76] [85] [46].

The regression method is common for processors and custom hardwares [52], [64]. In this

method usually a subset of test cases are exhaustively applied to the system to trace power

and performance. For shortening the process the test cases are summarized through grouping

different states or operations. In order to improve accuracy, the impact of data dependency

and inter-command dependency on power dissipation within each component can be included

in the models as well.

The power models result in dissimilar power numbers according to their accuracies and

required computational effort for utilizing them. Therefore different power models can be

deployed for different design components in simulation, or models can be chosen alternatively

for same component depending on the level of desired accuracy [53] [45] [10].

1.10.2 Power Estimation

Power estimation and modeling has been the focus of many research efforts. Although power

aware design is crucial in ESL design, SLDLs are not supporting this feature natively.

There are various commercial and noncommercial tools for lower abstraction levels that are

accurate but only applicable in low levels where all the the design decisions has been made

and design modification are beyond the time to market requirements, such as Spice, Power

Compiler [1], PowerPlay [5]. Most of the proposed power estimation methods rely on similar

foundations that can be categorized in to three main groups: cycle accurate, instruction

based, and functional level based models.
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1.10.3 Cycle-Accurate Power Estimators

In cycle accurate methods, such as SimplePower [86], Wattch [14] and McPAT [54] power is

analytically quantified by monitoring operations and transactions cycle by cycle and apply-

ing power models from the micro-architectural level for each involved unit.

The SimplePower was the first cycle-accurate modeling tool. The proposed model was based

on the five-stage pipeline architecture. The collected cycle by cycle information was captured

at RTL for each involved functional unit.

Another well-known power model and optimization tool for microprocessor is Wattch. Wattch

was proposed at one level higher, at architecture level for modeling dynamic power consump-

tion. In Wattch wide range of information about the architecture such as array structure,

content addressable memories, combination logic, wires and clocking are employed for power

estimation.

SimplePower and Wattch are both based on super scalar processors and are utilized along

with a simulators such as SimpleScalar [15] or GEM [58]. Simulator is responsible for col-

lecting the activity information of the design components for their power models.

The latest power modeling tool set is McPAT (Multicore Power Area and Timing) that is de-

veloped by HP Labs. This tool propose models for power, area and timing for multithreaded

multicore/manycore architectures. The presented models covers in-order and out-of-order

cores, shared on-chip caches, integrated memory controllers, and network on chips for more

accurate design evaluation. The major limitation of McPAT is compatibility with other

simulators. The Sniper[19] and Multi2Sim [81] are among few simulators that matches the

McPAT interface.

In order to estimate the power multiple applications with different workload and data varia-

tions are executed on a instruction set simulator. The cycle-accurate simulations of detailed

micro-architectural structures are slow. Therefore the long simulation time is the major

limitation of power evaluation in this method, albeit the absolute accuracy is reasonably
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high.

1.10.4 Instruction Based Power Estimators

An instruction level power analysis tool in [78] was among the first attempt for power eval-

uation for higher level. In this work the developed power models are in form of a look-up

tables and generated based on the power cost of each instruction. Similar instructions were

grouped further to simplify the power modeling development process. In this approach the

execution of each instruction were captured using an instruction set simulator. Then the

total power was calculated by adding up the execution counts and corespondent power num-

bers.

Powersim [37], an example of an instruction-based power model, presents a C++ class li-

brary to be used inside a SystemC design model. Powersim monitors a limited set of SystemC

operators, the arithmetic, logic and relational operators, and applies an energy model to mon-

itored operations. Consequently the Powersim is suitable for evaluating the computational

dynamic power only. Although Powersim provides the power numbers automatically and

without any manual annotation to design model, design components allocation, mapping

information along with the power models should be provided to Powersim via configuration

files.

1.10.5 Functional Based Power Estimators

The final group is functional level power analysis which is applied in several tools, such as

TLM POWER3 [39], and PKtool [82]. In [39], bit level activities are counted in TLM mod-

els, while PKtool is presented in the form of a class library for SystemC by means of power

estimation and analysis at the system level. Both of these tools help to embed the power
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details and abstract power related information, such as Hamming distance of the signals, to

the design. However, the process is manual and user-oriented, and therefore neither easy to

apply nor scalable.

There are other tools that use the mixture of these approaches. In [69], a hardware/soft-

ware co-simulation based power estimation and optimization called PETS is proposed. A

functional level power analysis approach is used in PETS . PETS uses generic power models

with different algorithmic and architectural parameters, while extracting micro architectural

activity to tackle the accuracy-speed trade-off. The power modeling selection and design

model generation are within an Eclipse based environment with a scripting interface.

COMPLEX [40] is a framework for HW/SW co-design at system levels and allows applying

hybrid combination of power models from various works for different design components.

The investigated power estimation approaches in related work section, are compared and

summarized in Table 1.1.

Table 1.1: Power estimators comparison

Power Eastimator Automated Accuracy Speed Power Report
SimplePower Yes High Low Average Power
Wattch Yes High Low Average Power
McPat No High Low Average Power
Powersim No Medium High Average Power
PKtool No Medium High Average Power
TLM POWER3 No Medium High Average Power
PETS No Medium Medium Average Power
COMPLEX No Medium Medium Power over Time
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Chapter 2

System Level Power Estimator

System-level is the starting point for design constraints characterization as well as design

space exploration. Therefore design decisions, such as component selections, hardware/soft-

ware partitioning, communication schemes, number of cores, and power reduction techniques,

are ideally all made at the system level. Here, it is critical to make correct decisions. To

achieve this goal, a structured ESL tool suite is required to perform assessments.

In this chapter, MAVO, a rapid and automated system-level power estimator, is introduced

to monitor the energy consumption of a system-level model by extracting comprehensive

power activity of the modules without any manual modifications.

2.1 MAVO Framework

An overview of the design flow using MAVO is presented in Figure 2.1. The main developed

modules are a Monitor [72], a PowerAnalyzer API [73], a power-time model Annotator, and

an interactive power-performance Optimizer.

As it is shown in Figure 2.1, the design process at system level starts with a specification
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model, that reflects the functional behavior of the system, without any notion of time nor

power. Next, Processing Element (PE) allocations, behavior mappings, scheduling and com-
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Figure 2.1: Design flow with MAVO framework

munication refinements are performed. All these design decisions generate a large design

space which needs to be minimized through elimination, based on design constraints. All

invalid design options are pruned from the design space and the best design options go to
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power optimization and performance improvement phase.

In this work, we implemented the system level specification models in SpecC language, and

the System-on-Chip Environment (SCE) [26] is used for component allocation, architecture

mapping, and refinements. The integration process and the modified power-aware SCE tool

is described in Chapter 4.

Although we picked SpecC language and SCE as the design environment, the concepts of

MAVO can be used in SystemC or other design frameworks similarly. Moreover, each module

of MAVO, Monitor, PowerAnalyzer API, Annotator, and power-performance Optimizer, can

be used separately as needed or integrated into other tools as well.

The design flow in MAVO starts with an architectural model. In this work the architectural

model is generated using SCE tool. When the architecture model is ready, Monitor produces

power and timing traces of the architecture model. Next Annotator converts the model to

a time and power aware model, in which every basic block of the model is annotated with

power and performance information defined by utilizing PowerAnalyzer API. The power and

time aware model is simulated in order to generate the power and performance estimation

reports in addition to simulation result of the model. Followed by reports, the power and

time Optimizer applies power management mechanisms and allows the designer to investi-

gate the trace both numerically and visually throughout the simulation.

MAVO can generate the power and timing traces of all units and behavior of the system.

All the trace files can be visualized with different sampling frequency and any combination

base on designer desire.

In summary, once the architecture model is ready, the main power estimation and optimiza-

tion steps are profiling the model, annotating power and time related functions to the design,

the power and performance observation and analysis, and finally optimization.
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2.1.1 Profiling

The design process of embedded systems starts with the original specification model of

the design. This model contains the system functionalities only, without any timing or

architectural information. In order to evaluate power dissipation, the specification model is

profiled by means of capturing its energy consumption activities. Similar to SpecC Profiler

[16], our power monitor is a design-oriented profiler that extracts the energy activity details

on operations, communications, and memory characteristics of each behavior.

Monitor captures the execution number of each basic block by simulating the specification

model. The operations and statements of each block is collected by traversing the internal

representation of SpecC models. Then using the execution counts and operations set of each

basic block the proposed retargetable profiler automatically annotates the design source code

to generate both static and dynamic reports. These reports assist designers to comprehend

the computation cost of each behavior in the design, moreover reports are annotated to the

specification model for further power and performance analysis during power analysis and

design exploration phase.

In static report, the evaluation is based on pure code, while in a dynamic report the actual

number of executed operations and statements during simulation is taken in to account.

For power estimation, the static report of each basic block within the model is used which

contains sufficient information on the ESL model running its application. Monitoring these

basic blocks is also shown to be a fine level of granularity for performance estimation in [16].

Having a comprehensive profiler is a key factor in developing an accurate and fast system

level power estimator. In this work we developed a profiler that summarizes all the execution

counts of all expressions and statements with their associated types.

An example of a profiling report for a specification model is presented in Figure 2.2. In this

model, two instances of behavior A, A1 and A2, are running in parallel with an instance of

behavior B named B1. Behavior Main contains A1, A2 and B1 as child behaviors; hence,
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behavior A()

{

void main()

{

    int x;

for(x=1;x<11;)

{

      waitfor 1;

      x++;

    }

}

}; 

behavior B()

{

void main()

{

    float y=100;

    do{

        waitfor 2;

        y/=2;

    } while(y>10);

    y++;

}

}; 

behavior Main()

{

A A1,A2;

B B1;

int main()

{

par

{

    A1.main(); 

    A2.main(); 

    B1.main();

}

     return 0;

    }

};
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Figure 2.2: Dynamic and static profiling report of behaviors Main, A and B
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its profiling report covers its own operations and expressions plus its child instances.

Monitor generates both static report, by traversing the pure code, as well as dynamic report

through simulation. For instance in behavior A one post-increment operation is captured in

the code and it is reported in the static reports of A and Main, however after simulation

20 post-increment operations were executed in total in the for loop and in two instances of

behavior A.

As it is shown in Figure 2.2, each operation is profiled with regards to its data type. For

instance in behavior Main the post-increment operation is profiled for both integer and float

data types separately. The Monitor report also shows the number of times that behaviors A

and B are executed, along with their operations and corresponding data type.

2.1.2 Power Analyzer

To evaluate the power consumption of the design at the system level, we insert the power

activity information in to the system-level model. The power activity information is cal-

culated by applying the obtained profiling information to the power models. In order to

evaluate power dissipation, we designed a C++ API called Power Analyzer [73]. Power

Analyzer functions are automatically attached to each basic block of the system model using

the Annotator, to measure and monitor energy and delay. A graphical notion of basic block

is shown in Figure 2.4.

Although power aware design is crucial in electronic system level design, SLDLs are not sup-

porting this feature natively. The initial solution to this deficiency, which is still being used

in some cases, was the use of spreadsheets. The spreadsheet approach is fast for average

power evaluation, however verifying power dissipation over time and securing the system

against power peaks is only possible when timing is taken into account [29]. There has been

some research on extending SystemC or providing new libraries for power aware simulation.

PowerSC [49] is a library proposed for power aware simulation of SystemC-based TLMs; it
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can gather switching activity information during the simulation. TLM Power 3.0 [39] counts

bit level activities in a TLM model. A similar approach is presented in PKtool [82].

