
Deep RL for Autonomous Robots:
Limitations and Safety Challenges

Olov Andersson1 and Patrick Doherty1 ∗

1- Linköping University - Department of Computer Science
581 83, Linköping - Sweden

Abstract. With the rise of deep reinforcement learning, there has also been
a string of successes on continuous control problems using physics simulators.
This has lead to some optimism regarding use in autonomous robots and
vehicles. However, to successful apply such techniques to the real world re-
quires a firm grasp of their limitations. As recent work has raised questions
of how diverse these simulation benchmarks really are, we here instead ana-
lyze a popular deep RL approach on toy examples from robot obstacle avoid-
ance. We find that these converge very slowly, if at all, to safe policies. We
identify convergence issues on stochastic environments and local minima as
problems that warrant more attention for safety-critical control applications.

1 Introduction

Deep reinforcement learning hold promise as a general-purpose solution to plan-
ning and control under uncertainty, problems which are also pervasive for real-
world autonomous robots and vehicles. However, as real-world agents are cumber-
some to work with, the deep RL community relies almost entirely on simulation
benchmarks. Sufficiently accurate simulators could potentially also be used as
part of the work-flow in real applications, for example to mitigate the most well-
known limitation of deep RL, the large number of environment samples needed.
However, this requires great care as simulations always carry a risk of neglecting
important aspects of reality. The heavy reliance on simulation benchmarks makes
reinforcement learning research as a whole particularly vulnerable to this.

Here we focus exclusively on continuous action tasks. The standard bench-
marks consist of mainly static locomotion tasks in the Mujoco physics simulator
[2]. These tasks involve complex legged agents with non-linearities and contact
dynamics. Although inspired more by biology than commonly used robots and
vehicles, up to the fidelity of the simulator, these are seemingly challenging control
problems. However, learning how to move from one fixed state to another is a
much simpler task than learning what to do over a wider distribution of states.

Rajeswaran et al. [1] recently did perturbation testing of learned policies in the
standard Mujoco benchmarks and found them fragile. They also showed that most
are solvable even by linear policies. They suggested widening the distribution of
initial states and improving termination conditions. We take this recommendation
further and argue for more varied environments and tasks, better reflecting the
reality faced by autonomous robots in the real world. In particular, more uncer-
tainty, and more complex objectives where unsafe states also have to be avoided.

∗This work is partially supported by grants from the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation, the Swedish
Foundation for Strategic Research (SSF) project Symbicloud, and the ELLIIT Excellence
Center at Linköping-Lund for Information Technology.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

489

While the environment state transition in RL is typically seen as an unknown
probability density function p(xt+1|xt, at), the underlying dynamics in standard
control benchmarks is usually a deterministic function xt+1 = f(xt, at). Further,
the state is fully observed, and there is little randomization of the start and goal
states [3]. This makes the problem much easier. In fact, in a fully deterministic
environment, the optimal policy can be reduced to a trajectory from start to
goal state. There has only recently been some steps toward improving this, e.g.
randomizing start [1] or goal [4] states. Real autonomous robots on the other
hand need to both work robustly in a wide range of situations, and under a great
deal of uncertainty. It cannot observe what is behind a wall, or the internal state
of other agents, which makes the environment appear stochastic.

The focus of RL control benchmarks has instead been on agents with more
complex, if deterministic, dynamics. The environments are typically empty and
reward functions often static, typically near-quadratic in deviation from a fixed
goal state and action penalties. This is a very well-behaved objective, which
under linear dynamics is even convex. For real autonomous robots, it may be
more important to avoid bad outcomes rather than to reach its goal. As an
example, take autonomous vehicles navigating difficult traffic. Avoiding a crash
is paramount, and an agent may even end up in situations where all its options
are bad and have to be rationally weighed against each other.

