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ABSTRACT OF THE DISSERTATION

Perspectives on cognitive modeling of adaptive behavior

By
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Doctor of Philosophy in Psychology
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Professor Michael D. Lee, Chair

Many experimental and statistical paradigms collect and analyze behavioral data under steady-state

assumptions. Such paradigms may have low external validity, since real-world decisions are often

made in situations when people are still learning and adapting, or their beliefs and preferences are

in a state of flux, or where the decision environment is constantly changing. I focus on experimen-

tal and real-world paradigms that represent some form of adaptive behavior. Under such situations,

factoring in structural adaptivity into cognitive modeling frameworks can improve their descriptive

and predictive performance, and allow us to make superior inferences about the underlying latent

cognitive processes. Towards this endeavor, first, a novel probabilistic framework is proposed

for representation of heuristic strategies of information search and multi-attribute choice within a

model of learning. Second, a novel adaptive reference point mechanism is introduced, and I show

how this can be used in a variety of different tasks and applications, and be incorporated into cog-

nitive frameworks to structurally capture the adaptive process. This mechanism provides superior

predictive performance along with psychologically meaningful parameter inference in tasks rang-

ing from signal detection, bandit problems, judgments about estimating true values, consumption

behavior, probability tracking, and expectation formation. Third, I show how cognitive modeling

can be applied to adaptive population behavior in the real world. Real world data is used to make

inferences about the latent processes involved in aspects such as the changing nature of cycles of

violence, and the impact of tax policies on changing consumption patterns. Incorporating cognitive

xix



modeling frameworks and psychological insights to constrain econometric models yields possibly

simpler models, but with directly interpretable parameter inferences. Fourth, cognitive modeling

approaches are used to design choice architecture frames to create behavioral nudges within a risk

allocation paradigm, where people change their behavior based on representational, rather than

meaningful changes in their environment.
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Chapter 1

Introduction

1.1 PART I: Adaptive strategy switching and learning

In the first part, I motivate a discussion on finding novel probabilistic methods to represent decision

heuristics and strategies in multi-attribute choice decisions. In chapter 2, I provide a theoretical

framework for developing such probabilistic representations of decision strategies. In chapter 3, I

report experimental results from 2 multi-attribute decision tasks. In chapter 4, I implement a set of

cognitive models based on traditional and probabilistic strategies, including incorporating a cogni-

tive model of latent strategy selection and switching. I show that these novel probabilistic models

along with latent learning provide better descriptive and predictive capabilities, and can be used to

make improved inferences about the underlying cognitive processes involved in information search

and aggregation. In chapter 5, I propose a measurement framework to evaluate the potential effec-

tiveness of a consideration set of strategies a priori, based on the experimental design, but before

looking at the data.
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1.2 PART II: Adaptive reference point formation

In the second part, in chapter 6, I propose a novel adaptive reference point mechanism, and propose

that this mechanism can be ubiquitously applied to many different types of tasks, and incorporated

within many existing but varied cognitive modeling approaches. In chapter 7, I show the modeling

results and inferences made by incorporating such mechanisms. I show how incorporating such

a mechanism improves descriptive and predictive capabilities in a variety of experimental tasks

including signal detection, price judgment, consumption behavior, probability tracking, and ex-

pectation formation tasks. I show how robust inferences about individual differences can be made

using this as a focal point in various cognitive frameworks.

1.3 PART III: Adaptive behavior at a population level

In the third part, I focus on real world data that reflects decision making of populations, and show

that incorporating cognitive modeling frameworks and psychological insights to constrain econo-

metric models yields possibly simpler models, but with directly interpretable parameter inferences.

This is especially true when the underlying phenomenon involves some form of adaptive behavior.

I apply this approach in chapter 8, to modeling violent behavior during the Second Intifada, and

show that this approach can make reasonably strong predictions about the near future based on the

past history of violence. The model can characterize the latent build up of violence, in terms of

retaliatory versus repetitive behavior, and in terms of long term internalization versus short term

dynamics. It provides a separate characterization for each political period during the Second In-

tifada. In chapter 9, I propose a detailed theoretical framework to adapt sufficient statistics based

approaches used in econometrics to model consumption behavior. I show how such analytically

obtained sufficient statistics are only valid under certain cognitive assumptions, and propose that

additional cognitive variables are required to reach the correct conclusions about how people re-
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spond to aspects such as changes in the tax rate and government policies. I provide a very basic

application of this modeling framework to alcohol consumption in the US as a proof of concept.

1.4 PART IV: Inducing adaptive behavior by manipulation of

choice architecture

All of the above address adaptive behavior and cognitive modeling of such behavior under different

situations. The focus is on highlighting that accounting for adaptive behavior within cognitive

modeling frameworks makes for a better quality of inferences, and more powerful models in terms

of their descriptive and predictive capabilities. In the last and fourth part, I highlight experimental

work that attempts to induce a change in risky behavior of participants, by changing the choice

representation, that is a form of a behavioral nudge. In chapter 10, I show that people’s adaptation

is not homogeneous, and that perceptions of their own risk attitudes influence the direction in

which people might be nudged. I show that behavior under such risky choices is best explained by

cognitive models that account for choice allocation in a segregated rather than aggregate manner.
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Part I

Adaptive Strategy Switching
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Chapter 2

Theoretical Considerations

2.1 Introduction to multi-attribute decision tasks

Real world decision making tasks span a lot of different domains, including individual (e.g. what

financial investments should be bought or sold, and when), professional (e.g. what lab tests should

be run for a medical diagnosis), and institutional (e.g. what tax policy changes should be made

in a certain economic environment), amongst others. A large subset of such decisions tasks are

characterized by the fact that they are often repeated over time, although the frequency of repeti-

tions can vary significantly. The objective is often to select an option that is expected to optimize a

particular criterion, or set of criteria (e.g. maximize returns from investments). Uncertainty about

how different options are related to the criteria make the decisions non-trivial. There are however

usually a large set of known information cues related to the options. These cues have causal or

correlational relationships with the criteria, and hence represent varying degrees of predictive or

diagnostic information. Acquiring this information may be associated with varying degrees of cost

(time, effort, or money). Since the number of potential cues is usually quite large, most decisions

rely on selective information processing. Whilst the value of cues is known, the nature of relation-
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ship (strength of causal or correlational influence) between each cue and the criteria usually carries

a high degree of uncertainty. Effective decision making often involves reducing this uncertainty by

learning through experience and feedback. Finally, this cue-outcome relationship often changes

over time. Such change may be gradual or abrupt, and may or may not preserve the order of

strength of influence that various cues have, in terms of being able to predict the desired outcome.

An example is selecting between investing in two companies in order to maximize the criteria of

returns on investment. There is always uncertainty over which investments are likely to perform

well over a particular time frame. However there are multiple possible information cues, such as the

previous sales growth, the outstanding debt, capital reinvestment, change in management, and so

on, which can help people select between options. These cues are causally or otherwise related to

the expected returns on investment, some more strongly than others. Over time, an individual may

learn, for example, that previous sales growth does not really influence future returns, and learn to

ignore this information. Aspects such as a change in management may require privately rather than

publicly available knowledge, and would represent high-cost information cues. So the individual

begins to rely on the remaining two cues to predict which investments to make. It is possible

however, that the relative importance of these cues changes over time. For example, outstanding

debt may have a much larger influence on outcomes in a year when the interest rates have increased

significantly. To study how people select and rely on different sources of information in order to

make such decisions, many of these decision making task properties are captured in multi-attribute

decision making (MADM) tasks.

An MADM task involves selecting one or more information cues (the attributes), and assimilating

information from such cues in order to make a decision. The cue attributes typically incorpo-

rate some information about the outcome of each option. The statistical relationship between cue

attributes and choice outcomes may be probabilistic or deterministic, may assume different func-

tional forms, and in an experimental task, may either be known to participants or need to be learned

through experience. Performance in such a task is measured by the accuracy of the decision, but
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also by how well the relationships between cues and outcome are learned, whether the used cue

search and order patterns are effective, and how efficiently multiple sources of information are

combined. Uncertainty is captured in different ways in such tasks. In probabilistic tasks, the rela-

tionship between cues and criterion is defined probabilistically, as a cue validity. As an example,

a cue validity of 0.8 implies that the cue correctly predicts the outcome criterion about 80% of the

time. In such tasks (Rieskamp and Otto (2006); Lee et al. (2014)), the validities are typically, but

not always, provided to the participants and the uncertainty lies in the probabilistic nature of the

relationships. There is a different class of tasks (Bröder and Schiffer (2006a); Bröder et al. (2013)),

where the criterion value is determined as some weighted average of the different cues. The cue

weights are analogous to the cue validities, but are deterministic, with some random noise added

to the overall outcome. Apart from the noise, the uncertainty in these tasks arises from the fact that

the cue weights are typically not communicated to participants, but need to be learned over time.

2.1.1 Basic notation

For a particular multi-attribute decision task, we define nA as the number of attributes available,

and nO as the number of choice options. Thus, there are nAnO unique cues in the choice task.

The key observable measures for the tth decision include which cues are searched (st), and which

choice option is selected (yt). Note that this is not a comprehensive list of observable measures,

but the most typical. Observed behavior xt is defined as xt = st ∩ yt . Under a paradigm where

each individual cue can either be searched or not, there are Ns = 2nAnO unique cue search patterns

possible. Thus, a particular search pattern s j on a particular trial t is identified as s j,t ∈ {s j : j ∈

[1 : Ns]}. Similarly, we have yk,t ∈ {yk : k ∈ [1 : nO]}.
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Figure 2.1: Example of 2 similar multi-attribute decision making tasks. The four rows correspond
to information attributes and the three columns are the choice options. Each attribute by option cue
can be individually acquired for a cost. At the end of the trial, feedback is provided on the rewards
or penalties associated with the selected and foregone choices.

2.1.2 An example

Figure 2.1 provides an example of a multi-attribute decision task. Here, on each trial, there are 3

possible choice options (Stocks 1,2, or 3), so nO = 3. There are 4 possible information cues (profit

growth, sales growth, advisory ratings A and B), so nA = 4. In this example, the information cues

can take binary values (+/-, or High/Low or Buy/Sell). The statistical relationship between the

different cues and the reward for each option is unknown to the participant, and need to be learned

through experience. On any trial, there are Ns = 2nAnO = 4096 possible search patterns, depending

on which combination of the 12 cues has been selected.

2.1.3 Changing environmental contingencies

Some studies have manipulated the underlying cue-outcome relationship across trials or blocks

(Bröder and Schiffer (2006a); Lee et al. (2014)), representing the change that may occur in natu-

ralistic descision environments. Specifically, one way of incorporating this change is to vary the

environments between compensatory and non-compensatory structures. These represent the nature
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of statistical relationships between cues and the outcome criterion. A perfectly compensatory en-

vironment has all cue weights (or validities) equal. This of course, is too stringent and unrealistic.

More broadly defined, in compensatory environments, most of the cue weights or validities are

in a similar range, so that different cues can offset, or compensate for, each other. Thus, optimal

strategies in such an environment should take into account as many cues as possible and aggregate

them in an appropriate manner. A non-compensatory environment is one where cues are sequen-

tially dominant. Here, the cue weight (or validity) of the most dominant cue is so high, that all the

remaining cues put together cannot effectively offset the information from the dominant cue. In

case the most dominant cue does not discriminate between options, the next best cue is similarly

dominant compared to all remaining cues, and so on. Optimal strategies in such environments

would involve identifying the most dominant discriminating cues and relying solely on those, in

order to save any information acquisition costs associated with collecting more information.

2.2 Heuristic strategies

A large body of research focuses on both descriptive and prescriptive accounts of behavior in

multi-attribute decision tasks (and their real world counterparts) using fast and frugal heuristics

(Gigerenzer and Todd (1999)). Gigerenzer and Gaissmaier (2011) defined heuristics as “a strat-

egy that ignores part of the information, with the goal of making decisions more quickly, frugally,

and/or accurately than more complex methods.”. They highlighted three key building blocks to-

wards a theoretical framework for how heuristics are constructed:

1. Search rules: How do people explore the search space?

2. Stopping rules: When do people stop searching?

3. Decision rules: How do people make a final decision?
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The key aspects of this framework are that specific heuristics or strategies are particularly effi-

cient and accurate under certain environmental conditions, and that people are usually quite good

at identifying the most appropriate heuristics for a given environment. The most commonly ana-

lyzed heuristics involve compensatory heuristics such as weighted average (WA) and tallying, or

non-compensatory ones such as take-the-best (TTB). In tallying, all informations cues in the con-

sideration set are equally weighted, and the option that has the highest number of favorable cues is

selected. In WA, the cues are weighted based on their relative importance, and the weighted aver-

age of all cues is used to select a particular option. In TTB, the most important cue is selected from

the consideration set, and the option which is most favored by this single cue is selected. If the

most important cue cannot distinguish between the options, the next most important cue is selected,

and so on. Each of these strategies can be differentially beneficial under different environmental

conditions, but importantly, also dictates different patterns of information search and assimilation.

Under conditions when the environmental structure changes over time (non-stationary), this posits

that people will eventually detect changes and adopt a new, more appropriate strategy over time.

The mechanisms for change detection, learning and adaptation of different strategies have been

examined in tasks with non-stationary environments (e.g. Gluth et al. (2013); Rieskamp (2008);

Lee et al. (2014)). These, and similar studies have provided some insights into the mechanics of

adaptive information search and decision making behavior. There is evidence that people do learn

environmental contingencies, can detect changes and adaptively switch strategies, but not neces-

sarily in an ideal manner. It may be useful to think of strategy switching in operant conditioning

terms, that is, learning new strategies in appropriate environments, extinction of learned strategies

on encountering a change in the environment, and spontaneous recovery or renewal of previously

abandoned strategies when recognizing previously encountered environmental conditions. How-

ever, attempts to develop a robust cognitive model of adaptive strategy switching and learning have

met with limited success. In the next few sections, we propose that this is partly due to the structure

of the inference problem and the way heuristics are traditionally defined.
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2.3 Challenges in cognitive modeling of strategy learning

Existing methods to formalize adaptive learning and strategy selection propose reinforcement-

learning of strategies (Rieskamp and Otto (2006); Rieskamp (2008); Erev and Barron (2005)) or

rational metareasoning (Lieder and Griffiths (2015)). In such approaches, an important step is

to infer the generating process that leads to sequential learning and selection of strategies. The

learning model is implemented by simultaneously making inferences about two different latent

processes: (a) which heuristics people have used on a particular problem or trial, and (b) how

people update their belief about the effectiveness of this, or any counterfactual heuristic in their

consideration set. This effectiveness is based on some measure of accuracy, cost, time, effort, con-

straint satisfaction, or a combination of such measures. When feedback is available, some measure

of accuracy is an especially important factor. Since a cognitive model will sequentially infer how

strategies are being used and learned, poor quality of inferences in step (a) will sequentially prop-

agate, resulting in magnified errors in later trials. Thus, a poor quality of inferences about the

latent heuristic process being used will significantly impact the quality of inferences made about

the learning process. Note that this problem does not arise in typical implementations of cognitive

learning in other domains, where the locus of learning is almost exclusively attributed to observed

behaviors, rather than latent processes. We illustrate this difference below. First, we define the use

of a latent heuristic strategy as hm, where hm ∈ {hi : i∈ [1 : Nh]}, where Nh is the number of distinct

strategies in the consideration set.

A typical simple learning model where observable actions are reinforced can be specified as equa-

tion 2.1, where qhm,t is the value accorded to action hm after trial t, rt is the obtained reward at time

t, η is the sensitivity to reward value rt , or the learning rate, and Ihm,t is an indicator that records

whether we observed a subject implementing action hm on trial t. Determination of Ihm,t in this

case is trivial.

qhm,t = Ihm,t−1

(
(1−η) qhm,t−1 +η rt−1

)
+(1− Ihm,t−1) qhm,t−1 (2.1)
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There are of course models of counterfactual learning, but the key issue is recognizing the differ-

ence between actions that were implemented and not implemented, on any particular trial t. In

learning models of heuristic strategies however, hm is not an observable action that is reinforced,

but a latent cognitive strategy. Inference about which latent strategy was used on a particular trial,

and thus determination of Ihm,t , is non-trivial, since there is often a many-to-many mapping between

latent strategies and observable behaviors, which is manifested in terms of the varying information

search patterns and choice selection.

2.3.1 Determination of Ihm,t where hm is latent

The inference problem here is to infer which latent strategy hm resulted in the observable behavior

xt , for each individual decision, or on each trial of the experiment. A brief survey of methods used

to infer this in existing models of learning and strategy selection reveal the following commonly

used approaches:

1. Choice: By simply checking if the final observed choices are compatible with the heuristic

hm, but ignoring the information search patterns (e.g. Rieskamp (2008)). This method is

often the most common approach used in literature, but essentially ignores the information

search patterns, which are a key component of how the heuristics are defined.

2. Minimum: Based on whether the choices are compatible, and whether all the necessary

minimum required cues proposed by the heuristic have been searched, but allowing for the

search of any extra cues that are not required by a heuristic (e.g. Rieskamp and Otto (2006)).

3. Exact: Based on whether the choices are compatible, and whether the observed cue search

pattern exactly matches the search pattern proposed by a heuristic.

4. Process: By analyzing aspects such as response time or process tracing (e.g. Bergert and

Nosofsky (2007)). This however requires making additional assumptions about the imple-

mentation of the heuristic and the distributions of process variables under different heuristics.
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The approach used may infer either that:

1. None of the strategies in the consideration set were applied on a particular trial: Ihm,t =

0 ∀ hm, which we denote as no match.

2. Multiple strategies in the consideration set satisfy the inference criteria: Ihm,t = 1 for more

than one strategy hm, which we denote as multiple match.

3. Exactly one of the strategies in the consideration set satisfies the inference criteria: Ihm,t = 1

for exactly one strategy hm, and is 0 for all others, which we denote as a unique match.

In table 2.1 we show a brief meta-analysis of 11 experiments (2 of which are new experiments

presented in detail in this thesis, and 6 of which are explicitly modeled, using a new approach to

cognitive modeling introduced in this chapter) involving multi-attribute decision making, in table

2.1. For each experiment, we take the most commonly applied consideration set in literature -

a set of two heuristics, take-the-best (TTB) and weighted average (WA) - based on the true cue

validities used in the experiments. We use the choice, minimum, and exact inference methods

described above, and report the percentage of trials in each experiment, on which these inference

methods result in a no match, multiple match, or unique match situation. The table also shows the

average percentage of cues acquired across all participants within the experiment. Across these 10

experiments, unique matches were found on between 8% to 50% using the choice only method,

between 10% to 70% using the minimum cues methods, and 5% to 74% using the exact match

method. Generally, experiments with higher cue use (as we go down the list in the table) have a

higher level of unique identifiability.

Now revisiting equation 2.1, the probability of using a particular strategy hm on trial t is assumed

to be given by a softmax function, as in equation 2.2, where there are Nh possible strategies in the

consideration set, and θ is a consistency parameter.

p(hm,t) =
eθ qhm,t

Σ j=1:Nh

(
eθ qh j,t

) (2.2)
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Table 2.1: Meta-analysis showing the proportion of trials on which inference about TTB and WA
yielded either no match, a match for both heuristics, and a unique match. The analysis is conducted
using three of the popular inference methods - choice, minimum cues, and exact cues. For each
study and each method, the table shows the percentage of trials on which neither strategy could be
identified (no match), use of strategies was not discernible (multiple match), and where strategies
could be uniquely identified. Studies are ranked in the order of increasing cue use (first data
column).

(1) Choice (2) Minimum (3) Exact
Experiment %cues No match Multiple Unique No match Multiple Unique No match Multiple Unique
Mistry and Trueblood (2015) - 2 31% 15% 42% 44% 90% 0% 10% 95% 0% 5%
Newell and Shanks (2003) 32% 18% 74% 8% 71% 8% 20% 83% 1% 16%
Walsh and Gluck (2016) 42% 11% 73% 17% 79% 3% 18% 86% 1% 13%
Bröder and Schiffer (2006b) - 1 42% 24% 52% 24% 63% 2% 35% 81% 0% 19%
Bröder and Schiffer (2006b) - 2 42% 24% 52% 24% 64% 2% 34% 81% 0% 19%
Mistry and Trueblood (2015) - 1 48% 24% 55% 21% 77% 7% 16% 88% 0% 11%
Lee et al. (2014) - 3 57% 4% 56% 41% 30% 4% 66% 70% 0% 30%
Lee et al. (2014) - 4 57% 4% 56% 41% 35% 4% 61% 76% 0% 24%
Lee et al. (2014) - 2 65% 1% 73% 26% 19% 11% 70% 69% 0% 31%
Lee et al. (2014) - 1 84% 2% 73% 26% 9% 37% 54% 41% 1% 58%
Rieskamp and Otto (2006) 98% 2% 48% 50% 3% 46% 51% 22% 4% 74%

Note that in the case of no match, the probabilities for the use of any particular strategy will remain

the same as on the previous trial. In the case of a consideration set of two strategies with multiple

match, the q−values for both strategies will increase by the same amount, resulting in a minuscule

change in the probabilities of using each strategy, unless the existing q values are very small, in

which case the model will begin to predict equal use of either strategy. In either case, the learning

inferred by the model is extremely minimal, and the inference process is inefficient. Essentially, the

model infers any kind of meaningful learning by individuals only when a unique match is observed.

As seen in table 2.1, using existing heuristics and inference methods, this happens in only a small

percentage of the trials, especially in the complex experimental designs, where a greater degree of

learning is actually plausible. Although this is clearly visible in the reinforcement learning case

demonstrated above, this issue is ubiquitous regardless of the learning model employed, and will

remain a challenge for other learning models including Bayesian and instance-based learning.
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2.3.2 Probabilistic identification of the latent locus of learning hm: The need

to redefine strategies

Rather than use the choice, minimum, or exact matching methods for identifying the latent locus

of learning hm, we propose using Bayesian inference. Here, in order to model an individual’s

belief updating process for trial t, we first calculate the posterior probability p(hm,t−1|x jk,t−1) that

a strategy hm was used on trial t − 1, after having observed the behavioral outcome x jk,t−1. We

then replace Ihm,t−1 with p(hm,t−1|x jk,t−1) in equation 2.1. In the simplest case, x jkt is the choice

selected, denoted as ykt . More realistically, it also includes the information cue search patterns,

denoted as s jt . Thus x jkt = ykt ∩ s jt .

For ease of exposition, we drop the subscript t for the tth observation. The posterior probability

can be written as:

p(hm|x jk) =
p(x jk|hm)p(hm)

p(x jk)
=

p(yk|s jhm)p(s j|hm)p(hm)

Σi=1:Nh

(
p(yk|s jhi)p(s j|hi)p(hi)

) (2.3)

Here, p(hm) defines the prior probability of a strategy hm being used, and is obtained from the

underlying cognitive model, as in equation 2.2. Note that while this is a straightforward appli-

cation of Bayes rule, most approaches that specify learning models do not take this into account.

Effectively, whilst the models calculate the probability of an individual using a particular heuristic

trial-by-trial, they do not apply this to the inference process, rather the models behave as if the

prior probability of inferring which heuristic will be used is uniformly distributed on each trial,

and dependent only on the information contained in the current trial.

It is important to observe here that p(yk|s jhi) is just a probabilistic representation of the decision

rule of the heuristic hi, given a particular set s j of information cues searched. Similarly, p(s j|hi)

is a probabilistic representation of the search and stop rules of the heuristic hi. However heuristic
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strategies such as TTB, tallying, and WA are traditionally defined in a rule-based manner. This

means that the probabilities corresponding to the information search rules will be 0 for all but

one search combination in the possible search space of magnitude 2nAnO , if we insist on an exact

search. On the other hand, if we adopt a minimum cues acquired approach for a lexicographic

strategy such as TTB, which requires only a small proportion of the cues to be searched, this

probability p(s j|hi) will be a small but equal value for a large part of the possible search space,

and zero for the remaining space. This will result in the same inference problem faced in section

2.3.1, where we land up inferring either no matches, or multiple matches with equal probability,

for most trials.

The reason for this is because the rule-based heuristics do not have a well-defined error gradient

defined. That is, there is no existing approach that defines how proximal a particular information

search pattern is from the rule-based definition of the heuristic. A search pattern is classified in a

binary manner, as either compatible or incompatible with the heuristic. Any search and decision

pattern that is incompatible with any strategy within the consideration set is classified either as an

application error, or a guessing strategy, with some uniform or normal error distribution across all

incompatible search and decision patterns. Given that human decision making can be noisy yet

structurally defined by the underlying heuristic strategies, we propose defining a more appropriate

graded model of noise for the heuristic strategies. This is done by redefining the building blocks

of heuristics proposed by Gigerenzer and Todd (1999) probabilistically within a multidimensional

psychological space, that allows us to infer the proximity of different search and decision patterns,

and define a structurally superior error model of behavior in the next section. To the best of our

knowledge, this is a completely novel approach to defining such heuristic strategies. Essentially,

we redefine distribution of information search patterns conditional on the use of a particular strat-

egy, p(s j|hi).
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2.4 A generic framework for redefining heuristic strategies

2.4.1 Defining strategies probabilistically

Step 1: Representation of the search space

We propose redefining the information search and stop block of heuristics in an n-dimensional

psychological feature space. Each individual search pattern can be represented as a point in this

n-dimensional space. It is possible for more than one unique search pattern to lie on the same

point in this reduced dimensional feature space. The features are extracted from the search pat-

terns, and can be thought of as representing the cognitive primitives based on which people direct

their information search. These features could be statistical properties of the search patterns (e.g.

proportion of cues searched, sensitivity to validity, variability in cues searched across attributes,

search density within selected attributes, etc.), process measures (e.g. time spent, search orders,

across-options versus across-attribute search transitions), or other psychological constructs that

define search behavior (e.g. confidence, effort, or contextual features). In any possible problem,

we may consider using a subset of these (or other) features. Table 2.2 provides a representative

list of features grouped into statistical, psychological, and context-based, however this is not an

exhaustive list.

Table 2.2: Examples of defining features for cue search patterns

Search pattern based features Psychological features Contextual features
Proportion of cues searched Expected effort e.g. Profit
Proportion of most valid cues Computation time (as a cue to stock performance)
Variability across alternatives Resulting confidence e.g. Price
Variability across attributes Cost sensitivity (as a cue to sales)
Cue density within selected attributes
Sensitivity to true cue validity
Type 1 vs Type 2 transitions

We denote the vector of n selected features as f , where f : {F1, ...Fn}. Figure 2.2 shows the
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hypothetical example of 3 patterns and a few selected statistical properties of these patterns. As

an example, we take a rather simple case with two selected features, F1 is the proportion of cues

searched (ranges from 0 to 1), and F2 is the sensitivity to true validity (measured as a weighted

validity of all selected cues, normalized to range from 0 to 1). Figure 2.3 shows the 3 patterns of

figure 2.2 in this 2-dimensional representation.

There are many possible choices in terms of what features to define in terms of the psychologi-

cal representation of search patterns. While different feature choices may make sense in different

applications, we propose that ideally, the selected features are proposed as cognitive primitives

of information search, and should hence be psychologically interpretable. Secondly, the features

should be relatively independent, to capture maximum information. Although the level of inde-

pendence can be checked using a principal component analysis, we do not recommend using PCA

to extract independent features which are not psychological interpretable, since the interpretation

of prototypical heuristics in this space may get lost.

Figure 2.2: Three hypothetical search patterns and some derived features for each pattern.
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Figure 2.3: A hypothetical simple 2-dimensional representation of the 3 search patterns shown in
figure 2.2, as well as a TTB prototype. The density of the radial lines around the TTB prototype
represent the strength of this Gaussian TTB kernel at that point.

Step 2: Prototypical representation of strategies within this space

Behavior arising from the rule-based definition of the heuristic strategy to be considered, for in-

stance, TTB, can be identified as a prototypical point in this n-dimensional space. This is straight

forward for defining statistical properties, but may require some subjective estimates for aspects

such as process measures or psychological constructs. For instance, the prototype for a particular

strategy hi is defined by f̄i : {F1(si), ...Fn(si)}, where si is the search pattern obtained by strict appli-

cation of the strategy rule. Here, F1(si) refers to the first feature based on the search pattern si, and

so on. For a consideration set of multiple strategies, each strategy will have a different prototypical

position in this feature space. Figure 2.3 shows the representation of the TTB prototype within the

hypothetical example of the 2-dimensional representation, along with the 3 example patterns. This

shows that under this selected representation, pattern 1 is closer to the TTB prototype, than the

other two patterns. It is clear that the choice of features used to represent strategies via dimension

reduction plays an important role in the classification of strategies.
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Step 3: Kernel-based probabilistic classification of all possible search patterns

We formalize the distance measure as observed in the example in figure 2.3 between any proto-

typical heuristic and a search pattern, in any n-dimensional representation. Any behavioral search

patterns (s j) can be represented as an n-dimensional point, f j : {F1(s j), ...Fn(s j)}. We then define

a Gaussian kernel K for each strategy hi.

K(s j,hi) = exp
(−|| f j− f̄i||2

2σ2
i

)
(2.4)

This kernel defines a similarity measure in the range [0,1], between any search pattern s j, and

the prototypical search pattern si for strategy hi. This measure reaches a with a maximum value

of 1 when f j = f̄i. The parameter σi defines how rapidly the similarity measure drops off as

the search point moves away from the prototype for heuristic hi in the feature space. Depending

on the purpose, this parameter can be designed a priori or post hoc after looking at the data, to

minimize the loss function. We then define a probability distribution for observing search patterns

in this feature space, conditional on this prototypical strategy being used, as in equation 2.5. Note

that this distribution depends on the parameter σi. Selecting an infinitesimally small value for σi

essentially reduces this representation to the rule-based heuristic, since in this case, p(s j|hi) = 1 if

s j is the prototypical search pattern, and 0 otherwise. As we increase the value of σi, this defines

an increasing radial error distribution in the feature space.

p(s j|hi) =
K(s j,hi)

ΣlK(sl,hi)
(2.5)

In figure 2.3, the density of the radial lines around the TTB prototype represent the strength of this

Gaussian TTB kernel at that point.
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Step 4: Inferring the latent locus of learning

We can plug in the posterior probability in equation 2.5 into equation 2.3. The posterior proba-

bilities have a well-formed gradient, and can make far more discernible inferences about which

heuristic strategy is being used on each trial.

p(hm|x jk) =

p(yk|s jhm)
K(s j,hm)

ΣlK(sl,hm)
p(hm)

Σi=1:Nh

(
p(yk|s jhi)

K(s j,hi)

ΣlK(sl,hi)
p(hi)

) (2.6)

Here, all the terms are defined in terms of the probabilistic definition of strategies, except p(hi),

which is the prior probability of a strategy being used on any particular trial. This effectively

serves as a method for Bayesian regularization, and will especially influence the reward-learning

mechanism when a particular single trial is ineffective in inferring the underlying latent strategy.

This is calculated on a trial by trial basis, based on equation 2.2, and depends on the previous

q−values of the strategies. These q−values are iteratively updated based on rewriting equation 2.1

as equation 2.7.

qhm,t = p(hm,t−1|x jk,t−1)
(
(1−η) qhm,t−1 +η rt−1

)
+(1− p(hm,t−1|x jk,t−1)) qhm,t−1 (2.7)

2.4.2 Specific examples of defining probabilistic strategies

Example 1: Single dimensional feature space

We start with the simplest example, using only one feature of cue search patterns. We base this on

the experimental paradigm used in Lee et al. (2014). Here, participants on each trial have access

to 9 different cue attributes for two choice options. The cue validities are known to participants

and attributes can only be selected in order of their validity, and selecting an attribute reveals the

21



0 0.2 0.4 0.6 0.8 1

PEC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
er

ne
l V

al
ue

-3

-2

-1

0

1

2

3

4

5

6

lo
g 

(n
or

m
al

iz
ed

 [K
T

T
B
 / 

K
W

A
])

Example of PEC based 1-d feature space

WA kernel

TTB kernel

loglikelihood (TTB/WA)

σ
T
 = 0.5

σ
W

 = 0.3

Figure 2.4: Kernels for asymmetrical σ values of σttb = 0.5 and σwa = 0.3. The black lines show
the kernel values as PEC increases from 0 to 1, and the green line shows how the log likelihood
ratio of inferring TTB versus WA changes as PEC moves from 0 to 1.

value for both choice options. Thus, there are only 9 different possible cue search patterns, from

selecting 1 attribute to 9 attributes. Traditional take-the-best (TTB) search patterns would imply

selecting the minimum numbers of attributes required to discriminate between the two choices,

and weighted average (WA) would imply selecting all the attributes. The original paper represents

the proportion of extra cues (PEC) searched incremental to the first discriminating cue (FDC).

PEC =
Ncues−FDC
Ntotal−FDC

(2.8)

In this case, the PEC provides a natural 1-dimensional psychological space, which varies discretely

in the range [0,1]. Under the TTB prototype, PECttb = 0, and under WA, PECwa = 1. Hence, for

a particular search pattern s j, we can write kernel densities for the TTB and WA prototypes as

equations 2.9 and 2.10. Figure 2.4 visualizes such kernels for asymmetrical σ values of σttb = 0.5

and σwa = 0.3. The black lines show the kernel values as PEC increases from 0 to 1, and the green

line shows how the log likelihood ratio of inferring TTB versus WA changes as PEC moves from
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0 to 1. The slope of this curve depends on the values of σ selected (or inferred from data).

K(s j,httb) = exp
(−||PEC j||2

2σ2
ttb

)
(2.9)

K(s j,hwa) = exp
(−||PEC j−1||2

2σ2
wa

)
(2.10)

Example 2: Multidimensional feature space

Next, we consider the type of example demonstrated in section 2.1.2. We define a 3-dimensional

psychological feature space, f j : [F1(s j),F2(s j),F3(s j)], so that any search pattern s j can be ex-

pressed in terms of these features and represented as f j.

F1 : Proportion of cues searched

F2 : Sensitivity to cue validity

F3 : Variability in cues selected across attributes

We use the experimental structure of Bröder and Schiffer (2003), and take the cue search patterns

suggested by TTB and WA, and calculate the feature vector corresponding to that search pattern,

denoting these as f̄ttb and f̄wa respectively. For a cue space with nA = 4 and nO = 3, we get

f̄ttb = [0.25,1.00,0.50] and f̄wa = [1.00,0.25,0.00]. The squared Euclidean distance || f j− f̄ttb||2

is calculated as Σn=1:3
(
Fn(s j)−Fn(sttb)

)2, and similarly for WA. The kernel density (shown for

TTB) is calculated as in equation 2.11.