A limitation of these approaches is that the annotation of power and timing functions to

TLMs is performed manually, which is a tedious task for the designer and not scalable. An-

other drawback is that modifying the design with power aware functions changes the pure

specification of the model.

In this work, we present Power Analyzer, a library for ANSI-C based SLDLs such as Sys-

temC [55] or SpecC [34]. Power Analyzer allows power-aware design to be orthogonal to

conventional performance-aware design. Power evaluations, measurements and visualization

are developed and adapted for SLDLs. The proposed API utilizes all components switching

activities, interactions and communication details generated by Monitor. The proposed ex-

tension and methodology for power modeling can easily be applied for any other SLDL as

well.

To develop Power Analyzer, we defined PowerMeter as a virtual tool for power evaluation.

PowerMeter is designed similar to an actual power meter that is used for power monitoring

and measurements at the physical level. PowerMeter can monitor and measure power, and

generate an on-line log of power activities during simulation. The collected information can

be used for power optimization, power-aware schedulers, and ultimately increasing life-time

and reliability of the system.

We have developed PowerMeter as an API and a library called Power Analyzer which offers

power analysis along with timing log and graphical reports. PowerMeters are annotated

to the specification model with energy dissipation and time consumption information. The

implemented functions enable PowerMeter to monitor and measure power consumption over

time, and within different system components or application segments. Table 2.1 shows an

overview of existing time evaluation features along with added power features. In order

to support power analysis the Power Analyzer library is developed with specific power and

energy related units as well as functions for power consumption and monitoring. Owing to
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Table 2.1: Time and power modeling
Features Time Power

Meters sim time time; PowerMeter pm;

Units SEC, JOULE, MILLI JOULE,..
MILLI SEC,.. WATT, MILLI WATT,..

wait(event); pm consume dynamic(&pm,dynamic);
Consumption waitfor(time); pm consume static(&pm,static);

do{...}timing{...} pm consume total(&pm,dynamic,static);

time = now(); dynamic=pm dynamic(&pm);
time = delta(); static=pm Static(&pm);

Monitor total=pm power(&pm);
pm display(&pm);
pm printPower(&pm);

Power Analyzer, the design exploration process can be initialized at the system level via

verifying both timing and power constraints.

2.1.3 Power API

The Power Analyzer library uses PowerMeters (PM) to extract power dissipation information

from the design, and perform power analysis. Each PM monitors static and dynamic power

dissipation over time and with proper units. In order to support different operations over PM,

such as power consumption, power monitoring and power constraints evaluation capabilities,

multiple functions are developed in the Power Analyzer API which are presented in the

following subsections.

2.1.4 PowerMeter

Each PM is capable of measuring power for its assigned part of the design. There is no

limit on defining PMs nor associating them with particular part of the design. A PM can

be defined for any block, component, and behavior of the code. The PM class objects can
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be defined with type PowerMeter within the specification model code as:

PowerMeter pm;

2.1.5 Static & Dynamic Power

The PMs are treated as an actual power meter in this work. Therefore all the expected

functionalities from a power meter are implemented as built-in features in the Power Analyzer

API. For each PM the main required information encompasses the energy dissipated over

time due to the switching activity and leakage. Hence these values are monitored and

maintained internally for each PM.

long double Dynamic ;

long double S t a t i c ;

sim time time ;

2.1.6 Power Consumption

To represent the power dissipation in the system model a set of functions is presented;

pm consume dynamic for spending dynamic power only, pm consume static for static power only,

and pm consume total for spending both dynamic and static power.

void pm consume dynamic ( PowerMeter ∗pm,

const long double Dynamic ) ;

void pm consume stat ic ( PowerMeter ∗pm,

const long double S t a t i c ) ;

void pm consume total ( PowerMeter ∗pm,

const long double Dynamic ,

const long double S t a t i c ) ;
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When these functions are called the Dynamic and/or Static energy values along with the

associated time stamps are recorded for the specified PM. Then in the analysis phase this

information is deployed to generate graphs and different forms of power reports.

2.1.7 Monitor Power Dissipation

To access the spent dynamic, static or total power value a set of functions are implemented.

The function now() which returns current simulation time is already available in SLDLs.

void const long double pm dynamic ( PowerMeter ∗pm ) ;

void const long double pm stat i c ( PowerMeter ∗pm ) ;

void const long double pm total ( PowerMeter ∗pm ) ;

For monitoring dynamic and static power dissipation different functions are developed in

Power Analyzer API. The provided functions are print pm dynamic, print pm static and print pm total,

which print current dynamic, static and both respectively. These functions evaluate the

power values and output the power report with proper units:

void print pm dynamic ( PowerMeter ∗pm ) ;

void p r i n t p m s t a t i c ( PowerMeter ∗pm ) ;

void pr in t pm to ta l ( PowerMeter ∗pm ) ;

In order to evaluate the power dissipation over time a power-time diagram is a convenient

solution for the designer. Function pm display is developed to visually display power con-

sumption during simulation:

void pm display ( PowerMeter ∗pm ) ;

In Section 2.2 different examples of using function pm display are represented in a case study

on JPEG image encoder.
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2.1.8 Power Analysis

When the model simulation is completed, PMs contain power behavior of the design. At

this point, the designer can ask for different power information such as peak power, average

power, display multiple PMs power dissipation in one graph, adding power dissipation of

different PMs, or printing all static, dynamic dissipated values. Some auxiliary functions are

implemented in order to allow these analyses. Function pm multidisplay gets PMs as input

and returns a merged graph of power dissipation over time of all the input PMs.

void pm mult id isp lay (PowerMeter ∗pm1, . . . ) ;

An example of using pm multidisplay is represented in Section 2.2.

During the power analysis, the user may want to add up power dissipation in multiple PMs

and run further investigations. In pm add a PM is returned that contains the summation of

all input PMs

void pm add ( PowerMeter ∗ r e s u l t , PowerMeter ∗pm, . . . ) ;

For user convenience, in order to get a general report of all PMs the pm report power function

can be used. It iterates through all PMs and prints the static, dynamic, total, average and

total time spent in each PMs.

void pm report power ( ) ;

Apart from the above mentioned functions, Power Analyzer API provides functions so PMs

can be initialized, reset, or set to certain values for dynamic power, static power and time.

The pm assign dynamic, pm assign static, pm assign total functions are used to initialize or

assign values to a PM at time t.

void pm assign dynamic ( PowerMeter ∗pm,

sim time t ,

const long double Dynamic ) ;
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void p m a s s i g n s t a t i c ( PowerMeter ∗pm,

sim time t ,

const long double S t a t i c ) ;

void pm as s i g n to ta l ( PowerMeter ∗pm,

sim time t ,

const long double Dynamic ,

const long double S t a t i c ) ;

To reset the PM power values pm reset can be called.

void pm reset (PowerMeter ∗power ) ;

2.1.9 Energy & Power

Each PM tracks the energy consumption due to switching activity and leakage. So the

user can monitors how energy is spent at each PM over time and has the option to access

the trace files with any requested timing resolution. An example of energy consumption at

PowerMeter pm is presented in Figure 2.3(a). The power behavior is a direct function of

 0

 40

 80

 120

 160

 3e+09  3.00004e+09

e
n
e
r
g
y
(
n
J
)

time(ns)

PM_ARM

(a) Energy consumption

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 3e+09  3.00004e+09

p
o
w
e
r
(
W
)

time(ns)

PM_ARM

(b) Power dissipation

Figure 2.3: Energy consumption and derived power dissipation

energy consumption over time and can be obtained easily from energy consumption infor-
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mation. The Power Analyzer API assists the user to generate any format of power report

and diagrams for needed simulation intervals and timing resolution. An example of power

dissipation at PowerMeter pm is shown in Figure 2.3(b), where the average power dissipation

is obtained from energy consumption with a sampling frequency of 1 milli second.

2.1.10 Annotator

In order to perform power and timing aware simulation, and design exploration the collected

traces are annotated to the structural model. In order to maintain accuracy, the traces are

associated with every basic block of the model. Therefore, an Annotator is designed to insert

power and timing information. Nevertheless, the Annotator can support the annotation with

higher granularity of behaviors and components as well. The back annotated information

includes execution delay, static, and dynamic power dissipated within the corresponding

basic block, considering the type of the design component that block is mapped to, its

configured operational mode, as well as the communication transactions through the assigned

communication unit. In order to process these values, Power Analyzer API [73] is applied.

The Annotator is linked to Power Analyzer API in order to apply the power functions and

use generated values for annotations. An example of a basic block annotated with time and

power information is presented below.

{// ba s i c b l o c k : Bi

{

Label i :

w a i t f o r 132 NANO SEC;

pm consume total ( PowerMeterA , 3 .2 MILLI JOULE , 2 . 5 MILLI JOULE) ;

}

. . .

d++;

Ch1 . send (d) ;
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}

As shown, the pm consume total function represents the amount of power spent in basic

block Bi, in form of dynamic and static power, as well as the PowerMeterA that monitors Bi

power dissipation. MAVO can support the dynamic and static power monitoring separately,

so the designer can focus on any of them as needed. The static power represents leakage

power, and because of shrinking in transistor size to sub-micron, static power needs to be

investigated as carefully as dynamic power.

To evaluate the power consumption of the design at the system level, we insert the power

activity information into the system-level model. The power activity information is calcu-

lated by applying the obtained profiling information to the power models. Power functions

are back-annotated to every basic block of the system model to measure and monitor energy

and delay. A graphical notion of basic block is shown in Figures 2.4. PowerMeters are also

automatically attached to behaviors, architecture components and globally based on user

preferences as follows:

• Power Meter per Behavior

In this case, a power meter is attached to each behavior of the design. During the

design, the system designer may want to analyze each behavior in terms of computa-

tion, power and performance, compared to the rest of the system. This information

may also be used to evaluate the peak power and power hungry behaviors of the de-

sign for possible thermal issues. This information allows the designer to balance the

computation of the system and adjust the design at the system level, where altering

and re-evaluations are quick and easy.

• Power Meter per Architecture Component

Here power meters are assigned to each processing element of the design. In order to

explore the design options, different architectures may need to be evaluated. Power
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PowerMeter PM_A;

PowerMeter PM_B;

behavior A()

{

…

for (x=1;x<11; )

{

…

waitfor(10 NANO_SEC);

pm_consume_total( &PM_A, 15.1 MILLI_JOULE,  0.7 MILLI_JOULE);

}

…..

};

behavior B()

{

…..

do{

….

waitfor(12 NANO_SEC);

pm_consume_total( &PM _B, 3.7 MILLI_JOULE,  1.45 MILLI_JOULE);

} while(y>10);

….

waitfor(3 NANO_SEC);

pm_consume_total( &PM _B, 3.2 MILLI_JOULE,  1.32 MILLI_JOULE);

….

};

…

Basic block 

Basic block 

Basic block 

Figure 2.4: Power annotated system model with powerMeter for every behavior

dissipation of each component is monitored using the profiling information of the be-

haviors mapped to the component and shown by the corresponding meter.

• Global Power Meter In this option, a single power meter is attached to the entire

ESL model, which measures the total power consumption of the design; this can be

used to quickly determine if the design meets the overall power constraints of the target

system.