To demonstrate the importance of these factors we consider the problem
of robot collision avoidance with moving obstacles [5], like pedestrians or cars
in traffic. In contrast to the standard benchmarks, this example intentionally
uses the simplest possible robot dynamics, but includes uncertainty in how the
obstacles move, and a more challenging objective via a penalty on collisions. We
test a popular deep RL approach and find that this seemingly simple problem
apparently poses more of a challenge than standard benchmarks, and that learned
policies make mistakes that could cause injury on a real autonomous robot.

2 Toy Example: Robot Obstacle Avoidance

We introduce a toy problem with an autonomous robot and randomly moving
obstacles. We intentionally use the simplest possible robot motion, a first-order
integrator, defined as xt+1 = f(xt, at) = xt + 0.1at, where the state xt is the
position of the agent. This is equivalent to actions directly controlling its velocity
in 10Hz using Euler integration. In the following we assume the state is two-
dimensional such that it moves in the plane. Simple integrators are well-studied
in the control literature, and in this case could be both convex and admit closed-
form solution. However, since real robots have physical limits we constrain
actions to [−2, 2] m/s.

This undeniably simple problem is augmented with up to O = 3 spherical
obstacles with 1m diameter as in Fig. 1a. These are given random destinations
in a 3x3m square, governed by a simple proportional controller with a max
acceleration and velocity of 1m/s. The agent is penalized both with distance
to its goal position, in the center of the square, as well as heavily penalized for
collisions. The cost function is chosen as

r(s, a) = −‖pa − pD‖2 − 500
O∑
i=0

collision(pa, poi), (1)

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

490

(a) (b)

Fig. 1: a) Simplified RL environment with moving obstacles (velocities represented
as arrows) b) Collision example, the agent rams into the top obstacle.

where pa, pD and poi are the positions of the agent, its destination, and obstacle
i respectively. The collision function is defined as the normalized penetration
distance into an obstacle, where 1 is complete overlap. For simplicity we ignore
contact dynamics, but we stress that it could not be a replacement for a contact
penalty, as it could otherwise be optimal to bounce or decelerate against obstacles.
The penalty is chosen such that displacement from the destination should always
be preferable to any significant collision. With such a simple penalty, we expect
that minor touches may still be optimal, and for real applications one may want
to add a 5cm safety margin or use a more sophisticated penalty method.

As obstacle motion is stochastic, effective solutions require planning under
uncertainty. However, this version is fairly simple as the agent is both faster and
more nimble than the obstacles (it has no inertia). The discount factor is set to
γ = 0.96 as it should only need to plan 10-20 steps ahead to avoid collision.

3 Experiments

The policy gradient (PG) family of methods tend to be currently preferred for
continuous control problems in RL. These are on-policy, such that the policy πθ
is stochastic. Typically a neural network plus N (0, σ2

π) action ”exploration noise”
is used. Here we use the popular proximal policy optimization (PPO) algorithm
[6], as it is considered to perform well with minimal tuning. In PPO the policy
πθ is optimized on a surrogate surface, constructed from previous trajectories
via an importance sampling approximation,

L(θ) = Êt
[
πθi(at|st)
πθi−1(at|st)

Ât

]
. (2)

This surrogate surface allows reusing data batch i by running several policy
optimization epochs within a trust region. In PPO this is enforced implicitly via
a clipped objective controlled by ε, see [6] for details. Here Ât is the improvement
in reward, estimated by generalized advantage estimation (GAE) [7].

We used the PPO2 implementation from the popular OpenAI Baselines library
[8]. As deep reinforcement learning can be sensitive to hyperparameter choices
[9], our strategy was to use the same normalization of state and rewards as the
Mujoco defaults in Baselines, hoping to allow use of parameters close to those in
[6]. After extensive experimentation with individual parameters, we found that

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

491

the performance of PPO on our domain was most sensitive to step size α, followed
by the number of training epochs per batch of data. We tried adjusting ε, which
regulates the trust-region via clipping, and GAE λ within the suggested range of
[0.9, 1.0], but found no significant improvement. Parameters used in the results
were defaults for step size α = 3× 10−4, λ = 0.95, batch size 2048. However,
5 (vs. 10) epochs per batch was as high we could go without oscillations. The
environment1 is implemented in OpenAI Gym and has 128 steps per episode.