K(s j,httb) = exp
(−Σn=1:3

(
Fn(s j)−Fn(sttb)

)2

2σ2
ttb

)
(2.11)
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Example 3: Multidimensional feature space with skewed feature weights

Note that the kernel specification in example 2 essentially assumes equal weights on the three

features. However, it is entirely feasible that individuals pay differential attention to these features.

Theoretically, we can accommodate such individual differences by defining a mixture of kernels.

Here the subscript p refers to the pth individual, and wnp refers to the weight placed on the nth

feature by the pth individual. These can be treated as free parameters during the inference process.

This shows how this framework can be used to infer individual differences in attention to different

aspects of the search space. Effectively, this skews the n-dimensional space by scaling each feature

dimension by its corresponding weight, allowing for different scaling by individuals.

K(s j,hpi) = Σn=1:3

[
wnp exp

(−
(
Fn(s j)−Fn(si)

)2

2σ2
i

)]
(2.12)

Example 4: Context specific feature space

The above examples all focused on prototypical representations of traditional heuristics such as

TTB and WA, and generalizing the statistical properties of cue search patterns. However, since we

generalize strategies in terms of a psychological feature space, we can define strategies in a context-

specific manner. For instance in the example shown in section 2.1.2, two of the attributes were

financial metrics, while the remaining two were advisory recommendations (Mistry and Trueblood

(2015)). It is perfectly reasonable that people search the attribute space based on their own level

of expertise (whether or not they are adept in evaluating financial metrics) and prior perceptions

of trust in advisory recommendation. We can define features in terms of proportion of advisory

cues searched compared to total cues searched. A full-advisory strategy will be represented by a

feature value of 1, and a full-financial heuristic by a feature value of 0. The kernel and probability

calculations can then proceed as in the previous examples.

24



2.5 Conclusions

I suggest that traditional rule-based heuristics need to be redefined in a probabilistic sense to pro-

vide a more meaningful analysis of the cognitive process involved in multi-attribute decision mak-

ing, especially as it applies to learning and strategy switching. A prototypical rule-based heuristic

such as take-the-best may be a reasonable approximation to an underlying cognitive process, how-

ever, most implementations assume that any deviation from the rule arises randomly, or based on

a uniform distribution of error. Instead, we recast such rule-based heuristics probabilistically, so

that the error gradient for deviation from the prototypical rule is well-defined. We thus propose a

novel method for thinking about heuristic strategies in multi-attribute decisions.

The key contributions in this chapter include, identification of a significant challenge in the cogni-

tive modeling of strategy learning and switching, the use of Bayesian regularization for identifying

the latent locus of learning, and introduction of a novel probabilistic framework for defining heuris-

tic strategies and classifying information search patterns. Chapter 3 reports some new experimental

results within non-stationary multi-attribute decision tasks. Chapter 4 then uses the novel proba-

bilistic approach introduced in this chapter for cognitive modeling of these tasks as well as other

previous published studies.
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Chapter 3

Experimental Results

3.1 Motivation

Learned strategies could be driven to extinction because they no longer provide the expected level

of outcomes (or result in negative feedback), or because an alternate strategy is explored and shown

to provide either superior outcomes or similar outcomes with lower costs. Routinization, a failure

of extinction of strategies in the face of change, has been reported in various studies. It has been

described as the phenomenon where people are good at learning initial environmental contingen-

cies, but over time internalize these learned routines, thus responding slowly or ineffectively to

subsequent changes (Bröder and Schiffer (2006a); Bröder et al. (2013)). Routinization has not

been consistently observed, and seems to manifest in different ways. Some studies (Gluth et al.

(2013)) have reported an initial lag in adaptation of strategies, some (Bröder and Schiffer (2006a))

found sustained lower performance in response to a change in the environment, and yet others

(Lee et al. (2014); Racey et al. (2011)) found that people were in fact quite efficient in changing

behavior to shifting environmental patterns. Routinization has been shown to be susceptible to

moderation by the type of feedback provided (Bröder et al. (2013)), by the strength of the initial
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routines and the surface properties of the task (Betsch et al. (2001)), and by time pressure (Betsch

et al. (1999)). One obvious possible reason for routinization might be the failure to detect a change

in the environmental structure or contingencies. There has however been evidence of routinization

even when participants were provided hints regarding the timing of possible changes and additional

incentives for correctly identifying optimal strategies (Bröder and Schiffer (2006a)).

3.1.1 Primitives of possible routinization effects

In our studies, we wanted to focus on what aspects of environmental structure and change affect

routinization when individuals are made aware of the possible timing of changes in environmental

structure. Most deterministic non-stationary MADM tasks (Bröder and Schiffer (2006a); Bröder

et al. (2013)) involve a single change of environmental contingencies from compensatory to non-

compensatory or vice versa. Most real world environments would involve multiple changes, in-

cluding reverting back to previously experienced states from time to time. It is not clear in such

situations, how the length of static periods and the frequency of change affect exploration and rou-

tinization. Further, renewal of cue search and combination strategies when previously encountered

environments are extinguished and then presented again after intervening environmental changes

has not been tested. We attempt to identify if such renewal takes place, and if so, what characteris-

tics of environmental structure and change does it depend on? Specifically, is a failure to respond

to change dependent on, (1) the degree of change in the environment (i.e. if the difference in per-

formance of the incumbent and new strategy is not significant enough to change beliefs, (Betsch

et al. (2001))), (2) the nature of the post-change environment (i.e. is it difficult identify optimal

strategies in specific environments leading to a reversion to previous behavior), or (3) sub-optimal

learning processes (i.e. selective belief updating (Wilson and Niv (2011)))?

In response to these questions, our first design manipulation is routine; consecutive routines are

when blocks with similar environmental types are placed consecutively after each other, and alter-
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nate routines are when compensatory and non-compensatory blocks are interleaved.

3.1.2 Asymmetries in strategy switching

Pearson et al. (2011) suggested that the incumbent strategy has an impact on the reward predic-

tion error, and subsequently, on the change detection mechanism. This could lead to asymmetrical

learning and adaptation, depending on what initial bias people have, and what environmental con-

ditions they first encounter. Asymmetrical mechanisms are explored by Newell and Lee (2009);

Lee et al. (2014). They found that people shift their strategies from a limited to an exhaustive search

and vice versa, depending on the environmental conditions. However the process of switching be-

tween these information-search strategies is different. Feedback revealing a decline in accuracy,

or lower confidence is proposed as the key reason for switching from limited to exhaustive search

strategies. On the other hand, a switch back to limited search strategies is observed even when

there is no adverse impact on accuracy or confidence. This is explained by means of an effort re-

duction mechanism. Bröder and Schiffer (2006a) suggested that people had an initial propensity to

prefer compensatory strategies, and that while routinization effects existed for both compensatory

to non-compensatory shifts and vice versa, the routinization effect was larger when people had to

shift from compensatory to non-compensatory strategies. However, Rieskamp (2008) reanalyzed

the same data using a reinforcement learning strategy selection model and proposed that partici-

pants in fact had a higher initial preference to use a non-compensatory (TTB) strategy in all the

environments. Rather than demonstrating routinization of a compensatory strategy, the analysis

suggests an initial preference for a TTB strategy which is gradually unlearned and shifts towards

a compensatory strategy. The original analysis depended on performance based measures, com-

paring choice selection to optimal strategies. The reanalysis depended on process measures by

factoring in the probabilities of using each type of strategy, learned on the basis of a reinforcement

learning model.
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Orthogonal to routine, we manipulate starting condition, where participants either encounter com-

pensatory blocks first or non-compensatory blocks first. All participants however are presented

with two compensatory and two non-compensatory blocks within-subject repeated measures.

3.1.3 Degree of change and positive versus negative cue contingencies

Most MADM tasks vary cue weights and validities across a range of positive values. There is evi-

dence of confirmation bias, or positive test strategy, whereby people are prejudiced towards aspects

that have previously produced positive results (Klayman and Ha (1987)). Le Pelley et al. (2011)

reported results that cues with a high level of predictive power resulted in a higher attentional bias.

Beesley et al. (2015) suggested that attention bias towards the exploitation of predictive cues was

more robust than an attention bias towards exploratory behavior arising from increasing uncertainty

about cues. Rolison et al. (2011) proposed that learning about cues that are negatively associated

with outcomes is more difficult than learning about positively associated cues because such learn-

ing involves greater use of working memory capacity as well as deliberative attention and control

processes. They proposed that positive and negative cue learning both involve explicit hypothesis

testing, but only learning of negative cues seems to involve explicit application of beliefs to judg-

ments. These assessments were made under stationary conditions. However, these have not been

tested in non-stationary conditions involving a shift between cues that are only positively related to

the outcome, versus cues which have a mixed positive and negative relationship. If the relationship

were to hold, this would require that optimal strategy switching also involves a change in the de-

liberative control, attention and working memory related processes. Would renewal of previously

learned strategies be faster when only positive cues are involved, with greater autonomous control,

or when negative cues are involved, with greater working memory and deliberative control?

Hence, we vary the nature of the non-compensatory environments between experimental studies

(subjects), to explore the impact of degree of change on routinization and learning mechanisms. In
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study 1, all environmental conditions only involve positive cue-outcome relationships. In study 2,

we test responses to shifts between positive-only versus positively and negatively associated cue

structures. These shifts result in a larger degree of change in the environmental conditions than in

study 1, and enables us to investigate how the difference in pre-change versus post-change signals

affects learning, exploration and adaptive strategy switching.

3.2 Methods

3.2.1 Study 1

In this study, we varied the statistical contingencies linking information cues with outcome criteria

between blocks within participants, to measure how well individuals could detect and respond to

changes, and whether the nature of the change resulted in different levels of adaptivity, or lack

thereof. 32 University of California Irvine undergraduate students participated in the experiment

for course credit1.

Stimulus

We used a multiple cue learning task, where participants had to make repeated forced choices

between one of three options on the basis of a set of underlying cues. The cover story for the

choice task was a hypothetical stock market game, in which participants had to choose between

three financial stock options over 120 trials. Figure 3.1 shows how one trial might appear to

a participant. In each trial, each of the options was associated with four binary cue attributes,

namely past profit growth, sales growth, and recommendations from two independent advisors.

The binary cue values were represented as a + or - for all the cues. On each trial, participants had

115 additional participants experienced a technical system failure during their session and were unable to complete
the experiment
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the option to individually acquire as many of the twelve possible cues (3 options X 4 cue attributes

per option) in any order. Each choice option was associated with a reward, and acquiring cues cost

participants 4% of the total gross positive rewards obtained for that trial, for each cue acquired.

Once a participant selected a cue attribute, it remained visible throughout the trial. Whilst this

did not allow us to calculate process tracing variables that depended on the time spent on each

attribute, it also did not restrict participants to serial processing of cues, which has been proposed

to put constraints on the choice of strategy (Glöckner and Betsch (2008)), and did not impose

working memory constraints which have been known to affect cue interpretation (Rolison et al.

(2011)).

Figure 3.1: Stimulus

Procedure

The 120 trials were segregated into four blocks of 30 trials each, with each participant facing two

compensatory (C-Block) and two non-compensatory (N-Block) blocks. There were no practice

trials since we wanted to measure the learning of cue selection strategies, and wanted to make sure

that participants were not biased by any information obtained from the practice trials. The block

size was designed to be small (30 trials each) to manipulate the possible effects of routinization

of decision strategies. The experiment had a factorial design with four different between-subject

conditions based on the order in which the four blocks were presented (2 conditions depending
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on whether the starting block had a compensatory (C) or non-compensatory (N) environment X 2

conditions where the four blocks alternated in environmental condition versus when the two same

conditions were grouped together). In two conditions, both compensatory blocks and both non-

compensatory blocks appear consecutively, whereas in the remaining two conditions, participants

always encountered a different environmental condition in alternate blocks. Essentially, the four

blocks in the four conditions can be represented as CCNN, CNCN, NCNC and NNCC. This al-

lowed us to measure the interaction between routine length and starting conditions. We wanted

to test for differences in adaptivity and performance between these conditions. A secondary ob-

jective of this task was also to measure how quickly preferences could change, and whether the

relatively frequent environmental changes led to stronger or weaker learning. Compensatory and

non-compensatory blocks differed in the relationship between the cue values (c1 to c4; encoded as

either +1 or -1) and the resulting gross rewards (r) associated with these sets of cues.

rC = 32c1 +26c2 +22c3 +20c4 +U(−8,8) (3.1)

rN = 47c1 +25c2 +17c3 +10c4 +U(−8,8) (3.2)

The rewards for any choice option thus ranged from−108 to +108, depending on the cue configu-

ration. A random component, drawn from a uniform (-8, 8) distribution was also incorporated into

this relationship. It can be seen that rN is somewhat, but not strictly, non-compensatory, since there

are very few possible configurations where a combination of cues of lower validity can override

the choices determined by a higher validity cue. On the other hand, rC is somewhat, but not strictly

compensatory. The cue weights are very comparable, but not all equal. This set of compensatory

and non-compensatory validities was picked since they have been used in similar experiments in

the past (Bröder and Schiffer (2006a)), and used to draw conclusions about the nature of learning

and routinization. They involve strictly positive cue-outcome relationships (i.e. cue weights were

all positive). After each trial, the gross rewards (rgross) for all of the options were shown to the

participant. They were also provided with the gross reward for the specific option they had chosen,

as well as the costs incurred depending on the number of individual cues selected (ncues), and the

32



net rewards(rnet). These costs were incurred only if the gross rewards were positive. Thus, the net

rewards were calculated as in equation 3.3. Since a maximum of 12 unique cues could be selected,

the maximum reduction from gross to net rewards was 0.52rgross. The objective of the task for

participants was to maximize the net rewards remaining after any cue search related costs were

deducted.

rnet =
(
1− (0.04ncues)

)
rgross if rgross > 0; = rgross otherwise (3.3)

For a single participant, the sequential ordering of cues from highest to lowest was maintained

across blocks, and only the relative cue weights were changed (i.e. the cue with the highest weight

in the compensatory blocks remained the cue with the highest validity in the non-compensatory

blocks). The actual cue weights, the order of importance of the weights, or the nature of the

environment (i.e. compensatory or non-compensatory) were not communicated to the participants.

However, in all four conditions the participants were explicitly told that the underlying environment

and relationships between cues and options would remain the same within a block, could change

between blocks, and the start and end of each block were clearly demarcated.

In this task, a take-the-best (TTB) strategy always provided a higher net payoff (after factoring in

information acquisition costs) in N-blocks (although a compensatory strategy such as WA provided

the same gross payoff), and a weighted average (WA) strategy provided a higher payoff in C-

blocks.

3.2.2 Study 2

34 University of California, Irvine undergraduates participated in the experiment for course credit.
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Stimulus

The cover story and structure of the task, conditions and environmental blocks was very similar to

study 1, with the following set of differences. Acquiring the cues cost participants 5% of the total

gross positive rewards obtained for that trial, for each cue acquired. Instead of + and -, the cue

values were represented as High or Low for the first two cue attributes (financial indicators) and as

Buy or Sell for the other two (advisory recommendations). For calculating the rewards, High / Buy

were encoded as +1 and Low / Sell encoded as -1. The gross rewards in C-blocks and N-blocks

were calculated as:

rC = 40 c1 +37 c2 +34 c3 +3 1c4 +noise(−8,8)

rN = 78 c1 +7 c2−21 c3−36 c4 +noise(−8,8)

These rewards for any choice option thus ranged from −150 to +150, depending on the cue con-

figuration. A random component drawn from a U(-8,8) distribution was also incorporated into

this relationship. It can be seen that rN is strictly non-compensatory, since no combination of [c2,

c3, c4] can override the reward determined by [c1], and similarly, no combination of [c2, c3] can

override [c4]. On the other hand, rC is; somewhat, but not strictly compensatory. The cue weights

are comparable, but not all equal. The presence of negative cue weights was an important differ-

ence between the studies. Whilst the actual cue weights or order was not disclosed, participants

were explicitly told that it was possible for cues to be negatively related to the options (this was

justified within the paradigm, for example, one reason could be that a particular investment advisor

was consistently incorrect). The final difference was that unlike in study 1, not only were the cue

weights changed, but the sequential ordering of cues was also changed between C-blocks and N-

blocks. This amplified the difference between C-blocks and N-blocks, to push participants towards

a more deliberative cognitive effort. The rest of the procedure was the same as for study 1.
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3.3 Behavioral Results

Table 3.1 shows the log Bayes factors (LBF) for a Bayesian repeated measures ANOVA (JASP-

Team (2016)) that tests for the effect of block type (compensatory[C] versus non-compensatory[N]),

starting blocks (C[includes CNCN/CCNN] vs N[includes NCNC/NNCC]), sequence (alternat-

ing[includes CNCN/NCNC] versus consecutive[includes CCNN/NNCC]), and interactions be-

tween these factors. The dependent behavioral variables include cues (proportion of total cues

searched), attributes (proportion of unique attributes where at least one cue was searched), validity

(average normalized sensitivity to validity), best (proportion of trials on which the best option was

selected), worst (proportion of trials on which the worst option was selected), and reward (stan-

dardized reward scores based on net rewards after search costs). LBF > 1 indicates evidence in

favor of including the factor and LBF < −1 in favor of the null (factor not significant). Larger

values imply greater evidence of a difference. Table 3.2 shows the mean values for the dependent

variables. The rows show the total values for the C and N blocks, but also the breakup between

alternating (Alt) and consecutive (Cons) routines within each of these block types. The values in

bold correspond to values that show a significant effect based on the Bayesian ANOVA analysis

presented in table 3.1.

Table 3.1: Bayesian ANOVA for key behavioral results

log(Bayes Factor) Cues Attributes Validity Best Worst Reward

Experiment 1

Block Type (C vs N) -1.8 -2.0 1.2 5.0 4.0 6.5
Starting (C vs N) -0.9 -0.7 -1.3 -1.0 -1.0 -0.8
Sequence (Alt vs Cons) -0.9 -0.4 -0.5 -0.7 -0.5 -0.1
Type X Start -1.6 -2.1 -0.8 -0.9 -0.9 -0.5
Type X Sequence -1.7 -2.2 0.6 -0.7 -0.8 -0.3
Start X Sequence -1.0 -0.2 -0.8 -1.3 -0.7 -0.8

Experiment 2

Block Type (C vs N) 2.8 4.4 8.3 -1.0 -1.2 -0.9
Starting (C vs N) -1.0 -0.8 -0.9 -0.2 -0.5 -0.1
Sequence (Alt vs Cons) 0.9 0.3 -1.3 -1.2 -1.2 -1.3
Type X Start -0.7 0.05 -0.9 0.3 -0.2 0.4
Type X Sequence 2.2 1.6 -1.2 -1.4 -1.1 -1.7
Start X Sequence -1.1 -0.6 -0.7 -0.4 -1.1 -0.7
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Table 3.2: Mean value of behavioral variables

Mean Values Cues Attributes Validity Best Worst Reward

Experiment 1

C - blocks 0.48 0.68 0.44 0.68 0.11 0.70
C - Alt 0.48 0.66 0.43 0.69 0.09 0.72
C - Cont 0.48 0.71 0.44 0.64 0.12 0.69
N - blocks 0.49 0.68 0.47 0.76 0.06 0.76
N - Alt 0.47 0.64 0.5 0.79 0.05 0.8
N - Cont 0.51 0.72 0.45 0.72 0.08 0.74

Experiment 2

C - blocks 0.33 0.51 0.47 0.82 0.08 0.80
C - Alt 0.29 0.46 0.47 0.80 0.11 0.79
C - Cont 0.37 0.56 0.46 0.85 0.05 0.82
N - blocks 0.28 0.41 0.70 0.83 0.09 0.78
N - Alt 0.29 0.43 0.69 0.84 0.08 0.78
N - Cont 0.27 0.39 0.71 0.83 0.09 0.78

There is evidence for a significant effect of the block type on performance metrics (best, worst, re-

ward) in experiment 1, with better performance in N-blocks (best option 0.76, standardized reward

0.76) compared to C-blocks (best option 0.68, standardized reward 0.70). There is evidence for

a significant effect of block type on search metrics (cues, attributes, sensitivity to validity) in ex-

periment 2, with lower depth of search in C-blocks (proportion of attributes searched 0.51) versus

N-blocks (proportion of attributes search 0.41), and significantly higher sensitivity to validity in

N-blocks (0.70) versus C-blocks (0.47). Starting block type does not seem to have any significant

influence in both experiments. The type of sequence has an interaction effect with the block type

only in experiment 2, influencing the proportion of cues and attributes selected, with higher cue

and attribute search in the continuous condition versus in the alternate condition for C-blocks, but

lower cue and attribute search in the continuous condition versus in the alternate condition for N-

blocks. Essentially, in the continuous condition, participants shift their information search patterns

towards the more efficient mechanism (higher cue search in C-bocks and lower in N-blocks) more

efficiently than they do in the alternating condition. Thus, higher frequency of change (alternat-

ing sequence) hampers effective adaptation of cue search patterns. In experiment 1, the shift in

environment from C to N does without increased efficiency of search does not penalize the gross
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rewards, only the information search costs. Thus, the magnitude of feedback provided in experi-

ment 1 is not strong enough to warrant a change in the information search strategies in N-blocks.

3.3.1 Individual Differences

Figures 3.2 and 3.3 show the observed information search and performance metrics split by half-

blocks, that is, in the first and second half of each of the 4 blocks, C-1 (first compensatory block),

C-2 (second compensatory block), N-1 (first non-compensatory block), and N-2 (second non-

compensatory block). The lines thus show increasing of decreasing trends within each block.

The lines are color coded by condition, the thin dashed lines show individual performance, and the

thick lines show the mean levels for each condition. It is clear that there are significant individual

differences in terms of the search and performance metrics, and in terms of how people change

their behavior within and across blocks.

Figure 3.2: Experiment 1: Key behavioral results summarized in the first and second half of each
block. Results are grouped by the type of block (C1-C2-N1-N2). Each dashed line is an individual
participant and the thick lines are the mean over participants. The colors indicate the different
between subject conditions.
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Figure 3.3: Experiment 2: Key behavioral results summarized in the first and second half of each
block. Results are grouped by the type of block (C1-C2-N1-N2). Each dashed line is an individual
participant and the thick lines are the mean over participants. The colors indicate the different
between subject conditions.

3.3.2 Within-block learning

Tables 3.3 and 3.4 show the differences between 1st half and 2nd half of blocks, with significant

differences highlighted in bold. In experiment 1, most differences are not significant. In experiment

2, there is very strong evidence for changes in both search and performance metrics, with stronger

effects in N-blocks compared to C-blocks, indicating stronger learning effects than experiment 1

in the presence of greater reward dispersion, but also stronger learning effects within N-blocks

compared to C-blocks.

3.3.3 Cue search patterns

Figures 3.4 to 3.7 illustrate the proportion of cues searched and sensitivity to true validity, two of

the most important search features, over trials and split by condition. The thin lines show individual

participants in the condition, and the bold lines show the mean. The blue background represents
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Table 3.3: Bayesian ANOVA for key behavioral results - within block. This compares the per-
formance in the first and second half of each of the blocks, grouped separately for C-blocks and
N-blocks, to measure whether there is within-block learning, manifested in terms of significant
within-block changes in search patterns or performance metrics. Values in bold indicate LBF > 1.

Half-Block log(Bayes Factor) Cues Attributes Validity Best Worst Reward

Experiment 1
C-blocks -0.09 -0.74 -0.96 -0.43 -1.10 -1.30
N-blocks 0.74 1.10 4.0 0.83 -0.87 -0.89

Experiment 2
C-blocks 0.36 2.60 0.94 4.93 0.35 3.96
N-blocks 9.99 12.1 10.5 10.3 7.87 15.0

Table 3.4: Mean values of key behavioral results grouped by values in the first half and second half
of blocks, grouped separately for C-blocks and N-blocks. These values correspond to the Bayesian
ANOVA shown in table 3.3. Values in bold correspond to LBF > 1.

Half-Block Mean values Cues Attributes Validity Best Worst Reward

Experiment 1

C-block 1st Half 0.47 0.67 0.44 0.65 0.11 0.71
C-block 2nd Half 0.50 0.69 0.43 0.69 0.10 0.70
N-block 1st Half 0.51 0.70 0.46 0.74 0.06 0.76
N-block 2nd Half 0.46 0.65 0.49 0.79 0.05 0.78

Experiment 2

C-block 1st Half 0.34 0.54 0.46 0.78 0.09 0.77
C-block 2nd Half 0.32 0.48 0.48 0.86 0.07 0.83
N-block 1st Half 0.32 0.46 0.65 0.78 0.12 0.73
N-block 2nd Half 0.23 0.36 0.76 0.89 0.05 0.84

C-blocks and the yellow environment N-blocks. Experiment 2 shows better instances of learning

to select fewer cues, with small exploration peaks towards the start of each block. This is not seen

in experiment 1, where the reward schemes were not as diversified. Participants in experiment 2

also seem to learn the true cue validities better, showing higher sensitivity in N-blocks.

3.3.4 Identification of heuristic strategies

Figures 3.8 to 3.13 show what proportion of each trial can be identified uniquely as TTB or WA,

is identified as a multiple match (Both), or a no match (neither), based on the 3 commonly used

inference methods of matching choice only, choice matching plus minimum cues acquired, and

choice match plus exact cues acquired. Using the first, choice only, most choices are compatible

with both strategies, whereas using the latter information search information, most trials cannot
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Figure 3.4: Experiment 1: Proportion of cues searched over trials, by condition. Thin lines are
individuals, bold lines are the mean values. Blue background is C-blocks and yellow background
is N-blocks.
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Figure 3.5: Experiment 2: Proportion of cues searched over trials, by condition. Thin lines are
individuals, bold lines are the mean values. Blue background is C-blocks and yellow background
is N-blocks.

be classified into any of the two strategies. This highlights the inference problem raised in the

previous chapter.
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Figure 3.6: Experiment 1: Sensitivity to true validity, over trials, by condition. Thin lines are
individuals, bold lines are the mean values. Blue background is C-blocks and yellow background
is N-blocks.
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Figure 3.7: Experiment 2: Sensitivity to true validity, over trials, by condition. Thin lines are
individuals, bold lines are the mean values. Blue background is C-blocks and yellow background
is N-blocks.

3.4 Discussion

Both studies show an across-block learning effect, however this is much stronger in study 2. Since

C-blocks in the two studies are quite similar, the contrast between N-blocks and C-blocks seems to

be an important aspect of the task structure impacting the difference between the results observed

in the two studies. This contrast between environmental conditions may be manifested in terms
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Figure 3.8: Choice matching
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Figure 3.9: Minimum cue
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Figure 3.10: Exact cue
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Figure 3.11: Choice matching
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Figure 3.12: Minimum cue
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Figure 3.13: Exact cue

of the difference in level of rewards or feedback that complementary strategies receive in these

environments. Task structure has a significant effect on the percentage of trials on which the best

option is selected (0.72 for experiment 1 versus 0.82 for experiment 2) and on the standardized

reward scores (0.73 for experiment 1 versus 0.79 for experiment 2), however this difference is only

significant in C-blocks, with performance being significantly higher for the C-blocks in study 2

(best option selected 0.82 versus 0.68 for study 1). This is interesting considering that the C-blocks

are more similar between the two studies compared to N-blocks. The higher C-block performance

in study 2 is assumed to result from the greater contrast between C-blocks and N-blocks in this

study.

There is another interesting aspect to the performance in N-blocks. In study 2, the first N-block per-

formance is lower than that in study 1, but the second N-block performance is much higher. Study

2 shows an increase in the sensitivity to validity, reduction in the number of cues searched, and

higher renewal of search patterns in the second N-block encountered. All of these point towards
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strong learning and refinement of the strategies used in N-blocks over trials. We posit that this

improved learning in N-blocks in study 2 is a result of the wider reward dispersion, a function of

the higher dispersion in cue weights, including negative weights. However this same property also

leads to a slightly lower N-block performance at the start of the first N-block in study 2 compared

to study 1, since random exploration leads to lower performance under this configuration.

Task structure also has a significant effect on the percentage of cues selected, percentage of at-

tributes selected, and sensitivity to validity. Importantly, study 1 participants showed an increase

in the cue and attribute use across block sequences, whereas study 2 participants showed the oppo-

site effect. The cue use was also similar between C-blocks and N-blocks in study 1, but was lower

for N-blocks compared to C-blocks in study 2. Once again, the greater change in environmental

contingencies impacted the cue search patterns. Importantly, the fact that N-block search entailed

fewer cues implies that participants not only recognized that there was a change, but seemed to

understand the non-compensatory nature of this changed environment.

The slight fall in performance in N-blocks in study 1 is accompanied by higher levels of cue use

compared to N-blocks in study 2, but lower sensitivity to validity, compared to study 2. We thus

reckon that the lower performance is not due to some form of routinization effect in study 1. Rather,

participants seem to be aware of a change but find it difficult to recognize the correct dominant cues

in N-blocks in study 1. They seem to sustain higher levels of exploration and consequently lower

performance.

In terms of inferring which heuristics are being used, both minimum cue matching and exact cue

matching methods of inference yield poor results, with a huge majority of trials in both experiments

remaining unclassified as either TTB or WA.
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Chapter 4

Cognitive modeling
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4.1 Introduction

In this chapter, we fully specify the cognitive model of adaptive learning and strategy switching

in multi-attribute choice, incorporating both traditionally defined and probabilistic strategies, as

defined in chapter 2. The models are implemented as Bayesian graphical models. We show the

relative descriptive and predictive performance of the models, the nature of inferences we can

make, and identification of individual differences in adaptive decision making.

4.2 Data

4.2.1 Cognitive modeling of multi-dimensional feature space

For this, we use the two novel experiments described in chapter 3.

4.2.2 Cognitive modeling of single-dimensional feature space

For this, we use data from a secondary dataset, obtained from work published in Lee et al. (2014).

In this study, participants answered 200 two-alternative forced choice multi-attribute decision prob-

lems, where they had to decide which of two objects was higher on a particular criterion. To make a

decision participants could access information from between one to nine information cues on each

trial. These cues provided binary information about each alternative. Cues could only be accessed

in descending order of validity (known to participants) and selecting a cue provided information

about both the alternatives. The experiment had a total of 200 trials which were subdivided into

three blocks (unknown to the participant), with the statistical structure of the underlying environ-

ment changing between blocks so that some blocks required a more exhaustive search of cues

(compensatory environment) whereas in some blocks a non-compensatory approach (making a
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Figure 4.1: Distribution of number of cues selected (out of a maximum of 9, in each of the 4
experiments)

decision based on the first discriminating cue) was sufficient to achieve the same level of accu-

racy. The key measures of interest included the number of cues searched on each trial, how this

changed along with the change in environment structure, and the resulting accuracy. We analyze 4

experiments from this study. The experiments are broadly similar, with the key differences being

that experiment 4 has real monetary consequences for the participants, while experiments 2 and 3

have real time consequences (real delays in order to access more information), and experiment 1

has neither. Figure 4.1 summarizes the distribution of cue use in the 4 experiments. The data are

skewed towards using almost all cues in the first experiment, but we observe that when real time

and money come into play, cue use is more selective. There are significant individual differences,

as well as changes from trial to trial, as can be observed from figure 4.2, which shows the cues

used in each trial. The gray lines show individuals whereas the bold line shows the mean across all

individuals. Apart from specifying the strategy based on PEC, the model specification is identical

to that detailed in section 4.2. In this case, rather than set σ a priori, we infer it as a free parame-
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Figure 4.2: Change in number of use on a trial by trial basis. The gray lines show individuals
whereas the bold line shows the mean across all individuals.

ter for each individual, thus allowing for greater individual differences in the definition of what a

strategy actually represents.

4.3 Model Specification

The choice made on trial t, denoted as yt , is modeled as:

yt ∼ Categorical(p(y1,t), ..., p(ynO,t)) (4.1)

p(yk,t) = Σi=1:Nh Σ j=1:Ns

(
p(yk,t |s j,thi,t)p(s j,t |hi,t)p(hi,t)

)
(4.2)

Probability of selecting a choice, conditional on a particular information search pattern and a par-
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ticular strategy being used:

p(yk,t |s j,thi,t) ∼ Decision rule for strategy hi (section 4.3.1 for details) (4.3)

Probability of selecting a particular information search pattern, conditional on a particular strategy

being used:

p(s j,t |hi,t)∼ Information search and stop rule for strategy hi (section 4.3.1 for details) (4.4)

Probability of a particular strategy being used (generative component of the model) is modeled

using a softmax action rule, governed by a free parameter θ at an individual level.

p(hm,t) =
eθ qhm,t

Σ j=1:Nh

(
eθ qh j,t

) (4.5)

Calculation of q-values for each strategy, is as initially specified in equation 2.7.

qhm,t = p(hm,t−1|x jk,t−1)
(
(1−η) qhm,t−1 +η rt−1

)
+(1− p(hm,t−1|x jk,t−1)) qhm,t−1 (4.6)

Posterior probability of a particular strategy being used (discriminative component of the model,

used only for generative modeling of the next trial):

p(hm,t−1|x jk,t−1) =
p(yk,t−1|s j,t−1hm,t−1)p(s j,t−1|hm,t−1)p(hm,t−1)

Σi=1:Nh

(
p(yk,t−1|s j,t−1hi,t−1)p(s j,t−1|hi,t−1)p(hi,t−1)

) (4.7)

The parameter η reflects the learning rate, which is a free parameter for each individual.