Power meters are designed to capture dynamic and static power dissipation of their assigned

component based on the power model. These components can be any CPU or hardware

accelerator. In addition to the power meters, the waitfor [16] and pm consume total functions

for time and energy consumption are automatically annotated to each basic block of the
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PowerMeter PM_PE1;

PowerMeter PM_PE2;

behavior A_PE1 ()

{

…

for (x=1;x<11; )

{

…

waitfor(10 NANO_SEC);

pm_consume_total( & PM_PE1, 15.1 MILLI_JOULE,  1.7 MILLI_JOULE);

}

…..

};

behavior A_PE2()

{

…

for (x=1;x<11; )

{

…

waitfor(13 NANO_SEC);

pm_consume_total( & PM_PE2, 10.1 MILLI_JOULE,  2.4 MILLI_JOULE);

}

…..

};

behavior B()

{

…..

do{

….

waitfor(12 NANO_SEC);

pm_consume_total( &PM _B, 3.7 MILLI_JOULE,  1.45 MILLI_JOULE);

} while(y>10);

….

waitfor(3 NANO_SEC);

pm_consume_total( &PM _B, 3.2 MILLI_JOULE,  1.32 MILLI_JOULE);

….

};

behavior Main()

{

A_PE1 A1;

A_PE2 A2;

…..

};

Basic block 

Basic block 

Basic block 

Basic block 

Figure 2.5: Power annotated system model with power meter per PE

design. The pm consume total functions virtually spend energy and represent the energy

consumption during execution.

Specifically, the pm consume total function for a basic block b is:
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PowerMeter PM_Global;

behavior A()

{

…

for (x=1;x<11; )

{

…

waitfor(10 NANO_SEC);

pm_consume_total( &PM_Global, 15.1 MILLI_JOULE,  0.7 MILLI_JOULE);

}

…..

};

behavior B()

{

…..

do{

….

waitfor(12 NANO_SEC);

pm_consume_total( &PM _Global, 3.7 MILLI_JOULE,  1.45 MILLI_JOULE);

} while(y>10);

….

waitfor(1 NANO_SEC);

pm_consume_total( &PM _Global, 3.2 MILLI_JOULE,  1.32 MILLI_JOULE);

….

};

…

Basic block 

Basic block 

Basic block 

Figure 2.6: Power annotated system model with global powerMeter

pm consume total(PowerMeteri, DynEnergyb, StaticEnergyb)

where PowerMeteri can be one of the three types of power meters. DynEnergyb and StaticEnergyb

are the dissipated dynamic and static energy, respectively. In order to employ the suggested

default power models, the dynamic energy of each basic block is computed directly by ap-

plying the number of operations reported by the profiler to the power models:

DynEnergyb =
∑

j,k OpCountjk × OpEnergyjk (2.1)

where the OpCountjk is the number of operations j with type k and OpEnergyjk is the

energy consumption of that operation derived from the power model. For static values, the

execution time of the block (timeb) is divided by the total static energy (Energyb) spent at
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each behavior:

StaticPowerb= Energyb / timeb (2.2)

In Figures 2.6, 2.4 and 2.5, the power annotated specification model is presented for the

profiled code shown in Section 2.1.1. The specification model is presented for the three dif-

ferent formats of power meters.

At this step the profiling information and power models are applied to Equation 2.1 and

Equation 2.2, and the resulting energy dissipation is automatically annotated to the model

via the consume functions. Similarly, the performance results from [16] are annotated auto-

matically to the design using waitfor functions. For inserting the power meters per PE, the

annotation of behavior A is implemented differently from the other two types of power me-

ters. Since behavior A is mapped to two different PEs, PE1 and PE2, the consume functions

use different power models, PE1 and PE2. To resolve this problem, new behaviors with the

same functionality as behavior A are inserted and named corresponding to their allocated

PEs, A PE1 and A PE2. All instantiations of behavior A are modified accordingly, as shown

in Figure 2.5. The duplications are performed automatically by our PowerMeter API during

power meter insertion without any interaction by the user. The dissipated power and energy

can be monitored both numerically and graphically using the available power functions of

the Power Analyzer API.

2.2 Case Study: JPEG Image Encoder

The proposed MAVO framework is implemented as described in the last section. Here MAVO

is utilized for monitoring power consumption in JPEG, as a real-life application. The MAVO

is applied at global, PE, and behavior levels.

38



COLOR JPEG stimulus 

(read BMP) 

DCT 

quant 

zigzag 

quant

zigzag

Y 

DCT 

quant 

zigzag 

quant

igzag

Cb 

DCT 

quant 

zigzag 

quant

zigzag

Cr 

Huffman 

Cb CrY

ffmaHuff anma

Color JPEG monitor 

Figure 2.7: JPEG image Encoder [17]

Our case study uses the JPEG image encoder model shown in Figure 2.7. The stimulus

reads a BMP color image with 3216x2136 pixels and performs color-space conversion from

RGB to YCbCr. Since encoding of the three color components (Y, Cb, Cr) is independent,

our JPEG encoder performs the DCT, quantization and zigzag operations for the colors in

parallel, followed by a sequential Huffman encoder at the end. The image is divided in 9

strips and fed in to JPEG model. The JPEG monitor collects the encoded data and stores

it in the output file.

The JPEG model is examined on an ARM-based processor with 3 custom HW units. The

3 color components; Y, Cb, and Cr are mapped to separate HW units, along with their

sub-behaviors (DCT, Quantize, Zigzag). All units are communicating through the AMBA

BUS.

To comprehensively study power dissipation, we started with the specification model, and

applied architecture, scheduling and communication refinement to the model, with increasing

amount of implementation detail.

In order to control the size of power and energy log files, and adjust the precision of the
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analysis, the user can pick the sampling frequency. The user can also specify any simulation

intervals to monitor as well. Moreover, MAVO supports merging the graphical reports or

stacking up the power dissipation values in different PowerMeters over time.

Figure 2.8(a) shows the power dissipation in each design elements over the whole simulation

time with sampling frequency of 1 millisecond. As it was expected from the JPEG model

defined in Figure 2.7, where the Y, Cb and Cr are running in parallel, the custom HW units

are executing them in parallel as well. The Huffman encoder, which is mapped to the ARM

processor, begins working once the Y, Cb and Cr color processing is over for a strip within all

HW units. The encoding process is divided in to 9 different steps, through 9 sub-images, and

the power dissipation intervals of design elements in Figure 2.8(a) reflects the same behavior.

In Figure 2.8(b) power dissipation in the Y-DCT, Y-Quantize, and Y-Zigzag, which are the

leaf behaviors of Y is shown. The sampling frequency is 10 microsecond. All these behaviors

are mapped to HW1. As it shown, the user can easily pick any behavior as well as any

interval for power analysis. Using the power reports of each behavior, the user can easily

verify the active behvaiors at each PE, computationally expensive behaviors, the working

intervals of each behavior, and modify the design model rapidly if needed. The MAVO allows

merging the power reports in to one graph based on the user selections.

The global PowerMeter monitors the average power dissipation of the whole system. Figure

2.8(c) represent the average power for selected simulation interval in JPEG application. The

PEs, global and behaviors power dissipation reports support monitoring and analyzing the

system for power and performance, and provide a platform for initiating power optimization.

The power estimation API can also provide the energy dissipation graph for each power

meter over time. For example, Figure 2.3(a) displays the energy dissipation graph of a

global power meter in JPEG with 9 sub-image. As shown in the diagram, for each image,

the energy dissipation increases during the complex encoding process for each sub-image.
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Chapter 3

Accuracy and Fidelity Evaluation

In this chapter MAVO framework is verified for efficiency and correctness. The used metrics

for evaluating MAVO framework are speed, absolute accuracy and fidelity. First we are

looking in to these three metrics and their concepts in system-level design, then we used

JPEG encoder, MP3 encoder and H.264 codec as real-life applications to evaluate the MAVO

against these metrics.

3.1 Evaluation Metrics

For the past few decades, semiconductor capabilities have been improving as Moore’s law

predicted. Transistor size has been shrinking and technology size will be less than 20nm in

the near future. These improvements enable the designer to come up with more complex

systems. However, this has made power dissipation a major design obstacle. , particularly

in mobile and battery powered devices. The fact that power dissipation in small technology

sizes increases due to high leakage power makes power optimization a primary target of the

design process. On the other hand, the trend for battery-powered mobile communication
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and all-purpose devices in the market force the semiconductor designers to consider power

optimized solutions and ultra low-power design.

Conventionally, power consumption is considered in the later stages of the design process,

like the architecture level [54], RTL [1] [67], gate level , and physical level, where detailed

information about the design is available. The lower levels power estimator’s absolute accu-

racy is highly accurate but the speed is significantly low since the simulation and evaluation

time are high and often beyond the time-to-market requirements.

To tackle the long simulation time as well as avoiding time consuming design modifications

at lower levels, designers are changing the level of abstraction to the system level, typically

by means of trading accuracy in favor of speed. Figure 3.1 shows a prospect of power esti-

mation at the system level. The speed-accuracy trade-off in power estimation at different

design levels is demonstrated in Figure 3.1(a). The accuracy and time trade-off is the main

challenge in power estimation. Here, a powerful and automated API for system level early

estimation, as proposed in this work, can shorten the design cycle of low-power systems

tremendously. The earlier the optimization starts, the more efficiently devices can be pro-

duced. Consequently, design constraints such as power, performance and die size are ought

to be taken into account from the early stages of the design flow.

Accuracy 

Speed 

Physical  

Level 

Gate 

Level  

System 

Level  

RTL  

Architecture  
Level 

(a) Speed-accuracy trade-off in power estima-
tion

System

Arch.

RTL

Design Options 

Energy 

(b) High fidelity energy estimation at differ-
ent levels of design

Figure 3.1: Power estimation at different design abstraction levels

The System level is the starting point for design constraints characterization as well as
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design space exploration. Therefore design decisions, such as component selections, Hard-

ware(HW)/Software(SW) partitioning, communication schemes, number of cores, and power

reduction techniques, are ideally all made at the system level. Here, it is critical to make

correct decisions. To achieve this goal, a structured ESL tool suite is required to perform

assessments. In order to select the best design options at the system level, relative accuracy

and high fidelity [33] are essential. Figure 3.1(b) presents the notion of power estimation

from a desirable system level estimator where the comparative relations of the design options

are accurate. Thus, our goal in this work is to develop a system level performance estimator

with a high level of fidelity.

A practical platform for design space exploration at system-level should satisfy power and

performance as primary design constrains, while keeping designers away from RTL modeling

and lower level design implementation details. The best solution for designer is a system-

level EDA tool, capable of optimizing power and minimizing performance while spending

minimum effort.

For system level power estimation, the two available design inputs are 1) the specification

model implemented in a System Level Description Language (SLDL), such as SystemC [55]

or SpecC [34]; and 2) the power models of different system components, such as processors

and IPs. Many studies have been performed on characterizing power dissipation for memo-

ries [27], communication channels [47], and processing elements (PE) [54] using experimental

and statistical analyses at lower levels, by actual measurement or by applying power model

builders, such as PowerMixer [77]. The fidelity and accuracy of the system level power es-

timation directly depends on available functional information and extracted power activity

details in the design, as well as applying effective power models.
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3.2 Power Modeling

To work with the proposed automated power estimator, any power model can be applied

during IP integration and mapping to the behaviors. Therefore, power characterization

and modeling is not the main focus of this work. However we used a simple power model

generation method to generate some default power models. relative accuracy, rather than

absolute accuracy.