3.1 Results on Stochastic Obstacle Domain

To establish a baseline we begin with a nearly deterministic scenario like in the
standard Mujoco benchmarks. Using a narrow initial state distribution for the
agent, augmented with three static obstacles whose positions are drawn and fixed
in the first episode. The learning curves for five seeds can be seen in Fig. 2a, it
is as expected faster than most results reported for PPO on standard Mujoco
benchmarks [6]. We then extend this to also have the obstacles move randomly.
We see in Fig. 2b that it takes at least an order of magnitude more experience
(note axis scale) to handle all the situations in this case, underscoring that it is
learning a much harder problem.

×10
5

0 1 2 3 4 5

-5000

-4000

-3000

-2000

-1000

0

(a)

×10
6

0 2 4 6 8 10

-5000

-4000

-3000

-2000

-1000

0

(b)

×10
7

0 1 2 3 4
-10

4

-10
3

-10
2

(c)

Fig. 2: Reward curves for learning with a) Static initial state and obstacles (0.5M
steps) (b) Random initial state and moving obstacles (10M steps) (c) Log-plot
out to 40M steps. Runs are either still slowly converging or seemingly stuck.

While it is easy to think it has converged at 5M steps by looking at the learning
curve in Fig. 2b, even with policy noise set to zero, it sometimes still makes inex-
plicable choices as in Fig. 1b. By instead looking at log-plot of the learning curve
in Fig. 2c, we can see that some runs may be stuck, most likely due to problematic
exploration noise, others are still converging — but very slowly — out at 40M.
The samples needed is here getting in range of the full humanoid scenarios in [6],
a vastly more complex dynamical system. Some small touches are expected as we
use a simple penalty function, but the rate of hard collisions (> 20% overlap) stub-
bornly remains around 0.1-0.2/min after 40M steps. We tried reducing learning
rates, and runs up to 120M with more conservative settings on α, epochs, and ε,
with only small improvements in collision rate. As neural network policies trained
via imitation learning have previously produced safe policies for more difficult
variations of this problem[10], it should be possible to find safe policies here. This
by itself does not necessarily mean that it is impossible to get PPO to converge on

1Code: https://github.com/olov-andersson/rl_obstacle_avoidance

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

492

https://github.com/olov-andersson/rl_obstacle_avoidance

this domain, but it may require an exhaustive search over a non-trivial interaction
between four parameters governing step selection and exploration noise.

3.2 Isolating Likely Causes of the Convergence Problems

To better understand why it failed to converge to a safe policy, we try to isolate
the causes by simplifying the problem even further. We also turn off PPO features
like GAE that could cause bias. We first consider the impact of policy exploration
noise on convergence, and then we look for potential issues with local minima.

The first experiment is a 1D version with one static obstacle covering the goal.
The objective is to get close to the obstacle without colliding, which incurs a −100
penalty. First with deterministic robot dynamics, then under N (0, 0.22) noise.
The exploration noise σπ is optimized over time in PG approaches. However, the
optimal policy on this and many other domains is deterministic. Random moves
can push the agent into a collision, which means that σπ → 0 at convergence.
While exploration noise can simply be set to zero in the final policy, a policy with
non-zero noise may not have converged. We have observed that exploration noise
seems reluctant to go to zero on stochastic domains. To examine this phenomena
we run PPO with fixed policy noise σπ ∈ {1, 0.1}. On the deterministic domain
Fig. 3a shows that σπ has little effect on convergence rate, and low σπ enables
higher reward, both as expected. Note that exploration is separate from the
policy update step size, which is not changed. However, on the stochastic domain,
Fig. 3b shows that low σπ severely reduces the convergence rate. As reaching
low exploration is required for policy convergence, this could contribute to the
observed slow convergence and safety problems above.