η∼ Beta(1,1) (4.8)

The initial probability of selecting each strategy is modeled as a free parameter for each individual.

ph1:Nh,1
∼ Dirichlet

([
1

Nh

]

1xNh

)
(4.9)

qhm,1 = phm,1 (4.10)
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4.3.1 Strategy specification

Traditional strategies - Minimum

To implement the model with traditional strategies, with inference based on whether or not the

choice matches the choice predicted by the strategy, and whether the minimum cues required for

implementing the strategy are acquired, we apply the below. The strategies are denoted ttbm and

wam respectively. The search pattern corresponding to minimum cues required for implementing

the two strategies are denoted as sttb and swa respectively. The number of unique search patterns

that have at least the required information to implement these strategies are denoted as Nttbm and

Nwam respectively. To account for choice behavior that cannot be explained for any strategy, an

application error rate ε is introduced as a free parameter at an individual level.

p(yk|s j, httbm) = (1− ε) if yk predicted by applying TTB;
ε

nO
otherwise (4.11)

p(s j|httbm) =
1

Nttbm
∀ {s j : s j ⊂ sttb}; 0 otherwise (4.12)

p(yk|s j, hwam) = (1− ε) if yk predicted by applying WA;
ε

nO
otherwise (4.13)

p(s j|hwam) =
1

Nwam
∀ {s j : s j ⊂ swa}; 0 otherwise (4.14)

Traditional strategies - Exact

To implement the model with traditional strategies, with inference based on whether or not the

choice matches the choice predicted by the strategy, and whether the cues acquired exactly match

the cues required for implementing the strategy, and no more, we apply the below. The strategies

are denoted ttbe and wae respectively. The search pattern corresponding to minimum cues required
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are denoted as sttb and swa respectively. To account for choice behavior that cannot be explained

for any strategy, an application error rate ε is introduced as a free parameter at an individual level.

p(yk|s j, httbe) = (1− ε) if yk predicted by applying TTB;
ε

nO
otherwise (4.15)

p(s j|httbe) = 1 if s j = sttb; 0 otherwise (4.16)

p(yk|s j, hwae) = (1− ε) if yk predicted by applying WA;
ε

nO
otherwise (4.17)

p(s j|hwae) = 1 if s j = swa; 0 otherwise (4.18)

Probabilistic modeling of strategies (multi-dimensional)

For the multidimensional case for the 2 experiments reported in this thesis, we implement the

model with our novel probabilistically defined strategies. We apply the kernel based methods

described in previous chapters. The strategies are denoted ttbp and wap respectively.

p(s j|httbp) =
K(s j,httbp)

ΣlK(sl,httbp)
(4.19)

p(s j|hwap) =
K(s j,hwap)

ΣlK(sl,hwap)
(4.20)

K(s j,httbp) = exp
(−Σn=1:3

(
Fn(s j)−Fn(sttb)

)2

2σ2
ttbp

)
(4.21)

K(s j,hwap) = exp
(−Σn=1:3

(
Fn(s j)−Fn(sttb)

)2

2σ2
wap

)
(4.22)

The search pattern features selected for basic implementation of the probabilistic model were:

F1 : Proportion of cues searched
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F2 : Normalized variability in cues acquired across attributes (standard deviation of number of cues

acquired for each attribute, normalized)

F3 : Sensitivity to true validity (weighted average validity, normalized)

An application error rate is not required here, since this is a continuous probability distribution,

and there is a non-zero probability for all search and choice patterns. The choice of σ governs the

width of the distributions.

In addition, we define a third prototypical strategy arbp, where the kernel center is derived based on

a sparse search pattern that picks a single, and different, attribute for each option, thus representing

a highly explorative but sparse compensatory strategy, very different from prototypical rule-based

WA and tallying strategies. This comes close to a guessing strategy, but is more informative than

random guessing. It represents a low-effort, educated guess approach to information search.

A note on feature selection for probabilistic specification

The features selected here have meaningful interpretations for defining probabilistic versions of

TTB and WA, in that the selected features for a prototypical application of these two strategies

are quite different. Apart from psychological interpretation, the relative independence of these

features is a useful characteristic. We calculate the selected features for all 4,096 possible cue

search patterns possible within this paradigm, and run a principal component analysis on these

features. Table 4.1 shows the relative independence of these features. To make a comparison,

we swapped sensitivity to validity, for another feature, the proportion of attributes selected. The

bottom half of the table shows that this set of features is not as independent.
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Table 4.1: PCA analysis of 2 sets of selected features across all possible cue search patterns in the
selected paradigm. The features selcted in the top half are relatively independent.

Feature Latent 1 Latent 2 Latent 3
%cues -0.004 1.0 0.0
var across attr 1.0 0.004 0.0
sensitivity to validity 0.0 0.0 1.0
Feature Latent 1 Latent 2 Latent 3
%cues 0.35 0.68 -0.64
var across attr -0.66 0.66 0.35
%attributes 0.67 0.30 0.68

Probabilistic modeling of strategies (single-dimensional)

For the single dimensional case for the experiments reported from Lee et al. (2014), we implement

the model with our novel probabilistically defined strategies. Since on any trial, anywhere from 1

cue to 9 cues can be obtained, we define probabilistic TTB and WA strategies based on the example

1 in section 2.4.2 (example 1), using PEC as the focal measure to define kernels, where PECttb = 0,

and PECwap = 1. To accommodate cue use that is less than the minimum cues required to discern

between options, that is fewer cues than what TTB requires, we define a guessing strategy with

PECguessp =−1.

4.3.2 Alternate formulations of the learning rate

Assessment of environmental volatility and detection of environmental changes have been impli-

cated in the modulation of learning rates (Pearson & Platt 2013; Behrens et al, 2007). We propose

that the conflict between probabilities of using different strategies generated by the cognitive model

can be interpreted as a proxy measure of volatility. We implement a version of the model that mod-

ulates the learning rate (ηt) on a trial-by-trial basis based on recent entropy. Higher entropy reflects

greater uncertainty in the environment and hence increases learning rates. Entropy (H) is calculated
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based on the strategy probabilities generated by the model:

Ht =−
1

log(Nh)
Σ j=1:Nh

(
p(s j, t) log(p(s j, t)

)
(4.23)

ηt =
1

1+ e−(kHHt+η0)
(4.24)

4.3.3 A note on Bayesian implementation

We highlight that to the best of our knowledge, this is the first Bayesian implementation of an

adaptive learning process over latent heuristic strategies. Even without considering the novel prob-

abilistic definition of strategies, the implementation of traditional heuristics plus learning within

a Bayesian model framework allows superior inferences, because the prior probability of using a

particular heuristic obtained from the generative model acts as Bayesian regularization, in other

words, it serves to inform the model and make better credit assignment predictions when a partic-

ular trial cannot discern between strategies. This aspect has not been addressed in previous non

Bayesian applications of a learning model of heuristics. Bayesian modeling of individual heuristics

and mixture models to determine proportions of heuristic strategies being used have been devel-

oped, but these models cannot incorporate a continuously changing distribution of strategy use

over time, which is particularly informative in changing environments

4.4 Performance indicators

4.4.1 Overall model

We provide 2 baseline models based on traditional strategies, implemented with minimum cue and

exact cue based inference methods. We highlight that these models were also implemented with the

identical learning mechanism as for the probabilistic strategy based models. These baseline models
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are compared against the probabilistic strategy models with fixed and entropy based learning rates.

We compare the mean DIC (deviance information criteria) for each model, with a lower score

being better.

4.4.2 Choice accuracy

Brier Scores

Since the models primary return a posterior predictive distribution over multiple categorical out-

comes (1 out of nO choices), we use a multi-category Brier score to assess the performance of the

models. This is similar to an error measure, and in fact defaults to the mean square error in the case

of a binary classification problem. We calculate the Brier score for each model at the level of each

individual, as given by equation 4.25, where c is each choice option, t is each trial, and otc is the

actual behavior on trial t, which is coded as 1 if option c is selected on trial t and 0 otherwise. The

cognitive model provides a distribution over responses, and ptc refers to the probability of choice

c being selected on trial t, based on the posterior predictive distribution. A lower Brier score is

better, with a perfect prediction resulting in a score of zero. For the tasks with binary choice (single

dimensional, Lee et al. (2014)), the Brier score is effectively the same as a mean square error for

this task.

BS =
1
Nt

Σt=1:Nt Σc=1:nO

(
ptc−otc

)2 (4.25)

Modal choice accuracies

In addition, we also calculate the accuracy level of predictions by measuring the proportion of

choices for which the modal response of the model matches the true outcome. This provides a
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better intuitive sense of the model performance, but we highlight that the Brier score is a more

accurate and calibrated measure. The choice accuracy is reported as Acc.

Description versus Prediction

The models for the two experiments reported in the previous chapter are implemented so that data

for the first 90 trials is provided to each model, and the model provides a posterior predictive distri-

bution for all 120 trials. The performance of the model on the first 90 trials provides an assessment

of descriptive performance (or model fit), and on the last 30 trials it provides a predictive perfor-

mance (or generalizability). For the models for experiments reported from Lee et al. (2014), data

from the first 100 trials is provided to the models and performance on the first 100 trials serves as a

measure of descriptive fit, whereas that on the last 100 trials provides an assessment of predictive

performance (generalizability). The Brier scores for these two categories will be coded as BSd

(description) and BSp (prediction) respectively. The accuracies are similarly reported as Accd and

Accp.

4.4.3 Search pattern feature accuracy

The cognitive model provides a probability of each strategy being used on each trial. Each strategy

has a specific search pattern associated with it (in traditional strategies), or a probability distribution

over features of the search patterns (in probabilistic strategies). We assess the posterior predictive

distribution of the search pattern features incorporated within the probabilistic heuristics. Since

each feature varies on a scale of 0 to 1, we can calculate the root mean square error (Errd and

Errp) for the model predicted versus actual search pattern features. This is similarly assessed

as descriptive and predictive. Features are a reasonable way to measure search pattern accuracy

in experiments with complex designs where there are over 4,000 unique search patterns. For the

multi-dimensional modeling, we measure the error based on the 3 features selected in section 4.3.1.
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For the single-dimensional measures, we calculate the root mean square error in number of cues

used.

4.5 Model Comparison

Tables 4.2 and 4.3 show a comparison across the models tested for the 6 different experimental

datasets. Note that the baseline models themselves make far superior predictions than standalone

heuristic strategies, or a mixture model of strategies that does not incorporate learning. The novel

approach to heuristic strategies does even better on all performance indicators.

4.5.1 Experiments 1 and 2

See table 4.2, and figures 4.3 to 4.6. The figures provide a breakdown of the improvement in

both descriptive and predictive choice and search errors by individual participants. The partici-

pants are arranged in order of decreasing error based on the baseline model. The green bars show

an improvement (reduction) in the error using the probabilistic models and the red bars show the

deterioration (increase) in error using the probabilistic model. For evaluation of the novel proba-

bilistic models, more green is better! The error in search features is broken down into 6 key features

of search patterns, including the proportion of cues used, the proportion of cues used within se-

lected attributes, the variability of cue use across attributes and across options, the proportion of

most valid cues selected, and the overall sensitivity to validity. For experiments 1 and 2, the rel-

ative performance of the probabilistic model is more impressive in experiment 2 (Mistry et al),

and where we have seen higher level of adaptivity. The difference in choice accuracy predictions

when data is not supplied to the models is especially significant. Note that the reduction in error

in search accuracy predictions in the range of about 0.05 to 0.1 is not trivial. To put this reduction

in perspective, misclassifying a TTB strategy for WA or vice versa would yield an average error of
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about 0.5 (this can vary a bit depending on the exact cue configurations), and these are 2 strategies

that are considered to be at opposite ends of the spectrum. One of the key things to observe is

that the traditional model can perform well for some participants, but has extremely high errors

for others. The probabilistic models while maintaining a better overall error and accuracy, also

provide less variability in how accurately each individual is described and predictive. This points

to more robust inferences about individual differences in the cognitive process.

Table 4.2: Model comparison summary - Experiments 1 and 2. The best performing model for
each measure is highlighted in bold

Baseline Baseline Probabilistic Probabilistic
Measure Min Exact Fixed Entropy

Experiment 1
(Mistry et al)

DIC 152 146 135 134
BSd 0.46 0.44 0.41 0.41
BSp 0.47 0.47 0.42 0.41
Accd 69% 72% 73% 72%
Accp 69% 70% 73% 72%
Errd 0.32 0.36 0.28 0.27
Errp 0.32 0.35 0.28 0.28

Experiment 2
(Mistry et al)

DIC 129 129 106 110
BSd 0.37 0.37 0.30 0.31
BSp 0.34 0.34 0.21 0.21
Accd 78% 80% 81% 81%
Accp 75% 82% 90% 90%
Errd 0.40 0.41 0.31 0.32
Errp 0.40 0.40 0.34 0.34
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Figure 4.3: Experiment 1: Brier scores for choice with participants arranges by reducing model
score (improving performance) of the baseline model (gray line). Green bars reflect the magnitude
of improved performance and red bars, the reduced performance, of the probabilistic model.
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Figure 4.4: Experiment 2: Brier scores for choice with participants arranges by reducing model
score (improving performance) of the baseline model (gray line). Green bars reflect the magnitude
of improved performance and red bars, the reduced performance, of the probabilistic model.
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Figure 4.5: Experiment 1: RMSE for search with participants arranges by reducing model score
(improving performance) of the baseline model (gray line). Green bars reflect the magnitude of
improved performance and red bars, the reduced performance, of the probabilistic model.
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Figure 4.6: Experiment 2: RMSE for search with participants arranges by reducing model score
(improving performance) of the baseline model (gray line). Green bars reflect the magnitude of
improved performance and red bars, the reduced performance, of the probabilistic model.

4.5.2 Experiments from Lee et al.

See table 4.3, and figures 4.7 to 4.10. The figures provide a breakdown of the improvement in

both descriptive and predictive choice and search errors by individual participants. The partici-

60



pants are arrange in order of decreasing error based on the baseline model. The green bars show

an improvement (reduction) in the error using the probabilistic models and the red bars show the

deterioration (increase) in error using the probabilistic model. The error in search features is based

on the number of cues searched. For Lee 1, the probabilistic model provides higher generalizabil-

ity errors than the traditional model in terms of the search errors. Note hat the search patterns in

this experiment were almost always searching for all cues (84% of cues selected across al choices

made). A simple WA model without any adaptivity explains behavior really well in this task. Note

that the probabilistic model still provides a lower error in terms of the Brier scores obtained on

choice accuracy, reflecting the higher uncertainty in the traditional model. The key observation

of interest however is that when real aspects influencing decisions such as real time delays and

monetary incentives come into play, people change their behavior and become more adaptive. The

probabilistic model performs significantly better across almost all individuals in these conditions,

as can be seen from the figures for both search and choice error.
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Table 4.3: Model comparison summary - The best performing model for each measure is high-
lighted in bold.

Baseline Baseline Probabilistic
Experiment Measure Min Exact Fixed

Lee et al 1

DIC 327 356 305
BSd 0.23 0.24 0.18
BSp 0.24 0.23 0.18
Choice Accd 82% 90% 92%
Choice Accp 78% 83% 90%
Search Errd 1.63 1.74 1.72
Search Errp 1.68 2.08 2.17

Lee et al 2

DIC 470 505 372
BSd 0.24 0.26 0.16
BSp 0.28 0.27 0.20
Choice Accd 79% 84% 88%
Choice Accp 76% 89% 85%
Search Errd 1.99 1.80 1.66
Search Errp 1.99 1.75 1.71

Lee et al 3

DIC 533 548 467
BSd 0.36 0.36 0.27
BSp 0.34 0.35 0.29
Choice Accd 68% 68% 78%
Choice Accp 71% 72% 74%
Search Errd 2.03 1.89 1.64
Search Errp 2.45 1.88 1.66

Lee et al 4

DIC 544 569 418
BSd 0.39 0.37 0.26
BSp 0.37 0.38 0.30
Choice Accd 64% 68% 76%
Choice Accp 68% 68% 73%
Search Errd 1.75 1.64 1.41
Search Errp 2.39 1.75 1.59

.
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Figure 4.8: Lee 2: RMSE for search and Brier scores for choice errors with participants arranges
by reducing model score (improving performance) of the baseline model (gray line). Green bars
reflect the magnitude of improved performance and red bars, the reduced performance, of the
probabilistic model.
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4.6 Model Inferences

4.6.1 Experiment 1 and 2

Initial preferences

Figure 4.11 shows the inferred distribution of initial strategy preferences for each participant (data

combined across experiments 1 and 2), for the 3 probabilistic strategies in the consideration set,

ttbp, wap, and arbp. The last strategy represents a sparse-compensatory-exploratory strategy. This

shows significant individual differences in initial preferences.

Figure 4.12 classifies participants according to the most dominant initial preference, and shows

how their performance and search pattern over all the trials varies as a function of the initial

preference. This shows that the initial preference do play a strong role even in the presence of

learning and adaptive selection of strategies. Participants with strong initial preferences towards
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an exploratory arbp strategy show lower sensitivity to validity, and lower performance, in this

environment.
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Figure 4.11: Distribution of initial strategy preference across participants
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Figure 4.12: Relation between initial preference and performance

Strategy Shifts

Figures 4.13 and 4.14 show the mean inferred posterior predictive probability of each strategy be-

ing selected on each trial. The light lines show the movement for individuals and the bold lines

plot the mean for individuals in each condition. The blue and yellow backdrops represent C-blocks

and N-blocks respectively. The blue and red lines represent probabilistic WA and TTB heuristics.

Figure 4.15 shows similar inferences made for experiment 2 using the original traditional heuris-

tics. It can be seen that these heuristic models cannot capture continuity in the learning process.
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Although the quick clean shifts may look efficient, these do not represent human learning, and

these models do not provide as good a descriptive or predictive capability. Most importantly, the

almost constant strategy use within blocks cannot explain the significant within block changes

observed in behavioral measures, such as the significant drop in cue use and increasing accu-

racy between the first and second half of N-blocks. On the other hand, the descriptive account

for such changes is quite apparent if we observe the curves underlying changes in strategy use

in figure 4.14. The reason for the inferences appearing as they do in figure 4.15 is that for a huge

majority of the trial the traditional models make no meaningful inference about the underlying

process, but a small handful of trials
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Figure 4.13: Experiment 1: Inferred probability of strategy use based on probabilistic strategy
learning model

What are people learning?

In experiment 1, higher inferred learning rate does not seem to significantly affect observed behav-

ior. In experiment 2 however, higher inferred learning rate is correlated with:
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Figure 4.14: Experiment 2: Inferred probability of strategy use based on probabilistic strategy
learning model
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(a) reducing depth of information search (cues and attributes), but this effect is significant only

under alternating (CNCN and NCNC) sequences, and not consecutive (CCNN and NNCC) se-

quences; and

(b) increasing rate of selecting the best possible option and increasing standardized reward scores,

but these two effects are significant only under consecutive (CCNN and NNCC) sequences, and

not alternating (CNCN and NCNC) sequences.

Thus, in alternating sequences (more frequent changes), learning seems to be focused on improving

search efficiency, whereas in consecutive sequences (less frequent changes), learning seems to be

focused on improving overall reward outcome.

Entropy-driven learning

We implemented the entropy driven learning rate model, for which the learning rate at any time is

given by equation 4.26, where η0 is base rate, Ht is the latent psychological entropy based on the

level of uncertainty in strategy use, and kH is the sensitivity to entropy. A high value of kH will

make learning far more sensitive to uncertainty in strategy selection.

ηt =
1

1+ e−(kHHt+η0)
(4.26)

Figure 4.16 shows a large cluster of participants in both experiments with similar values of the

base rate and sensitivity to entropy, leading to the inference that experimental factors rather than

cognitive traits may be playing a greater role in the observed individual differences in entropy

driven learning between the two experiments.

In figure 4.17, we see that entropy, and hence learning rate is generally higher in C-blocks com-

pared to N-blocks. This differences is especially higher for participants who started in any C-block

condition. This is not because of greater uncertainty at the start of the experiment, because we do

not see the reverse effect for participants who started with an N-block. This shows how experi-
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mental manipulations can be captured in the resulting cognitive process.
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Figure 4.16: Experimental factors rather than individual differences drive entropy-driven learning
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4.6.2 Experiments from Lee et al

Figure 4.18 shows the inferred standard deviation of the probabilistic TTB and WA strategies

inferred to be used, across th 4 different experimental tasks. We can see that the introduction of
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real time delays and monetary values results in a more refined (narrower) TTB prototype, but a

wider WA prototype representation. This represents greater exploration of search strategies similar

to WA, but focused application of TTB when that is merited.
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Figure 4.18: Inferred strategy precision

4.7 Modeling probabilistic heuristics to detect kernel centers

In the previous implementation, we decided the strategy kernel centers a prior, by representing a

prototypical TTB and WA strategy as the kernel center. Here we test a different approach, focusing

specifically on the information search patterns, and ignoring the choice selection, which represents

a dependent but separate aspect of the choice process. In fact, in many cases in multi-attribute

decision making, conditional on a particular information search pattern, the choice selection be-

comes almost trivial. Accordingly we implement a Bayesian search pattern detection model that

also incorporates a learning mechanism. This is a very important distinction from other methods

that might do a cluster analysis or some other pattern recognition algorithm that does not take into

account the sequential nature of changes in the search pattern. The behavioral data in this case, are

the information search features F representing the information search pattern on trial t. The search
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For a particular individual, the model is specified as follows:

Fit ∼ Gaussian( f̄ih,σ) i ∈ selected features (4.27)

Here, the subscript h refers to a particular latent strategy selected by an individual on that trial. The

strategy used is modeled based on equations 4.5 and 4.6. Rather than specifying f̄ih, we infer these,

allowing for individual differences across individuals. For identifiability, and to provide some

reference points, we constrain the priors on these kernel feature values. We put in the constraints

that strategy 1 has a prototypical representation that selects a lower proportion of cues, has higher

sensitivity to validity, and has a higher variability across attributes, compared to strategy 2. In the

case of traditional heuristics, TTB and WA would satisfy the roles of strategy 1 and 2, but rather

than make this a strict enforcement, we explore the most likely prototypical kernel centers for

each participant, and compare them to the prototypical TTB and WA values. The model works by

searching for the prototypes that best explain trial to trial variability in terms of strategy switching

between these two inferred strategies. The inferred prototypes are plotted in figures 4.19 and

4.20, for experiments 1 and 2. Each participant is represented by 2 dots, the blue dot representing

strategy 1 and the green one representing strategy 2. The prototype representation for TTB and

WA are also provided for comparison. Longer lines represent the focal dimensions that people are

switching between.
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Figure 4.19: Experiment 1: Inferred kernel centers for each participant, representing two latent
information search strategies identified. Individual are assumed to switch between the green and
blue strategies.
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Figure 4.20: Experiment 2: Inferred kernel centers for each participant, representing two latent
information search strategies identified. Individual are assumed to switch between the green and
blue strategies.

4.8 Conclusion

In this chapter:

(a) We have shown the first (to the best of our knowledge) Bayesian implementation of adaptive

strategy learning and switching models of multi-attribute heuristics.

(b) We have implemented and compared traditionally defined heuristics with the novel probabilistic

approach to defining heuristic strategies, and shown that this novel approach generally provides

more accurate descriptive and predictive capabilities.

(c) We have shown how incorporating these probabilistic heuristic strategies within a model of

learning can enable improved understanding of the latent cognitive processes involved in how

people adapt.

(d) We have demonstrated a model to cluster search patterns used by individuals within the frame-

work of learning and cluster-switching, and shown how the resulting kernel centers occupy a wide

and continuous range between the extreme prototypes of TTB and WA search patterns.
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Chapter 5

A priori evaluation of heuristic strategies
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5.1 A measurement framework for heuristic strategies

As a systematic approach to researcher decisions on what consideration set of heuristics and in-

ference rules to use when approaching the cognitive modeling of adaptive strategy switching, we

propose a measurement framework. This framework has been presented in Mistry and Trueblood

(2018). This formalizes the idea of well-posedness of inference problems of strategy selection

and learning based on mathematical theory. We specify the operator A (the approximate cognitive

process) that maps the space of cognitive heuristics H to the space of observed behaviors X . In

the most extreme case, the operator A−1 is strictly a well-posed inverse operator, although that is

neither a realistic not a necessarily desirable requirement. Rather, we define what it would take for

a set of heuristics to satisfy the strict inverse requirements. Based on this, we develop a scoring

mechanism from 0 to 1, where a score of 1 essentially implies a strict inverse operation. We pro-

pose that a consideration set of heuristics should try to optimize this score in order to design the

best descriptive and predictive model of behavior. One of the key considerations here is the latent

identification of strategy use required to construct robust models of learning and adaptive strategy

switching.

5.1.1 Notation and assumptions

In the realm of traditionally defined heuristics, we introduce an application error εi, which is the

probability of making an error conditional on using the heuristic hi. An error results in selecting

a particular cue search and decision pattern that is not compatible with any of the heuristics. If

an error is made, the probability of any incompatible behavior is uniformly distributed over all

possible incompatible behaviors.

p(xk j|hi) = (1− εiIk j)p(yk|s j,hi)p(s j|hi) +
εi Ik j

Σk′Σ j′ Ik′ j′
(5.1)
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An alternate way to accommodate incompatible behavioral patterns using traditional heuristics is a

guessing strategy (G), which can be defined as having uniform probability over all patterns instead

of just over incompatible behavioral patterns:

p(xk j|G) =
1

Ns nO
(5.2)

We denote p(G) = g and assume equal prior probability of each heuristic, p(hi) =
1−g
Nh

, and equal

application error (εi = ε). Note that these assumptions are not necessary, but enable more compact

and intuitive expressions of the properties, and we will continue to use these assumptions in the

formal specification. The overall probability of observing a particular behavioral pattern xk j is

given by:

p(xk j) =

[
(1− εIk j)(1−g)

Nh
Σi

{
p(yk|s j,hi)p(s j|hi)

}]

+

[
ε(1−g)Ik j

Σk′Σ j′ Ik′ j′
+

g
Ns nO

] (5.3)

In equation 5.3, the terms in the first square brackets give the probability of observed behavior

based on error-free heuristics, whereas the terms in the second brackets give the probability on

account of errors or guessing. For ease of reference, we group the first p(x′k j), and second p(x′′k j)

set of terms:

p(xk j) = p(x′k j)+ p(x′′k j) (5.4)

5.1.2 Defining a well-posed strategy inference problem

Using Kabanikhin (2008), we define an inverse strategy selection problem as ill-posed, if any one

of the conditions below are not met:

1. Existence of a solution: ∃ (h∈H) ∀ (x ∈ X). This requires any possible observable behavior
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(x) should be compatible and explained by at least one of the heuristics (h ∈ H).

2. Uniqueness of the solution: ∃ A−1 : X → H. This requires that each observable behavior (x)

should be compatible with only one heuristic (h) within the set H.

3. Stability of the solution: O(δh)≈O(δx) “Arbitrarily small errors in the measurement data”,

δx should not “lead to indefinitely large errors in the solutions” δh. This requires that small

changes in observed behavior (δx) should not result in significant changes to the inferred

heuristic (h).

This is a hard set of constraints, and would be impossible, for any set of cognitive heuristics to

satisfy, and A−1 is never expected to be a strict well-posed inverse operation. Instead, we treat

these as properties that a consideration set of cognitive heuristics should try to optimize. We

specify a formal but relaxed interpretation of these criteria for how a set of heuristic strategies

should be evaluated:

1. Existence property (P1): We propose a measure of the average probability of observing a be-

havioral pattern based on error-free application of heuristics, compared to the overall probability

of observing it, including on account of errors or guessing, integrated over all possible behaviors

and over all possible heuristics in the consideration set. This measure will vary from 0 to 1 with

higher values desirable, and a value of 1 implying strict compliance with the existence property:

P1 =
1

Ns nO
ΣkΣ j

[ p(x′k j)

p(x′k j)+ p(x′′k j)

]
(5.5)

Intuitively, this measures what proportion of possible behavior can be explained by the considera-

tion set of heuristics without using an error-based explanation. A high value of P1 protects against

the inference problem of no matches.

2. Uniqueness property (P2): We propose using the generalized Jensen-Shannon divergence (Lin

(1991)) for multiple distributions to measure uniqueness of a set of heuristics. This divergence

is bounded by [0, log(1+Nh)], so we adapt this to the range [0,1]. In equation 5.6, Hn(pn) =
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−Σn
[
pn log(pn)

]
, refers to the Shannon entropy.

P2 =
1

log(1+Nh)

{
Hk j

(
Σi

[
p(hi)p(xk j|hi)+

g
Ns nO

])

−Σi

[
p(hi)Hk j

(
p(xk j|hi)

)]
−gHk j

(
1

Ns nO

)} (5.6)

The advantage over commonly used measures of divergence such as the Kullback Leibler di-

vergence, is that P2 is smoothed, symmetrical, and can be simultaneously applied over multiple

distributions. Further, it also linked directly to both the lower and upper bound on the Bayes prob-

ability of error (BPE, the lowest possible error rate of a classifier). In our context, this provides the

lower and upper bounds for the lowest possible irreducible error in inferring the correct cognitive

heuristic.

(Hp−P2 log(1+Nh))
2

4 Nh
≤ BPE ≤ Hp−P2 log(1+Nh)

2
(5.7)

where,

Hp =−
[
(1−g) log

(
1−g
Nh

)
+g log(g)

]
(5.8)

Intuitively, this property measures what proportion of behavior does not lead to overlapping in-

ferences about the use of heuristics. A high value of P2 protects against the inference problem of

multiple matches.

3. Stability property (P3):

We define a distance metric dk j1 j2 between any pairs (xk j1,xk j2) of observed behavioral patterns,

as the Euclidean distance based on a value of 1 if a cue is searched and 0 if a cue is not searched,

measured over all (nAnO) cues. We identify all pairs ¯̄xk j1k j2 that have the lowest possible distance.

¯̄xk j1k j2 = argmin(xk j1 ,xk j2)
dk j1,k j2 (5.9)
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Stability is defined in terms of the mean absolute change in inferring probability of use of a heuris-

tic, given a change in the behavioral pattern, integrated over all heuristics in the consideration set,

and measured over all pairs of behavioral patterns that belong to the set ¯̄xk j1k j2 , where n( ¯̄xk j1k j2)

refers to the cardinality of this set. Stability is in the range [0,1], with higher values indicating

higher stability of inferences made about latent heuristics.

P3 = 1−
Σ ¯̄xk j1k j2

Σi
∣∣p(hi|xk j1)− p(hi|xk j2)

∣∣
Nh n( ¯̄xk j1k j2)

(5.10)

Intuitively, this property measures how robust the strategies are in terms of whether minor changes

in behavior will be attributed to significant changes in the inferred latent processes. A high value of

P3 will protect against an inference problem that tends to over-detect changes in latent switching.

Note that there may typically be trade-offs between P1 and P2, and it is useful to measure an

aggregate value of the degree of well-posedness W of a consideration set of heuristics, measured

as:

W =
1
3

Σi=1:3 Pi (5.11)

In addition to being well-posed, the heuristics should have a high degree of predictive capability,

in that, once it is inferred which heuristics is being used, it should be capable of making strong

inferences about what search patterns and choice options will be selected. To illustrate, the guess-

ing strategy above has no predictive capability, since it accords equal probabilities to all observed

behaviors. We thus define a predictiveness property P4.

4. Predictiveness property (P4):

To measure predictiveness, we base it on the within-heuristic entropy across all possible search

and decision patterns, integrated across all heuristics. This also yields a value in the range [0,1].

Note that this measure has to be read in tandem with P1 and P2, and there will typically be some
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trade-offs between P1, P2, and P4.

P4 =
(1−g)

Nh
Σi

[
1+

ΣkΣ j

(
p(xk j|hi) log(p(xk j|hi))

)

log(Ns nO))

]
(5.12)

Intuitively, a high value of P4 reduces the uncertainty of predictions made by the heuristics about

the range of possible behaviors. Note that P4 is also likely to have trade-offs with P1 and P2, and

these properties need to be viewed in tandem.

5.2 Comparing traditional and probabilistic heuristics

In table 5.1 we show the evaluation metrics for a consideration set consisting of TTB and WA,

based on the experimental paradigm of experiments 1 and 2. The first half of the table shows the

metrics for conventionally defined heuristics, with different values of noise ε and guessing g. The

second half shows the kernel based probabilistic versions of TTB and WA prototypes, with the error

model defined by different values of σ. Observe that conventional heuristics find it hard to find a

balance between existence P1 and uniqueness P2. Probabilistic heuristics as defined here show a

better balance, and overall improvement in scores. A high score on W implies better expectation

about the inference process, whereas a better value of P4 implies a better quality of predictions

once we are able to make suitable inferences.

A key reason for the relatively low scores in the traditional case, even with extremely optimistic

assumptions about the error rates, is because information search and decision heuristics have tra-

ditionally been defined as rule-based, without taking into account the gradual deviation of possible

behavior from such deterministic rules. We now apply the same measurement framework to our

novel probabilistic definition of heuristics. Note that in this case, there is no need to specify an

application error ε or a guessing rate g. This is however replaced by the parameter σ.
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A word of caution while using probabilistic heuristics stems from the observation that P4 seems to

drop off significantly at higher values of σ. This can be easily understood intuitively, since as the

kernels become more widely distributed, the uncertainty of their predictions increases significantly.

At the same time, if these distributions are too narrow, they will suffer the same fate as traditional

heuristics (the W approaches that of traditional heuristics for low σ). It is important to test the

values appropriately, and the measurement framework provides a tool for this.

P1 P2 P3 W= ΣnPn/3 P4 ΣnPn/4
exact ε = 0.01 0.0 0.61 0.99 0.53 0.98 0.65
min ε = 0.01 0.02 0.55 0.99 0.52 0.74 0.58
choice ε = 0.01 0.40 0.06 1.0 0.49 0.12 0.40
exact g = 0.01 0.0 0.67 0.99 0.55 0.98 0.66
min g = 0.01 0.02 0.60 0.99 0.53 0.75 0.59
choice g = 0.01 0.40 0.09 1.0 0.50 0.12 0.40
prob σ = 0.01 0.03 0.63 1.0 0.55 1.0 0.67
prob σ = 0.02 0.86 0.63 0.82 0.77 1.0 0.83
prob σ = 0.05 0.99 0.63 0.80 0.81 0.99 0.86
prob σ = 0.20 0.99 0.59 0.80 0.79 0.35 0.69

Table 5.1: Evaluation metrics for a traditionally defined consideration set of WA and TTB heuris-
tics based on 4 attributes and 3 choice options, and heuristics applied based on the true cue validi-
ties (top half of the table), compared with kernel based probabilistic versions (bottom half). The
first column indicates the method of inference.

5.3 Applications and future work

The evaluation framework for heuristics should be seen as a first step towards a unified and sys-

tematic approach to defining strategy selection and learning models. The probabilistic framework

is generalized enough to be applicable to a variety of experimental and empirical designs and

heuristics. It can easily be incorporated with existing approaches to learning, such as rational

meta-reasoning, reinforcement-learning, and cost-benefit based or cognitive effort based frame-

works. Importantly, it has the potential to unify rule-based and exemplar based heuristic models.