Our system level power models are based on power reports and simulation information from
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lower levels of design. In general, the accuracy of power evaluation is compromised by high

level estimation approaches. However, as it is mentioned earlier the main concern at system

level is to make the correct design decisions rapid and early in the design cycle. Therefore, it
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is adequate that system level evaluations schemes, provide precise relative accuracy, rather

than absolute accuracy.

Here, we present a default power model that is a combination of instruction and function

based power modeling approaches. The main idea behind these power models, is similar to

power modeling presented in Tiwari et al. [78]. Later in the experimental results we show

that our proposed power API is able to deliver high fidelity even with these basic power

models. In these models, each expression and statement has been measured using power

simulators [62] [19]. This process is only performed once for each PE and the resulting power

tables are added to the database as shown in Figure 3.2. During design space exploration

within SCE, each PE power model is automatically added to the design while mapping design

to PEs. The SCE allows the design allocation and mapping with its sce-allocate and sce-map

features. In order to support the MAVO framework these two features are modified to cover

the power models and power related configurations of the design components as well.

In our studies, we have used ARM-based and Intel Nehalem processor architectures. Each

expression and statement in the source code of the model owes a dynamic and static energy

consumption value. The dynamic energy is the energy spent as dynamic switching and short

circuit power, and static energy represents the energy dissipation due to leakage.

Table 3.1: Dynamic and static energy values (nJ ) for operations & statements for ARM7
processor

Operations Ex-
pressions

Types
integer float long long integer

Dynamic static Dynamic static Dynamic static

Add 4.9 0.07 6.0 0.1 13.8 0.2
Division 57.0 1.3 82.1 2.3 298 6.9
do while 6.7 70.1 6.7 0.1 6.7 0.3

Table 3.1 shows a section of the generated energy tables for an ARM7 processor. In order to

generate dynamic and static values, each expression/statement is simulated multiple times.

Furthermore, simulations are statistically analyzed through regression analysis to even out

the effect of cache misses, pipeline stalls, or any other situation that possibly increases the
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simulation time as well as energy consumption. For instance, the integer ”add” operation has

been tested with 101, 102, 104, 105, 106 integer ”add” operations and the energy consumption

is evaluated for each unit of the target architecture. Figure 3.3 shows the energy consumption

in different units for a series of ”add” operations. The results show that for a large number

of ”add” operations the consumed energy will not vary significantly. Hence, we picked the

average energy dissipation of 104 ”add” operations as the reference energy.
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Figure 3.3: Power dissipation (nJ ) for n ”add” operations

Other expressions, statements, and operations were similarly studied for each type in order

to obtain dynamic and static power parameters.

3.3 Experimental Result

In this section, we describe our experimental results and analyse the speedup, fidelity, and

accuracy of PowerMeter with real life applications. We implemented the profiler and Power-

Meter API, as well as a platform for automated back annotation of power meters, consume

functions, and waitfor. Thus, when the specification model is ready, the system designer

can instantly evaluate the design by simply mapping the ESL system model to architecture
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components and set the PowerMeter granularity.

For our experiments, we choose a JPEG image encoder application [17], a MP3 audio de-

coder [21] and a H.264 video encoder [41] and decoder [22] application, all specified in SpecC

SLDL. To evaluate the fidelity and accuracy of the proposed power estimation method, we

modified the ISS model of JPEG encoder to simulate on SimpleScalar [15] and measured

the energy and power consumption using the cycle-accurate SimPanalyzer [62] for the ARM

based architecture. The MP3 and H.264 examples are simulated using the SNIPER 5.2 [19]

simulator and their power is evaluated using the embedded McPAT [54] against the Intel

Nehalem architecture. We also applied these applications to our power estimator. All results

are measured on a host PC with a 4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz.

Our results are presented in Table 3.3 and Table 3.2. The comparison execution time shows

significant speedup in PowerMeter, in comparison to the cycle accurate SimPanalyzer, as

well as SNIPER, with the embedded McPAT power estimator as an architectural level sim-

ulator. The overall speedup shows that PowerMeter is about one order of magnitude faster

than the alternatives.

Table 3.2: MAVO speedup experimental result for JEPG, MP3 audio decoder and H.264
video codec

Model Time(sec) Speed
UpsimPanalyzer MAVO

JPEG
Enc.

Image1 52.7 4.04 13x
Image2 634 4.12 154x
Image3 287 4.08 70x
Image4 134 4.07 33x

McPAT MAVO

MP3
Dec.

Audio1 645.1 135.05 4.8x
Audio2 682.6 137.68 5.0x
Audio3 118.1 18.21 6.5x
Audio4 612.1 128.35 4.8x

H.264
Codec

Video1 9967.54 479.85 20x
Video2 3209.2 70.23 45x
Video3 13942.63 191.29 70x
Video4 +2hr 353.53 -

Furthermore, the PowerMeter is a system level power estimator and, with its low execution

time, provides a practical platform for design space exploration. As shown in Table 3.2 for
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Table 3.3: Power estimation experimental result for JEPG, MP3 audio decoder and H.264
video codec

Model Energy(J)
Error

Scaled Energy Accuracy
Error

Fidelity
ScoresimPanalyzer MAVO simPanalyzer MAVO

JPEG
Enc.

Image1 7.3 8.76 +12.00% 0.0% 0.0% +0.0%

100
Image2 166.7 176.73 +6.20% 100.0% 100% +0.0%
Image3 78.6 78.05 +1.60% 44.7% 41.3% -3.5%
Image4 33.5 36.81 +9.5% 16.4% 16.7% +0.3%

McPAT MAVO McPAT MAVO

MP3
Dec.

Audio1 1.81 2.72 +50.30% 92.4% 92.5% +0.1%

100
Audio2 1.94 2.91 +50.30% 100.0% 100.0% +0%
Audio3 0.24 0.36 +50.20% 0.0% 0.0% +0.0%
Audio4 1.74 2.64 +51.50% 88.2% 89.4% +1.2%

H.264
Codec

Video1 57.72 27.02 -53% 100.0% 100% +0.0%

100
Video2 7.16 6.56 -7.9% 0.0% 0.0% +0.0%
Video3 20.21 15.56 -23.00% 100% 100% +0.0%
Video4 - 33.74 - - 2.17 -

computationally expensive applications, a low-level simulator is not an applicable solution.

For instance, power estimation of the H.264 application with 10 frames did not complete

after two hours of runtime while its simulation ended in less than 6 minutes at the system

level.

The error reports of simulated applications are as expected in Figure 3.1. The absolute

accuracy is not as good as a low level estimator and goes up to 50% in MP3 application.

This is simply owing to the fact that the accuracy of the estimated energy dissipation highly

depends on the information captured during lower level simulations. Another reason is

the accuracy of power models and the fact that the accuracy of power estimation directly

depends on the accuracy of these models. In the applied power models, due to the fact that

the models are not data-dependent and that even minor errors within the estimated power

value for each operation will accumulate in total power estimation calculations, this results

in higher errors specifically in large applications. For instance, in the MP3 example, the

accuracy errors for all four audio streams are uniformly very close (only 1% difference). This

clearly reflects the error in the original power model. However, the values of accuracy error

using scaled energy for each sample application show the absolute maximum error is 3.5%,

which reveals the high fidelity of our PowerMeter estimator.
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The fidelity score for the system models are also calculated using the Equation 3.1 proposed

in [51].

Fscore(modelm)=100 × 2
n(n−1)

∑n
i,j=1
i<j

µij (3.1)

Here, fidelity score Fscore is calculated for system model m with n different design samples

using predictor fidelity function µ. This function compares the referenced(i) and generated(j )
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Figure 3.4: Power evaluation fidelity for system level and RTL

design samples under multiple criteria, and returns 0 or 1 accordingly. As shown in Table

3.3, this confirms the perfect fidelity score of 100 in all three of the applications.

The fast speed and high level of fidelity are the main achievements of our system level power

estimator, which make SCE PowerMeter a solid starting point for power evaluations at the

early system level.

Figure 3.4 shows the results of PowerMeter API against McPAT and SimPanalyzer power
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estimators. As demonstrated, all pairs of curves, which represent energy values of different

inputs for each application, all show the same shape, confirming the high fidelity of our

approach.
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Chapter 4

Power-Aware Design Space

Exploration

Electronic system level design is presented as a powerful solution for embedded system design

with all design complexities and the time-to-market constraints. The ESL design is also an

effective starting point for power analysis and optimization and tackle high power dissipation.

In this chapter we are presenting the SCE design space exploration tool extension for power-

aware ESL design flow. First, we look in to SpecC language as the foundation of SCE,

followed by brief description on SCE environment and its extended power features. Then

we demonstrate power-aware SCE as applied to design of Canny image detector application.

Results of the SCE-based design process approves the feasibility and efficiency of the power-

aware SCE environment. Using the SCE exploration environment different models can be

generated and verified against power and performance constraints within an hour.
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4.1 SpecC Language

SpecC is a system level description language and methodology developed in Center For Em-

bedded Systems at University of California Irvine[34]. This languages is designed for system

level SoC design and presents all required features for this purposes. The SpecC is compiled

with SpecC compiler called scc, and it is developed using SpecC Internal Representation

(SIR) data structure [84]. This structure is composed of different classes to support SpecC’s

extensive facets for SoC design.

In contrast to SystemC SLDL which is C++ library and it is an extension to C++ language,

SpecC concepts and features are defined for describing SoC models. The main extension of

SpecC language in compare to ANSI-C languages are structural and behavioral hierarchy,

separating computation and communication, synchronization, and timing.

In SpecC, every program is composed of different behaviors, channels and interfaces. These

different classes are defined to support computations (behaviors), and communication (in-

terface, channels) separately within the structure of the design model.

Conventionally in high level languages, a sequential execution order is applied during sim-

ulation, however in SpecC a behavioral hierarchy is introduced to allow behavior execution

in sequential, parallel, FSM and pipeline format. The behavioral hierarchy enables the de-

signers to implement application in compatible to hardware capabilities.

In order to support communication and sharing resources among concurrent behaviors mul-

tiple synchronization statements are provided. The wait, notify and notifyone statements

are defined for this purpose.

Another required concept for describing SoC design models is timing. In SpecC two form of

timing are introduced, the waitfor statements which are used for specifying the exact timing

and do-timing and range which are mainly used for defining timing constraints.

Although SpecC languages was initially developed with high compatibility for SoC design,
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the feature for integrating the notion of power in design models is missing in this language.

In this work the Power API (Section 2.1.2) library is presented to support developing power-

aware models.

4.2 System on Chip Environment

The System-on-Chip Environment (SCE) [26] is a SpecC based graphical tool for automated

ESL design and suitable for rapid MPSoCs design space exploration. An overview of the

flow is shown in Figure 4.1.

The graphical user interface of SCE is composed of a refinement user interface that allows

the designer to perform PE allocations, behavior mapping, scheduling, network refinements

along with a validation user interface to verify and validate the refined models.

The SCE design flow utilizes the Specify-Explore-Refine methodology with built in feature

Figure 4.1: Top-Down System-Level Design Flow [36]

for exploring the design space. The SCE design flow begins with design specification model

at system level, then the model goes through different refinement step down to hardware and
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software implementation. At each refining step design can be evaluated and design space can

be explored using a retargetable profiler and a performance estimator. The SCE automati-

cally implement the specification model on a given target platform according to component

allocation and mapping decisions. It also supports MPSoCs with different custom hardware,

programmable software processors, IP blocks and memories, communicating through buses

and communication elements such as transducers and bridges.