(a) (b) (c)

Fig. 3: Exploration noise σπ vs. convergence rate for a) deterministic environment,
b) stochastic environment. c) Experiment testing distribution over local minima.

The second experiment is on local minima, which is what exploration noise
is supposed to mitigate. Even with just a few simple obstacles, viewed as a
deterministic trajectory optimization problem, there could potentially be local
minima. We test PPO by intentionally putting the agent close to the bad
minimum shown in Fig. 3c. Even with exploration fixed to a large σπ = 1 and long
planning horizon, we observe that 4/5 times the agent converges to this minimum.
In a static environment this means getting stuck. With moving obstacles, bad
minima can put the agent in harms way. Moreover, it is not obvious what to do
about it within the confines of on-policy policy gradient approaches, which are
currently popular on the control benchmarks. Action saturation constraints of real
robots imposes hard limits on the effectiveness of simply adding more action noise.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

493

4 Discussion

For safe application to real-world autonomous robots and vehicles it is important
to know the limitations of an approach. Control benchmarks in deep RL have
focused on increasing dimensionality and complexity of agent dynamics. Our
experiments indicate convergence problems, from e.g. stochastic environments
and bad minima, that can jeopardize safety even for simple agent dynamics. While
the latter overlaps with exploration, an active research topic in RL, the limitations
of PG exploration noise on continuous control tasks merits more attention.

Given the difficulties reported on our toy problems and the gap to more
visually impressive results on controlling e.g. humanoids in Mujoco, it is perhaps
time to start talking about the risk of trading a curse of dimensionality for a curse
of simulation. Unless simulation benchmarks are carefully designed to retain all
relevant real-world aspects, it is likely that theory will develop toward algorithms
that primarily excel in the simulation environment. This is also why real robot
experiments is seen as the gold standard in robotics. As the Mujoco simulator
and benchmarks were originally designed with local trajectory optimization of
deterministic systems in mind [11], it is perhaps not surprising that popular RL
approaches also end up suffering from poor convergence on stochastic systems and
issues with local minima. A more thorough anchoring in real control applications
could serve to mitigate this problem.

As a solution to control under uncertainty, RL is a natural fit for autonomous
robots. However, policy convergence is important to respect safety constraints
in real-world applications. Even if convergence cannot be proven in deep RL,
asymptotic performance can still be measured empirically. We recommend that
toy problems with uncertainty and bad minima should be standard benchmarks.

References

[1] A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade. Towards generalization and
simplicity in continuous control. In Proc. NIPS, pages 6553–6564, 2017.

[2] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
Proc. IROS, pages 5026–5033. IEEE, 2012.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, abs/1606.01540, 2016.

[4] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider,
J. Tobin, M. Chociej, P. Welinder, V. Kumar, and W. Zaremba. Multi-goal reinforcement
learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

[5] O. Andersson, M. Wzorek, P. Rudol, and P. Doherty. Model-predictive control with
stochastic collision avoidance using bayesian policy optimization. In Proc. ICRA, pages
4597–4604, May 2016.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[7] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. In Proc. ICLR, 2016.

[8] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, and Y. Wu. Openai baselines. https://github.com/openai/baselines, 2017.

[9] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep
reinforcement learning that matters. In Proc. AAAI, 2018.

[10] O.Andersson, M. Wzorek, and P. Doherty. Deep Learning Quadcopter Control via Risk-
Aware Active Learning. In Proc. AAAI, pages 3812–3818. AAAI Press, 2017.

[11] Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In Proc. IROS, pages 4906–4913. IEEE, 2012.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

494

https://github.com/openai/baselines

	Introduction
	Toy Example: Robot Obstacle Avoidance
	Experiments
	Results on Stochastic Obstacle Domain
	Isolating Likely Causes of the Convergence Problems

	Discussion