The heuristics described under our framework generally perform better than conventional heuris-
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tics under the proposed evaluation measures. This framework raises a lot of possibilities in terms

of future work, including experimental design based on maximizing information gain, and generat-

ing a new class of heuristics based on context specific, process driven, or exemplar measures. The

evaluation framework allows us to calculate the a priori performance measures of a set of kernel

based heuristics, for each particular configuration of cues. This evaluation method can be used to

for experimental design to select cue configurations that allow for the strongest possible inference

given a particular set of heuristics to be tested, that is, by selecting configurations that maximize

measures P1 to P4 for the heuristics to be tested. Note that P1 and P2 often compete. Since these are

all measured on the same scale [0,1], we can use an objective function that optimizes a weighted

average of the four measures.
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Part II

Adaptive reference points
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Chapter 6

Theoretical considerations

6.1 Introduction

Reference points have been known to play a role in a large number of psychological phenomenon,

including aspects such as anchoring, evaluation of utilities (e.g. in prospect theory), serving as

a criteria for signal detection, serving as a goal or aspiration, and as a base value for measuring

hedonic utility, among others. While, the multiple roles of reference points in individual choice

have been acknowledged (e.g. Kahneman (1992)), and the role of adaptive preferences based on

previous experiences (e.g. Frederick and Loewenstein (1999)) has been acknowledged, relatively

little work has been done in terms of specifying a robust model of adaptive reference point forma-

tion, since the original mean-stimulus model was proposed by Helson (1948,9). In this section, I

propose a basic cognitive mechanism of adaptive reference points based on learning from previ-

ous experiences, and show how this mechanism can be ubiquitously applied across a wide range

of behavioral tasks. I show that including such an adaptive reference point contributes to both:

improving the quality of inferences made, as well as the predictive capabilities of the underlying

cognitive models. In this chapter, I first propose a generic mechanism for reference point adapta-
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tion, applicable to reference points in various contexts. I then show how such a mechanism can fit

into different context-specific cognitive modeling frameworks.

6.2 Generic learning mechanism

6.2.1 Basic learning mechanism

The generic reference point adaptation mechanism is proposed as a reaction to an external variable,

which, depending on the context, can be either a form of feedback, stimuli, or ancillary environ-

mental factor. The reference point at time t is denoted as λt . The adaptation process at time t is

captured in equations 6.1-6.3. Here, µt is the external influencer, which could be a stimulus or

feedback value that serves to shift the reference point. The terms ηt and ρt refer to the immediate

signal and the persistence signal, the latter being the cumulative decaying but persistent influence

of all previous time periods. The immediate signal depends on a free parameter δ, characterized as

gain control, or the sensitivity to the immediate difference. The cumulative signal ρ also depends

on the free parameter α, characterized as persistence. High values of persistence essentially result

in a stronger influence from preceding time periods. Depending on the context, the reference point

may be updated at very time period, or only when an adverse event occurs, or there may be a bias

where the the update is stronger in one direction that the other. These specific instances are covered

in section 6.2.2.

λt = λt−1 +

(
ηt + ρt

1+Σ
t−1
i=1α t−i

)
(6.1)

ηt = δ(µt−1−λt−1) (6.2)

ρt = δ Σ
t−1
i=1 (α t−i (µi−λi) ) (6.3)
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The term ηt is the contribution of the immediately preceding trial, which we call the immediate

signal. The cumulative contribution of all previous trials is given by the ρt term, which we term

persistence signal. Here, the weight given to older feedback keeps decreasing, and is a function of

α. The feedback term from j trials earlier is given a weight of α j. A weighted average of ηt and ρt

is then computed as the final corrective feedback for the criterion level. Having large values of α

result in a weighted average over a longer time window, leading to higher persistence of feedback

and lower flexibility of response changes. Since α acts as a discount rate for previously acquired

feedback, a value of α = 1 means that on each trial, the effective feedback is the mean value

of feedback acquired on all trials experienced so far. A low value of α, close to 0, would mean

that feedback from only the most recent trial is taken into account. Depending on context, the

reference point may be compared, contrasted, or assimilated within the next judgment, along with

the stimulus or signal µt received on the next time period.

Figure 6.1 shows a simulated movement of the reference point (red lines) for the same stimu-

lus/feedback (gray line), for different combinations of low and high values of δ and α. The differ-

ent influence of these parameters is visible when viewing the difference signal, shown by the bars.

This difference signal at any point in time is critical to the decision, as we will see in the next few

sections. As we move from the left 2 panels (low α) to the right panels (high α), the reference point

seems to oscillate around the focal stimulus or feedback signal, with more frequent swings of the

difference signal above and below zero. As we move from the top 2 panels (low δ) to the bottom

panels (high δ), the reference point gets closer to the focal signal, and results in smaller magnitudes

of the difference. This is of course based only on one single pattern of stimulus/feedback signal,

and is meant to illustrate the effect of the parameters. The actual influence will depend on the

trends shown by the focal signal (e.g. whether it is monotonically changing in one direction, how

volatile it is, whether it is drawn from non-stationary distributions over a period of time, etc.).
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Figure 6.1: Illustration of the adaptive mechanism: Single simulation of reference point movement
around the focal stimulus/feedback signal, for different combinations of low and high value of δ

and α

6.2.2 Introducing asymmetry

Confirmation bias, where people place a higher weight on information that confirms rather than

contradicts their beliefs, has been shown to be pervasive over a large range of cognitive processes

(Nickerson (1998); Jones and Sugden (2001)). This has been shown to extend to reinforcement

learning, where learning effects are higher for information that confirms rather than contradicts

the current choice that individuals make (Palminteri et al. (2016)). A different line of research

shows that reference point levels for evaluating gains and losses are adaptive (Gneezy (2005)),

and this adaptivity has been shown to be asymmetric such that adaptation after gains is faster than

adaptation after losses (Arkes et al. (2008,0)). Johnson et al. (2012) showed that in a situation with

multiple possible reference points, individuals tend to use the reference point that maximizes the

utility of their current behavior. These findings are directly relevant to reference point adaptation in

the model presented here. We allow for asymmetry by introducing a bias term to change equation
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6.1 to equation 6.4.

λt = λt−1 +

(
ηt + ρt

1+Σ
t−1
i=1α t−i

) (
It−1 +B (1− It−1)

)
(6.4)

Here, It−1 is an indicator function, and B is a bias term that applies depending on whether the

indicator function is 0 or 1. Depending on the type of application, the indicator function may

indicate either whether the reference point λt−1 was higher or lower than the focal signal µt−1.

Another form of indicator could be when there is an objective binary indicator, such as whether or

not the previous item was correctly or incorrectly responded to. The bias B can be treated as a free

parameter.

6.3 Applications

6.3.1 Application to anchoring judgments

Any quantity to be judged may be affected by anchoring effects. Formally, if the true value of the

item to be judged is pt , and the anchoring reference point is λt , then the judged value is given by:

Jt = pt(1− k)+ kλ (6.5)

Here, k is the strength of the anchoring effect, with a value of 0 implying no anchoring, and a value

of 1 implying completely anchoring on the reference point.

Anchor points are often inferred from data, but there is no quantitative cognitive process model

to explain how these anchoring points may be formed over time. We propose the same adaptive

reference point mechanism from equation 6.1. Thus, we obtain, equation 6.6, where λt is updated

based on the feedback about the true value of the item pt .

Jt = pt(1− k)+ kλt (6.6)

This adaptive reference point based anchoring mechanism is tested with experimental data in
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section 7.1, where people make repetitive judgments about different items in the same category

6.3.2 Application to expectation formation

When facing uncertainty in rewards and penalties from different sources, as might be represented

by a bandit problem, people are known to use different strategies to explore and exploit the en-

vironment. In one study, it was shown that close to half the people are best represented by a

win-stay-lose-shift strategy Steyvers et al. (2009). When options are not win/lose but provide dif-

ferent levels of rewards, this strategy can be extrapolated as a High-Stay-Low-Shift strategy, so

that people shift their choices if the rewards are low but continue (stay) their existing choice if

the rewards are high. This naturally requires some reference point for what counts as low or high.

Accordingly, we can define the probability of a stay decision as in equation 6.7, where pt is the

reward obtained on trial t.

p(Stay)t =
1

1+ e−(pt−1−λ0)
(6.7)

Here, for a given reward value pt , a low reference point λ0 increases the probability of staying,

and vice versa. When the last obtained reward is equal to the reference point, the probability of a

stay decision is 0.5. Rather than a static reference point λ0, we propose an adaptive reference point

based on equation 6.1, where the previous outcomes serve to adjust the reference point, λt . Thus

we get equation 6.8.

p(Stay)t =
1

1+ e−(pt−1−λt)
(6.8)

This adaptive reference point based model of expectation formation is tested with experimental

data in section 7.2.
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6.3.3 Application to tracking probabilities

A natural baseline model for tracking the probability of a repetitive binary event over time is

Bayesian learning, implemented using a beta counting model. Here the probability of an event

occurring is drawn from a beta distribution that is updated on every trial t, where ht is the count of

times the event has occurred up to the previous trial, and lt = t− ht is the count of times that the

event has not occurred. This model assumes an uninformative prior and perfect Bayesian learning.

Eventt ∼ Beta(1+ht ,1+ lt) (6.9)

As an alternative, we propose the adaptive reference point mechanism of equation 6.1 as a tracking

mechanism for the probability of an event, given as in equation 6.10, that depends only on λt ,

which is increased based on equation 6.1 every time the event occurs, and is decreased every time

it does not. Since the rate of change are driven by individual level parameters α and δ, this allows

for sub-optimal learning as well as strong persistence of prior signals. As the reference point λt

increases, the judged probability increases, and vice versa. The probability is 0.5 when λt = 0.

p(event)t =
1

1+ e−λt
(6.10)

This adaptive reference point based probability tracking mechanism is tested with experimental

data in section 7.3

6.3.4 Application to signal detection theory

Classical signal detection theory can account for behavioral patterns extremely well within a fixed

environment. It does not, however, provide a descriptive account of how people adapt their criterion

in response to environmental manipulations, such as changing base rates, changing discriminabil-

ity, or changing utilities, for different types of correct decisions and errors (although it prescribes

what the normative change in criteria should be). There are some existing theories of how people
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may adopt a flexible rather than static criterion across trials Treisman and Williams (1984); Erev

(1998); Turner et al. (2011). Here we introduce an alternative adaptive account of how people set

criteria for categorizing stimuli within the SDT framework, that is based on the basic reference

point adjustment mechanism described in the previous section.

We make a basic assumption that people are sensitive to feedback, and thus adjust their criterion,

only on incorrect or punitive trials. We thus specify a criteria adjustment mechanism based on

equation 6.4, with B = 0, where It−1 is an indicator function that is 1 if the (t − 1)th trial was

incorrect and 0 otherwise. Under this assumption, we can rewrite 6.4 as equation 6.11.

λt = λt−1 + It−1

(
ηt + ρt

1+Σ
t−1
i=1α t−i

)
(6.11)

In the case of adaptive SDT, the term µt is the signal on trial t and λt is the criterion on trial t.

The term (µt−1−λt−1) is the underlying difference signal between the stimulus and criterion, and

represents the error signal on incorrect trials. If the (t−1)th trial was a miss because the criterion

was too high, this term will be negative and serve to lower the criterion. If the previous trial was

a false alarm because the criterion was too low, this term will be positive and serve to increase the

criterion. This difference signal is modulated by the gain control parameter δ. Higher values of

δ imply a larger corrective feedback given a particular level of sensory feedback. Note that if the

previous trial is a hit or correct rejection, the criterion will not change. However, if the previous

trial is incorrect, the change made includes feedback based not only on the immediately preceding

trial, but also feedback weighted and averaged from previously experienced trials, including correct

trials, so that learning from history is not heavily biased. On correct trials, the difference signal

term is positive for hits and negative for correct rejections.

This mechanism is tested on experimental data in section 7.4.
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Interpretation in terms of ROC characteristics

Classical SDT often uses receiver operating characteristic (ROC) analysis which plots performance

in terms of hit and false alarm rates. Figure 6.2 characterizes ASDT in ROC terms, showing the

results of simulations that systematically varied α and δ in 4 different environments, that in turn

varied in terms of base rate and discriminability. This represents a range of environments typically

used in signal detection problems. We show that the adaptive SDT has a strong relationship to

the dynamics of the ROC. The resulting performance is plotted along the ROC in figure 6.2. The

left panel shows the sensitivity to α. As α increases from 0.01 to 1, it results in a smooth change

along the ROC, and away from the optimal criterion. For very low values of α, behavior still

deviates from optimal performance, but to a smaller extent. Very high values of α close to 1 show

maximum deviation away from optimality. The right panel of Figure 6.2 shows the sensitivity to

δ, with increasing values of δ showing a movement away from the ROC, with reducing hit rates

in low BR and increasing false alarm rates in the high BR conditions. Thus α and δ capture two

separable behavioral deviations: along the ROC or away from the ROC. Changes in δ capture what

in traditional SDT analysis, is captured as a difference in sensitivity. We note that the simulations

show that the mean criterion level is extremely sensitive to values of α, with higher values of α

leading to less extreme average criterion values. Higher values of δ on the other hand result in

higher variability in the criterion across trials.

Adding payoff sensitivity to the reference point adjustment

We posit that if the task rewards are symmetric, that is, there is no difference in the rewards for

correctly identifying a hit or a correct rejection, or between the costs incurred for a miss or a false

alarm, the adaptive mechanism above is sufficient. However, if the tasks are asymmetrical, a payoff

sensitivity needs to be incorporated into the criterion adjustment mechanism. First, I propose that

a prospect theory-like value function (equation 6.12) is used to transform the objective rewards

91



Figure 6.2: ROC curves for high-D and low-D environments (i.e. different experimental level of
discriminability), and the hit rate and false alarm rate based on optimal criterion placement for
both low BR and high BR conditions. The colored plots show how a change in α (left panel) and
δ (right panel) affect how individual behavior moves away from optimality. Increasing α results
in movement along the ROC (does not affect sensitivity or discriminability), but changes in δ shift
performance to a lower ROC (impact sensitivity).

and penalties, and the transformed rewards and penalties are used to calculate the optimal bias

R (Stüttgen et al. (2011)), as shown in equation 6.13. However, people may show only partial

sensitivity to the optimal bias, and this is denoted by θ. Finally, the actual bias, B̄, as shown in

equation 6.14, is applied as a multiplier to the difference signal only when the stimulus on the last

trial was greater than the criteria (and a multiplier of 1 otherwise). Here, VF , VC,VM, and VH refer

to the payoffs in case of false alarms, correct rejections, misses and hits respectively. Here, L is a

loss aversion parameter.

. f (x) = (x >= 0) xγ− (x < 0) L (−x)γ (6.12)

R =
f (VF)− f (VC)

f (VM)− f (VH)
(6.13)

B̄ = ψ((1−θ)+θ R) (6.14)
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Thus, under the assumption of asymmetric payoffs, we can rewrite equation 6.11 as equation 6.15,

where Jt is 1 if µt−1 > λt−1 and 0 otherwise.

λt = λt−1 + It−1

(
ηt + ρt

1+Σ
t−1
i=1α t−i

)(
B̄Jt−1 +(1− Jt−1)

)
(6.15)

6.3.5 Application to utility functions

Economic methods often model consumption decisions (how many units of x do people purchase

at time t) in terms of the psychological utility U(x) of x and the unit cost pt of x. The consumption

decision is modeled as the quantity x that maximizes V (x) =U(x)− px. For instance, a commonly

used utility function is of the form:

U(x) =
ax1−b

1−b
(6.16)

Maximizing V (x) =U(x)− px yields a solution:

x =
(

p
a

)−1/b

(6.17)

The parameters a and b are traditionally estimated by converting this to a regression equation of

the form below, where β =−1/b.

log(xt) = A+β log(pt) (6.18)

This equation 6.18 is assumed to capture the change in consumption units xt as the corresponding

price per unit pt changes, where A and β are parameters at the individual or population level. In

typical applications, β < 0, so that consumptions reduces as the price increases.

Thaler (1999, 2008) proposed that consumption choices were driven by a combination of acqui-

sition utility and transaction utility. Acquisition utility is defined as above, in terms of rational

economic analysis, as the the utility of consumption less the value of the price paid. Transaction

utility typically reflects the value of the deal, and is the difference between the price paid and a

reference price. The transaction utility can be positive if the actual price is lower, and negative if it

is higher, than the reference point, λ. The mental accounting theory proposes that the acquisition
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and transaction utilities are separately evaluated, and may be weighted differently. Thus, we now

propose equation 6.19, where k is a relative attention weight, and the value of the transaction is

higher than rationally observed if the reference pointλ is higher than the price, and vice versa.

V (x) =U(x)− px− k(p−λ)x (6.19)

We propose that this reference point λ is not static, but changes over time based on previous

experiences with prices or other similar indicators. Thus, we propose the identical reference point

adjustment mechanism as in equation 6.1, and replace λ in equation 6.19 with an adaptive reference

point λt on every time period t. Maximizing this yields a solution:

xt =

(
pt + k(pt−λy)

a

)−1/b

(6.20)

The regression equation 6.18 then changes to equation 6.21.

log(xt) = A+β log(pt + k(pt−λt)) (6.21)

Most econometric methods treat β as a form of demand elasticity to price, and assume short term

and long term constancy and symmetry. However, there is empirical evidence for instability of

demand elasticities, asymmetries in upward and downward responses to price changes, and other

behavioral aspects that cannot be explained without additional assumptions about the cognitive

process. This reference point mechanisms shows how a constant β can still lead to inferring unsta-

ble and asymmetric price elasticity inferred because the adaptive reference point mechanism is not

taken into account. Note that on each trial or time period, the consumption quantity x is assumed

to be decided based on maximizing the utility model. The reference point is an inducing reference

point, since a higher reference level makes any price seem relatively more attractive, thus increas-

ing utility. Extremely high values of the reference point mathematically, would result in infinite

utility, inducing people to spend all resources and maximize the units of consumption. Such ref-

erence levels are however psychologically implausible. Mathematically, the upper bound on psy-
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chological reference point depends on the current price levels and is given by λt <=
pt (1+ k)

k
,

beyond which, utility becomes infinite.

This adaptive reference point based utility function is tested with experimental data in section

7.5, and also adapted to work with real world data on consumption taxes in chapter 9.

6.4 Conclusions

This chapter proposes that a basic adaptation mechanism, well specified in quantitative terms, can

account for and assimilate into multiple modeling frameworks that account for different types of

judgment and decision making tasks. In the next chapter, each of these propositions is successfully

tested using experimental data collected from secondary sources.
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Chapter 7

Ubiquity of the adaptive reference point

All of the cognitive models within this chapter were implemented as Bayesian graphical models

using JAGS.

7.1 Price Judgments

We implement the adaptive reference point based model of anchoring judgments, as specified in

section 6.3.1, to analyze behavior in an experimental price judgment task.

7.1.1 Data

This is a secondary dataset, obtained from work reported in Matthews and Stewart (2009). This

data includes data from 28 subjects who were asked to judge the price of 102 real items that differed

on a single physical dimension. The item set consisted of women’s shoes. Participants had to judge

the price of each item, and after judging the price were provided feedback on the true price of the

item. The original study found that providing feedback resulted in anchoring judgments towards
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Figure 7.1: Distribution of judgment errors

the most recent item, but also that there was an overall bias in judgment towards the center of the

true price range. They present a discriminative regression model to measure the effect of previous

item prices, but do not offer any formal cognitive model of the anchoring process. Figure ?? shows

the distribution of difference between the judged and true price of all items across all participants.

7.1.2 Modeling

For the baseline model, we propose that the trial-by-trial judgments Jt are drawn from a normal

distribution centered around the true price, but with an anchoring bias based on a fixed reference

point λ, where k is the strength of the anchoring effect, and σ is a form of expertise, the precision

with which judgments are made. The strength of anchoring k lies in the range [0,1] and effectively

serves as a weight for the reference point. A value of zero implies no anchoring, and a value of 1

implies complete anchoring and ignoring the true price effect.

Jt ∼ Gaussian
(

pt− k(pt−λ),σ
)

(7.1)
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Along with that, we build an adaptive reference point model, that infers the latent adaptive refer-

ence point λt based on equation 6.1, with α and δ as individual level parameters. Here, pt is the

true price, revealed after each judgment, and serves to update the reference point before the next

trials as in equation 6.1.

Jt ∼ Gaussian
(

pt− k(pt−λt),σ
)

(7.2)

7.1.3 Modeling results

Figure 7.2 shows show the RMSE error for each participant, with the gray lines showing the er-

ror based on the baseline model, the green bars showing an improvement based on the adaptive

reference point model and the red bars showing a deterioration based on the adaptive model. The

descriptive error was based on providing the full data to the models, whereas the generalizability

error shows the results where 68 of the 102 judgments were hidden from the model. The adap-

tive model improves descriptive and predictive error compared to a baseline fixed reference point

model.
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Figure 7.2: Price judgments modeling results: The plots show the RMSE error, with the gray lines
showing the error based on the baseline model, the green bars showing an improvement based on
the reference point model and the red bars showing a deterioration based on the adaptive model.
Each point / bar represents a single participants.
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7.1.4 Inferences

Figure 7.3 shows the robustness of the psychological interpretation of the strength of anchoring k,

with the latent inferred strength being strongly positively correlated with the mean absolute error

in judgments of participants. In figure 7.4, the plot on the right shows that because of random
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Figure 7.3: Increased latent strength of anchoring k (an inferred parameter), greater the observed
mean error in judgments by participants, on an average.
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Figure 7.4: Mean shift in reference points. The plot on the right shows that because of random
ordering of stimulus, the variability in reference drops over time, explaining the regression to the
mean effect recognized in the original study. The plot on the left shows the mean reference point
average from men and women separately. It shows that men begin with a higher reference point
than women, but after about half the trials, the reference point for men drops and that for women
increases, till they are approximately equal.

99



ordering of stimulus, the variability in reference drops over time, explaining the regression to the

mean effect recognized in the original study. The plot on the left shows the mean reference point

average from men and women separately. It shows that men begin with a higher reference point

than women, but after about half the trials, the reference point for men drops and that for women

increases, till they are approximately equal. It is worth remembering at this point that the items

being judged for price were women’s shoes!

7.2 Bandit problems

We implement the adaptive reference point based expectation formation model, as specified in

section 6.3.2 to analyze behavior in an experimental bandit task.

7.2.1 Data

This is a secondary dataset, obtained from work reported in Yechiam and Busemeyer (2008). This

data includes 88 subjects from study 1 in the paper, each of whom played three distinct bandit

problems. In each of the three types of problems, each subject made 200 sequential decisions,

selecting one of two alternatives from which to receive payoffs. The payoff distribution for each

alternative was fixed throughout each individual task, but unknown to the participants. The types of

tasks were independent from each other. The first task (payoff-sensitivity) included 2 alternatives

with different expected values and equal variance. The second (small-probability) task had one

constant reward and one low probability reward alternative. The third (high-variance) task had

one alternative with high expected value and variance, and the other with low expected value and

variance. One of the primary questions raised in this paper was whether parameter estimates for

choice models inferred from one of these tasks are transferable to other tasks, and the results

applied with varying degrees of success. In the task, one key measure was the degree to which
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people stay (exploit) or shift (explore). Figure 7.5 summarizes the behavioral results.
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Figure 7.5: Behavioral results for the three tasks, showing the proportion of stay decision for each
individual, and the proportion of low value choices

7.2.2 Modeling

The third (high variance) task was used to model participant behavior and infer individual level

parameters, based on the first 100 trials. These same parameters were used as a generalizability

test for predicting choices on the remaining 100 trials, as well as on all the trials in the other two

tasks. As a baseline model, we implement a High-Stay-Low-Shift model with a fixed reference

point λ0. On each trial, the reward from the previous trials, denoted as pt−1 is compared to this

reference point, and whether the decision is a stay decision is based on a draw from a Bernoulli

distribution with a logistic function determining the Bernoulli parameter. Thus, a high reference

point λ0 serves to make the denominator in equation 7.3 very high, resulting in a low probability

of staying, and vice versa. When the reward is exactly equal to the reference point, the probability

of staying is drawn from a Bernoulli(0.5).

Stayt ∼ Bernoulli
(

1
1+ e−(pt−1−λ0)

)
(7.3)

We also implement an identical model but with an adaptive reference point λt , which is updated

on every trial based on the learning mechanism proposed in chapter 6. The reward pt obtained on
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the previous trial serves to create the difference signal (pt−1−λt−1), which is used to update λt on

the next trial based on the underlying parameters δ and α.

Stayt ∼ Bernoulli
(

1
1+ e−(pt−1−λt)

)
(7.4)

Figure 7.6 illustrates how the model works by providing the mean posterior predictive for 4 of the
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Figure 7.6: Illustration of feedback and persistence signal in 4 participants. The plots show the
latent inferred reference point movement (black lines) and the trial by trial immediate feedback
(bold red) and decaying persistence signals (light red). The 4 participants are selected with varying
inferred values of δ and α, to represent different behavioral characteristics.

participants who have relatively different values of α and δ. The black lines in the figures shows

the latent reference point over 200 trials. The bold red lines show the immediate feedback signals

and the light red lines show how the influence of that signal decays over time in terms of future

influences on the reference point. P1 is an example of a participant with very high inferred gain

control δ and very low persistence α. The reference point moves in steps, every time a feedback

signal is received, but there is no persistent influence because of the low α. P2 is an example of

a participant with extremely high inferred persistence α. The reference point moves smoothly,

and the impact of the initial negative feedback signals takes a very long time to decay. P3 and P4
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show a much smaller movement of the reference point(see the different values on the right hand

scale), because of very low values of the gain control δ. P4 barely registers any feedback, whereas

P3 gives a classical representation of feedback signals with short decay streaks. The mechanism

in this case is almost self-regulating, because a large initial drop in the reference point (P1 and

P2) results in fewer feedback signals, whereas for P3 and P4 with lower sensitivity, the relatively

higher reference point gives rise to more frequent negative feedback signals.

0.2

0.5

1

M
od

el
 a

cc
ur

ac
y

Generalizability - Payoff Sensitivity taskAccuracy - Adaptive: 72%
Accuracy - Baseline: 66%

Participants
0.2

0.5

1

M
od

el
 a

cc
ur

ac
y

Generalizability - Small probability taskAccuracy - Adaptive: 75%
Accuracy - Baseline: 67%

0.2

0.5

1

M
od

el
 a

cc
ur

ac
y

Modeled Task (High Variance)Accuracy - Adaptive: 77%
Accuracy - Baseline: 72%

0.2

0.5

1

M
od

el
 a

cc
ur

ac
y

Generalizability - New TrialsAccuracy - Adaptive: 77%
Accuracy - Baseline: 73%

Figure 7.7: Modeling Bandit problems: Performance of the adaptive model against the fixed ref-
erence point model. The performance is coded in terms of whether the model correctly predicts a
Stay decision on each trial. The participants are arranged in terms of increasing model accuracy
for the base line model (gray line), with the green bars showing a relatively higher accuracy of the
adaptive model and the red bars showing a drop in accuracy from the adaptive model.
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7.2.3 Modeling results

Figure 7.7 shows the performance of the adaptive model against the fixed reference point model.

The performance is coded in terms of whether the model correctly predicts a Stay decision on each

trial. The participants are arranged in terms of increasing model accuracy for the base line model

(gray line), with the green bars showing a relatively higher accuracy of the adaptive model and

the red bars showing a drop in accuracy from the adaptive model. The model prediction is based

on the modal choice made by the models. The adaptive reference point model is especially better

than a fixed model when it comes to generalizing to new tasks based on the same parameters,

because it allows the cognitive parameters to adjust the reference point. The adaptive model shows

consistently higher accuracy, increasing 3 percentage point from from 72% to 75% in descriptive

fit, and between 4 to 8 percentage points in the generalizability task. See figure 7.7 for details.

7.2.4 Inferences

Figure 7.8 shows the distribution of the mean posterior inferred values of gain control δ and persis-

tence α for the participants. The 4 participants illustrated in figure 7.6 are highlighted. The colors

represent participants falling in the four different quadrants, representing different high-low combi-

nations of persistence and gain control. This should be seen in tandem with figure 7.9, which shows

the mean trial by trial movement of the reference point across all the participants in each quadrant.

The reference point is in the units of the reward. The blue horizontal bars in figure 7.9 show the

distribution of the rewards. It is clear that most of the rewards are small, and the distribution is

skewed towards the center, with a small probability of very large negative rewards. Participants

with high delta have much lower adapted reference points, and thus react subsequently only when

facing very large negative rewards. This allows them accrue higher average rewards over all the

trials, as shown in the circles in figure 7.9.
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Figure 7.9: Inference on Bandit problems: Movement of the average reference point across par-
ticipants in each quadrant of figure 7.8. This shows the clear difference in behavior based on the
cognitive parameters, especially between participants with high and low values of δ. The color
coded lines should be read in tandem with figure 7.8

7.3 Probability tracking and extrapolation judgments

We implement the adaptive reference point based probability tracking model, as specified in

section 6.3.3 to analyze behavior in an experimental task.

105



7.3.1 Data

This is a secondary dataset, obtained from work reported in Frydman and Nave (2016). This data

includes 38 subjects that made a series of 400 sequential judgments (judgments were elicited using

a willingness to pay judgment) on whether a hypothetical financial instrument would increase or

decrease, given the previous history. The average reported beliefs show that the probability of the

current streak (increase or decrease) continuing is monotonically increasing with the length of the

current streak (that is, number of consecutive increases or decreases). For example, the reported

probability of a streak continuing is about 65% after a streak of 3 compared to about 60% after a

streak of 2, and 50% after a single increase. The average reported probability moves closer to 70%

after a streak of 6.

7.3.2 Modeling

We implement a Bayesian learning model based on a beta distribution, where the probability of an

increase is drawn from beta distribution that is updated on every trial t, where ht is the count of

increases up to the previous trial, and lt is the count of decreases up to the previous trial.

Increaset ∼ Beta(1+ht ,1+ lt) (7.5)

This is contrasted with an adaptive reference point based tracking model, where the probability of

an increase on any trial is drawn from a Bernoulli distribution with the parameter being a logistic

function of the adaptive reference point λt . This reference point is assumed to be updated on each

trial based on the actual outcome observed, as in equation 6.1, with δ and α as individual level

parameters.

Increaset ∼ Bernoulli
(

1
1+ e−λt

)
(7.6)
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Figure 7.10: RMSE for probability tracking extrapolation judgments. The gray line gives the error
for the baseline Bayesian learning model and the green and red bars show the improvement or
deterioration based on the adaptive reference based model. Generalizability error is based on a
model where the latter 200 trials are hidden from the model.

Figure 7.10 shows the RMSE error. The gray line gives the error for the baseline Bayesian learning

model and the green and red bars show the improvement or deterioration based on the adaptive

reference based model. Generalizability error is based on a model where the latter 200 trials are

hidden from the model. There are some participants for whom a Bayesian learning model gives

better predictive performance, but on an overall level, the adaptive model seems superior.

7.3.3 Inferences

Figure 7.11 shows the average movement of the reference point for 4 groups of participants, clus-

tered based on high and low levels of α and δ. Participants with higher reference points report a

higher probability of the increase occurring. In this task, higher persistence α plays a greater role

in biasing the participants above and below a mean true probability of 0.5, with higher gain control

δ leading to more extreme judgments in both directions. Once again, the parameters show a clear

differentiation in terms of how they affect behavior. Figure 7.12 attempts to explain the finding in

the original paper that people tended to provide a higher probability of increase after longer streaks,

even thought the true underlying distribution was independent of the streaks. The figure shows the

average (across all participants) current ηt and persistence ρt signals applied towards reference
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Figure 7.11: Probability tracking and extrapolation: Average movement of the reference point for
4 groups of participants, clustered based on high and low levels of α and δ
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Figure 7.12: Probability tracking and extrapolation: The latent inferred average immediate and
persistence signal clustered by streak length of the current trial. Increasing persistence signal
capture the streak length effect, directly influencing the reference point.

point on every trial, grouped by the current streak, up to the current trial. This aggregates absolute

values of both positive and negative signals, since the idea to show how streak length contributes

to changes in magnitude. An upward or down movement contributing to the streak would tend

to increase or decrease the reference point for the next trial. The bars in the figure show that the

average current feedback signal (blue bars) are similar, independent of the streak history. The yel-

low bars, representing the mean persistence signal are continuously increasing as the streak length

increases, showing that the decaying persistence signal captures the cumulative streak history. The

black line shows the resulting ratio of persistence to current signal keeps increasing with increased
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Figure 7.13: Probability tracking and extrapolation: Comparison of the posterior predictive of the
adaptive reference point model with the posterior predictives resulting from fitting 3 versions of the
Bayesian learning model. The baseline Bayesian learning model described, a Bayesian learning
model with skewed prior expectations, anda sub-optimal Bayesian learning model (where belief
updating is sub-optimal) with skewed priors. The adaptive reference pont comes closest to the
third.

streak length, contributing to the observations in the original paper.

Figure 7.13 compares the posterior predictive of the adaptive reference point model with the pos-

terior predictive resulting from fitting 3 versions of the Bayesian learning model - the baseline

Bayesian learning model described earlier, a Bayesian learning model with skewed prior expec-

tations (free parameters), and a sub-optimal Bayesian learning model (where belief updating is

sub-optimal) with skewed priors. The posterior predictive from the last model and the adaptive

reference point models are very similar, showing that there may be a strong representational link

between these models.

7.4 Perceptual learning

We implement the adaptive SDT model specified in section 6.3.4 to analyze behavior in an ex-

perimental task.
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7.4.1 Experimental Data

This data come from collaborations, with experiments reported by Skewes and Gebauer (2016),

looking at differences in perceptual learning between neurotypical and autistic participants. This

analysis has been presented in Mistry et al. (2018). Autism spectrum disorder (ASD) is a highly

prevalent condition with about 1 in 68 affected globally. Sensory symptoms are common in ASD,

and include hypo- and hyper-sensitivity to stimulus, and sub-optimalities in perceptual inference

(Turi et al. (2015)). One area in which perceptual differences are particularly common in autism

is auditory perception (OConnor (2012)), including auditory localization (Teder-Sälejärvi et al.

(2005)). Skewes and Gebauer (2016) examined the potential cause of sub-optimality in perceptual

judgments for the spatial sources of sounds in adults with ASD. In the task, on each trial, partic-

ipants had to categorize an auditory stimulus into one of two categories. The categorization was

based on a cover story of classifying different species of crickets, with the territory of one species

being distributed to the left and the other to the right. Based on the spatial location of the sound

stimulus, participants had to categorize which species the sound on each trial originated from.