At the end of the design flow, SCE produces a transaction level model which both com-

putation and communication part of the design can be synthesized to RTL models on the

hardware side, the application tasks, middleware and bus drivers is automatically synthesized

to binaries for the target processors [36].

4.3 MAVO Integration

The MAVO framework has been integrated into SCE to enable the power-aware design space

exploration. In order to support power analysis multiple features has been added or extended

in SCE:

• The retargetable profiler in SCE is extended to support all operations and statements

with different data types

• The SCE Allocate and SCE Map features are adjusted to cover power related infor-

mation of design components on top of the timing information.

• The SCE design components database is updated with power models. The power

models are generated through the power modeling scheme presented in Section 3.2.

• The SCE is linked to Power API to support PowerMeters and power functions.
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• The power Annotator module in MAVO is also integrated to SCE tool to support

power-aware refining.

With added features and extentions the SCE is capable of power and performance aware

design space exploration. In the following the Canny edge detector application is evaluated

for power and performance.

4.4 Canny Edge Detector

4.4.1 Overview of Canny Edge Detector

The Canny application is designed for image edge detection which generates new image

with all the edges of the input image. An example is shown in Figure 4.2. The original

model was developed by Prof. John F. Canny in 1986 and our work is based on a reference

implementation [18].

In this edge detection algorithm five primary functions are applied to input image. An

(a) Input image (b) Output Image

Figure 4.2: Canny Edge Detector [42]

overview of this edge detection structure is presented in Figure 4.3. These functions and

their contribution are:
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• gaussian smooth creates a gaussian kernel based on input parameter SIGMA (the

standard deviation of the gaussian smoothing filter), and then used the kernel to filter

or blur each pixel of the image to reduce the noise. The blurring occurs first horizontally

and then vertically.

• derivative x y computes the first derivative of the image in both the x any y direc-

tions.

• magnitude x y computes the magnitude of the gradient - the square root of the sum

of the squared derivative values.

• non max supp applies non-maximal suppression to the magnitude of the gradient

image. The pixels which are not part of local maxima are set as non-edges.

• apply hysteresis finds edges that are above some high threshold or are connected to

a high pixel by a path of pixels greater than a low threshold. Parameter TLOW and

THIGH specifies these two thresholds.
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4.4.2 System Level Modeling of Canny Edge Detector

The first step of ESL design on canny is to create a specification model. We recoded the

unstructured and sequential C reference code into SpecC model by works including encap-

sulating functions into behaviors, creating channels and hierarchy, and creating a testbench

[42]. The resulting specification model is described as Figure 4.4 where stimulus sends in-

coming images to platform, I/O units(din and dout) send input to DUT canny and send

output to monitor. DUT canny consists of five main behaviors performing the five functions

of canny algorithm.

Figure 4.4: Stimulus, Platform and Monitor in initial Specification Model (Source [42])

4.4.3 Pipelined Canny

Canny image detector has limited concurrency within its algorithm and this does not allow

to apply parallelism in behavioral hierarchy. We can, however increase the performance

further by pipelining the edge detection algorithm in order to exploit and expose additional
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parallelism across successive input images. This can be achieved by assigning a pipeline

stage to each of Canny main functions. However in order to balance the workload of the

pipeline stages to improve the pipeline performance, we need to consider the complexity of

these behaviors.

In order to balance the pipeline stages we profiled the specification model using extended

SCE profiler. The results are shown in Figure 4.5.

Figure 4.5: Canny Profile using SCE (Source [42])

As it is shown for a pure software solution of the Canny image detection running on an

ARM7TDMI target processor, the Gaussian behavior takes more than 50% of total compu-

tation while the derivative x y and magnitude x y are together below 15%.

Hence, in order to yield better design, we modified the the design model structure. The Gaus-

sian is splitted in to two separate behaviors, Gaussian Smooth X and Gaussian Smooth Y

to reduce the computation load in Gaussian behavior. The Gaussian Smooth X and Gaus-

sian Smooth Y are then mapped to two pipeline stages. Given these modification, the

Gaussian Smooth X and Gaussian Smooth Y are still computationally more expensive in

compare to other behaviors. In the next section we consider these critical behaviors for

architectural decisions and possible performance improvements.

Additionally we merged the derivative x y behavior and magnitude x y behavior to a new

behavior named magnitude x y and map them to single pipeline stage.
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Figure 4.6 shows Canny with 5-stage pipeline structure.

4.5 Design Space Exploration

Given the specification model, we studied the Canny edge detector application on an ARM-

based target platform. In the exploration process we evaluated the computational complexity

of different behaviors and examined different architectural choices accordingly, to examine

the power and performance benefits. The ultimate goal in evaluating multiple design option

is to minimize the delay and power and find the optimal pareto.

4.5.1 Pure Software Implementation

We started the design and exploration process with the most basic target architecture. In this

architecture an ARM based processor (ARM7TDMI ) runs the main Canny edge detection

top behavior.
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Figure 4.7: Pure software implementation

The Stimulus and Monitor are working as DataIn and Dataout behaviors. In addition

to the actual edge detection algorithm running on the ARM, the processor is assisted by

two hardware I/O units for image input and output. Therefore the Data In and Stimulus

behaviors of the top level Canny design specification are mapped to IO IN and IO Out units,

respectively.

Furthermore, note that the two FIFO queues for image input and output between Canny,

Monitor and Stimulus have been each mapped into the corresponding hardware unit for

implementation. Using SCE, the queues will be implemented as local and send and receive

FIFOs inside each of the hardware I/O processors.

The ARM processor and the I/O blocks communicate over a single instance of an AMBA

AHB local processor bus. The ARM processor is a master on its bus and the two I/O units

are synthesized to connect as AHB slaves. As such, all communication between the ARM

processor and the I/O units will be routed over the AHB bus. Specifically, Canny running on

the ARM processor will read input image data from and write output image to the hardware

FIFOs in theIO IN and IO Out blocks, respectively. All communication between the ARM
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Figure 4.8: Power dissipation in pure software implementation (4 images)

processor and the I/O queues are implemented by mapping FIFO registers and link channels

into the AHB address space using dedicated bus addresses and processor interrupt lines.

This architecture is shown in Figure 4.7.

4.5.2 Hardware Acceleration

In Section 4.4.3 we started the exploration by evaluating the specification model behaviors

and modify the design accordingly. In the optimization process the Gaussian Smooth X

and Gaussian Smooth Y were chosen for hardware-assisted acceleration due to their high

computational weight.

In order to evaluate multiple option for power and performance we examined the four different

architecture with different mappings and hardware allocation. In the following we look in to

these models in more detail with reports on performance and power along with their power
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dissipation behavior over time.

Gaussian Smooth X Hardware Acceleration

The first selected architecture is to allocate a single co-processor for Gaussian Smooth X pro-

cessor. This hardware processing element(HW1 ) works as one of the stage of the pipeline.
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Figure 4.9: Synthesized Gaussian Smooth X hardware

The architecture of this design option(Canny HWX) is demonstrated in Figures 4.9.

As it is shown all other part of the architecture are similar to pure software implementa-

tion. Apart from the running the Gaussian Smooth X on separate PE, the communication

between ARM software and HW1 need to taken in to account for performance and power

evaluation. The power dissipation in this architecture is presented in Figure 4.10. As it is

shown from power dissipation graph Gaussian Smooth X process on HW1 starts as soon as

images are received from IO IN.

From analyzing the slack times in HW1, it can be seen that Gaussian Smooth X process does

not starts from image 3 and image 4 right after their previous images. This is simply due

63



Figure 4.10: Power dissipation in Synthesized Gaussian Smooth X hardware architecture (4
Images)

to the fact that the other 4 stages of the pipeline are all mapped to ARM. Also the FIFO

queues between the pipeline stages allows for only one image at a time.

Gaussian Smooth Y Hardware Acceleration

In this architecture the Gaussian Smooth Y behavior is selected for hardware acceleration.

The resulting system computation and communication architecture is shown in Figure 4.11.

The power dissipation behavior of the system over time is also presented in Figure 4.12. As

a result when reaching the corresponding stage in the edge detection process, the ARM will

send the input data to the HW1 component for Gaussian Smooth Y processing . The ARM

software will then wait for result coming back from the HW1 before continuing the edge

detection process.
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Figure 4.12: Power dissipation in Synthesized Gaussian Smooth Y hardware architecture (4
images)
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The working periods of this stage clearly reflects the number of the images and communica-

tion time points.

Gaussian Smooth X and Gaussian Smooth YHardware Acceleration

The next reasonable step in hardware acceleration is to duplicate the custom hardware

unit in order to provide dedicated co-processor instance for each of the Gaussian Smooth

behaviors, X and Y. In this architecture stage 1 and stage 2 of the pipeline are mapped
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Figure 4.13: Concurrent Gaussian Smooth X and Y hardware

to two different custom hardwares. The resulting system computation and communication

architecture is shown in Figure 4.13.

Figure 4.14 shows the power consumption of different components over the simulation time.

The pipeline format of stage 1 and stage 2 of Canny edge detector is reflected in power

dissipation in these two units. In this architecture the power dissipation in ARM processor

has lower peaks and more distributed, since the computationally expensive stages are mapped

to hardware accelerators.
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Figure 4.14: Power dissipation in synthesized Gaussian Smooth X and Y hardware architec-
ture (4 images)

Parallelized Gaussian Smooth X and Gaussian Smooth YHardware Accelera-

tion

In order improve the performance even further we used the Gaussian Smooth X and Gaus-

sian Smooth X internal behavior. Theoretically these two behaviors can be parallelized on

multiple cores. Here we are splitting these two behaviors in two function equally parallel

modules. Each of these modules are now mapped to a custom hardware accelerator. Figure

4.15 shows the architecture with allocated PEs and behaviors mapping.

All the four accelerators are assumed to be connected as a salve to a common shared IP

Bus instance that is connected to the main system bus via transducer. In the case of

synthesizable custom hardware components, all four co-processors are directly connected as
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Figure 4.15: Concurrent Gaussian Smooth X and Y hardware

Figure 4.16: Power dissipation in Concurrent Gaussian Smooth X and Y hardware architec-
ture (4 images)

and synthesized to become slaves on the AHB bus. In all cases, co-processors are slaves

listening to and generating interrupts for a sole master ARM processor. As it is presented

in power-time graph in Figure 4.16 the execution time has been reduced in cost of spending
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more power. The other effective factor in power is communication.

4.5.3 Exploration Result

Going through the different exploration and refinement steps of the power-aware SCE design

and tool flow, we realized the design implementation for all explored system architecture

described in Section 4.5.1 and 4.5.2. Using the power-aware SCE’s automatic model gener-

ation and refinement capabilities, the refined model annotated with power and performance

information are generated. The text and graphical report of each design options was also

captured and analyzed for further design space exploration. Moreover, power-time annotated

models of each design option were generated within minutes and thanks to power-aware SCE

tool it took less than an hour to investigate the design options.

The performance and power of the explored architecture options are presented in Table 4.1.

The presented result are for the 5-stage pipeline canny under 4 images. As it it is shown

Table 4.1: Exploration results for Canny edge detector
Canny

Architecture
Time
(sec)

Power
(mW)

Image (ms)
Image 1 Image 2 Image 3 Image 4

Pure Software 6.647 234.12 4,769 6,016 6,323 6,647
Canny HWX 5.804 232.355 3,934 5,187 5,493 5,818
Canny HWY 5.672 235.58 4,609 5,041 5,347 5,672
Canny HWXHWY 5.687 198.443 2,491 3,787 4,706 5,680
Canny HW2X HW2Y 2.005 565.871 942 1,374 1,680 2,005

the edge detection process execution time is decreasing with adding custom HW accelera-

tors. However the power dissipation increases significantly. During the exploration process,

depends on the design power, performance and area constraints further options can be con-

sidered and evaluated and ultimately chosen for manufacturing.

Here we generated different design architecture options based on the profiling result from

initial specification model analysis. However, these design options needed to be further stud-

ied for different configuration for each design components. In [61], we proposed a systematic
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and efficient multi-layer configuration framework for streaming applications. This configu-

ration exploration framework enables rapid evaluation of MPSoCs and can be used beyond

the architectural exploration for capturing efficient design.

70



Chapter 5

Power Optimization

Our proposed MAVO framework is designed to answer the need for system-level power and

performance evaluation with minimal effort. MAVO provides thorough observability of the

system-level models which assists designers to apply power and performance optimization

techniques for design modification, voltage and frequency scaling, power aware scheduling,

and dynamic power management with shut-off. In this chapter we investigate these opti-

mization techniques on Canny image detector using MAVO framework.

5.1 Motivation

Power and performance are major design concerns, and they directly affect all other aspect

of the design, such as area, temperature, reliability and life-time of the device. However,

evaluating and monitoring power and performance is a prime design challenge, particularly

in multiprocessor SoCs. Therefore, a comprehensive analysis of energy dissipation within the

system among HWs, communication elements, memories and SW processors is essential and

can be achieved by profiling the simulation and applying power models. The features and
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functionality of MAVO are designed to fill this gap, at system level. The power optimization

techniques have simple idea behind them, like voltage and frequency scaling or dynamic slack

reclamation, however, in order to apply the techniques either statically in design phase, or

dynamically during running time, a powerful platform is required to investigate the design

rapidly and with adequate details.

5.1.1 Design Modification

Multiple techniques have been proposed for optimizing power dissipation. However, a low

power design is mainly efficient due to its architecture and design model itself rather than

the applied optimization techniques. For instance, the effect of having a system working
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Sub-BehaviorB1
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Figure 5.1: Evaluation of different architectures for power and performance

in form of a pipeline configuration and balancing the pipeline stages, can not be made by

applying a power optimization technique, such as DVFS. Figure 5.1 shows two different

design options of a design. The design in Figure 5.1(a) has 4 pipeline stages, A,B,C and

D. Figure 5.1(b) shows an alternative with split stage B (B1 and B2 ) and merged stage

C and D. Without an infrastructure to monitor and profile the performance and power in

each stage, it is impossible to apply these modification and decide which architecture is more

efficient.
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5.2 Optimization Techniques

5.2.1 Voltage and Frequency Scaling

The fact that power is basically spending energy over time allows design optimization with

respect to frequency, and supply voltage. We can reduce power dissipation and as a result

develop more reliable designs by lowering the frequency or supply voltage within the defined

deadline and without compromising the performance. Figure 5.2 illustrates the general idea

of this scheme. The working frequency of PEi is reduced to minimize power dissipation,
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Figure 5.2: Adjusting PE clock frequency

while meeting the requested deadline.

5.2.2 Balancing Power Dissipation by Scheduling

Throughout the life-time of a device it is important to balance power dissipation. This

can effectively reduce the working temperature of the device, improve reliability, minimize

faults, and extend the system life-time. MAVO supports monitoring the mode and the

activity intervals of each design element, as well as the amount of their power consumption.

Using this information, designer can easily examine scheduling alternatives and power saving

opportunities via simple, yet effective design modification. Figure 5.3 demonstrates this by
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Figure 5.3: Scheduling Power Dissipation with MAVO framework

improved scheduling of the working intervals of two processing element,PEi and PEj, to

balance the overall power usage, and reducing peaks and temperature at the same time.

5.2.3 Smoothing Power Spikes

The peak power of the design is among the factors that directly influences the reliability,

thermal limitations, cost and size of the device [63]. Figure 5.4 illustrates the general idea of

eliminating low and high spikes. The unwanted power dissipation behavior can be avoided by

scaling frequency within the involve units. In an ideal design, peak power should be limited

ti tj

p
o
w
e
r

p
o
w
e
r
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Figure 5.4: Smoothing power spikes with MAVO framework

to certain range. In MAVO we are using a simple method to monitor different active process

of the design and scale down the frequency, in order to avoid out of range peak power.
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5.2.4 Power Shut off

Finally, in order to reduce static power, a common Dynamic Power Management(DPM)

technique is to shut off the inactive devices. MAVO also supports this approach.

5.3 Power Optimizer

The power Optimizer is an infrastructure for close evaluation and analysis of the design,

through power reports, and identifying power and performance optimization opportunities.

These opportunities can be in form of design alteration e.g. changing the weight of com-

putations in different blocks of the design, altering algorithms, changing execution methods

like parallelism or pipelining, communication policies, components allocations, and PE map-

pings. The other group of power saving solutions, can be power optimization methods such

as dynamic voltage and frequency scaling, dynamic power management, scheduling or load

balancing.

The main role of Optimizer is to assist the designer with optimization decisions. Optimizer

supports generating power and performance analysis for any time interval or subsection of

the design to allow the designer to evaluate the design and explore other design options

rapidly. For frequency scaling, scheduling and balancing peak power, Optimizer can help

further and show the working intervals of each element, and involved design elements in

peak power.The Optimizer assesses PowerMeters and provides numerical logs of power over

time. In order to control the size these log files and adjust the precision of this analysis,

the user can pick the sampling frequency. The user can also specify any simulation interval

to monitor as well. The power reports generation is an option that designer can activate

through Annotator. The automated Optimizer is capable of generating power reports for

75



all the behaviors, processing elements, communication elements and globally. In addition to

automated reports from assigned PowerMeters, user can monitor and access the report of

any part of the design.

Most importantly, the user can view graphical power dissipation over time and zoom in for

specific intervals of any design elements and behaviors. Moreover, the Optimizer support

merging the reports or stacking up the power dissipation values in different PowerMeters over

time. In order to optimize power, it is important to monitor all the system elements, behav-

iors and their interactions. For instance, a tiny change in scheduling policy or specification

models result in different transactions, performance, and power dissipation. Therefore, it is

a significant help to have a platform that enables analyzing the entire system thoroughly,

while maintaining the speed of system level design purposes. Thanks to global, per behavior,

and per elements power reports designer is able to identify further power saving solutions,

examine the effect of design modification in term of power and performance, evaluate the

trade-offs, and apply power optimization techniques.

The main role of power Optimizer is to assist the designer to optimize power through pre-

senting a detailed transaction of the system, communication, power related activity and

performance.

5.4 Case Study: Canny Edge Detector

We have investigated the MAVO framework with a Canny edge detector. Canny is a real-life

image processing application implemented in 4-stage pipeline configuration. The model was

examined on an ARM based processor with two custom HW units for input and output, and

2 HWs for pipeline. All units are communicating through the AMBA BUS.
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5.4.1 Canny: Design Modification

The 4-stage pipeline architecture is suggested by edge detection algorithm which has four

major steps. However, after viewing the power and timing reports from MAVO, it becomes

apparent that this architecture is imperfect in term of the pipeline load in each stage. Table

5.1 shows the power and time consumption of each pipeline stage. The power and timing

results reveal that the Gaussian Smooth behavior is computationally expensive and power

hungry. In order to balance the pipeline we modified the design to a 5-stage pipeline
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Figure 5.5: Canny Architecture

Table 5.1: The delay & average power of pipeline stages

Design
Stage1 Stage2 Stage3 Stage4 Stage5

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW)

4-Stage 537 328.3 184.4 77.1 353 72.5 142 38.5 - -
5-Stage 226 174.6 237.8 149.6 184.4 77.1 353 72.5 142 38.5
3-Stage 226 174.6 237.8 149.6 688.8 188.2 - - - -

(CannyA), splitting the Guassian Smooth behavior in to X and Y dimensions. In this work
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the stage 1 and stage 2 of the pipeline are mapped to custom HWs, and rest of the stages

are mapped to ARM processor. The applied mapping makes the Canny architecture works

as a 3-stage pipeline configuration. Figure 5.5 shows the architecture of Canny before and

after the modification. Next we evaluate canny for power optimization.

5.4.2 Canny: Adjusting Frequency

Using the reports and graphs, the working frequency and supply voltage of each unit can

be optimized. In Figure 5.10(a), a power saving opportunity can be detected for HW1 and

HW2, which finish their tasks earlier than the rest of stages. In turn, we lower the frequency

of HW1 and HW2 within the performance constraints (CannyB).
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Figure 5.6: Adjusting Frequency for HW1 and HW2 using MAVO

By extending the processing time in stage 1 and 2, the simulation time gets extended as

well. This is due to the fact that filling the pipeline stages takes longer, however, the

pipeline throughput performance remains the same.
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5.4.3 Canny: Power Aware Scheduling

In order to balance power dissipation in whole device, we can schedule the work period of

the units such that they have minimum overlaps. For HW1 and HW2 the result of this

modification (CannyC) is shown in Figure 5.7.
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Figure 5.7: Adjusting work period for HW1 and HW2 using MAVO

5.4.4 Canny: Smoothing Power Spikes

The total power results from MAVO show that the device is experiencing high peak powers,

where the peak is more than the double the average.

In order to smoothen the dissipation MAVO identifies the active processes during the peaks

as shown in Figure 5.8. Here we decide to scale the frequency for the involved behaviors.

Figure 5.9 shows the results (CannyD).

A block performing the floating point operations is responsible for power peaks. We lower the
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Figure 5.8: Active processes power dissipation in CPU
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Figure 5.9: Smoothing power dissipation using MAVO

frequency of CPU here and in order to maintain the performance, another integer intensive

behavior is scaled with higher frequency instead.
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5.4.5 Results

Table 6.1 shows the power and performance of each models. The canny example has been

tested with 6 images and it was expected to generated one image in every 0.8 seconds. As

shown, MAVO power savings resulted in an optimized design with no performance penalty.

The optimized design experiences power fluctuations 8% less, based on comparing the stan-

dard deviation of power reports and the power changes range has been reduced by 29%.

The difference between the minimum and the maximum of power dissipation over time,

considered as the power changes range of the design.

Table 5.2: Timing and performance for Canny edge detector after applying each technique

Model

Pipeline

Throughput

(ms)

Power

Range

(min,max)

Relative

Fluctuation

Power

(mW)

Power

Saving

CannyA 688.8/800 (86%) (0.003,0.312) 100% 374.504 +0%

CannyB 689/800 (86%) (0.003,0.312) 100% 357.113 +5%

CannyC 701.8/800 (88%) (0.003,0.312) 100% 329.903 +12%

CannyD 738.8/800 (92%) (0.001,0.204) 71% 315.511 +16%
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Figure 5.10: Power dissipation of Canny Edge Detector visualized and optimized by MAVO
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Chapter 6

Static Analysis of Power and

Performance

In this chapter we present a novel abstract verification approach for evaluating power and

performance constraints and power management. The proposed design flow combines a

method for generating power- and performance-aware ESL models presented in MAVO with

a technique to extract a corresponding UPPAAL model from the ESL model in [24].