Each trial was followed by corrective feedback. The stimuli for the two species were spatially

overlapping to some extent to introduce uncertainty into the task. Each participant completed 960

trials split into 4 randomized blocks. The 4 blocks consisted of a 2 X 2 factorial design, with each

block having either a low (25%) or high (75%) base rate (BR) of one species, and a low or high

discriminability (SD, standard deviation). The blocks were presented in randomized order. In the

low discriminability environment there was greater spatial overlap of the auditory stimulus from

the 2 species. For this task, the criterion is defined as the spatial boundary such that any stimulus

perceived to come from the right of this criterion is categorized as species 1 and from the left as

species 2. As a matter of convention, objective spatial locations to the right are given positive

values and to the left are given negative values, so that the species on the right is considered the

“signal” and on the left, the “noise”.

The key results from a classical SDT analysis were that both ASD (n=19)and NT (n=23) partic-
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Figure 7.14: Inferred criterion based on classical SDT for individuals (dotted lines) and group
means (thick lines) in the 4 blocks that vary in base rate (LBR=low; HBR=high) and discrim-
inability (LD=low; HD=high). The red squares show the optimal criterion placement.
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Figure 7.15: Accuracy of categorization for individuals (dotted lines) and group means (thick lines)
in the 4 types of blocks. The blocks are split into two halves of 120 trials each, so the slope of the
lines shows within block changes. The NT and ASD plots are displaced adjacent to each other to
improve the clarity of the figure. ASD participants show greater variability and some show lower
levels of performance, but the differences at a group level are very small.

ipants showed sensitivity to base rate as well as discriminability manipulations. This sensitivity,

however, was suboptimal, and both groups demonstrated significant deviation from the optimal

response criterion, as shown in Figure 7.14. This deviation was larger for the ASD group than for
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the NT group for all 4 conditions. As a result ASD participants also demonstrated lower accuracy

as shown in Figure 7.15. A one-sided Bayesian t-test JASP-Team (2016) produced a Bayes factor

(BF) of 4.0 in favor of the accuracy for ASD participants (mean 73.7%) being lower than NT par-

ticipants (75.5%). ASD participants demonstrated less extreme criterion values in response to base

rate manipulations, but the BF for this was not conclusive. Figure 7.15 also shows the performance

of individual participants divided into the first 120 and second 120 trials, for each of the 4 types

of blocks. There does not seem to be a significant improvement within blocks for either group.

In general, accuracy was lower in conditions with lower discriminability. The participants in the

ASD group show greater variability, especially in the lower accuracy range.

7.4.2 Adaptive criterion setting

We implement the adaptive SDT model detailed in section 6.3 on this dataset. On the tth trial, par-

ticipants are assumed to adapt a criterion λt , such that if their perceived stimulus µt is higher than

λt , they identify the stimulus as species 1, and otherwise, as species 2. Our adaptive SDT model

(ASDT) assumes that people do not adapt a fixed criterion across all trials, but keep changing the

criterion in response to feedback. Such changes would be responsive to differences in rewards, the

perceived size of the error, or the past history of correct and incorrect feedback. In this task re-

wards are symmetric, that is, there is no difference in the rewards for correctly identifying species

1 (hit) or species 2 (correct rejection). Similarly there is no difference in the penalty depending on

whether species 1 (miss) or species 2 (false alarm) was incorrectly identified. Since the two cate-

gories were fictional, there is no reason to believe that participants have an inherent bias towards

either. Accordingly, ASDT groups all correct and all incorrect decisions together. It is assumed

that people shift their criterion only after receiving feedback about errors.
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7.4.3 Model description

Figure 7.16 shows the stimulus and criterion based on classical SDT as well as our adaptive SDT

model for a single participant. The effectiveness of adaptive SDT is especially visible in the pre-

dictions in the low discriminability (LD) blocks. Figure 7.17 shows the application of our adaptive

SDT model to 2 NT and 2 ASD participants. The achieved accuracy of the 4 participants and the

mean values of the inferred α and δ parameters for these participants are shown on the left side.

The 4 participants were selected to show behavior where both parameter are low (participant 1),

low α but high δ (participant 2), high α and low δ (participant 3), and both parameters high (par-

ticipant 4). The first column shows the immediate sensory error signature ηt across all 960 trials.

It can be seen that participants 2 and 4, with higher values of δ, show higher η values. The second

column shows the persistence related error signature ρt , and here, participants 3 and 4, with high

values of α, show higher ρt values. The third column shows the sum of these two, which is what

contributes to the total criterion correction on each trial. Of interest is the fact that across most

trials, the persistence based feedback signature seems to be the inverse of the immediate sensory

error feedback, thus leading to muted corrections when α is large. The last column shows the

resulting criterion movement from trial to trial. All four participants show some sensitivity to base

rate (BR) and the variability - standard deviation (SD) , but this is much higher in participants 1

and 2, who accordingly show higher accuracy rates.

7.4.4 Inference about individual parameters

We then use the complete data set to infer individual level α and δ parameters for the 19 ASD and

23 NT participants. Figure 7.18 shows the joint posterior density of the parameters for the two

groups. The size of the squares is the joint probability density. The overall densities look quite

similar for ASD and NT participants. The ASD group shows slightly higher values of α (mean

0.26, SD 0.26) versus the NT group (mean 0.19, SD 0.20), and similar values for δ (mean 0.4,
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criterion, and blue dots below the criterion.
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Accuracy = 77%
α = 0.04
δ = 0.50
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Accuracy = 68%
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Accuracy = 71%
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Figure 7.17: A process perspective inferred from the model for 4 of the 42 participants, to show
how the adaptive model infers distinct forms of behavior. The four columns show ηt , ρt , ηt +ρt ,
and ct .

SD 0.09 for ASD versus mean 0.41, SD 0.07 for NT) but neither is significant. A Bayesian t-test

suggests no main effect of diagnosis (ASD vs NT) on either parameter with BFs of 0.47 and 0.31

respectively, testing for a difference between the two groups for α and δ. A Bayesian ANOVA

analysis however reveals a significant main effect of the Autistic traits questionnaire (AQ) score,

with a Bayes factor of 4.4. Higher AQ scores demonstrate higher values of α. In Figure 7.18 the
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Figure 7.18: The joint posterior probability densities for the 2 model parameters for the ASD and
NT participants. The size of the squares shows the probability density and the color shows the
mean AQ (autistic traits questionnaire) score for the particular combination of α and δ values.

color represents the weighted AQ scores. For NT participants, this score is almost uniformly low as

expected, except for the highest level so fα within NT participants. With a few exceptions, α seems

to increase with an increasing mean AQ score, shown by the density clusters in dark red towards

the right. A Bayesian test of correlation yields strong evidence for a negative correlation between

α and the actual accuracy of participants in the task (r =−0.54,BF154), and mild evidence for a

positive correlation between δ and accuracy (r = 0.39,BF = 4). This supports the notion that any

suboptimality is driven primarily by higher persistence signal (α), than by the gain (δ).

7.4.5 Model performance

We implemented ASDT within a Bayesian inference framework for statistical inference (Plummer

et al. (2003)). To test the model, we infer the parameters using only data from one of the blocks at a

time and calculate the accuracy of the out-of-sample predictions for the remaining 3 blocks based
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on the mean posterior predictives. A floor benchmark is the accuracy with which the classical

SDT based criterion calculated using the hit rate and false alarm rate from a single block is able to

predict the responses for the remaining blocks. Table 7.1 shows a comparison of the predictions

based on using data from each of the 4 blocks for the classical SDT and ASDT models. The ASDT

model provides superior predictions, and provides a psychological process perspective to explain

how the criterion adapts over time.

Table 7.1: Accuracy of out-of-sample predictions using the difference blocks (LB=Low base rate;
HB=High base rate; LD=Low discriminability; HD=High discriminability). SDT is based on clas-
sical SDT analysis, and ASDT is based on our proposed model of adaptive criterion setting.

Out of sample prediction using block
LB-HD LB-LD HB-HD HB-LD All

Autism Spectrum Disorder (ASD)
SDT 81.2% 82.0% 80.8% 79.9% 81.0%
ASDT 85.8% 86.0% 85.9% 86.1% 86.0%
Neurotypical (NT)
SDT 82.1% 78.8% 78.9% 79.7% 79.9%
ASDT 87.0% 87.1% 87.3% 86.6% 87.0%

7.4.6 Aberrant precision interpretation

Suboptimality in sensory (and other) tasks by adults with ASD has been proposed to be a disorder

of metacognition (Friston et al. (2013); Van de Cruys et al. (2014)). Within this framework, Lawson

et al. (2014) propose two mechanisms that constitute an aberrant precision account of autism. The

first is enhanced neuromodulatory gain for how prediction errors are encoded in individuals with

autism. Adaptive gain control in neurotypical individuals is expected to adjust to environmental

volatility so that there is higher gain in more volatile environments. It has been proposed that

in individuals with autism however, gain control might be excessively enhanced because of the

expectation of highly precise sensory inputs. This in turn would lead to a lack of context sensitivity,

as reported by Palmer et al. (2015). Thus we conclude that the gain control processes controlled

by δ in our model corresponds to this mechanism. We would thus expect to see higher values of
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δ for ASD participants under this framework. We do not however observe this and δ values for

both groups are strikingly similar. We propose that excess neuromodulatory gain control is not

a key driver of suboptimality for the Skewes and Gebauer (2016) task. This result supports the

conclusion that autism is not characterized by uniform differences in the weighting of prediction

error (Manning et al. (2016)).

The second mechanism under the predictive coding framework constitutes a lack of sensory at-

tenuation, sometimes manifested as a failure to suppress prediction errors generated by repetitive

stimuli over time (e.g. Kleinhans et al. (2009)), or in failing to notice changes in the predictive

value of specific information (Van de Cruys et al. (2014)). The key aspect is that individuals with

autism can form accurate representations of low-level prediction errors, but the translation of these

into higher level signals differs when compared to NT individuals. Specifically, the higher level

signals might be influenced to drive repetitive behavior and perceive prediction errors over time

in a consistent manner. This may thus lead to behavior that is more resistant to change. In our

model, we propose that α captures this mechanism. High values of α would indicate persistence

of sensory feedback over time, leading to increased consistency of actions and longer time frames

to respond to environmental changes. We would expect to see higher values of α for ASD partic-

ipants under this framework. We see some indication of this, as values of α do show a small but

significant increase with increasing AQ scores. We propose that increased persistence and thus a

lack of response flexibility is the key driver for any increased suboptimality observed in this pool

of ASD participants. Relating this to classical SDT analysis, increased lack of response flexibility

would result in an increase in deviation along the ROC, not necessarily demonstrating reduced

sensitivity.

There is general consensus that lower level sensory error signals can be more precise, but are

transformed into attenuated or less precise higher level prediction error signals in people with ASD.

A perspective for explaining this has been using Bayesian updating (Pellicano and Burr (2012)).

The basic idea is that individuals with ASD may demonstrate inefficient Bayesian updating since
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they may have diffused priors, called hypo-priors, but strong sensory signals. We propose a related

but slightly different explanation. Even if individuals with ASD start with diffused priors, updating

with a strong sensory signal on a trial by trial basis would result in sharp posteriors. Since the

posterior on one trial would form the basis for the prior on the next, a diffused prior would not be

sustainable over trials. A sustained diffused prior might however be maintained from trial to trial

if apart from a strong sensory signal, there was a second signal that also influenced these priors.

On any trial, if all previous error information has been accounted for efficiently in the updated

prior, Bayesian updating would require that only new information is taken into account for further

changes to be made to the criterion. This is represented by the term ηt . Hence any significant

contribution from ρt leads to interference and ineffective updating. Even if η is a sharp sensory

signal, if ρ is partly in opposition to η, the result would result in sustained diffused beliefs, as

have been proposed in theory. Slightly higher levels of α and the resulting higher values of the

ratio of absolute magnitudes of ρt to ηt (mean ratio of 5.4 for ASD versus 2.9 for NT) though

not statistically significant, directionally align with Pellicano and Burr (2012), who suggest that

autistic perception might suffer from hypo-priors.

7.5 Price-High-Low: A consumption preference task

We implement the adaptive reference point based consumption utility model, as specified in

section 6.3.5 to analyze behavior in an experimental task.

7.5.1 Data

This is a secondary dataset, obtained from the work reported in Sitzia and Zizzo (2012). 384

participants were required to make a series of 20 sequential decisions. On each trial, they had to

select how many units of a particular lottery to buy. The lottery remained fixed across all trials
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within a subject. However, the purchase price per lottery was varied sequentially within-subject,

with the objective to test how different pricing schedules (increasing, decreasing, etc.) influenced

purchasing behavior. Participants were initially endowed with experimental units of currency,

and could spend as much of it as they wanted on the lotteries. At the end of the task, the unspent

currency, as well as any winnings based on the lotteries, were added and converted to real monetary

payouts. The leftmost panel in figure 7.19 shows the between-subject conditions. Each colored

line is the price stimulus for each of the 5 conditions. Participants in each of the 5 conditions

start with different, extremely high (EH), high (H), moderate (M), low (L), and extremely low

(EL) levels of prices fo the first 10 trials (shape block), but all of them observe the same identical

moderate price in the last 10 trials (compare block). The second subplot in the figure shows the

behavior, in terms of average units bought over trials for each condition. The key observations

made in the original paper are that participants with higher initial price observation purchase more

units at the constant latter half price than those that has observed a lower price. The distribution of

individual participants based on prices seen in the compare block for each condition is shown in

the third subplot. It can be seen that the average values are higher for th ered and blue (EH and H)

conditions compared to the yellow and purple (EL and L) conditions.
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Figure 7.19: Stimulus and responses: Price-High-Low task
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7.5.2 Modeling

We implement the baseline regression model for utility function based price elasticity, as specified

in section 6.7 as the baseline model. This allows demand to vary based on the current value of the

price.

log(xt) = A+β log(pt) (7.7)

In addition, we implement a fixed reference point (λ0 )model of utility.

log(xt) =





A+β log(pt + k(pt−λ0)) if λ0 ≤ pt(1+ k)/k

∞ otherwise.
(7.8)

Finally, we also implement the adaptive reference point model of utility based on section 6.7. The

adaptive reference point moves based on the last price observed, in accordance with individual

level α and δ parameters. In addition, we allow a payoff bias. In case of consumption, people we

propose that people have an innate consumption bias, and will be quicker to adjust their reference

points when the prices increase than when they decrease. We infer the bias as a free parameter

in the model. This bias (between 0 and 1) acts as a multiplier term to the difference signal in

equations 6.2 and 6.3, only when the price is lower than the reference point, thus allowing for any

potential consumption bias. The individual level parameter k measures the strength of anchoring

on the reference point. Figure 7.20 illustrates the working of the model with one actual example.

Figure 7.21 shows the model comparison, with the adaptive model showing lower rates of error

against both the standard utility and fixed reference point based utility model.

log(xt) =





A+β log(pt + k(pt−λt)) if λt ≤ pt(1+ k)/k

∞ otherwise.
(7.9)
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also shown.

7.5.3 Inferences

Figure 7.22 shows the correlation between the latent inferred strength of anchoring and the total

units bought. The strength of this correlation keeps increasing as we move from the extremely low

initial price to the extremely high initial price conditions. This reflects the fact that in high price

conditions, higher or lower price elasticity cannot explain higher consumption. Rather, higher

consumption is only explained by a higher fixation on comparison of the actual price against a

reference, and having a high reference point.

Figure 7.23 shows the distribution of inferred parameters of the adaptive reference point process.

Whilst most participants are clustered near the center, some individual differences are seen, espe-

cially with higher values of δ and α in the High (H) and extra high (EH) conditions, suggesting

that there may be some influence of task condition on the learning parameters.

Figure 7.24 shows that most people show a bias, with a multiplier in the range of 0.1 to 0.6 when

the price is lower, reflecting that they are quicker to update their reference point after a price

increase than after a price decrease. Figure 7.25 shows the average reference point movement by

condition. The higher reference points in the H and EH condition also reflect a consumption bias,
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Figure 7.21: RMSE comparison for the price-high-low task: Gray lines show the RMSE of baseline
models and the green and red bars show the improvement and deterioration in error using the
adaptive reference point model.
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Figure 7.22: Correlation between the latent inferred strength of anchoring and the total units
bought. The strength of this correlation keeps increasing as we move from the extremely low
initial price to the extremely high initial price conditions.
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Figure 7.24: Distribution of the consumption bias parameter across participants. Most people show
a bias, with a multiplier in the range of 0.1 to 0.6 when the price is lower, reflecting that they are
quicker to update their reference point after a price increase than after a price decrease.

away from the mean value, since the low values of the bias parameter (0.1 to 0.6 above), make

the movement from high to low reference points slower than the other way round, resulting in the

higher end point reference values and a higher consumption for these conditions.
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Figure 7.25: Average reference point movement by condition. The higher reference points in the
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7.6 Conclusions

In this chapter we have shown the ubiquity of the adaptive reference point mechanism by apply-

ing this to several different experimental tasks and incorporating them within different cognitive

modeling or response frameworks.
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Part III

Adaptive populations
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PART III - Adaptive populations

Population level behavior, behavior that is typically measured at the macro level, is usually treated

as an econometric rather than psychological or cognitive data. Such data takes the form of time

series overs days, months or years, and is typically characterized by various levels of population

adaptivity, often stemming from cognitive primitives.

In this part of the thesis I show how robust cognitive models can be incorporated into econometric

analysis of population level time series, to account for adaptivity, provide good descriptive and pre-

dictive capabilities, and make suitable inferences about the cognitive process that drives population

level behavior.
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Chapter 8

Cognitive modeling of adaptive behavior in

real world populations - Intifada violence

8.1 Introduction

Jeliazkov et al. (2008) analyze the daily incidence of violence during the Second Intifada using

analytical Bayesian implementation of a second order discrete Markov process. They find that the

data are characterized by weak dynamics and strong instability across sub-periods, showing dis-

tinct violence patterns within each political regime. In this chapter, we extend this work in several

ways. First, we propose an agent-based cognitive model of violence, where the propensity for

violence is governed by a non-homogeneous, zero-inflated Poisson process. This approach allows

for a greater influence of past events than a Markov process, but imposes greater structure com-

pared to vector autoregressive models commonly used to analyze time series. The cognitive model

proposes repetition and retaliatory functions to measure the latent build up for violent behavior.

These functions are similar to the reaction functions typically used in VARs, but are constrained

and simplified based on assumptions drawn from psychological theory. These functions act as a
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common cause, and influence both the propensity for violent behavior to occur, and the intensity

of violent behavior, conditional on violence occurring. The propensity for violence based on the

latent build-up is non-linear, and the effects of violence in previous periods are not linearly sep-

arable, as often assumed in linear VAR models. The model is implemented as a fully Bayesian

computational model, and is not limited by any assumptions necessary for analytical approaches,

including whether the time series is stationary, whether the Poisson increments are independent, or

whether model residuals are normally distributed etc. The key model parameters capture the base

rates of violence, the weights placed on repetitive versus retaliatory violent behavior, the recency

impact for repetitive and retaliatory behavior (which measures the lag dynamics), and scale and

shift parameters for the zero-inflation process. First, we implement this model to infer structural

instability between sub-periods, and whether such instability is characterized by changes in the

relative weights on repetition and retaliation, by the recency effects, the base rate of violence in-

dependent of previous dynamics, or the zero-threshold for initiation of violent behavior. These

inferences give a deeper insight into the mechanics of violent behavior depending on the political

regime shifts. The model is a generative model, and we apply the model sequentially, by providing

it with last 30 days of data, and letting the model make predictions about the violence level in the

next 7 days, and find that this model provides superior predictive estimates even when there are

significant shifts in the underlying violence patterns.

8.2 Data

Jeliazkov et al. (2008) consider a problem and data set, involving the pattern of violence during

the Second Intifada between Israelis and Palestinians, that has received considerable attention in

political science and statistics. The data set (obtained from B’Tselem), basically measures the

numbers of fatalities for both the Israeli and Palestinian sides over the course of over 2400 days,

and divides the days into 10 meaningful periods delineated by significant political or military
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Figure 8.1: The pattern of change in weekly violence over time. The top panel shows violence
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events.

The data take the form of counts of fatalities, vs,t and v′s,t , for violence on the tth day committed,

respectively, by the sth side and against the sth side. Because there are two sides, the violence

committed by the first side is the violence received by the other side, so that v1,t = v′2,t . Similarly,

the violence committed by the second side is the violence received by the first side, so that v2,t =

v′1,t . The data also include a partition of each day into one of 10 periods, with the period for the tth

day denoted by pt .
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Figure 8.2: Conceptual model

8.3 Building a Psychological Model

The cornerstone of our model is a latent psychological construct, which we call build up, that mea-

sures the strength of the tendency toward violence for each side over time. We conceive of build

up as something like a social memory, and assume it has similar properties to a human episodic

memory (Norman et al. (2008)). We also assume that build up plays a role both in determining

the probability that any given day will involve fatalities, and, given that it does, the magnitude of

those fatalities. This sort of common-cause assumption is a hallmark of psychological modeling, in

which the same latent variable is assumed to affect multiple sorts of behavioral observations (Lee

(ress)). The mechanism for determining the probability of fatalities also borrows from psycholog-

ical theory, taking a non-linear form often used to map latent strengths to behavioral probabilities

in psychophysics (Wichmann and Hill (2001)). To describe the model, we first discuss how build

up is defined and interpreted, before specifying how it determines the probability of violent attacks

and the intensity of those attacks. Figure 8.2 provides a conceptual representation of this model.
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8.3.1 Build Up

Build up depends on previous violence by both sides. The influence of previous violence may be

positive, which aggregates further violence, or negative, which deters further violence. Further

violence aggregated by previous violence by the same side is naturally interpreted as repetitive

violence, while further violence aggregated by previous violence by the other side is naturally

interpreted as retaliatory violence. When the influence of previous violence from the same side is

negative, one interpretation is that the side is satisfied with the impact of their previous actions, and

another interpretation is that the capacity for additional violence by that side has been exhausted.

When the influence of previous violence from the other side is negative, one interpretation is that

the capacity of the side subjected to the previous violence has been significantly diminished, and

another possible interpretation is that the previous violence has acted as an effective deterrent.

Formally, the psychological build-up ψs,t for an agent from side s at time t is given by a weighted

combination of the retaliatory αs,t and repetitive βs,t components:

ψs,t = ω
α
s,pt

αs,t +ω
β
s,pt βs,t . (8.1)

The weights ωα
s,pt

and ω
β
s,pt correspond to the relative importance of the repetitive and retaliatory

components for the sth side during the time period pt . The repetitive and retaliatory build ups are

recency-weighted tallies of previous observed violence.

αs,t = γ
α
s,pt

vs,t +
(
1− γ

α
s,pt

)
αs,t−1; αs,1 = vs,1

βs,t = γ
β
s,pt v

′
s,t +

(
1− γ

β
s,pt

)
βs,t−1; βs,1 = v′s,1. (8.2)

The recency weights γα
s,pt

and γ
β
s,pt quantifies to how persistent the influence of previous violence

is on current build up. If a recency weight is close to one , only the most recent events will be
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significant. As a recency weight decreases towards zero, the influence of previous events increases.

8.3.2 Probability of Violent Attacks

The probability of violent attacks πt at any time t is based on the latent build up ψt−1 and is

modeled with a logistic function

πs,t = νs,pt/

(
1+ exp

(
−
(
ψs,t−1− τs,pt)

)

λs,pt

))
, (8.3)

that includes a threshold value τs,pt , an upper bound νs,pt , and a scale λs,pt for the logistic function.

As the build up ψs,t−1 crosses the threshold τs,pt , the probability of violence will be half the max-

imum possible probability νs,pt . How quickly the probability increases or decreases as the build

up increases or decreases is controlled by the scale λs,pt . The probability πs,t is used to generate a

latent indicator δs,t ∼ Bernoulli
(
πs,t
)
, with δs,t = 1 indicating the sth side perpetrated violence on

the tth day, and δs,t = 0 indicating that they did not.

8.3.3 Intensity of Violent Attacks

The intensity of observed violence is also modeled as depending on the combination of the latent

build up ψs,t−1, and a base rate φpt of violence in the period p that is independent of the latent

build up. The intensity is calculated as

θs,t = ψs,t−1 +φs,pt−1, (8.4)
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and is the basis of modeling the observed violence as

vs,t ∼





Poisson
(
θs,t
)

if δs,t = 1

0 otherwise.
(8.5)

8.3.4 Graphical Model

Figure 8.3 shows a graphical model representation of the model specified above.

αs,t βs,tγαs,p γβs,p

ψs,tωα
s,p ωβ

s,p
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vs,t

t timesp periods

µγα
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)
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)
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if δs,t = 1 and θs,t > 0

0 if δs,t = 0 or θs,t ≤ 0

Figure 8.3: Graphical model implementation of the model of intifada violence.
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8.4 Modeling Results

8.4.1 Descriptive Adequacy

Here, we provide all the data to the model, and use this to test the descriptive adequacy of the model

and make suitable inferences about the population level cognitive process. Figure 8.4 shows the

violence by either side. For ease of comparison, the average weekly mean and weekly range of

posterior predictive from the models (brown) have been plotted on the negative y-axis, with the

actuals on the positive y-axis (gray). The descriptive adequacy of the model can be observed from

figure.

8.5 Evaluating Model Predictions

We implement an n+ 1 to n+ 7 prediction, that is, we provide the model with the last 30 days

of data and obtain the predictions for the next 7 days, the data for which is not provided to the

model. This is done consecutively for all days. We thus obtain model generalizability predictions

for lags from n+ 1 to n+ 7. The figures 8.5 and 8.6 show the mean posterior predictive values

of the violence based on n+ 1 and n+ 7 values respectively. The RMSE error of the predictions

increase from 2.3 to 2.9 as we move from an n+1 to n+7 prediction.

One important aspect of the modeling predictions are that in the context of the data, a miss (pre-

dicting no violence when there is going to be violence) is costlier than a false alarm (predicting

violence but none occurs). We test the model against a simple repeat yesterday model, where the

assumption is that if violence occurred on the previous day, it will occur today, and vice versa.

Note that the data is heavily zero-inflated, and this simple heuristic is expected to do quite well

on an overall level. Our model is slightly worse in terms of false alarms (30% versus 20% for the

repeat yesterday assumption), but significantly better in terms of the misses (20% versus 47% for
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Figure 8.4: Descriptive adequacy of the model. The top panel shows violence by Israel against
Palestine, and the bottom panel shows violence by Palestine against Israel. The weeks are divided
into ten named periods, divided by broken lines. Within each panel, the upper half shows the data,
with bars showing the range in violence over the individual days in each week, and the solid line
showing the average violence for each week. The bottom half shows the range and mean of the
corresponding posterior predictive distribution of the model.

the repeat yesterday assumption), which we argue, are the critical points for prediction.

8.5.1 Inferences

Figure 8.7 shows how the repetitive and retaliatory components of the latent build up decay over

time. For most periods, the influence of past violence, as far as the dynamic component of violence

is concerned, is wiped out within a week. There are some notable exceptions, for instance in the

case of Israel, during the period when Arafat dies, and during the pre Lebanon war. The figure
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Figure 8.5: n+1 prediction

Figure 8.6: n+7 prediction
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Figure 8.7: Shows how the repetitive and retaliatory components of the latent build up decay over
time. The influence of these components is shown with increasing lag as we move from the left (1
day later) to the right (7 days later).

also shows how retaliatory influence switches between positive to negative, or vice versa, between

certain periods, for Palestine. For instance, the retaliatory influence is positive during the Sharon

period, but becomes significantly negative during the Defensive shield period, which was a period

with a goal of capacity destruction by Israel. Conversely, there is a huge increase in the retaliatory

component in the period where Arafat dies. In general, the ceasefire (4th time period) demonstrated

stronger dilution of the dynamic repetitive and retaliatory responses than the truce period (10th time

period).

Figure 8.8 shows the mean build up of the retaliatory and repetitive components in each period

(note this varies on a day-to-day basis in the model). The key observations are that the retaliatory

buildup seems to be more influential on violence by Palestine, and the repetitive buildup for Israel.

The negative build in latter periods for Palestine may be indicative of capacity reduction based on

attacks from Israel. Figure 8.9 shows the characteristic curves inferred for probability of violence
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versus latent build up during each period. Some key observations are the generally higher sensi-

tivity for Israel, the sudden shifts in the curves, for example a drop in the period form Defensive

shield to Ceasefire, and an increase in the period from the pre Lebanon war to the Lebanon war,

are captured by the model from the data, without any prior knowledge about these periods.
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Figure 8.8: Average build up of the retaliatory and repetitive components in each period.

The cognitive modeling approach reveals relatively weak dynamics, that is, the role of day to day

violence compared to the long term internalization of violence. Figure 8.10 shows the distribution

of the ratio of latent build-up to the base rate in determining the intensity of violence. High values

imply that short term dynamics play a large role, whereas low values imply a long term build up

that is internalized, and not affected by day to day violence. In general, retaliatory violence by

Palestine shows a higher degree of dynamics, whereas repetitive violence by Israel shows a higher

degree of dynamics. The impact of specific events such as a jump in the repetitive dynamics for

Israel during the war and the during Operation Defensive Shield, and the sudden fall during the

truce period are once again captured by the model, just from the data, without any prior information

about the nature of these periods.
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Figure 8.9: The probability of violence as a function of latent buildup on either side.

8.6 Conclusions

Vector autoregressive (VAR) models are commonly used to model interdependent time series in

econometric studies. These models allow for interpretation of the time series based on impulse

response functions, which measure the reaction of target variables to impulse shocks in one or more

of the input variables, and historical and predictive decomposition of error variances based on these

impulse response functions. These functions can be analytically determined because the change in

the target variable as a result of a change in one of the input variables is linearly separable in VAR

models. Unlike the VAR models, the model specified here does not need to make any assumptions

about the time series (such as stationarity). The repetition and retaliation functions here are similar

to the reaction functions typically used in VARs (Jaeger and Paserman (2006); Haushofer et al.

(2010)), but are constrained and simplified based on assumptions drawn from psychological theory.

This psychological perspective means that, while our model ultimately can be conceived as a set of
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Figure 8.10: Distribution of the ratio of latent build-up to the base rate in determining the intensity
of violence. High values imply that short term dynamics play a large role, whereas low values
imply a long term build up that is internalized, and not affected by day to day violence.

statistical assumptions, it makes theoretical commitments and has parameters with interpretations

that are more grounded in psychological theory. We argue that this approach leads to a model

that is both statistically simpler, and psychologically more structured, than previous statistical

approaches, and especially vector autoregressive (VAR) modeling approaches. For example, VAR

modeling potentially allows a free parameter quantifying the weight given to each previous time,

although previous authors have imposed various statistical constraints, often by choosing a finite

window that limits the time-lag over which previous violence can exert an influence. Our approach,

in contrast, makes a theoretical assumption about constraints on social memory that lead to a single

interpretable recency-weighted parameter for each period controlling the influence of past violence

on current build up. Overall, our model provides suitable descriptive and predictive capability, and

allows us to make strong inferences about the underlying process.
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Chapter 9

Cognitive modeling of adaptive behavior in

real world populations - Alcohol

consumption patterns in response to tax

changes
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9.1 Introduction

Consumption behavior is often analyzed by identifying sufficient statistics based on the observed

elasticities of consumption behavior with respect to underlying drivers of change, such as prices or

tax rates. The underlying assumption in rational economic analysis is often that these elasticities,

for instance, the rate of change of consumption in response to tax changes, are stable at a population

level over time. If instead, these elasticities are dependent on evolving choice preferences, the

resulting analysis may be highly biased or inefficient. For instance, assume that the change in

consumption ∂W in response to a change in policy ∂t (e.g. a change in the tax rate) is assumed to

be determined by an empirically observable elasticity ε, so that ∂W/∂t = f (ε). Once ε is estimated,

it can be used to measure and predict the change in consumption resulting from all future changes

in t. This is the typical assumption in many econometric models.

Now assume that ε is in fact a function of some constant cognitive preference parameters Ψ, and en-

vironmental factors E. If instead we can empirically measure Ψ, then ∂W/∂t = f (ε) = f (g(Ψ,E)).

This has the advantage that any changes in ε due to changing preferences can be captured through a

relatively constant cognitive parameter set Ψ. It also has the advantage that environmental factors

E, that might affect elasticities because of the way cognitive preferences react to specific envi-

ronmental changes can be captured. However this is contingent on specifying a structural model

g(Ψ,E). Since elasticities are an emergent property of consumption functions, I propose that a

generic model of consumption that captures changing preferences through a set of constant cogni-

tive parameters may be a viable solution.

In this chapter, I present a generic cognitive framework for modeling consumption decisions by

individuals. This framework is based on segregated mental accounting and the existence of a psy-

chological transaction utility that works to complement or offset economic utility. I model trans-

action utility as being reference point sensitive. Reference points in turn are modeled as adaptive

psychological constructs that evolve over time based on hedonic adaptation, show susceptibility to
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confirmation bias, and in the domain of public policy response, are influenced by perceptions of

fairness and trust in the government. In essence, this is an adapted version of the adaptive reference

point based utility models introduced in section 6.3.5.

Note that this chapter is primarily theoretical, and provides an analytical approach to integrat-

ing cognitive models within econometric analysis. However, a small computational modeling

exercise with real world beer consumption data is included towards the end as a proof of con-

cept.

9.2 Developing a cognitive-econometric utility framework

I propose a framework to evaluate behavioral responses to public policies based on embedding

a cognitive process perspective within econometric analysis. I construct any response to public

policy as a consumption problem faced by a representative agent (Chetty (2015)). This formulation

can be quite flexible, for instance, as shown later in the paper, tax evasion behavior can also be

modeled within this framework, by treating the proportion of income reported as the numeraire.

This section describes a stepwise development of the framework.