A hierarchical concurrent automata model with integrated power and performance informa-

tion is generated which can be statically verified against various design constraints using the

UPPAAL model checker.

To explore the power and performance trade-off we present an algorithm that efficiently

navigates and determines the trade-off curve. In the experimental results we examine the

implemented power/performance framework using two JPEG image encoders.
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6.1 Motivation

The embedded system design process is getting more and more complicated. Design func-

tionality verification is not the major concern any more. Power and performance constraint

evaluations along with design optimization are the main challenges nowadays. In order to

improve the design process as well as reducing the time-to-market, the aspects of design

analysis are start at the Electronic System Level (ESL).

There are many solutions and commercial tools for power and performance estimation, where

the common technique among all of them is using simulation as the basic approach for de-

sign space exploration and metrics analysis. The simulation approach allows the designer to

evaluate different design alternatives, trace timing and power in different design components,

and basically extract any required information. However, due to long simulation times only

a subset of the cases can be examined and this does not guarantee safe boundaries for power

and performance, particularly for real-time and power sensitive applications. Therefore a

simulation approach degrades the reliability of the evaluations.

Another solution for design constraints investigations are formal methods. There are less

studies on formal methods for power and performance verification and optimization. The

model-based static analysis allows evaluation of system level models against different design

constraints, design optimization options, component alterations, and generally any design

decisions. The downside with formal models is the systematic generation of the automata

models from a system level model, besides the availability of model checkers to evaluate the

models efficiently. Since system models are conventionally created in System Level Descrip-

tion Languages (SLDL), an additional step is required to generate formal models. In this

work we are proposing a framework for static analysis of power and performance using the

UPPAAL [11] model checker. Our main contributions of this work are:

• We extended [71], a power and performance ESL estimation tool to generate annotated

84



ESL models with different level of granularity.

• We designed a model generator base on [24] for automated conversion of power- and

performance- aware ESL models to a power-timed automata network with integrated

voltage and frequency scaling technique.

• We proposed an algorithm to automatically explore the power and performance trade-

off using the UPPAAL model-checker.

To the best of our knowledge this is the first proposed framework for static analysis of power

and performance of ESL models.

6.2 Related Work on Formal ESL Model-Checking

Although formal verification is rarely used for power and performance analysis, it has been

broadly applied in deadlock/livelock and parallelism analysis, as well as race condition de-

tection. [74], [75], [13] are proposed to detect races and analyze non-deterministic anomalies

in timed concurrent models, but in those methods simulation is required. As for the sys-

tem modeling, [80] and [12] propose approaches to model the behavior of SLDL designs

with automata in PROMELA, and in [44] the design is modeled as a network of timed au-

tomata. The model is then analyzed with SPIN and UPPAAL model checker, respectively.

In [28] model-checking is applied for performance analysis using UPPAAL model checker.

Our approach also models the application with a network of automata and analyzes it with

UPPAAL model checker. Compared with other works, our approach supports the modeling

of richer design compositions and channel communication. More important in our proposed

approach is that the power and performance trade-off can be statically evaluated, and power

management functionality in form of voltage/frequency scaling is automatically integrated to

ESL models. In the UPPAAL model generator in [23], the regular finite state automata are
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equipped with time, so called timed automata, through a variable for representing the clock.

In this work we extended the timed automata with the dimension of power by introducing

extra static and dynamic energy dissipation variables.

6.3 The Static Analyzer Framework
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Figure 6.1: The Static Power and Performance Analyzer Framework Flow

Figure 6.1 illustrates the proposed static analyzer framework. Our framework is composed

of two major units; a power and performance estimation tool that generates a Power- and

Performance-Aware (PPA) model from an ESL architectural model in steps (1) through (4),

and a UPPAAL model generator that transforms PPA models to a formal automata network

that matches UPPAAL model checker semantics, steps (5) and (6).

The design process starts with a system level specification model written in SLDL. The ESL

model contains a well-defined structural hierarchy, separate computation and communica-

tion, and explicit parallelism. In this work, we implemented the system level specification

model in SpecC language[34], step (1). The design components allocation, mappings, and

refinements are performed using the System-on-Chip Environment [26], step (2). At step

(3) the refined architecture model is instrumented with power and performance details, to
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generate power-timed models at step (4). These four steps are similar to first four steps of

MAVO framework presented in Chapter 2.

In the next two steps, the annotated ESL model is converted to UPPAAL model as shown

in Figure 6.1. The UPPAAL model checker examines the power-timed automata network

model against different queries, step (7).

6.3.1 Power and Performance Estimator Tool

In [71] a framework for monitoring and analyzing power and performance at the system level

is presented. In our work we have adjusted this to monitor and annotate the ESL architec-

ture model with thorough traces on power and performance, that are compatible with our

designed UPPAAL model generator.

As shown in Figure 6.1, the design process at system level starts with a specification model,

that reflects the functional behavior of the system, without any notion of time nor power.

Next, Processing Element (PE) allocation, behavior mappings, scheduling and communica-

tion refinements are performed in SCE [26]. The [71] framework uses a Profiler, a Power

API and a model Annotator to generate PPA models. It initially monitors the architecture

model through profiling of different operations executed on processing elements as well as

memory accesses, besides the amount and type of data being transferred over the channels

in the model.

In the Power API, a set of power and timing related functions are provided to add the di-

mensions of power and time to ESL models. Using the provided functions and power models

of design components, [71] specifies power and performance related activities and analyzes

power and performance dissipation in different processing elements, communication elements

and behaviors automatically using the Annotator. The collected traces from the Profiler are

instrumented to Power API functions then back-annotated to the system level model via

Annotator. In this work, we have extended the Annotator capabilities to instrument the
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power and performance annotations at different levels of granularity such as basic blocks,

behaviors, or PEs. We have also extended the Power API function set, to support power and

performance trace integration for the UPPAAL model generator. An example of a behavior

annotated with time and power information is presented below.

Behavior A( i i n t s e n d e r Ch)

{

note A. MAPPED TO = ”ARM968E−S” ;

. . .

d++;

Ch . send (d) ;

{

UPPAAL:

pm di s s ipate ( 2 . 3 NANO SEC, 3 .47 MILLI JOULE , 2 .84 MILLI JOULE) ;

}

} ;

As shown in the above example, the dissipate function represents the spent time as well as

the power due to dynamic and static power dissipation in Behavior A which is mapped to

ARM968E − S with behavior level selected as the granularity of annotations.

The applied annotations contain the same information about performance and static and

dynamic power as the annotations in MAVO framework presented in Chapter 2. However,

naming convention is modified to adapt with UPPAAL model generator which embeds this

information into automata of the system-level model. This process is explained in the next

section.

6.3.2 UPPAAL Model Generator

An UPPAAL model consists of a network of concurrent processes and the network is created

by instantiating automaton templates. Step (7) in Figure 6.1 illustrates the structure of the
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UPPAAL model for a system model. The ESL model composed of multiple computation

blocks (modules and behaviors), with communication (port, channel, event synchronization)

in between is converted to an automaton template for each behavior [24]. Every instance of

a behavior is mapped to an UPPAAL process.

Our model generator supports different orders of execution, such as sequential, pipeline,

FSM, and parallel. Control flow statements (if/if-else, while/do-while, for loop), synchro-

nization statements (wait, waitfor) and channel communications (semaphore, mutex, hand-

shake, double-handshake, and queue) are also incorporated into the UPPAAL templates.

The system also contains a scheduler process to coordinate the transitions in instance pro-

cesses via connections to the scheduler process.

Our UPPAAL model generator explicitly supports power and performance annotations from

PPA models. Our extended Annotator [71] offers different granularity of power and per-

formance instrumentation, from basic block, to behaviors and design components. Thus,

the UPPAAL model generator is able to capture the instrumentation various granularity

levels similarly. An example of capturing instrumented power and performance details from

power- and performance-aware model at behavior level is shown in Figure 6.2. For each
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Figure 6.2: Representation of power and performance annotation of a behavior in UPPAAL

annotated dissipate function, two locations (states) [PPA ini] and [PPA end] are created.
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The dynamic and static power are also inserted as labels (an operation during transition).

The annotated time value is treated similar to waitfor statements in simulator, where it sus-

pends the current instance from execution for the specified time units.The suspended process

is reactivated by the scheduler after the simulation time is advanced. As shown in Figure

6.2, TotalDynP and TotalStcP are two variables introduced in UPPAAL models to capture

the dynamic and static power consumption.

6.4 UPPAAL Model-Checker

Once the UPPAAL model is generated, different design criteria, such as power and perfor-

mance, can be verified within the whole system design model or its subsets, such as behaviors.

In other words, the verification can be applied on the network of power-time automata or

on any subset of automata.

The evaluation is performed through queries to the UPPAAL model-checker. For instance,

QueryA(Scheduler.Terminate, Pi, Tj) can be used to examine if the UPPAAL model of an

application A, will be satisfied with property of total power and delay less than Pi and Tj

respectively. The term Scheduler.Terminate represent the scheduler automata to be in its

terminate state. This implies that the property is checked for the application A for its entire

life-time.

Although different verification can easily be tested using model-checker, in order to system-

atically explore the design space, and find the power-performance curve of the design, rather

than exhaustive verification, we present an algorithm in Section 6.5.
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6.5 Power and Performance Trade-off

In order to explore the power and performance space of the system level model, we propose

an algorithm to statically analyze the model through repeated queries for power and per-

formance values. Our algorithm allows the designer to rapidly evaluate the constraints of

the generated model. In our method, the designer only needs to provide the deadline and
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DeadlinePerformance min
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Figure 6.3: Power & performance trade-off

maximum power. Figure 6.3 illustrates two steps of the algorithm. In the first step the

minimum possible power and performance is found by queries generated based on binary

search, as shown in Figure 6.3(a) for power. Using the similar approach the minimum value

for delay is found as well. Next, to find the optimal power and performance combination
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for the ranges of interest, we propose Algorithm 1. This Algorithm starts searching the area

Algorithm 1 Query Generation Algorithm for Finding the Power and Performance Trade-off
1: let the Powermax be the maximum allowed power of the design
2: let the Deadline be the deadline of the design
3:
4: void GeneratePowerPerformanceTradeOff(Powermax, Deadline)
5: {
6: Powermin = FindSatisfiableMin(power, 0, Powermax);
7: Performancemin = FindSatisfiableMin(performance, 0, Deadline);
8: Initialize currentPerformance to Performancemin
9: Initialize currentPower to Powermax

10: while( currentPerformance<Deadline){
11: while( currentPower<Powermin){
12: check = Query(Scheduler.Terminate, currentPower, currentPerformance);
13: if( check == Satisfiable) then
14: set currentPower to currentPower + Power Step;
15: else if (check != Satisfiable and currentPower within Range) then
16: set currentPower to (currentPower + Last Satisfiable Power Value)/2;
17: else break;
18: end if
19: Trade-Off(currentPerformance, currentPower) = check;
20: end while
21: currentPower) = Last Satisfiable Power Value;
22: if (currentPower) < Lowest Satisfiable Found Power Value) then
23: set currentPerformance to currentPerformance + Time Step;
24: else
25: Double the Step Size;
26: set currentPerformance to currentPerformance + Time Step;
27: end if
28: end while
29: }
30: }
31:
32: double FindSatisfiableMin(property,min,max){
33: if(absolute(max-min)<Range) then
34: return max;
35: end if
36: middle=(min+max)/2;
37: check = Query(Scheduler.Terminate, property<middle);
38: if(check == Satisfiable) then return FindSatisfiableMin(middle,max);
39: else return FindSatisfiableMin(min,middle); end if

40: }

of interest from the maximum power and minimum delay point (top left in Figure 6.3(b)).

As presented in the algorithm, there are two main processes. In the inner loop the lowest

satisfiable power for every value of performance is found. Then based on the determined

power value, the performance is increased accordingly and the same process is repeated. The

resolution of the exploration is a parameter that can be set by the designer.
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6.6 Experimental Results

To evaluate the proposed approach, we have extended the power and performance estimator

tool [71], and power-timed automata generation [24] compatible with the UPPAAL model-

checker. The power and performance trade-off algorithm is also implemented and tested. We

have tested a grayscale and a color JPEG image encoders with our framework. The mono
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Figure 6.4: JPEG Block Diagram

Table 6.1: Experimental result for JPEG applications

Embedded
Application

Lines
of

Code

Analysis Time
Satisfiable

(sec)

Analysis Time
Not Satisfiable

(sec)
Peak

Memory
Number of

Satisfiable Query
Number of

Not Satisfiable
Query

Total Time
(min)

Min. Max. Min. Max.
Mono JPEG 1.5k 0.20 2.44 37.2 28.6 1,417MB 14 13 10:27
Color JPEG 2.5k 0.01 0.87 22.3 23.89 1,100MB 20 16 6:23

JPEG, Figure 6.5(b), is mapped to an ARM-based processor with a custom HW for DCT

block. The color JPEG image encoder shown in Figure 6.5(a) performs DCT, quantization,

and zigzag operations in parallel followed by a Huffman encoder. In our experiments, the

three color components are mapped to custom HWs and the other components are mapped
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to an ARM based processor. All the units are communicating through an AMBA bus. The

automated process of generating power- and performance-aware model and UPPAAL model

took 27 seconds for grayscale and 40 seconds for color JPEG application. Then the resulting

power-timed automata network is studied using the UPPAAL model checker. The proposed

algorithm for power-performance trade-off is utilized to compute power and performance

values for queries. The Time Step is set to 5ms for grayscale JPEG and 2ms for color

JPEG in Algorithm1. Figure 6.5 shows the calculated trade-off curves for the two color

JPEG encoders. As shown, the optimal design options for power and performance values

are rapidly examined though a very limited number of property checking, less than 30 and

40 queries for the mono and color JPEG encoder respectively.

Although in our experiments, we are presenting the result for global power-performance

trade-off, other properties such as power and performance of a subset of behaviors, static

or dynamic power dissipation, timing bounds, deadlock, etc. can also be verified through

queries.
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Chapter 7

Conclusion

The chip design is evolving day by day in response to semiconductor technology size. The

reduction in technology size as Moores’s law predicted caused an exponential increase in chip

density and introduced complex chips, SoCs and MPSoCs. These progresses has challenged

the design methodologies and poses new design concerns such as power, temperature and

reliability.

Design methodologies are applying various approaches such as design abstraction, language-

based design and synthesis, and electronic design automation to increase the designer produc-

tivity. On of the primary solution for tackling design complexity and hardware and software

design gap is system-level design. The high level of abstraction, higher potential for power,

area and performance optimization, rapid design space exploration and design modification

has made this level a popular and great starting point for SoC design. Therefore, different

design instruments such as design languages, simulators, design verification ans evaluation

tool, etc. should get developed or adapted for more effective system-level design.

The deep submicron technology advances allows implementing tens of millions of gates in a

very small die, however, different design problem needs to be addressed and resolved, such as

high power dissipation, temperature, high leakage current, which can get as high as dynamic
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current. Therefore new design solutions such as using multi-processor on the chip instead of

a mono-processor are proposed.

In this work we are targeting power estimation and evaluation as a major SoC design concern

in system-level design. We proposed a framework for monitoring design specification models

for power activity and evaluate power dissipation in different design components and with

different granularity levels.

7.1 Contributions

We summarize our contributions in the following sections.

7.1.1 A System Level Power Estimator

In Chapter 2 with presented the MAVO framework for power estimation at system level.

The MAVO frameworks is an automated and simulation-based power estimator for system

level design. The main modules in MAVO framework are:

• Monitor: For profiling the specification model for execution counts of different op-

erations an statements, communication, and required memory via simulation. The

generated static report of Monitor is then used for producing a power-annotated de-

sign model.

• Power Analyzer API : This API is presented in form of a library for instrumenting

power related information to the design. PowerMeter structure, monitor, and consume

functions are developed in Power Analyzer API to provide capabilities for monitoring

power over time and capturing total power dissipation and power spikes in different

level of granularity and design elements.
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• Annotator: To eliminate the manual effort and provide a scalable power estimator

tool an Annotator is implemented for annotating PowerMeters and consume functions

to the design at different granularity levels.

These three modules are collaborating to produce a power-annotated system level model.

The text and graphical power reports for different design components are generated after

simulating the power-annotated model. A real-word application, JPEG encoder is used to

demonstrate capabilities and provides power-time graph reports.

In Chapter 3, we verified the fidelity and relative accuracy of the MAVO framework. We first

presented a simplified power modeling scheme to generate power library of different design

components such as processors and custom hardwares. Then, using a real-life applications,

JPEG encoder, MP3 encoder, and H.264 codec we investigated the accuracy and fidelity.

Our experimental results demonstrate the strong fidelity and an order of magnitude speedup

using MAVO in compare to cycle-accurate power estimator tools.

7.1.2 Power-Aware Design Space Exploration

The desired accuracy for design constraints evaluation at system level is fidelity. The fact that

the MAVO power estimator support high degree of fidelity in power evaluations motivates

us to add power as a new dimension into our in house design space exploration tool, SCE.

Hence, we integrated the MAVO modules into SCE and extended its database with power

models. Chapter 4 gives an overview of the tool and describes the exploration flow using the

Canny edge detector application.
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7.1.3 Interactive Power Optimization Support

The power dissipation in SoC can be optimized in all design abstraction levels, however the

in lower levels there are limited margin high cost for power reduction and design alteration

respectively. This had made the system-level a great level for starting power optimization

and considering power in design alterations. In order to evaluate power and apply power

optimization techniques, first a comprehensive understanding of the design model, along

with power reports of power dissipation within design components and behaviors is essential.

MAVO has an easy solution to collected these information and examine the applied solution.

The generated power profile reports helps the design to understand the power dissipation

behavior of the design for utilizing power optimization technique or changing the design

accordingly.

In Chapter 5 we used Canny edge detection application for power optimization within MAVO.

Our results show a great reduction in total power consumption and flattening of power spikes.

7.1.4 A Platform for Static Analysis of Power and Performance

Due to the fact that capturing the power-performance evaluation for all design options needs

iterative simulation and therefore is it a time consuming task, we proposed a verification

approach for evaluating power and performance constraint and power management using

static analysis. In Chapter 6 we proposed a design flow that combines a modified MAVO

with an extended automata model generator to evaluate the design constraints through

different queries in UPPAAL model checker. To explore the power and performance trade-

off we present an algorithm that efficiently navigates and determines the trade-off curve. In

the experimental results we examine the implemented power/performance framework using

two JPEG image encoders.
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7.2 Future Work

Related future research work is worth pursuing in the following areas:

7.2.1 Automated Power Optimization

For future work we are planning to deliver power optimization techniques to be applied

automatically at the system-level. As of now our proposed infrastructure only supports the

interactive optimization which is user-based.

7.2.2 Extension for Reliability Analyzer

Also we will address integrating an efficient dynamic power manager with thermal and reli-

ability analyzer. Research study is also needed to investigate reliability, aging and variation

in full chip, which some research such as [43] has already proposed new design methodologies

that considered these design criterion as well.

7.2.3 Efficient Static Analyzer for Power-Performance

In the future, we will focus on supporting different power optimization techniques and try to

simplify the complexity of the automata networks. We aill also try to adapt the automata

generation to SystemC language, which is the industry standard for system-level design.
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7.3 Concluding Remark

In conclusion, the work presented in dissertation provide a rapid system-level power estimator

tool. MAVO is framework suitable for automated power estimation, design space exploration,

and investigating power optimization solutions interactively. MAVO also support statical

analysis of power-performance trade-off together with UPPAAL framework. Overall, MAVO

is an environment for low power embedded system design that eventually can lead to a

significantly shorter design cycle.
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power simulation at system-level with systemc. Integrated Circuit and System Design.

Power and Timing Modeling, Optimization and Simulation, pages 21–31, 2013.

[57] Mahesh Mamidipaka and Nikil Dutt. eCACTI: An enhanced power estimation model

for on-chip caches. Center for Embedded Computer Systems, Tech. Rep. TR04-28, 2004.

108



[58] Milo MK Martin, Daniel J Sorin, Bradford M Beckmann, Michael R Marty, Min Xu,

Alaa R Alameldeen, Kevin E Moore, Mark D Hill, and David A Wood. Multifacet’s

general execution-driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH

Computer Architecture News, 33(4):92–99, 2005.

[59] Peter Marwedel. Embedded systems design–embedded systems foundations of cyber-

physical systems. 2011.

[60] Jerónimo Castrillón Mazo and Rainer Leupers. Programming Heterogeneous MPSoCs.

Springer, 2013.

[61] Deepak Mishra, Yasaman Samei, Nga Dang, R Domer, and Elaheh Bozorgzadeh. Multi-

layer configuration exploration of MPSoCs for streaming applications. In Electronic

System Level Synthesis Conference (ESLsyn), 2012, pages 38–43. IEEE, 2012.

[62] T Mudge, T Austin, and D Grunwald. SimPanalyzer: the simplescalar-arm power

modeling project, 2004.

[63] Massoud Pedram. Power minimization in IC design: principles and applications. ACM

Transactions on Design Automation of Electronic Systems (TODAES), 1(1):3–56, 1996.

[64] Michael D Powell, Arijit Biswas, Joel S Emer, Shubhendu S Mukherjee, Basit R Sheikh,

and Shrirang Yardi. CAMP: A technique to estimate per-structure power at run-time

using a few simple parameters. In High Performance Computer Architecture, 2009.

HPCA 2009. IEEE 15th International Symposium on, pages 289–300. IEEE, 2009.

[65] Jan Rabaey. Low Power Design Essentials. Springer, 2009.

[66] Anand Raghunathan, Niraj K Jha, and Sujit Dey. High-level Power Analysis and Op-

timization. Springer, 1998.

[67] Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. Efficient RTL power

109



estimation for large designs. In VLSI Design, 2003. Proceedings. 16th International

Conference on, pages 431–439. IEEE, 2003.

[68] Sherief Reda and Abdullah N Nowroz. Power modeling and characterization of com-

puting devices: a survey. 2012.

[69] Santhosh-Kumar Rethinagiri, Oscar Palomar, Osman Unsal, Adrian Cristal, Rabie Ben-

Atitallah, and Smail Niar. PETS: Power and energy estimation tool at system-level.

In Quality Electronic Design (ISQED), 2014 15th International Symposium on, pages

535–542. IEEE, 2014.

[70] ITRS Roadmap. International Technology Roadmap for Semiconductors, 2009 edn.

Executive Summary. Semiconductor Industry Association, 2009.

[71] Yasaman Samei and Rainer Doemer. MAVO: An Automated Framework for ESL Design

Monitor, Analyze, Visualize and Optimize. 2014.
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