9.2.1 Mental accounting and transaction utility

Thaler (1999, 2008) proposed that consumption choices were driven by a combination of acquisi-

tion utility and transaction utility. Acquisition utility is the utility of consumption less that value

of the price paid. Transaction utility typically reflects the value of the deal, and is the difference

between the price paid and a reference price. The transaction utility can be positive if the actual

price is lower, and negative if it is higher, than the reference point. The mental accounting theory

proposes that the acquisition and transaction utilities are separately evaluated.
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In the generic consumption problem, the decision maker selects a consumption quantity, x, to

maximize the total utility T (x), which comprises an acquisition utility and a transaction utility. In

the context of responses to public policy, transaction utility is specified as a segregated economic

evaluation of the relevant policy tool t, that impacts the decision maker (such as taxes, subsidies,

defaults etc.), against an internal reference point tθ. Often, the exact impact of the policy may not

be transparent or salient to the decision maker, hence the appraisal of transaction utility is made

based on the perceived value of t, denoted as ts = st, a multiple of the true value. Here, s = 1

indicates an accurate perception of the true value t. The reference point tθ reflects the personal

beliefs of the individual about the appropriate level of t. For example, it can reflect beliefs about

the fair level of taxes, or about social insurance entitlements, etc. The total utility is defined in

equation 9.1. Here, V (z) is a money metric utility function, p is the pre-policy cost per unit of x,

and δ is the weight placed on the transaction utility. The transaction utility is based on applying

the policy t (say taxes), on some f (x). The function f (x) depends on how the policy tool is

applied. For instance, in the case of ad valorem sales taxes, the tax rate t is applied on the total

purchase cost, and f (x) = px. Note that applications of the mental accounting framework typically

assume δ > 0. This implies that individuals act in self-interest to maximizes their own economic

position, an approach that is also the norm in neoclassical economics. Thus, if the perceived

value of ts is less than the internal reference point tθ, the individual experience a positive utility,

reflecting the value of a ‘good deal’. On the other hand, if ts > tθ, this is evaluated as paying too

much, and induces a negative transaction utility. The money-metric utility V (z) may be concave

(e.g. V (z) = zγ,0 < γ < 1), the transaction utility may be under or over weighted (δ 6= 1), or may

depreciate over time (δ(n)< δ(n−1), where transaction utilities may be repeatedly evaluated over

multiple time periods). These, amongst many others aspects of mental accounting, can constitute

a violation of fungibility, and can thus influence choices.

T (x) = [V (U(x))−V (px)]acquisition +δ [V (tθ f (x)− ts f (x))]transaction (9.1)
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For the rest of the paper, we define V (z) = zγ if z≥ 0 and V (z) =−(−z)γ if z < 0. This is similar to

the utility function as per cumulative prospect theory Tversky and Kahneman (1992), but without

loss aversion, that is λ = 1 under prospect theory. I highlight that we are dealing with purchase

and transaction costs rather than losses. It has been proposed that psychological coding of negative

values as costs rather than losses implies that these quantities are not treated in a loss aversive

manner Kahneman and Tversky (1984); Thaler (2008, 1999), to ensure hedonic efficiency. Thus,

λcosts << λloss, and it is reasonable to assume that λcosts ≈ 1.

9.2.2 Deontological and Utilitarian transaction utilities

The previous section defines transaction utilities in a strictly self-serving sense. However, many

consumption decisions involve conflicting considerations. For instance, the decision to purchase

goods that damage the environment, the decision to evade taxes, or the decision to purchase manda-

tory health insurance, may result in a conflict between economic utility on one hand, and a moral

obligation on the other. Dual process theories of moral judgment (Greene (2007,0)) propose that

when facing a moral conflict, people may make decisions based either on utilitarian or deontolog-

ical premises. Utilitarian responses are based on evaluating the overall consequences to society,

whereas deontological responses are based on following a rule or obligation, without rationalizing

the decision based on potential consequences. Conway and Gawronski (2013) were able to disso-

ciate not only mechanisms for utilitarian and deontological responses, but also a third propensity

where neither drive behavioral responses. However, most decisions giving rise to conflict, that are

studied under this paradigm, involve no direct costs or benefits to one’s own self, unlike the ex-

amples of consumption based conflicts described above. In all of these examples, the self-serving

utility may differ significantly from a utilitarian perspective that is based on overall social welfare.

I propose that for such consumption problems, there are three possible cognitive processing modes

that an individuals may adopt.
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First, a self-interest based response considers transaction utilities defined in the traditional sense.

This implies that the psychological benefit of paying less than the reference price is always positive,

or δ > 0 (see equation 9.1).

Second, it is possible that decisions are based on a deontological perspective, that is, dominated by

a rule, obligation or ideology, without consideration to the transaction utility. In this case, δ = 0.

Psychologically, this means that considerations over whether or not something is fair, beneficial,

or harmful do not enter decision considerations. These decisions tend to default to normatively

expected behavior.

Third, decisions could be made based on a utilitarian perspective, with the objective of maximizing

social welfare, even if this is partly in conflict with maximizing one’s own utility. This corresponds

to δ < 0. For example, purchasing goods that are harmful to the environment may invoke a utilitar-

ian process. In this case, it is possible that paying more than the reference point actually contributes

to positive psychological utility, and helps justify the purchase. Similarly, getting a ‘good deal’ on

such a harmful product may actually reduce transaction utility, thus inducing guilt and reducing

consumption. Transaction utility under a utilitarian perspective operates in the opposite direction

to a self-interest based transaction utility.

Transaction utility thus depends on whether a self-interest based (δ > 0), deontological (δ = 0), or

utilitarian (δ < 0) cognitive process underlies the decision. This of course raises the question as

to what aspects determine what underlying process dominates a particular consumption decision.

The dual process theory of moral judgments proposes that deontological processes are more likely

to be driven by emotion and intuitive responses, whereas utilitarian processes are driven by greater

reflection and cognitive control (Paxton et al. (2014)). Increased cognitive load has been found

to significantly alter utilitarian judgments whereas manipulation of empathic concern influenced

deontological judgments (Conway and Gawronski (2013)). From a public policy perspective, an

important premise here is that deontological processes do not consciously consider the fairness or

benefits of a policy while responding to it. Deontological processes might be more susceptible

146



to influence by default options, and peer group influences. Utilitarian processes would be specif-

ically concerned with the fairness of policies and redistribution goals, and trust in the governing

parties. Utilitarian reference points thus reflect ‘the bare minimum I should be paying’, whereas

self-interest reference-points reflect ‘the maximum they should be charging me’. Reference points

become irrelevant under deontological processes.

9.2.3 Hedonic and Trust based adaptation of reference points

Transaction utilities may be evaluated positive or negatively against a reference point based on

what underlying processes drive responses. However this reference point is not typically constant.

I propose that the reference point evolves over time, based on hedonic adaptation (Frederick and

Loewenstein (1999)). A similar principle has been used to describe how people may adapt a refer-

ence point for the rate of taxation (Bernasconi et al. (2014)). Essentially, this mechanism works by

moving the current reference point (tθ) closer to the current perceived value (ts), at a certain rate

Lt . Additionally, I propose that the reference point for policy costs (benefits) moves higher (lower)

when there is a perception of fairness or trust in the government, and lower (higher) when there

isn’t. This perception of trust is coded as F = 1 or F = −1. The rate of adaptation in response

to these perceptions is governed by L f . This characterizes equation 9.2. Here, the reference point

is updated at every time period n. The updating is assumed to happen every time there is a con-

sumption decision or a policy change. For instance, the reference point for the purchase of goods

may be updated every time the goods are purchased, or the reference point for income tax may be

updated every time a tax return is filed.

t(n)
θ

= t(n−1)
θ

+Lt(st− t(n−1)
θ

)+L f F(n) (9.2)

This can be rewritten as a recurrence equation 9.3, where t0 is the initial reference point at n = 0.

We define α(n) as the proportion of time periods up to n where F(n) = 1, as opposed to F(n) =−1.
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Then α(n) measures the proportion of time periods during which the individual had a positive

perception of fairness and trust in the system. The sensitivity to trust, L f > 0 when t is a cost (e.g.

taxes) and L f < 0 when t is a benefit (e.g. subsidies).

t(n)
θ

= st +(1−Lt)
n(t0− st)+L f (2α

(n)−1)n (9.3)

The hedonic adaptation serves to condition people towards the current levels of t. The rate at

which this belief changes may vary significantly by individual. Note that a hedonic learning rate

Lt = 1 implies that an individual will update their belief about the reference point (tθ) instantly

after a single time period (e.g. a single purchase), to their current perceived level st. A low

value of Lt implies that people stick to their initial beliefs. If people learn fast (high Lt), and

have an accurate perception (s≈ 1), this implies that their transaction utility will be close to zero,

and consumption behavior will indicate that individuals tend to ignore the taxes or subsidies in

question. If Lt is low, and people believe in a low fair reference point (tθ << st), the transaction

utility will have a high negative value under self-interest based processing (δ > 0), resulting in a

lower consumption demand. If this is the only mechanism affecting the reference point (i.e. if

L f = 0), as long as there is some learning (Lt > 0), people are expected to converge (as n −→ ∞)

their beliefs to the extant perceived value st. When there is a shift in costs (∆t 6= 0), initially people

are likely to have larger valence of transaction utilities (positive or negative depending on δ and

the direction of the cost shift). Over time and with repeated transactions, they may update their

reference point so that the valence of transaction utilities starts to reduce towards zero, modulated

of course by any perceptions of trust. Of note is that this shift is relative to s∆t, highlighting

the role of the salience s of changes. Soliman et al. (2014) showed the importance of learning

in how individuals dynamically evolve to comply with tax laws, and observe that this process

of learning over time is often the reason that empirical observations of a dynamically evolving

population behavior do not converge with the static predictions of many neoclassical models of

tax compliance. The framework provided here specifically addresses this issue as it predicts a
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changing rate of compliance behavior over time.

9.2.4 Confirmation bias and asymmetric hedonic adaptation

The rate of hedonic adaptation can affect how behavior evolves dynamically over time in response

to policy changes. Apart from heterogeneity across individuals, there may also be systemic varia-

tions in Lt within individuals.

t(n)
θ

= st +(1− (mv+(1− v))Lt)
n(t0− st)+L f (2α

(n)−1)n (9.4)

I propose that the rate of hedonic adaptation Lt is asymmetric, and depends on whether movement

of the reference point towards the perceived value of t supports or inhibits current behavior. For

instance, if the transaction utility for a consumption decision is reduced by the direction of adapta-

tion, the rate of adaptation is likely to be slower than if the direction of adaptation increased trans-

action utility. Thus, confirmation bias will manifest as a consumption bias, an emergent property

of asymmetric reference point adaptation. Let m reflect a bias that reduces the rate of adaptation

0≤ m≤ 1 when adaptation inhibits current behavior. This bias is introduced in equation 9.4.

Here, v is an indicator function that serves to identify whether or not the bias applies in a particular

situation. The indicator v = 1 if (st < tθ, δ > 0), or if (st > tθ, δ < 0), and 0 otherwise. These

situations reflect the self-interest and utilitarian modes when a hedonic adaptation of the reference

point would reduce transaction utility, resulting in a lower effective rate mLt of adaptation.
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9.3 Incorporating the cognitive framework into econometric

analysis

Chetty (2009) describes how sufficient statistics form a compromise between structural models

and reduced-form approaches in econometric analysis. I use the suggested approach to evaluate

whether sufficient statistics for the proposed cognitive framework can be generated as functions

of empirically observable elasticities. I outline 2 key examples based on consumption (sales) tax,

and income tax. In subsequent analysis, I treat δ as a discrete parameter δ ∈ [1,0,−1], so that it

only carries information about the mode of processing (self-interest, deontological, and utilitarian),

although more sophisticated analysis can allow this to vary on a continuous spectrum. The key idea

here is to develop sufficient statistics for these structural models that allow us to create an estimator

for key parameters of interest, and compare this to existing sufficient statistics developed within

this domain.

9.4 Application 1: Consumption tax

Chetty et al. (2009b); Chetty (2015), describe a representative-agent model to incorporate behav-

ioral aspects into a consumption decision, specifically, the impact of whether sales tax is included

or excluded from the consumption decision. The key sufficient statistic is an estimator for θ, which

defines the proportion of agents that are assumed to include sales tax into their consumption de-

cision. I approach the same problem using the cognitive framework described above, making the

following assumptions:

x = The number of units of the numeraire

U(x) = The utility function for x = ax1−b/(1−b)

t = Actual sales tax

s = Salience of sales tax
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ts = Perceived sales tax = st

tθ = Internal reference point for sales tax

p = Actual pre-tax unit price of the numeraire

f (x) = px = Total purchase price, the value on which tax is applied.

Substituting the above values in equation 9.1, we obtain equation 9.5. Since V (x) is dependent on

whether x > 0 or x < 0, we add an indicator function η. Here η = 1 if st ≥ tθ and η = 0 if st < tθ.

T (x) =
(

ax1−b

1−b

)γ

− (px)γ +δ (px)γ (1−2η) ((1−2η)(tθ− st))γ (9.5)

Since we assume that a decision maker maximizes T (x), we evaluate x at ∂T (x)/∂x = 0. This gives

us equation 9.6.

x =
(1−b)(1−γ)/bγ

a−1/b
p−1/b

(
1−δ(1−2η)((1−2η)(tθ− st))γ

)−1/bγ

(9.6)

Taking logs, defining β =−1/b and A = β log(a(1−b)(γ−1)/γ) we obtain equation 9.7 which is in

the form of a log-linear model with price elasticity εp =−β.

log(x) = A+β log(p)+β log
((

1−δ(1−2η)((1−2η)(tθ− st))γ
)1/γ

)
(9.7)

We seek to understand how x varies with t. The key quantity to estimate empirically is tθ. If we can

estimate tθ within a steady state environment, that is, when reference point adaptation is minimal,

then a sensitivity analysis of welfare is possible by using informative priors about s (from surveys),

and δ. We compare empirical strategies under this model with similar strategies used in previous

literature.

9.4.1 Empirical manipulation 1:

Now consider an empirical scenario where the sales tax is completely included in the displayed

price (Chetty et al. (2009b); Chetty (2015)). In the presented model, this corresponds to:

p = p(1+ t)
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s = 0

tθ = 0

Here, the transaction utility does not come into the picture, and the acquisition utility is assumed to

include the tax that is incorporated into the displayed sales price. In this scenario, the consumption

quantity x1 is given by equation 9.8.

log(x1) = A+β log(p)+β log(1+ t) (9.8)

Equation (9.8) - (9.7) gives,

log(x1)− log(x) = β log(1+ t)−β log
((

1−δ(1−2η)((1−2η)(tθ− st))γ
)1/γ

)
(9.9)

Defining ρ1 =−(log(x1)− log(x))/log(1+ t),

ρ1 log(1+ t) = β log
((

1−δ(1−2η)((1−2η)(tθ− st))γ
)1/γ

)
−β log(1+ t) (9.10)

(1+ t)γ(1−ρ1/εp) = 1−δ(1−2η)((1−2η)(tθ− st))γ (9.11)

(tθ− st) = (1−2η)

(
1− (1+ t)γ(1−ρ1/εp))

δ

)1/γ

(9.12)

Applying the fact that t is small, we can use a Taylors series approximation so that (1+t)k = 1+kt.

Note that here δ is either +1 or -1, since a reference point is undefined when δ = 0, that is, under

deontological processing. When δ = 0, we would expect ρ1 = εp.

(tθ/t) = s+(1−2η)

(−γt1−γ(1−ρ1/εp)

δ

)1/γ

(9.13)

Now note that in the special case where γ = 1 and s = 1, we obtain equations 9.14 and 9.15.

Note that ρ1 and εp are empirically observable quantities under such a manipulation Chetty et al.

(2009b).

If δ = 1, that is, for self-interest based processing,

(tθ/t) = (1−η)

(
ρ1

εp

)
+η

(
2− ρ1

εp

)
(9.14)
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If δ =−1, that is, for utilitarian processing,

(tθ/t) = η

(
ρ1

εp

)
+(1−η)

(
2− ρ1

εp

)
(9.15)

Note that under these constraints γ = 1, s = 1, and η = 0, the estimator for tθ/t in the self-interest

mode is ρ1/εp. This is identical to the estimator for 1− θ obtained by Chetty et al. (2009b),

where θ is the proportion of the population that takes taxes into account in a rational sense. In

fact, under these constraints, the mode of processing δ, drives the relationship between ρ1 and εp.

A deontological decision maker (δ = 0) will always have ρ1 = εp. A utilitarian decision maker

(δ =−1) will have ρ1 ≤ εp, and a self-interested decision maker (δ = 1) will have ρ1 ≥ εp.

Comparing the inference made by Chetty et al. (2009b), if under such an empirical manipulation,

ρ1 ≈ εp, this implies a value of θ = 0 in their model, which suggests that everyone ignores taxes.

In our model this corresponds to either a deontological mode of processing, where the transaction

utility is not computed, or to a self-interest mode of processing (δ= 1) with tθ = t, or to a utilitarian

model of processing (δ =−1) with tθ = t. In all three cases, the qualitative interpretation remains

the same, that people have a transaction utility of zero, and thus implicitly behave as if they are

ignoring taxes.

If on the other extreme, if we find that ρ1 ≈ 0, this implies θ = 1 in their model, which in turn

implies that everyone takes taxes into account in the same way as they do prices, and accordingly

adjust consumption. In the model presented here, this situation gives rise to interesting constraints.

If t are costs (i.e. taxes, t ≥ 0), this situation implies that people are not in either a deontological

or self-interest processing mode. This situation can only manifest if people are in a utilitarian

processing mode, and either tθ = 2t or tθ = 0. Behaviorally, this implies that the taxes are quite

different from the reference point, that people ascribe either a large positive or negative transaction

utility to taxes, and is thus compatible with the view that people take taxes into account in a way

similar to prices.

Thus the sufficient statistic identified by Chetty et al. (2009b) is subsumed by the model presented
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here, under the special case s = 1, γ = 1. However, we highlight that the sufficient statistics de-

scribed here potentially enable us to gain additional information about the cognitive approach that

drives behavior.

9.4.2 Empirical manipulation 2:

Next, consider a scenario where it is ensured through prior education or surveys that people have

knowledge of the true tax rate t, such that s = 1. In this scenario, the consumption quantity x2 is

given by equation 9.16.

log(x2) = A+β log(p)+β log
((

1−δ(1−2η)((1−2η)(tθ− t))γ
)1/γ

)
(9.16)

Equation (9.16) - (9.7) and defining ρ2 =−(log(x2)− log(x))/log(1+ t) gives equation 9.17.

(1+ t)−ρ2γ/εp =
1−δ(1−2η)((1−2η)(tθ− st))γ

1−δ(1−2η)((1−2η)(tθ− t))γ
(9.17)

We note that from equation 9.12

(tθ− st) = (1−2η)

(
1− (1+ t)γ(1−ρ1/εp))

δ

)1/γ

(9.18)

Using this, and the fact that t is small allows using the approximation (1+ t)k = 1+ kt, we get

equation 9.19.

(1+ρ2γt/εp)(1+ γt(1−2η)(1−ρ1/εp)) = 1−δ(1−2η)((1−2η)(tθ− t))γ (9.19)

For self-interested 1d decision makers, δ = 1,

(tθ/t) = η

(
ρ1 +ρ2

εp
− ρ2t

εp

(
1− ρ1

εp

))
+(1−η)

(
2− ρ1−ρ2

εp
+

ρ2t
εp

(
1− ρ1

εp

))
(9.20)
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For utilitarian decision makers, δ =−1,

(tθ/t) = (1−η)

(
ρ1−ρ2

εp
− ρ2t

εp

(
1− ρ1

εp

))
+η

(
2− ρ1 +ρ2

εp
+

ρ2t
εp

(
1− ρ1

εp

))
(9.21)

Equations 9.20 and 9.21 provide a more refined estimator for tθ/t that still assumes γ = 1, but

allows s to vary. In fact, with both empirical manipulations, where ρ1, ρ2, and εp are observable

quantities, it is possible to get an estimator for s based on combining these equations with equation

9.12.

s = (tθ/t)+δ(1−2η)

(
1− ρ1

εp

)
(9.22)

Note that if s = 1, then ρ2 = 0, in which case, equations 9.20 and 9.21 reduce to equations 9.14 and

9.15. This highlights the face that even if γ = 1 is a reasonable assumption, if s 6= 1, the estimate

for tθ/t obtained as a sufficient statistic based on simply the first empirical manipulation will be

biased, dependent on the true value of s.

9.4.3 Implications for Pigovian taxes

Consider Pigovian taxes, for instance, on consumption of goods that bring personal utility but

can harm the environment. Higher taxes on such goods may reduce consumption for a while, but

eventually people get conditioned to these tax levels, if Lt > 0 (see equation 9.4). Alternatively,

consider providing subsidies for consumption of an environmentally friendly substitute. Assuming

perfect information (s = 1), this corresponds to a negative tax t. If initially the reference point

tθ = 0, this implies st < tθ for the subsidies. Once again, if Lt > 0, people may eventually get

conditioned to these subsidies. For self interested decision makers, if Lt(taxes) > Lt(subsidies),

the subsidies are likely to be more effective in shifting demand away from the harmful products,

and vice versa. The model directly predicts that this should be the case because of the confirmation

bias inherent in hedonic adaptation. Interestingly, for utilitarian decision makers, higher taxes may
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increase transaction utility for potentially harmful goods, rationalizing the decision to purchase.

Confirmation bias would work in the reverse direction for utilitarian decision makers, Lt(taxes)<

Lt(subsidies), but this would not constrain consumption of harmful goods effectively.

Thus, the model predicts that subsidies on substitutes might have a more prolonged impact on

limiting consumption of harmful goods compared to increased taxes on the harmful goods. There

is evidence (Wächter et al. (2009)) to show that the effect of reward and punishment have distinct

neural substrates, and that reward and punishment engage separate motivational systems. These

differences are an emergent property of the model presented here.

A resulting implication is that subsidies may provide a more sustained route to reducing consump-

tion of environmentally harmful goods. However subsidies worsen fiscal deficit as compared to

environmental taxes that improve the fiscal position. The decision to tax or subsidize needs to

balance the potential reduction in harmful consumption with the different in cost budgets required

to implement these, and whether reinvestment of the environmental taxes can contribute towards

other environmental goals. Rather than prescribe one mode over the other, the takeaway from

the predictions of the model should be to take into account the asymmetric nature of impact for

comparable policy actions.

Villas-Boas et al. (2016) measured the change in consumption patterns of bottled-water following

an increase and subsequent drop in consumption tax, levied from an environmental perspective.

They find low elasticity of bottled water to environmental taxes, thus leading to increased revenue

but meeting only limited success in reducing harmful consumption. This aligns with the qualitative

predictions of our model. The study reports that there is a drop after the increase in tax, and an

increase in consumption after the tax increase was rolled back, however this increase is lower than

the initial fall, and consumption did not go back to initial levels (controlling for other factors).

Self-interested decision makers are likely to show a larger drop after the initial tax change, and an

even larger increase after roll back. That this was not the case indicates a significant proportion of

utilitarian decision makers.
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Fletcher et al. (2015) share similar findings where imposing large taxes on sodas in order to im-

prove health results in increasing revenue, but does not seem to positively influence health. This

again provides evidence for confirmation bias in hedonic adaptation.

9.5 Application 2: Income tax

Elasticity of taxable income has often been considered as a sufficient statistic for the welfare anal-

ysis of changes in marginal tax rates. However recent analysis shows that this may not be the case

(Saez et al. (2012); Doerrenberg et al. (2014)). I show how viewing tax compliance through the

lens of the structural consumption model presented here throws light on this issue. Sensitivity of

reported taxable income to marginal tax rates may comprise many factors, including labor choices

and tax evasion choices, amongst others. A comprehensive welfare analysis should incorporate all

of these aspects. As proof of concept, I focus here specifically on the decision to evade taxes. Let

x be the proportion of income evaded. Welfare analysis would need a sufficient statistic to esti-

mate ∂x/∂t. Here, I frame the consumption problem with the numeraire, x, being the proportion

of income, I, that the taxpayer wants to evade. For the purpose of this paper, we assume that the

perceived probability of getting caught (say via an audit or other means), is proportional to the %

of income hidden x, and to the total income level I. This assumption reflects the fear that evading

a greater share of income increases the probability of being caught, and that people with higher

income levels are more likely to be audited. Thus the perceived probability of being caught is

defined as kxI, where k is an individual level scaling factor. Let t be the actual applicable average

tax rate, and r = ct be the penalty rate, c ≥ 1 applied on the under-reported income, if caught.

The utility V (U(x)) of reporting x% income is given by equations 9.23 and 9.24. The utility is

evaluated as the utility of paying tax only on the reported income, [−(1− x)tI], if not caught, with

a perceived probability of 1− kxI, and the utility of having to pay tax on the reported income plus
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penalty tax on the unreported income, [−(1− x)tI− cxtI], if caught, with a perceived probability

of kxI. The total utility T (x) is given by equations 9.25 to 9.26. There is no purchase cost involved

in the transaction. Since V (z) is dependent on whether z > 0 or z < 0, I add an indicator function

η. Here η = 1 if st ≥ tθ and η = 0 if st < tθ.

x = Proportion of income that is evaded

I = Income level

t = Actual average income tax rate

s = Salience of income tax rate

ts = Perceived income tax rate= st

tθ = Internal reference point for income tax

f (x) = I(1− x) = The value on which the tax rate is applied for transaction utility calculation

V (U(x)) =−(1− kxI)((1− x)tI)γ− (kxI)((1− x)tI + cxtI)γ (9.23)

V (U(x)) =
(

kxI((1− x)γ− (1− x+ cx)γ)− (1− x)γ

)
tγIγ (9.24)

T (x) =V (U(x))+δ V (tθ f (x)− ts f (x)) (9.25)

T (x) =
(

kxI((1−x)γ−(1−x+cx)γ)−(1−x)γ

)
tγIγ+δ((1−x)I)γ(1−2η)((1−2η) (tθ−st))γ

(9.26)

For the special case γ = 1.

T (x) = (x− ckx2I−1)tI +δ(1− x)(tθ− st)I (9.27)

Taking partial derivatives with respect to x and equating to 0, we get equations 9.28 and 9.29.

x =
1−δ

(
tθ
t
− s
)

2ckI
(9.28)
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(tθ/t) = s+δ(1−2ckxI) (9.29)

Now consider a change in the tax rate from t1 to t2, that results in a change in reported taxable

income from z1 to z2. Note that the reported taxable income z = (1− x)I. Let ε be the elasticity

of reportable income, measured as the percentage change in reportable income for a 1% change in

tax rate. This quantity is observable based on z1 and z2 Saez et al. (2012). By definition of ε, we

get equation 9.30.

ε =
(x1− x2)t1

(1− x1)(t2− t1)
(9.30)

Under the assumption that γ = 1, s = 1 and δ = 1, that is, for self-interested decision makers, we

first assume that tθ is not adaptive, and remains constant as the tax rate changes from t1 to t2. We

then get equation 9.31 as an estimator for tθ. Here, c is known and k can be elicited by survey or

proxy to a reasonable degree of approximation. This makes elasticity ε a sufficient statistic for tθ.

tθ =
2εt1t2(1− ckI)

t1 + εt2
(9.31)

However, if we assume (as the model proposes), that tθ is not constant but adapts, then the elasticity,

ε, is no longer a sufficient statistic. Assuming the simplest of adaptive processes, using equation

9.2 with n=1 and L f =0, we get equations 9.32 and 9.33.

tθ2 = tθ1(1−L)+ st2L (9.32)

tθ1 =
2εt2(t2− t1)(ckI−1)− t1t2L

(1−L)t1− t2− ε(t2− t1)
t2
t1

(9.33)

Critically, tθ1 and hence the resulting change in tax evasion levels as t1 changes to t2 cannot be de-

termined using the reportable tax elasticity ε, because of the unknown rate of adaptation L. I thus

propose that the insufficiency of reported taxable income elasticity arises from the adaptive refer-

ence points. This can be solved by modeling the change in reference points based on informative

priors, and getting a probabilistic estimate of tθ as qualitatively outlined in earlier.
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9.5.1 A cognitive explanation for the Slippery Slope Framework

The slippery slope framework is a popular framework for analysis of tax compliance (Kastlunger

et al. (2013); Kirchler et al. (2008); Kogler et al. (2013); Prinz et al. (2014)). I propose that the

generic consumption model applied to income tax evasion behavior maps nicely into this existing

framework, and in fact, provides some additional insights. The slippery slope framework posits

that people may comply with tax regulations either in a voluntary or an enforced manner. Vol-

untary compliance is higher if people have trust in the government, and enforced compliance is

higher if people perceive that the government has a high level of legitimate or coercive power. Le-

gitimate (fairly implemented) power drives both enforced and voluntary compliance. Lozza et al.

(2013) found that enforced compliance through coercive rather than legitimate power can lead to

increased tax evasion, especially among people with a left-wing political ideology. On the other

hand, there is a stronger path to tax evasion via voluntary compliance in the case of people with a

right wing ideology. Wahl et al. (2010) found that increasing trust in authorities increased voluntary

but decreased enforced compliance, whereas increasing power of authorities decreased voluntary

but increased enforced compliance. Muehlbacher et al. (2011) found that voluntary compliance

increased with age and education levels, whereas enforced compliance was negatively correlated

with education.

Within the currently presented framework, trust directly affects the adaptive reference point via the

α and L f parameters in equation 9.4, and thus impacts transaction utility. Power may indirectly

affect the rate of hedonic adaptation, but primarily affects the acquisition utility, since it affects

perceptions of the probability and consequences of getting audited, caught, or fined (parameters k

and c in equation 9.23). Thus deontological decision (δ = 0) makers can be affected by changes

in perceptions of power, but are unlikely to be swayed by changes in trust or fairness of taxes,

since they systemically ignore transaction costs. Utilitarian decision makers on the other hand

are concerned with the fairness of the tax and redistribution policies. For such decision makers,

having a high level of trust implies a higher reference point (tθ). Such tax payers are likely to have
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a high sensitivity to political climate, that is, a high value of L f (see equation 9.4). As a result,

their reference points may show larger or more extreme movements depending on the direction of

trust α. In general, utilitarian tax evasion decreases with increasing values of the reference point.

Thus, increasing trust would lead to increasing voluntary compliance in utilitarian tax payers,

and vice versa Sidani et al. (2014). For self-interested decision makers, increased trust in the

government, leading to a higher reference point, does not increase tax compliance. If anything,

a higher reference point allows them to derive the same psychological transaction utility with an

even lower rate of compliance. This suggests that tax evasion in self-interested decision makers is

primarily through the enforced compliance route. Since self-interest decision makers may not be

overtly concerned with the fairness of tax or redistribution, they are likely to have a low sensitivity

to government trust L f , in equation 9.4. If such decision makers have a low reference point, both

confirmation bias and increasing trust would lead to faster adaptation towards the actual rate of tax,

thus increasing the propensity to evade taxes.

Finally, a key question is what attributes drive people towards utilitarian, deontological, or self-

interested tax decisions, since this seems to determine the critical slippery slope pathway. Frecknall-

Hughes et al. (2016) measured propensity for deontological and utilitarian decision making for tax

and non-tax specialists in tax and non-tax scenarios. They found that the relative propensity for

deontological decision making in tax scenarios is higher for tax specialists than for non-tax spe-

cialists. This suggests that the influence of tax specialists on final tax related decision making

behavior of individuals should be taken into account.

9.5.2 Accuracy of perceived income tax rates

The model predicts that if the perceived tax rate (measured by s) is higher than the actual (for

instance when there is confusion between marginal and average tax rates), this does not signifi-

cantly affect people with a higher reference point. However, it reduces the level of evasion for

161



self-interested tax payers with a lower reference point, while increasing evasion in utilitarian tax

payers with a lower reference point. Since utilitarian tax payers are generally expected to have a

higher reference point, this suggests that overestimating the true tax rate may in fact reduce eva-

sion at an overall portfolio level. On the other hand, if the perceived tax rate is significantly lower

(s << 1)than actuals, self-interest tax payers with low reference points may significantly increase

evasion, as they underestimate the potential costs of getting caught, since they believe the amount

in question is much lower than it actually is. Lower than actual perceived tax rates affect tax

evasion much less in utilitarian tax payers. Thus transparency of taxes, while obviously a virtu-

ous act in itself, may have negative economic consequences. Since this impact is estimated to be

higher on self-interest rather than utilitarian taxpayers, efforts to improve tax transparency should

be coupled with publicity about enforcement mechanisms. Information about redistributive justice

and fairness of taxes will only be more effective to utilitarian taxpayers. Further, this messaging

based on trust is very likely to be mediated by political affiliations. A Gallup poll (Gallup (2015))

showed that perceptions of fairness of income tax fell amongst low and middle income Republi-

cans after Obama took office, but perceptions of fairness of tax amongst low income Democrats

were unchanged, and amongst middle income Democrats improved. Actual tax changes during

this particular period were not deemed significant. While perceptions of trust and fairness seem

to play an important psychological role, increased conflation with political ideologies may blunt

this as a policy tool. It is likely that perceptions of trust are mediated by a general psychological

contract (Robinson and Morrison (1995)) rather than tax specific issues.

9.5.3 Tax evasion elasticity versus tax rate

The model also predicts that increasing tax rates also have opposing effects, with the propensity

to evade increasing for utilitarian but dropping for self-interest decision makers, in response to a

tax increase. A significant increase in tax rate will result in a slower reference point adaptation in

utilitarian tax payers on account of confirmation bias. On the other hand, a significant drop in tax
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rates will result in a slower adaptation of reference point by self-interested payers. This goes to

explain the mixed results in literature (Freire-Serén and Panadés (2013)) on how tax changes affect

tax evasion behavior. Bernasconi et al. (2014) found that in a lab experiment, individuals adapted

faster to tax cuts than to tax increases. The model suggests that this behavior is typical of utilitarian

rather than self-interested decision makers. Since most of the participants in this experiment were

economics students, this seems a likely corroboration. The model also shows that sensitivity of

tax evasion behavior is highest at low reference points, and that tax evasion elasticity flattens out

as the tax rate increases beyond the reference point levels. Thus, tax cuts are expected to lead to

higher tax evasion elasticity than similar tax increases. However, the key aspect to note is that

response to tax cuts may result in an increase or decrease depending on the mode of processing.

Assuming that the population proportions stay constant however, any net directional change of tax

compliance levels on reduction of taxes is less likely to be fully recovered on a tax increase. There

is one exception to the general trend of increasing / decreasing tax evasion versus the reference

point. The model predicts a kink (in the opposite direction) where the reference point crosses

the actual tax rate which results in a relatively large shift in the propensity to evade taxes. The

hedonic adaptation mechanism saturates as the adaptive reference point approaches the actual tax

rate from any direction. Hence, the model predicts that sharp changes in tax evasion levels are

most likely caused when there are significant changes made to tax brackets. This is in line with

previous empirical evidence (Saez et al. (2012); Chetty et al. (2009a)).

9.6 An initial proof of concept - Consumption decisions

In this section, we provide a proof of concept rather than a detailed empirical application, which

will be considered in future work. We implement the log-linear demand specification using the

structural model advocated by Chetty et al. (2009b), and also implement a modified version of this

demand specification by incorporating the adaptive reference point based cognitive-framework
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proposed in this chapter. We implement both models within a Bayesian inferential framework.

We use data from Chetty et al. (2009b) that includes panel data on the per capita consumption of

beer by state in the US for a period of 34 years, along with the corresponding price, tax, and other

regulatory changes. The cognitive-framework essentially adds in temporal structure to reference

points, so that the continuous adaptation in reference points for each state is inferred by the model.

Figure 9.1 shows the marginal improvement in error obtained by applying this framework. Whilst

in the right direction, this level of improvement may not justify a significantly more complex

approach. However, we propose that this approach can be significantly strengthened by making

a full model identifiable (e.g. the current implementation assumes within state homogeneity of

preferences, but there are various data sources, including surveys and publicly available preference

data that can form strong priors and identify proportions of divergent behavior within each state).

To make the cognitive approach more powerful, future work should incorporate such informed

priors that identifies systematic heterogeneity across states, in terms of how people respond to trust

in the government, their consumption bias, and similar aspects.
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Improvement in error by using adaptive reference point based utility

Across Years
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Figure 9.1: Descriptive RMSE for baseline regression is the gray line, in order of improving error
across states and across years. The green and red bars show the improvement and deterioration re-
spectively for each state (left subplot) and each year (right subplot), by using the adaptive reference
point based utility model.
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9.6.1 Inferences

Figure 9.2 shows the inferred structural assumptions about the movement of latent reference points

for tax for two different sources, the reaction to tax changes and the perception of government. The

background is color coded to reflect Democratic and Republican Presidents during the blue an pink

years. The values are a mean across states, and there are variations across states. The bars represent

the mean change in the tax rate during the year.
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Figure 9.2: Inferred structural changes to reference point for consumption tax based on political
regime and change in tax rate.

9.7 Conclusions

The methodological contributions of this chapter are to specify an extensive structural model of

adaptive population behavior based on insights from cognitive psychology that highlights the lim-

itations of a sufficient statistics based approach typically used to analyze such behavior in eco-

nomics. Specifically, sufficient statistics seem restricted to special cases of the possible parameter-

ization of the cognitive structural models. Under alternate assumptions of some of these parame-
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ters, the sufficient statistics may be highly biased, inefficient, or both. In some cases, it is possible

to infer multiple parameters from a structural model based on multiple empirical manipulations.

This can however be an extremely tedious exercise. Another promising approach is the ability to

combine sufficient statistics with informative priors about the parameters of the structural model

within a Bayesian inference framework. This allows measuring the bias and noise in an estima-

tor in a structured manner. More importantly it provides an avenue for counter-factual as well as

predictive behavioral analysis.
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Part IV

Inducing adaptive behavior - Behavioral

nudging
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Chapter 10

Behavioral Nudging in a resource allocation

task
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10.1 Introduction

Consider the problem of constrained resource allocation, a decision paradigm that is pervasive

across many different domains. People distribute money across a range of retirement savings and

investments options, government agencies allocate funding to different scientific research areas,

the military allocates human resources across strategic geographies, water supplies are distributed

across different end uses, and cyber security resources are allocated across different layers of avoid-

ance and recovery mechanisms, to name only a few.

Often, investing a resource into a particular choice option may involve a riskless transaction cost

or benefit, and a set of risky payoffs that may depend on stochastic outcomes. For example, cy-

ber security allocations between avoidance and recovery have riskless implementation costs for

both, and risky payoffs that depend on the frequency and intensity of cyber attacks. Many real

word decisions however combine risky and riskless components into compound choice structures

where the boundary between riskless and risky components is less clear. For instance, insurance

plans may vary the combination of premium (riskless cost component) and deductible (risky cost

component) in tandem. Most savings and investment options have a riskless transaction cost and

a risky investment return payoff. In some cases, the risky payoffs are stated after netting off the

riskless transaction costs. In other cases, the riskless components may be charged upfront and the

risky components realized later. Sometimes, different risky choice options within a choice set often

have proportional riskless components. For example, on an average, the riskless transaction costs

on high-risk stock purchases are empirically higher than for medium-risk mutual funds, which are

higher than for low-risk debt bonds. Regulating agencies may also aim to incentivize behavior by

making costs or incentives proportional to risk levels, for example, in the case of capital charges

that banks face depending on the risk level of their assets.

The motivating question for this paper is how risk-framing, in terms of the framing of risky and

riskless components, can influence allocation decisions. To investigate this, we consider the sim-
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plest representation of a prospect, in terms of a two-outcome gamble, where each outcome is

associated with a different risky payoff, and each prospect may have a riskless acquisition cost.

The decision maker is expected to distribute finite resources across a set of such two-outcome

prospects which differ in terms of their risk-reward-cost profile, to construct a portfolio. There is

a large amount of literature on how people might select between one of many such gambles, but

not as much focus on how people distribute resources across a set of such gambles. The normative

version of this allocation problem is extensively studied, in terms of algorithms for optimization of

the risk-reward characteristics of the constructed portfolio.

Figure 10.1: Key aspects of a resource allocation decision

We focus on the descriptive account of how people make these decisions. This is a far more nu-

anced decision than simply selecting one of many such gambles. The resource allocation decisions

can be measured in terms of the level of risk undertaken, the level of diversification, how optimal

or efficient the allocation is, and how easily such decisions can be manipulated by changing the

risk-framing, between risky and riskless components.

To investigate possible structural sources of heterogeneity across all of these aspects, we adopt a

cognitive modeling approach. We use this to infer how allocation decisions may be influenced

(a) by observed aspects such as individual traits that can be measured, (b) by different aspects

of choice architecture that can be experimentally manipulated, and (c) by latent aspects such as
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whether people evaluate choice options together or individually (choice bracketing), whether peo-

ple segregate the risky and riskless components (outcome segregation), the level of salience on

different components of the risk-frame, and the underlying cognitive process people use to eval-

uate options (such as prospect theory). Figure 10.1 shows a schematic of the key observed and

latent aspects that define resource allocation decisions.

In subsequent sections, we define the resource allocation task, show that based on theoretical con-

siderations, the appropriate manipulation of risky and riskless components of choices can be the

basis for a behavioral nudge, define key behavioral measures within this paradigm, provide a the-

oretical basis for both observed traits and latent cognitive factors that can be a source of hetero-

geneity in this task. We then report a novel experiment that manipulates risk framing to create

behavioral nudges, and analyze behavior by incorporating observed and latent factors into a com-

prehensive computational model of cognition.

10.2 Defining the basic risk-resource allocation problem

Consider allocation of a finite amount of resources to a set of N two-outcome prospects. The pro-

portion of total resources allocated to each prospect (i) is the allocation weight (wi), with weights

across all prospects summing to one. Since these are two outcome gambles, the outcomes are

denoted as success and failure, with the payoff under a success outcome always being greater than

that under a failure outcome. Each individual prospect is defined independently (no correlation

between outcomes of different prospects), and each prospect may also have an associated riskless

transaction cost, that reduces the net payoff. The risky payoffs and riskless costs are defined in

terms of percentage returns on the amount of resources invested in that prospect. We define the

following quantities:

piS = Probability of success for prospect i

piF = 1− piS = Probability of failure for prospect i
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viS = Percentage payoff if the outcome is success

viF = Percentage payoff if the outcome is failure (viF < viS)

C = Riskless acquisition cost (%) for the prospect (C <= 0)

Each prospect can thus be characterized in terms of its expected value vi and standard deviation di.

vi = pSvS + pFvF +C

di =
√

pS(vS +C)2 + pF(vF +C)2− v2
i

Since prospects are independent, a portfolio created by assigning weight wi to the ith prospect will

have expected value V and standard deviation D. Further, the portfolio will have a Herfindahl

index H, which measures the degree of diversification (Rhoades (1993)). When allocation is such

that all weights are equal, H takes on the minimum value of 1/N (maximum diversification), and

when all resources are allocated to a single prospect, H=1 (highest value, representing maximum

concentration).

V = ΣN
i=1 wi vi

D =
√

ΣN
i=1 wi d2

i

H = ΣN
i=1 w2

i

As an illustration, we provide an example in table 10.1, with N = 4 possible options. The table il-

lustrates how the same normative choice set can be framed differently. Choice set 2 is equivalent to

choice set 1, and is obtained by adding a riskless acquisition cost component (C) to each prospect,

and increasing both vS and vF by the same amount. The corresponding prospects in the two choice

sets have the same expected value and standard deviation. The bottom part of the table provides

an illustration of 5 (out of an infinite) possible portfolios constructed using different allocation

weights (w is a vector of allocation weights to prospects i1 to i4), and the resulting portfolio level

characteristics. We will continue to use this example to illustrate concepts over the rest of the paper.
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Table 10.1: Illustrative example: The two choice sets are equivalent, differing only in the framing
of risky and riskless components. The last part of the table lists 5 example portfolios.

Choice Set Framing 1
Prospect pS vS pF vF C vi di

i1 0.5 5.2 0.5 4.8 0 5.0 0.2
i2 0.6 7.5 0.4 3.8 0 6.0 1.8
i3 0.7 9.5 0.3 1.1 0 7.0 3.8
i4 0.8 10.9 0.2 -3.5 0 8.0 5.8

Choice Set Framing 2
Prospect pS vS pF vF C vi di

i1 0.5 6.2 0.5 5.8 -1.0 5.0 0.2
i2 0.6 9.5 0.4 5.8 -2.0 6.0 1.8
i3 0.7 12.5 0.3 4.1 -3.0 7.0 3.8
i4 0.8 14.9 0.2 0.5 -4.0 8.0 5.8

Portfolio Weights V D H
P1 w = [.5 .5 0 0] 5.5 0.9 0.50
P2 w = [.25 .25 .25 .25] 6.5 1.8 0.25
P3 w = [0 .5 .5 0] 6.5 2.1 0.50
P4 w = [.5 0 0 .5] 6.5 2.9 0.50
P5 w = [0 0 .5 .5] 7.5 3.5 0.50

10.3 Choice bracketing

The first latent factor in how people might make such decisions is choice bracketing. The concept

of choice bracketing has been proposed in paradigms that involve selecting one out of many choice

options (Hsee et al. (1999)), where people may evaluate these options separately (narrow choice

bracketing) or jointly by comparison (wide choice bracketing). We propose an extension of this

to a resource allocation paradigm. Here, narrow choice bracketing involves evaluation of each

individual prospect separately, and deciding on the allocation based on a comparison of these

individual evaluations. Wide choice bracketing on the other hand involves evaluating aggregate

characteristics of a constructed portfolio of prospects, with the aim of optimizing one or more of
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such portfolio level measures. Using the examples in table 10.1, narrow choice bracketing would

involve independently evaluating i1, i2, i3, and i4, focusing on features in the top 2 parts of the table,

and comparing these evaluations to arrive at an allocation. Wide choice bracketing would involve

evaluating choices at a portfolio level, for example thinking about V and D, or other portfolio

characteristics, and deciding between portfolios based on these comparisons.

Most normative optimization algorithms would involve wide choice bracketing, focusing on some

portfolio level characteristics. However, this is cognitively very demanding. We might expect that

people tend to evaluate these decisions using narrow choice bracketing, or some form of heuristics,

unless the selected choice architecture makes wide choice bracketing relatively simple. Narrow

and wide choice bracketing may apply regardless of the specific valuation approach, for example,

people can apply cumulative prospect theory in both a narrow or wide choice bracket (as illustrated

later in the paper). The choice bracketing decision can significantly influence allocation, since

narrow and wide bracketing essentially reflect different cognitive processes used to evaluate the

problem.

10.4 Outcome segregation and risk framing

The next latent factor we consider is outcome bracketing, which speaks directly to the primary

issue in the paper - how people treat the risky versus riskless components. Early discussions on

choice framing, including the original formulation of prospect theory (Kahneman and Tversky

(1979)), discuss an editing phase, where people might combine, cancel, segregate, or otherwise

edit aspects of different options before evaluating them. One of the proposed components of such

an editing phase was the segregation of outcomes into riskless and risky components. Some studies

(Marquis and Holmer (1996)) conduct model-based inference to suggest that people may indeed be

performing some form of segregation of these components. On the other hand, Fischhoff (1983)

suggests that segregation may not occur if ”people were overwhelmed by the surface structure
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of a problem”. We propose that the ”surface structure” of the problem may be instrumental in

determining both, whether the risky and riskless components of outcomes are segregated, and

whether they are evaluated with different levels of salience. To define this formally, we draw upon

principles from the theory of mental accounting (Thaler (1985)), which proposes that the overall

utility (U) of a prospect incorporates both transaction (TU) and acquisition utility (AU). Here,

the two utilities are evaluated in a segregated manner, and the acquisition utility may be weighted

differently (difference in salience), by a factor k.

Let f () define a utility function or valuation process (for example, prospect theory). Then norma-

tively, evaluating an individual prospect would yield a normative utility (NU).

NUi = f (piSviS + piFviF +Ci) = f (vi) (10.1)

On the other hand, segregated outcome evaluation based on the theory of mental accounting would

yield an experienced utility (EU). In terms of the prospects considered in this paper, the riskless

cost C defines the acquisition utility.

EUi = TU + k AU = f (piSviS + piFviF)+ k f (Ci) = f (vi−Ci)+ k f (Ci) (10.2)

Table 10.2: Normative and experienced utilities for the two choice sets presented in Table 10.1

Choice Set Framing 1
Option NU EU

i1 f (5) f (5)
i2 f (6) f (6)
i3 f (7) f (7)
i4 f (8) f (8)

Choice Set Framing 2
Option NU EU

i1 f (5) f (6)+ k f (−1)
i2 f (6) f (8)+ k f (−2)
i3 f (7) f (10)+ k f (−3)
i4 f (8) f (12)+ k f (−4)
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Outcome segregation between riskless and risky components can influence allocation decisions if

EU 6= NU . This can occur (a) because of the difference in salience between risky and riskless

components (i.e. k 6= 1), and (b) because of non-linear utility functions f (), even if k = 1. The

normative (combined) and experienced (segregated) utilities for the two example choices sets are

illustrated in table 10.2. Since the acquisition cost only enters in choice set 2, if outcomes for this

set are evaluated in a segregated manner, it could lead to allocation decisions that are different from

those made for choice set 1, although the two choice sets are equivalent.

10.5 Behavioral nudges based on risk framing

Thaler and Sunstein (2008) define a nudge, as ”any aspect of the choice architecture that alters

people’s behavior in a predictable way without forbidding any options or significantly changing

their economic incentives”. Consider the two choices sets in table 10.1. For people who do de-

cide to segregate outcomes for choice set 2, a change in the choice architecture (presentation of

riskless and risky components) may result in altering allocation decisions, without any economic

change, since the choice sets are economically equivalent, but EU 6= NU . When comparing mul-

tiple prospects, the quantity of interest is ∆Ui = EUi−NUi. The higher this difference, the more

desirable prospect i will seem to be, under outcome segregation.

∆Ui = f (vi−Ci)− f (vi)+ k f (Ci) (10.3)

We assume that f (−x) =−λ f (x), as in prospect theory, where λ is a loss aversion parameter. Then

we can write,

∆Ui = f (vi−Ci)− f (vi)− kλ f (−Ci) (10.4)

Equation 10.4 shows that ∆Ui is a linear function of individual preferences kλ, with the slope of the
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function being − f (−Ci). Note that Ci is non-positive, hence as kλ increases, ∆Ui will fall. Now

consider any two prospects i1 and i2, with C1 6= C2. The values of ∆U1 and ∆U2 when plotted as

a function of kλ, will always intersect. This point of intersection, kλ = τ12, is when ∆U1 = ∆U2.

This gives,

τ12 =

(
f (v2)− f (v1)

)
−
(

f (v2−C2)− f (v1−C1)

)

−
(

f (−C2)− f (−C1)

) (10.5)

If individual preferences kλ < τ12, the change in preference ∆Ui under outcome segregation will be

higher for the prospect with higher value of Ci, and vice versa for individual preferences kλ > τ12.

We extend this to the resource allocation problem with multiple prospects, and define two specific

choice architectures.

In both cases, we define prospects which are not dominated, such that prospects with higher stan-

dard deviation di do not have lower expected returns vi. In the first, we place a constraint that the

acquisition cost Ci and for prospects increases monotonically with an increase in risk-return (vi,di).

We denote this as ′Ci ↑ (vi,di)
′. In this case, people with lower values of individual preference kλ

will have a relative increase in preference for riskier prospects under outcome segregation. People

with higher values of kλ will have a relative increase in preference for safer prospects under out-

come segregation. In the second choice architecutre, acquisition cost Ci decreases monotonically

with (vi,di), denoted as ′Ci ↓ (vi,di)
′. Here, the effect is opposite, as summarized in table 10.3.

Essentially, depending on the level of salience to segregated acquisition costs, determined by kλ,

the monotonic change in acquisition costs with a change in risk-reward profile of prospects may

thus act as a behavioral nudge.

We return to the example in table 10.1. Choice set framing 2 is an example of ′Ci ↑ (vi,di)
′, as

acquisition costs increase with increasing risk-reward profiles. To illustrate the points made, we

plot ∆Ui for each of the four prospects as a function of different values of kλ in figure 10.2, under
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Table 10.3: Nudge effects as a function of individual preferences and choice architecture

Choice Architecture
Ci ↑ (vi,di) C ↓ (vi,di)

Individual
Low kλ Riskier Safer
High kλ Safer Riskier

Figure 10.2: Difference between segregated experience utility (EU) and normative utility (NU)
for the 4 options in choice set 2: Ci ↑ (vi,di). This illustration assumes a concave utility function
f (x) = x0.8. The plots show that depending on the value of kλ, a matter of individual preference,
the shift in utilities may progressively favor either the riskier or safer prospects.

the assumption of a concave utility function f (x) = x0.8. It can be seen that while the individual

preference levels for kλ remain close to 0, that is, very low levels of salience of the acquisition cost,

the riskier prospects begin to look more and more desirable under the framing for choice set 2. If

individual preferences are high levels of kλ, that is, very high salience of the segregated acquisition

costs, the safer prospects begin to look progressively more desirable under choice set 2.

We might expect that people demonstrate a wide range of behavior in terms of salience to acqui-

sition costs, and the resulting value of kλ. We again look to principles from the theory of mental

accounting. This theory posits the principle of hedonic segregation. This states that people will
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be prone to segregate outcomes if such segregation leads to higher experienced utility. Thus, it

might be expected that people are more likely to segregate outcomes and evaluate prospects us-

ing EU rather than NU , if ∆Ui > 0. If f () is concave, then, 0 ≥ f (vi−Ci)− f (vi) ≥ f (−Ci).

Hence ∆Ui > 0 only when kλ << 1. Thus, if people generally behave as predicted by the principle

of hedonic segregation, they are more likely to consider utilities on a segregated outcome basis

when their individual preferences are such that kλ << 1. Thus the principle of hedonic segrega-

tion strongly favors behavior where people are expected to be nudged towards riskier prospects

under ′Ci ↑ (vi,di)
′ and towards safer prospects under ′Ci ↓ (vi,di)

′. Mathematically, the principle

of hedonic segregation suggested that outcome segregation will be pursued for evaluation only if,

kλ <
f (vi−Ci)− f (vi)

f (−Ci)
< 1 (10.6)

These observations are the premise of creating a behavioral nudge based on risk framing. In gen-

eral, under the principle of hedonic segregation, a behavioral nudge pushing people towards safer

options may be created if the level of translation of risky and riskless components in opposite

directions (in order to maintain equivalence) is progressively higher for safer options, and vice

versa for a nudge pushing people towards riskier options. Of course, it is possible that people do

not underweight the transaction costs (k is high), and hence under hedonic segregation, may be

evaluating the options normatively. On the other hand, it is also possible that some people do not

behavior in line with the principle of hedonic segregation, and may display opposite behavior. The

experimental design and computational modeling approach later in the paper attempt to identify

and isolate these effects.

179



10.6 Experimental Methods

In this experiment (Mistry and Trueblood (2017)), we test people’s preferences for allocating a

fixed set of resources between multiple risky prospects, with a focus on testing the effects of

behavioral nudges created using risk-framing effects.

10.6.1 Task

The cover story for the task was that participants had to play the role of the head of a company

that had the opportunity to invest a fixed amount of money (hypothetical $100,000) into one or

more of 4 possible projects. Participants were advised that all projects had the same expected time

to completion and their objective was to maximize the return on the invested amount. They were

required to invest all the money, but could distribute this in any proportion between the 4 projects,

including allocating no resources to one or more projects. Each project had two possible outcomes

- success or failure. They were provided with the probability of success (pS) and failure (pF =

1-pS) for each project, as well as the percentage returns on their investment depending on whether

a project succeeded or failed. A successful project always had a positive return (vS), whereas a

failed project resulted in either a lower positive or a negative return (vF ). The 4 projects always

varied in terms of the variability (standard deviation) of return outcomes.

Figure 10.3: Illustration of experimental interface for portfolio choice allocation decisions
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Figure 10.4: Illustration of experimental interface for providing feedback to participants after each
trial

Participants were given an example and a practice trial to familiarize themselves with the interface

(see Figure 10.3). After each trial, participants were provided feedback on the outcome. The

outcome was based on the described probability of success and dynamically (randomly) picked by

the computer program. The process of realization of the outcome for each project was graphically

displayed to the participants. For each project, they were shown a box containing 100 balls, of

which 100pS were green and 100pF were red. The computer program randomly traversed the box

space and eventually picked one of the balls. A green ball implied success, and a red ball implied

failure of the project (see Figure 10.4). This was done independently for each project. The returns

on the investment for each project and for the weighted portfolio were updated based on these

outcomes before moving on to the next trial.
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10.6.2 Participants

50 undergraduate students from Vanderbilt University participated in the experiment, either for

credit (n = 25) or for financial incentives (n = 25). Of the 50 participants, 38 were female, 11 were

male, and 1 reported other. Their ages ranged from 18 to 49 years, with a mean of 20.6 (SD = 5.4).

10.6.3 Between-subjects conditions

Participants were split into 2 groups of 25 students each. The between subjects design entailed dif-

ferent rewards, with the rest of the design factors being identical between the two groups. Group 1

participated for course credit, and group 2 for financial compensation. This between-subjects con-

dition, which we denote as CI, tests whether financial incentives affect portfolio choice allocation

in laboratory tasks. There is mixed prior evidence for this in tasks involving risky choices Beattie

and Loomes (1997). Participants in group 2 received a fixed payout of $5 plus an incentive ranging

from $0 to $10 that was linked to their performance on the task. At the end of the experiment, one

of the trials was randomly selected. The incentive component was calculated as $5 plus or minus

$0.10 times the %returns achieved on that trial, but limited to the range $0-$10. So for example,

achieving a loss of 20% resulted in an incentive of $5 - 0.1(20) = $3 (and a total payout of $8), and

achieving a gain of 20% resulted in an incentive of $5 + 0.1(20) = $7 (and a total payout of $12).

This allowed for the incentive to be framed as reductions for losses and increments for gains. The

total payout for each participant in group 2, including the fixed and incentive components, ranged

between $5-$15. The hypothetical in-task payoffs were incentive compatible, and the method of

calculation was explained to the participants before the task.
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10.6.4 Within-subjects factorial design

Each participant completed 36 portfolio choice decisions. To maximize risk preference information

obtained from these decisions, there were 12 unique decisions based on a 2 X 2 X 3 within-subject

factorial design. This entailed a 2 (second order stochastic dominance - present vs absent) X 2

(domain - gains vs mixed) X 3 (skew - none, positive, negative) manipulation. Each of these 12

decisions was repeated in 3 blocks, with the choices randomized within each block. Although

the underlying decision remained equivalent across blocks, the three blocks varied in terms of a

risk-framing effect, by translating outcomes and adding a corresponding acquisition cost:

Second order stochastic dominance (SOSD; 2 levels):

The SOSD manipulation included 2 levels. In the first, all prospects in a trial had equal expected

value, but the 4 prospects had progressively higher standard deviation. As a result, each prospect

had SOSD over the subsequent riskier prospects. In the second level, the prospects were not

mean preserving, and riskier prospects (higher standard deviation) also had higher expected values.

Thus there was no SOSD. Any behavioral account that is based on a weakly increasing concave

utility function, or mean-variance optimization, predicts a strong preference for prospects that

have SOSD. Decisions involving SOSD choices allow a straightforward measure of inefficiencies

in optimization. Decisions that do not involve SOSD choices allow a nuanced measure of risk

tolerance.

Domain (DM; 2 levels):

The DM manipulation included 2 levels. In the first, all-gain domain, all outcomes including

project failures resulted in positive returns. In the second, mixed domain, the average returns

across prospects on failure were negative. Even for the latter, the safest option had both outcomes

positive, so that investing in this option was always preferable to not making any investment.

Domain manipulation allows testing for the effects of asymmetric gain-loss utilities within the
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portfolio choice framework.

Skew (SK, 3 levels):

The SK manipulations included 3 levels. In the first, all prospects had zero skew, that is, success

and failure were equally likely. In the second, all except the safest prospect had negative skew,

that is, failure outcomes were more likely. In the third, all except the safest prospect had positive

skew, that is, success outcomes were more likely. Symmonds et al. (2011) showed that risk and

skewness are differently encoded in the brain. People have been shown to be relatively averse to

negatively skewed gambles (Mellers et al. (1992); Deck and Schlesinger (2010)). Manipulation of

skew allows us to test whether these effects extend to the portfolio choice paradigm, as well as test

whether people employ safety-first approaches to minimize the probability of their portfolio value

dropping below a certain risk governed threshold.

Risk-framing (PC, 3 levels):

The PC manipulation included 3 levels, implemented within a blocked design. In the first level,

there are no extraneous purchase costs. In the second and third levels, the outcomes from the

first level were translated and re-framed into higher gross outcomes accompanied by an appro-

priate purchase cost. This re-framing led to prospects that were expected-value-equivalent to the

prospects presented in the first level. In the second level, the amount of re-framing was increasingly

higher with increasing variability (risk) of prospects outcomes, representing choice architecture

’Ci ↑ (vi,di)’. In the third, the re-framing decreased with increasing variability (risk), representing

choice architecture ’Ci ↓ (vi,di)’. The decisions between blocks were equivalent in the sense that

the same percentage allocation across prospects resulted in the construction of identical portfolios,

net of purchase costs. The second and third blocks thus attempted to create behavioral nudges

pushing people towards riskier and safer prospects respectively, under the principle of hedonic

segregation. The trials were presented in a blocked design with three blocks corresponding to the

3 purchase costs conditions, with the order of the 12 problems in each being randomized.
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10.6.5 Behavioral measures

The resource allocation paradigm offers many degrees of freedom for people to express individual

differences. This observed heterogeneity includes the level of risk people are ready to take on

(e.g. in table 10.1, the risk of the portfolios P1 to P5 continuously keeps increasing), the level of

diversification (e.g. P2 is more diversified compared to the remaining illustrative portfolios), and

how optimal people’s choices are (e.g. in table 10.1, P2 and P3 have the same expected value

but P2 has lower standard deviation, and may be consider more optimal). Most importantly in

this paper, we also want to evaluate individual differences in how susceptible people might be to

changing their preferences under the risk framing effects, that is, how robust are these potential

behavioral nudges proposed in the previous section? These aspects are represented in the bottom

row of the schematic in figure 10.1. In this section we specify how each of these observed aspects

is measured:

Segregated measures (S, R):

The simplest way of measuring a resource allocation decision is to look at the allocation weights

(wi) for each (ith) prospect, where ΣN
i=1 wi = 1, and N is the total number of choices available.

691999Lopes and Oden () proposed that there are individual differences in whether people ap-

proach risky decision making from a perspective of security (protecting low outcomes) or poten-

tial (maximizing high outcomes). A simplistic measure of people’s security and aspiration levels

are measured by the weight allocated to the two extreme prospects - safest (S) and riskiest (R)

respectively.

Aggregated measures (V, D, T):

Often, the emergent characteristics of the aggregated portfolio are of greater interest than the indi-

vidual choices. Most normative theories of portfolio choice are based on optimizing some function

of the portfolio characteristics. Since a portfolio can be represented as a probability distribution
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over outcomes, the most common characteristics are derived from the moments of the resulting

portfolio. We calculate the expected value (V ), and the standard deviation (D) of the aggregate

portfolio. We also measure the actual realized returns (T ) which are the portfolio weighted real-

ized outcomes on each trial based on resolution of the selected prospects. This is a function of the

resolution of stochastic outcomes that the participants actually observe.

Portfolio diversification (H)

In addition, the Herfindahl index (H) = ΣN
i=1 w2

i , where N is the total number of prospects in the

choice set, measures the degree of diversification Rhoades (1993). When all weights are equal, H

takes the minimum value of 1/N (maximum diversification) and when all resources are allocated to

a single prospect, H=1. For N=4, values close to 0.25 indicate naive diversification, values close

to 0.5 indicate some form of conditional diversification (equal allocation to 2 of 4 prospects), and

values close to 1 indicate concentration in a single prospect.

Optimality of portfolio (εw,Qw,εw− εN ,Qw/QN)

We consider two broad normative solutions, which we propose should be considered as the lower

and upper benchmarks, when evaluating how well people allocate resources. As a lower bench-

mark, we consider naive diversification, or the 1/N heuristic (Benartzi and Thaler (2001); DeMiguel

et al. (2007)). This heuristic basically proposes equal allocation to all prospects under consider-

ation. A conditional diversification heuristic is similar, but restricts equal allocation to a subset

of the prospects under consideration, after eliminating some prospects based on a selected cri-

teria. Naive or conditional diversification heuristics are cognitively simple to implement, have

been shown to perform comparably to more sophisticated optimization rules in some real-world

environments (DeMiguel et al. (2007)). People have also been shown to have some bias towards

diversification (Bardolet et al. (2011)). It stands to reason that any cognitive effort in optimiz-

ing a resource allocation decision should try to improve performance over a naive diversification

heuristic.
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As an upper benchmark on performance, we use one of the most popular normative theories of

resource allocation, modern portfolio theory (MPT), characterized by mean-variance optimization

(Markowitz (1952)). This states that people should select weights that optimize the balance be-

tween the expected value V and standard deviation D of the resulting portfolio. The optimization

is a function of a risk tolerance factor Q, which is a matter of individual preference. There have

been several subsequent optimization algorithms that build upon this framework. However, we

base our measure of optimality on the MPT for two reasons. First, optimization under this frame-

work can be viewed as based upon simple to understand concepts of expected value and standard

deviation, and thus define cognitively plausible behavior, compared to more complex optimization

algorithms. Secondly, there is a large body of research that proposes behavioral decision analysis,

manipulation of choice architecture, providing incentives and subsidies, or training and debiasing

human decisions under the assumption that people may be carrying out, have the potential to carry

out, or should be carrying out, some kind of mean-variance optimization. This approach has been

taken in several fields including improving the efficiency in allocating resources for water con-

servation, combating terrorism, managing fossil fuel use, and capital investments, among others

(Roques et al. (2008); Gaydon et al. (2012); Phillips (2009); Byers et al. (2015)).

Given a set of risky prospects, MPT proposes an efficient frontier of possible weight allocations

that result in mean-variance optimization. Given an implicit objective to maximize expected value

V and minimize standard deviation D, the frontier represents portfolio choices such that no other

combination of weights can result in an increase in V without an increase in D, or a decrease in

D without a decrease in V . The efficient frontier can comprise a wide variety of possible weight

allocation, and can be viewed as parametric on a risk tolerance factor Q, where Q >= 0. A value

of Q = 0 indicates preference only for the safest prospect and extremely high values of Q tending

to ∞ indicate preference only for the riskiest prospect. From a perspective of human behavior, risk

tolerance Q can be viewed as an individual preference, however, it is not a reliable psychometric

trait, because it varies significantly depending on the specific set of choices under consideration.

As per MPT, the set of weights (x) on the efficient frontier for a particular value of Q can be found
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by minimizing the expression:

xoptimal|Q = argminx
(
xT

Σ x − Q ET x|Q
)

(10.7)

Here E = [v1,v2, ...,vN ] is a vector of expected returns on the individual prospects and Σ is the

covariance matrix for the returns on the prospects. For the purpose of this paper, since prospects

are uncorrelated, Σ has non-diagonal elements zero, and the diagonal elements are [d2
1 ,d

2
2 , ...,d

2
N ].
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Figure 10.5: Illustration of the efficient frontier for one of the portfolio choice problems. The gray
dots represent different portfolio allocation weights and the resulting portfolio characteristics. The
black line marks the efficient frontier under a mean-variance optimization framework. The squares
illustrate the optimal portfolio for some sample levels of risk tolerance (Q).

Figure 10.5 illustrates the range of portfolio characteristics (V and D) for different portfolio al-

location weights (gray dots) for a representative resource allocation problem involving four risk

prospects. The crosses mark selection of single-prospect portfolios, and the circle shows the 1/N

or naive diversification based portfolio. The thick line shows the efficient frontier for this choice

problem. As risk tolerance Q increases, the optimal portfolio shifts to increase both V and D along

the efficient frontier.
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For any observed portfolio allocation (wi) we can calculate the minimum euclidean distance of the

observed allocation weights to the set of portfolio weights that comprise the efficient frontier. This

gives the minimum distance to optimality, εw. The risk tolerance value corresponding to the closest

point on the efficient frontier is denoted Qw, and can be inferred to be a model-free estimate of risk

tolerance level for that choice. Similar estimates can also be obtained for the naive diversification

heuristic, which we notate as εN and QN .

We propose that cognitive effort towards improving optimality is reasonable if εw < εN , since the

constructed portfolio is closer to optimality than a cognitively simple naive diversification heuristic.

Secondly, a comparison of of Qw and QN may provide a more reliable psychometric indication of

risk tolerance across different forms of choice sets, where the absolute value of Qw may vary

significantly.

Susceptibility to risk-framing nudges (N)

Finally, we measure differences between different choice set framing conditions. The framing

conditions are setup so that correctly accounting for the costs and translation of outcomes should

result in no difference between behavior across the three conditions. However, segregating and

placing differential levels of salience on the costs framed separately would result in a preference for

prospects with a higher degree of framing (low salience) or lower degree of framing (high salience).

In one condition, riskier prospects are subject to higher framing (we denote this condition as F1),

and in the other, safer prospects are subject to higher framing, denoted as F2. Discounting the costs

would result in higher selection of riskier prospects in the first and safer in the second framing

condition. We calculate susceptibility to nudges as, N = mean[(SF2−SF1),(RF1−RF2)]. A value of

N close to 0 indicates that people are not susceptible to cost framing nudges. A high positive value

indicates that people under-weight separately framed costs, and thus are nudged towards options

with higher framing (larger translation of outcomes). A high negative value indicates that people

over-weight separately framed costs, and thus are nudged towards options with lower framing

(smaller translation of outcomes).
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10.6.6 Measured individual traits

After the resource allocation task was complete, participants were required to complete surveys or

tasks in to observe the following set of traits:

Elicited risk propensity (HL)

Multiple price lists present a series of choices between two risky gambles to elicit ranges of risk

aversion. We use the price list measures from Holt et al. (2002) to measure elicited risk propensity,

with higher scores indicating higher risk aversion. This is a direct task based measure and has

been used to reveal risk preferences which might be applicable to a variety of domains. We test

whether this measure based on simpler risk-based choices is robust enough to predict the level of

risk undertaken in more complex resource allocation decisions, and whether this trait impacts how

people react to risk-framing nudges.

Self-reported financial risk propensity (DF)

The financial risk-taking subscale within the DOSPERT scale (Blais and Weber (2006)), is a self-

reported measure of risk propensity, based on survey type questions. This self-reported measure

has been used in many financial applications. The nature of the resource allocation task in this

paper is financial, and we test whether this self-reported measure influences allocation decisions.

Risk congruency (RCI)

Self-reported and elicited risk propensity measures may not always coincide, and may point in

opposite directions. We propose a new metric in terms of risk congruency, the degree of difference

between the elicited and self-reported measures above. We measure the differences based on nor-

malized scores, and highlight that risk congruency is bi-directional, so that a score of zero would

indicate people that are perfectly risk congruent, high scores in one direction indicate people who

believe that they are far more risk seeking than their elicited measures suggest, and high scores
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in the opposite direction indicate people who believe that they are far more risk averse than their

elicited measures suggest. We propose that this metacognitive judgment of their own risk pref-

erences may impact how people make resource allocation decisions. Within risk congruency, we

also classify risk-congruent (RC=1) people as risk-seeking versus risk-averse. On the other hand,

risk incongruent (RC=0) people are classified as those that think they are more risk-seeking than

they actually are and those that think they are more risk averse than they actually are.

Internal versus external control (SL)

Finally, the locus of control scale Rotter (1966), measures internal versus external control and has

been shown to influence risky decision making in single choice tasks, with increasing external

locus of control associated with increase risk seeking behavior in simpler experimental tasks.

10.7 Experimental Results

Table 10.4 shows the summary statistics and correlations for the key behavioral measures defined.

Table 10.5 shows the breakup of mean values by experimental condition and choice architecture.

Reporting is based on Bayesian statistics, with a log Bayes Factor (LBF) used to determine signif-

icance. Table 10.6 shows the LBF for whether the key measures depend in individual risk traits

measured, with LBF ge 1 indicating that the risk traits influence the behavioral measure.

The left panel in figure 10.6 shows the distribution of H across participants and trials. The color

shading also shows the distribution of the number of unique prospects selected on any trial. A large

mass of the distribution lies between the range of 0.25 and 0.5, with further peaks at 0.5 and 1.0

indicating choices where people selected 2 of the 4 prospects equally, or invested all their resources

in a single prospect. The right panel in figure 10.6 shows the joint distribution of allocation to S

and R. It shows a large variety in patterns of allocation with peaks at 25%, 50% or 100% allocation

to either R or S, but also a wide spread of intermediate behavioral patterns.
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Table 10.4: Summary statistics: Correlations with LBF ≥ 1 highlighted in bold

Correlation with
Measures Mean SD (2) (3) (4) (5) (6) (7) (8) (9)
(1) Herfindahl Index (H) 0.48 0.23 0.22 0.20 0.02 0.12 -0.04 -0.05 0.10 -0.11
(2) % Safest (S) 0.34 0.28 -0.56 -0.30 -0.44 -0.10 0.05 0.10 -0.06
(3) %Riskiest (R) 0.27 0.26 0.25 0.61 0.06 -0.08 -0.12 0.01
(4) Portfolio EV (V ) 3.2 2.8 -0.38 0.40 -0.01 -0.02 0.01
(5) Portfolio SD (D) 4.1 4.0 -0.20 -0.04 -0.08 0.00
(6) Realized returns (T ) 3.5 6.8 -0.00 -0.02 0.01
(7) Locus of Control (SL) 13.1 3.8 -0.16 0.07
(8) Risk aversion (HL) 4.9 1.9 -0.23
(9) Risk seeking (DF) 3.0 1.1

Table 10.5: Mean values by condition: Values highlighted in bold indicate that the difference
within levels for that design factor have LBF ≥ 1

SOSD Domain Skew Cost framing
(Yes) (No) (Gain) (Mixed) (0) (Neg) (Pos) (None) (Riskier) (Safer)

H 0.48 0.47 0.48 0.47 0.46 0.48 0.49 0.44 0.49 0.49
S 0.37 0.31 0.29 0.39 0.34 0.37 0.31 0.32 0.33 0.36
R 0.25 0.29 0.30 0.24 0.26 0.28 0.27 0.27 0.28 0.26
V 2.50 3.98 5.84 0.64 3.23 3.25 3.24 3.27 3.26 3.19
D 3.83 4.42 2.06 6.19 4.38 3.60 4.39 4.23 4.32 3.83
N 0.01 0.04 0.00 0.05 0.02 0.03 0.02 - - -
εw 0.76 0.34 0.55 0.55 0.57 0.51 0.57 0.53 0.57 0.55
Qw - 63.7 19.9 107.5 64.7 52.4 73.9 67.0 76.1 48.0

Table 10.6: LBF for influence of risk traits (HL, DF, SL, RCI) on key behavioral measures. In
addition, the column RC = 1 measures the influence of congruent risk seekers versus congruent
risk aversiveness, and RC = 0 measures the influence of levels of incongruency - whether people
overestimate their risk seeking or risk aversive behavior

HL DF SL RCI RC=1 RI=1
H 0.9 6.2 -1.5 1.1 10.6 -2.0
S 4.9 -0.1 3.4 1.3 3.6 -1.5
R 11.0 -2.2 6.8 1.0 1.5 2.2
V 4.4 -1.1 5.0 0.7 1.3 -1.2
D 5.5 -2.0 3.1 2.6 1.2 1.3
N 4.3 -1.6 -1.3 1.0 -1.3 7.7
εw -0.7 -2.9 -2.3 -2.4 -1.6 -1.2
Qw -1.5 -2.0 2.7 2.7 -1.4 -1.0
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Figure 10.6: Left Panel: Distribution of Herfindahl index across participants and trials. The color
shading shows the number of unique prospects (1 to 4) selected on each trial. Right Panel: Pro-
portion of resources allocated to the riskiest prospect (R) vs to the safest prospect (S) on each trial.
Size of the squares reflects the proportion of trials and the color of the squares reflects the mean
Herfindahl index for that combination of R vs S.

10.7.1 Impact of choice manipulations:

A Bayesian repeated measures ANOVA JASP-Team (2016) is used to test the effect of choice ma-

nipulations on these measures. Figure 10.7 shows the mean allocations to each of the 4 prospects

split by type of choice manipulation. There is no evidence that the incentive condition had any

effect on S, R, H, V , or D. There is no evidence that the level of diversification as measured by

H is affected by the domain, skew, or SOSD manipulations. There is evidence for a main effect

of domain (LBF 28.1), SOSD (LBF 12.8), and skew (LBF 3.2) on S. Allocation to S is higher in

the mixed domain (mean 39%) than in the gains domain (mean 29%), higher in the SOSD (mean

37%) compared to non-SOSD (mean 31%) condition, and higher in negative skew (mean 37%)

than positive skew (mean 31%) conditions. There is evidence for a main effect of domain (LBF

9.6) and SOSD (LBF 4.3) on R. Allocation to R is higher in the gains domain (mean 30%) than in

the mixed domain (mean 24%), and higher in the non-SOSD (mean 29%) compared to the SOSD

(mean 25%) condition. V and D are expected vary with domain and SOSD by design. There is no

evidence for a main effect of skew on V , but there is evidence (LBF 6.9) for a main effect of skew

on D. Participants exhibit the lowest D (mean 3.6) in the negative skew condition and highest D
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Figure 10.7: Mean allocation to the 4 prospects ranging from safest to riskiest, split by choice
manipulation.

(mean 4.39) in the positive skew condition, indicating a marked preference for lower variability in

the negative skew condition.

10.7.2 Impact of purchase cost framing effects:

First, we test for differences between the framing conditions and no framing condition is more

complicated, since there is the possibility of order effects confounding results. To test this, we

first run a Bayesian ANCOVA analysis testing for an order effect of item presentation order within

each of the three blocks. We find evidence of no order effects on H, S or R within any of the three

blocks. A repeated measures Bayesian ANOVA reveals strong evidence (LBF 10.3) for an effect

of cost framing on H. Framing (of either type) reduces diversification, with mean H increasing

from 0.44 in the no framing condition to 0.49 in both the cost framing conditions (see figure 10.8).

A possible hypothesis is that whilst people may not be susceptible to cost framing effects, the
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introduction of an additional cognitive element induces people to reduce their diversification. This

is supported by the observation that in the no framing condition, people selected all 4 prospects on

55% and either 1 or 2 prospects on 22% of the trials. Compared to this, in the framing conditions

(combined), people selected all 4 prospects on 45% and either 1 or 2 prospects on 33% of the trials.

Overall, the measure of susceptibility to nudges (N) shows values close to 0, indicating that people

on an average may be susceptibility to cost framing effects. However, a deeper analysis shows that

there is in fact a significant amount of heterogeneity in peoples’ responses and susceptibility to the

cost framing nudges, as seen in figure 10.9.
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Figure 10.8: Reduced diversification (higher H) in cost framing conditions compared to the no-
framing condition

Table 10.7: Mean values of susceptibility to nudges by risk congruency traits

Traits % of sample mean N
Risk congruent 60% 4.3%
Risk incongruent 40% -0.2%
- Self-report risk averse 26% 5.5%
- Self-report risk seeking 14% -11.0%

To identify whether individual traits can explain this heterogeneity, we look at whether people were

risk congruent (i.e. whether peoples’ self-reported measures of risk propensity (DF) and elicited

measures of risk propensity (HL) were congruent). We find that risk incongruence is a key driver
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Figure 10.10: Mean values of S, R, H, V , and D for unique values of locus of control (SL), risk
aversion (HL), and financial risk seeking (DF). The lines indicate best fit regression.

of how susceptible people were to nudges, as summarized in table 10.7. The key implication here

is that risk incongruency (conflict between self-reported and elicited risk preferences) gives rise

to significant differences, so that risk incongruent participants that believed they were risk averse
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discounted external framed costs whereas risk incongruent participants that believed they were risk

seeking over-weighted external transaction costs, leading to opposite reactions between groups for

the two types of nudges. This difference was not observed in risk-congruent participants.

10.8 Discussion

10.8.1 Do previous outcomes influence behavior?

We test whether the status of returns (whether gains or losses) on a previous trial has any impact

on behavior in the subsequent trial, by conducting Bayesian independent sample t-tests. There is

evidence that previous trial outcome has no impact on H (LBF -2.6), R (LBF -2.6), S (LBF -1.8),

or D (LBF -1.6). There is mild evidence that previous trial outcome has an impact on V (LBF 1.2),

with slightly higher values (mean 3.6) after a loss trial than after a gain trial (mean 3.1).

10.8.2 Do traits influence behavior?

Figure 10.10 shows the mean values of dependent measures for unique values of the three trait-

based measures (SL, HL, and DF). To test if the risk based traits influence behavior in the portfolio

choice task, we use a Bayesian ANCOVA analysis treating the between and within subject choice

manipulation factors as random effects and testing for the effects of covariates locus of control

(SL), risk aversion (HL), and financial risk seeking (DF). Separately, we also measure the influence

of risk congruency (RCI). Table 10.6 shows the LBF for the influence of risk traits on behavior.

We find evidence that elicited risk averseness (HL) and locus of control (SL) have an impact on

S, R, V, and D so that higher elicited risk averseness in simple gamble choices does carry over

to an extent and result in relatively risk averse behavior in allocation tasks. Increasing external

locus of control also leads to similar effects as increasing risk averseness. Directionally, this is in
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contrast to findings based on risky gambles (Rotter (1966)) which showed that increasing external

locus of control was associated with waging more money on riskier bets. On the other hand,

the level of diversification seems to be influenced only by the self-elicited risk propensity (DF),

with higher self-reported risk seeking behavior linked to higher diversification. This behavior

is again contrary to the popular notion that diversification leads to reduced risk. Interestingly,

risk congruent individuals show lower levels of risk taking in allocation tasks compared to risk

incongruent individuals. The higher risk taking in the latter group is driven by individuals that

believe they are risk averse based on self-reporting, but whose behavior even in simple gamble

selection elicitation tasks demonstrates risk seeking behavior.

Next, we look at the susceptibility to nudges, N. Elicited risk propensity (HL) significantly in-

fluences susceptibility to nudges, with increasing risk averseness linked to lower susceptibility to

nudges. The susceptibility to nudges also differs significantly within the risk incongruent group -

individuals who believe they are risk seeking but show risk averse behavior behave very differently

from everyone else. They seem to significantly overweight acquisition costs and behave in a way

that seems opposite to hedonic segregation. They hence show behavior in the direction opposite to

the intended nudges.

10.8.3 How close to mean-variance optimization do people get?

Conducting a Bayesian ANOVA analysis and comparing against a null model that included partic-

ipants as random effects, we find evidence for the effect of SOSD (LBF 36) and skew (LBF 3.8) on

εw. We also find evidence for the effect of domain (LBF 36.7) and cost framing (LBF 1.1) on Qw.

On an average, the actual allocations that people make are less optimal from a mean-variance opti-

mization standpoint than what a simple 1/N heuristic would result in. Surprisingly, the distance to

optimality is significantly lower for the more complex non-SOSD choice sets. The mean inferred

risk tolerance Qw is 20 in the gains domain and 107 in the mixed domain, indicating that risk tol-

198



erance is highly contextual, rather than a stable trait. The mean inferred value of risk tolerance Qw

is 67 in the no-framing condition, 76 in the higher-riskier-framing condition, and 48 in the higher-

safer-framing condition is 48, reflecting sensitivity of risk tolerance to framing effects. There is

evidence that measures of risk traits (SL, HL, DF) do not have any effect on the closest distance

to optimality, but SL does impact risk tolerance Qw. Note that if people indeed discount purchase

costs, but maintain an otherwise constant level of risk tolerance Q, this would however appear to

produce the same behavior as a shift in the risk tolerance. Specifically, discounting costs would

appear to increase risk tolerance in the riskier framing condition and decrease tolerance in the safer

framing condition. This is exactly what is observed. As we shall see in subsequent sections, by

assuming that risk tolerance for a particular choice set is fixed, regardless of cost framing, we can

use the observed choices to impute the amount of cost discounting carried out by individuals.

10.9 Behavioral models that explain resource allocation

We outline a set of behavioral models that combine assumptions about choice bracketing, outcome

segregation, and people’s utility and valuation functions. Since this is a latent cognitive process,

we implement these as computational models of cognition, with a mixture model setup, to identify

how likely each of these models is to have generated the observed behavior for each individual. In

this section, we first outline the different behavioral models considered, by categorizing them into

narrow and wide choice bracketing.
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10.9.1 Narrow choice bracketing

Here, each prospect is evaluated independently based on one or more objective functions. These

valuations for each prospect are then combined into a set of weights, as below:

wi = Σ jυ jωi j (10.8)

ωi j =
1

1 + Σk e−η(Vi j−Vk j)
(10.9)

i,k ∈ [1 : N] k 6= i; j ∈ [1 : J]; η≥ 0

Here we consider N prospects, with each prospect indicated by the index i, and J concurrently held

objective functions, each represented by the index j. The overall allocation weight for prospect i is

wi and is given by equation 10.8. Here, υ j is a free parameter that represents the weight placed on

the objective function j. Equation 10.9 shows how wi, j, the allocation weight given to prospect i

under the function j is computed. This depends on Vi, j, the valuation for prospect i under objective

function j, and η, a free parameter that determines the bias for diversification versus concentration.

For η = 0 this reduces to the 1/N heuristic, where each prospect is allocated an equal weight. For

very high values of η this reduces to a greedy choice, where all the resources are placed in a single

prospect. In practice, the number of concurrently utilized objective functions J would typically be

1, and rarely be more than 2. There are of course many possible objective functions that people

might be using; for the purpose of this paper we consider the following:

1. Expected value (EV); J=1:

This is the baseline model, and known to be poor at explaining choices under risk, but is included

as a lower reference point. This assumes that people diversify between prospect based on their

diversification bias and the relative EV of prospects, in accordance with equation 10.9.
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2. Cumulative prospect theory value (CPT); J=1 Tversky and Kahneman (1992)

This assumes that people diversify between prospects based on their diversification bias and the

relative CPT derived value (VCPT ) of individual prospects, in accordance with equation 10.9. The

CPT valuation is based on equations 10.10 - 10.14. In equation 10.10, π are the decision weights

that are obtained by calculating the difference in cumulative capacities (w+ or w−) between a

sequentially ordered set of prospects (see (Tversky and Kahneman (1992)) for details).

VCPT = Σπ
+v+ + Σπ

−v− (10.10)

v+(x) = xα; x≥ 0 (10.11)

v−(x) =−λ(−x)α; x < 0 (10.12)

w+(p) =
pγ

(pγ +(1− p)γ)1/γ
(10.13)

w−(p) =
pδ

(pδ +(1− p)δ)1/δ
(10.14)

3. Security-Potential / Aspiration theory (SPA); J=2 (Lopes and Oden (1999))

This theory proposes individual differences in the balance of whether people are security (safety)

minded or aspiration minded. Further, people may have high or low safety and aspirational thresh-

olds. People with higher thresholds and high skew towards safety or aspiration would accordingly

concentrate their allocations. People with lower thresholds indulge in greater diversification. The

theory proposes two criteria; SP based on a balance of security-potential, and A, based on aspira-

tion. We use each of these two criteria (J = 2), to calculate possible weight allocation in accordance

with equation 10.9. these weights are then combined based on people’s inferred balance between

SP and A using equation 10.8. The criteria for aspiration, A is given by equation 10.15, where αSPA

is the aspiration level and A represents the probability that a prospect will yield an outcome that is
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at least as high as this aspiration level. The criteria for SP is obtained from equations 10.16-10.17,

where Di is the decumulative probability of outcome vi, that is, the probability of obtaining an

outcome at least as high as vi. Here h(D) is a decumulative weighting function, and wG determines

whether a decision maker is security minded (biased towards wG = 1) or potential minded (biased

towards wG=0). For further details, see Lopes and Oden (1999).

A = p( v ≥ αSPA ) (10.15)

SP = Σ
N
i=1 h(Di) (vi− vi−1) (10.16)

h(D) = wG D1+qs +(1−wG) (1− (1−D)1+qp) (10.17)

10.9.2 Wide choice bracketing

In aggregated portfolio choices, prospects are not evaluated independently. Rather, the combined

portfolio based on a set of allocation weights is evaluated based on some objective functions, with

the aim that the constructed portfolio optimizes a set of objective functions. For the purpose of this

paper, we consider that people might be using one of 2 possible classes of aggregated models:

1. Mean-variance optimization: Here, the optimal set of weights are not unique, but a subset of

all possible combinations and form an efficient frontier (Markowitz (1952)). Any combination of

weights along this efficient frontier is considered optimal, and the actual selection along this fron-

tier depends on a free risk tolerance parameter Q. The efficient frontier is the set of combination

of weights such that the portfolio EV cannot be increased without increasing the variance, and the

portfolio variance cannot be reduced without reducing the EV. This assumes that higher EV and

lower variance are desirable features of the portfolio. The efficient frontier consists of solutions

to equation 10.18, where ET is the vector of expected returns on prospect and Σ is the covariance
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matrix for prospect returns.

wi | arg minwi [w
T
i Σwi − Q ET wi | Q] Q≥ 0 (10.18)

2. Maximizing aggregated CPT: Here, the selected weights wi maximize the CPT objective func-

tion V . This function is applied to the portfolio as a whole rather than individual prospects. Given

a particular set of parameters that define an objective function, there will typically be a unique

combination of allocation weights that maximizes the objective function. This can be represented

as:

wi | arg maxwi [Vwi] (10.19)

The key difference between segregated and aggregated CPT is that in the former, each prospect is

independently evaluated under CPT to yield n different CPT values which are then combined in

some form. In the latter, the weighted portfolio is treated as a single multiple outcome prospect,

where the value of each aggregated outcome is the underlying outcome for the prospect multiplied

by the allocation weight to the prospect. Thus, a portfolio with four prospects, each with 2 possible

outcomes, will be treated as a single 8-outcome prospect, with the total probabilities of the 8

outcomes adding up to 1. This 8-outcome prospect is then subject to a CPT valuation. Since CPT

evaluation is rank dependent, the allocation weights can change the sorted order of outcomes and

it is possible that a small change in weights results in a relatively large change in aggregated CPT

valuation. The link between ∆w and ∆VCPT is thus not constant, linear or monotonic under an

aggregated mode of evaluation.

10.9.3 Cognitive parameterization of the behavioral models

The 3 narrow bracketing and 2 wide bracketing behavioral models are implemented as a mixture

model within a hierarchical Bayesian inference framework. The models were implemented using

MCMC sampling in JAGS (Plummer et al. (2003)). We make specific assumptions based on the
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plausibility of cognitive processes, and link behavioral patterns to personality traits. To do this, we

use a cognitive latent variable modeling approach (Vandekerckhove (2014)), where unobserved

latent variables such as diversification bias and preference for choice bracketing are inferred based

on a combination of observed behavior and measured traits. Specifically, we impose the following

constraints:

1. Diversification bias (η) as applied in equation 10.9 under a given model (m) for a particular

individual (i), is treated as a random-effect individual trait that remains constant across choice sets.

Individual differences in diversification bias are modeled as being dependent on (z-transformed)

measured traits SL, HL, and DF, as shown in equation 10.20.

ηim ∼ β
(η)
1m zSL +β

(η)
2m zHL +β

(η)
3m zDF +β

(η)
0m + ε

(η) (10.20)

2. We propose that purchase cost framing is accounted for by separately evaluating the objective

function based on the translated outcomes, and then adding a transaction utility (a negative amount

that depends on the transaction cost), similar to the mental accounting proposed by Thaler (1985).

In the mental accounting framework, transaction utility is is given by κ V (−c,−c∗), where κ is the

relative weight on transaction utility, and V is the objective (utility) function, c is the actual cost,

and c∗ is the reference point for the cost. Within our framework, c∗ is 0. We modify the transaction

utility function to
(
V (−c)

)κ, where (0 ≤ κ ≤ 1). Here κ = 0 implies that any cost, if present,

is treated as a single equivalent unit of cost. Non-linear utilities (CPT, SPA) may thus result in

naturally emergent cost framing effects even if costs are not discounted. In addition, discounting

of purchase costs (κ 6= 1) is treated as an individual trait (random effect) that remains constant

across choice sets for an individual. Note that the same approach to cost framing may also result

in different behavior under segregated or aggregated objective function evaluation.

3. Risk tolerance (Q) within the mean-variance optimization framework is not allowed to vary

freely across all choices sets. For experiment 2, the viable range of risk tolerance parameters are

the same for all choice sets, and risk tolerance is modeled as a random-effect individual trait that
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is constant for an individual across all choice sets. For experiment 1, the choice sets differ signif-

icantly depending on the domain (gains vs mixed), and risk tolerance is assumed to be contextual

depending on the domain. Further, based on previous studies that emphasize changing risk pref-

erence for negatively and positively skewed prospects, we allow risk tolerance to be contextually

changed depending on the skew of the choice set. Importantly, risk tolerance is assumed to remain

constant under different purchase cost framing choices of the same underlying problem. This al-

lows us to infer the effects of purchase cost discounting under the optimization framework, and

attribute apparent changes in risk preference to cost discounting or accounting rather than changes

in underlying risk preferences.

4. Preference for aggregated versus segregated evaluation is treated as an mixed-effect, influence

both by personality traits (SL, HL, DF) and nature of choice sets. We implement the behavioral

models as a mixture model within a hierarchical Bayesian modeling framework. This allows us to

measure the likelihood of a particular behavioral model being used by each individual and choice

type. Model inference is performed separately for experiments 1 and 2 (since the choice sets are

very different), but combined for the different between-subject conditions in experiment 1. We

model the specific preference (ρ) for each of the 5 considered models (m) for each indivudal (i),

as ρim, as shown in equations 10.21, 10.22 (for experiment 1) and 10.23 (for experiment 2). This

is based on individual level random effects ψim and choice set based effects.

ψim ∼ β
(ψ)
1m zSL +β

(ψ)
2m zHL +β

(ψ)
3m zDF +β

(ψ)
0m + ε

(ψ) (10.21)

ρim ∝ Φ
(
ψim +β

(ρ)
domain +β

(ρ)
sosd +β

(ρ)
skew +β

(ρ)
f raming

)
(10.22)

ρim ∝ Φ
(
ψim +β

(ρ)
ev +β

(ρ)
sosd +β

(ρ)
skew +β

(ρ)
correlation

)
(10.23)

5. For parameterized CPT (both segregated and aggregated), the parameters [α,γ,δ,λ] are treated

as individual random effects within a hierarchical population distribution. Similarly for segregated
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SPA, the parameters [αSPA,wG,qS,qP,υSP] are treated as individual random effects within a hier-

archical population distribution. Since J=2 for SPA, υSP is the weight parameter used in equation

10.8 to balance the allocations derived separately from the SP and A criteria.

10.10 Application of behavioral models to experimental data

Using Bayesian inference, we infer the parameters of the mixture model used to separately fit

data from both experiments. The 5 models considered are segregated EV (EV-S), segregated CPT

(CPT-S), segregated SPA (SPA-S), aggregated mean variance optimization (MVO-A), and aggre-

gated CPT (CPT-A). The mixture model allows us to make inferences about the nature of choice

bracketing choices and preference for segregated versus aggregated models. We also fit each of the

five behavioral models individually to each experimental dataset to infer the full posterior distribu-

tion of parameters. Aside from the inference on choice bracketing, the parameter inferences in the

below section are based on separately inferred models.

EV-S CPT-S SPA-S MVO-A CPT-A

Model (Experiment 1)
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Figure 10.11: Model preference in the experiment over all participants and choice decisions. Seg-
regated models, (specifically, SPA-S) are the dominant preference
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Figure 10.12: Model preference by choice set. Non SOSD choice sets, and choice sets with skewed
prospects increase relative preference for aggregated choice bracketing.

10.10.1 Choice bracketing and model preferences

We obtain the model weights, or the probabilities for each of the 5 models being used for every

individual choice decision. Figure 10.11 show the weights (summing to 1) over all individuals and

trials. The mean weights were 57%, 22%, and 13% for SPA-S, CPT-S, and MVO-A in experiment

1, and 74%, 19%, and 4% for SPA-S, CPT-S, and CPT-A in experiment 2. Segregated models are

the dominant preference, with SPA-S being the single dominant choice model in both experiments.

We combine the preference for segregated and aggregated choice models, and find that in exper-

iment 1, aspects of choice architecture had a significant influence on choice bracketing. Figure

10.12 shows that in experiment 1, the preference for aggregated models, although still lower, rel-

atively increases in non-SOSD choice sets, and in choice sets that include skewed prospects. The

choice architecture factors in experiment 2 do not seem to have a significant influence on choice

bracketing.

Figure 10.13 shows individual differences in preference for aggregate models in both the experi-

ments, as measured by the difference between participants that had low or high SL, HL, and DF

scores. High and low scores are based on z-transforms above and below zero. Locus of con-
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Figure 10.13: Individual differences in choice bracketing by choice set. Non SOSD choice sets
increase relative preference for aggregated choice bracketing.
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Figure 10.14: Individual differences in diversification / concentration bias (η )based on the SPA-S
model. Higher values of η indicate higher concentration.

trol (SL) seems to have a strong effect, so that people with higher internal locus of control (low SL

scores) have a higher propensity to for aggregated choice bracketing decisions in both experiments.

The differences based on risk averseness (high HL and low DF) versus risk seeking (low HL and

high DF) are not stable or strong enough to provide any conclusion.

10.10.2 Diversification Bias

Diversification bias is assumed to hold constant for an individual across all choice sets. Our cog-

nitive latent variable modeling approach allows us to directly model this as dependent on the mea-

sured . We evaluate this bias, η, where higher values of η indicate a higher bias towards concen-

tration for the SPA-S model, given that this is the most dominant model across experiments. The

mean value of ηSPA−S (see table 10.10)is similar in experiment 1 (mean 1.45) and 2 (mean 1.37).
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As seen in figure 10.14, the results are directionally consistent between the experiments for the

influence of locus of control and HL, but the effects are stronger in experiment 2. Higher internal

locus of control (lower SL) seems to drive higher concentration. Higher risk aversion (HL) also

seems to drive higher concentration.

10.10.3 MVO-A Risk tolerance

We allowed the inferred risk tolerance to depend upon the skew and domain of the choice sets.

Table 10.8 shows the median risk tolerance Q across participants depending on the choice set types

(gains or mixed domain, and none, negative or positive skew choices). The risk tolerance is much

higher in the mixed domain, suggesting that risk tolerance is a context specific measure. In the

gains domain, risk tolerance drops for both positive and negative skew. In the mixed domain, risk

tolerance drops for negative skew and increases for positive skew choice sets. This is consistent

with previous findings that people have a preference and are willing to take higher risks for positive

compared to negative skew prospects. The risk tolerance depends heavily on the specifics of the

choice sets, and is not comparable across experiments. We find strong evidence of the influence

of individual traits on the inferred risk tolerance, with increasing external locus of control, and

increasing risk aversion as measured by personality scales linked to higher risk tolerance.

Table 10.8: Median inferred MVO-A parameters

Gains Mixed
Overall None Neg Pos None Neg Pos

Risk tolerance (Q) 27 14 11 7 66 41 77

Table 10.9: Median inferred CPT parameters

α γ δ λ κ η

CPT-S 0.63 0.78 0.98 1.1 0.31 0.41
CPT-A 0.50 0.70 0.70 2.10
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Table 10.10: Median inferred SPA parameters

υSP wG qP qS αSPA κ η

SPA-S 0.26 0.58 0.14 3.05 -0.43 0.96 1.45

10.10.4 CPT parameters

Table 10.9 shows the median inferred parameters under the CPT-S and CPT-A models. The sur-

prising finding is the lack of loss aversion under CPT-S, which is the second most preferred model.

The median λ values for both experiments are 1.1, which indicates almost no loss aversion. The

CPT-S model also demonstrates a higher bias towards diversification (lower η) compared to the

SPA-S model.

10.10.5 SPA-S parameters

Table 10.10 shows the median inferred parameters under the SPA-S model, the most preferred

model in these experiments. Under both experiments, υSP is low, about 0.26, indicating that people

put greater weight on the aspiration criterion A, rather than the security-potential criterion SP. The

criterion A is defined as p(v≥ αSP). The median values of αSP in the two experiments is very close

to zero (-0.43 and 0.01). Taken together, this suggests that participants were trying to maximize

their probability of not incurring a loss.

10.10.6 Purchase cost discounting

Purchase cost discounting, is measured by κ, where the effective cost evaluated by participants

is [v(cost)]κ. Higher values of κ indicate lower susceptibility to cost framing on account of cost

discounting, and values range from 0 to 1. In experiment 1, the median value of κ under the

dominant SPA-S model was 0.96 (see table 10.10), indicating that people do not discount costs.

210



This does not preclude framing effects - framing effects can still be present because of segregated

mental accounting of transaction costs which gives rise to framing effects when the valuation model

is non-linear (as in SPA-S and CPT-S). Note that under the CPT-S model, median κ is much lower,

at 0.31 (see table 10.9), indicating greater susceptibility to purchase cost discounting effects.

10.11 Conclusion

We report that in the experiment, susceptibility to transaction utility framing effects is highly het-

erogeneous, and is moderated by risk congruency, the degree of dissonance between self-expressed

and elicited risk propensity. Depending on risk congruency, participants either under-weight or

over-weight outcomes that are re-framed, resulting in a wide range of behavioral responses to

these nudges. This has implications for the impact of transaction costs and incentive framing in

situations where individuals face a conflict in terms of their perceived and experienced risk pref-

erences, either because of internal or externally imposed risk preferences. In both framing cases,

people reduced their level of diversification.

A novel finding was that measures of risk traits typically linked to risk aversion versus risk seeking

behavior in single gamble choices were in fact linked to the level of diversification in our exper-

iments, with risk seeking traits correlating to higher diversification, a counter intuitive trend. We

find that people certainly did not follow the naive diversification or 1/N heuristic. How close partic-

ipants came to mean-variance optimization of portfolio choices depended heavily on choice archi-

tecture, with better performance in mixed domains, and in non second order stochastic dominant

choice sets (details in below sections). Performance in terms of optimization was not influenced by

traditional risk aversion or risk seeking traits. Personality traits linking locus of control (internal vs

external) to portfolio choice decisions showed increasing external locus of control leading to safer

choices.
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We analyze these behavioral patterns through the lens of a set of behavioral accounts of portfo-

lio choice. We define a set of models based on choice bracketing, that is, whether prospects are

evaluated individually or as a combined portfolio, and incorporate traditional measures such as

traditional prospect theory, mean-variance optimization, and security-potential-aspiration (SPA)

theory into these models. Our results show that people strongly preferred segregated evaluation

of prospects, with preference for aggregated modes of evaluation being very low across both ex-

periments. Under certain choice set conditions (such as non SOSD, or skewed choice sets), the

preference for aggregated choice bracketing increased, but only marginally. We show that the level

of diversification bias as measured formally in our model is linked to personality traits such as lo-

cus of control and risk aversion. We find evidence that preference for segregated versus aggregated

choice evaluation is modulated by personality traits such as locus of control.
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