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Abstract. We consider the problem of active one-shot classification
where a classifier needs to adapt to new tasks by requesting labels for
one example per class from (potentially many) unlabeled examples. We
propose a clustering approach to the problem. The features extracted
with Prototypical Networks [1] are clustered using K-means and the label
for one representative sample from each cluster is requested to label the
whole cluster. We demonstrate good performance of this simple active
adaptation strategy using image data.

1 Introduction

Few-shot learning addresses the problem of generalizing to new concepts or tasks
from a few samples. In few-shot classification, the task is to adapt a classifier to
previously unseen classes from just a few examples [2, 3, 4, 5]. Few-shot learning
is possible by transferring knowledge from experience with similar tasks from the
past. A popular approach to few-shot learning is meta-learning, in which a model
is explicitly trained to adapt to new tasks in a few samples, on a wide variety of
tasks [6, 4, 3, 5]. Few-shot learning is important in many practical applications
due to the challenges involved in manually labeling data. Recently, the problem
of few-shot learning has also been extended to the setting of semi-supervised few-
shot learning where it is assumed that each task consists of few labeled samples
and potentially many unlabeled samples [7, 8, 9].

In some real-world problems, the tasks to which a learning system needs to
adapt initially consists of many unlabeled samples. For example, a common
feature of photo management applications is the automatic organization of im-
ages based on limited interactive supervision from the user. The photos do not
contain any labels according to the likes of a user and the classes relevant to
a specific user are likely to be different from the classes in publicly available
image datasets such as ImageNet. Thus there is a need for understanding the
unlabeled data, actively requesting labels from the user and adapting to it. We
consider a constrained setting of this problem where the number of classes N in
the unlabeled data are previously known and the system is able to request labels
for N samples from the user. This is the problem of active one-shot learning
that we consider in this paper.

In this paper, we extend the semi-supervised few-shot classification approach
from [7] to active one-shot learning. We observe that Prototypical Networks
(PN) [1] tend to produce clustered data representations. We view the semi-
supervised few-shot learning problem through the lens of semi-supervised clus-
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tering. We take inspiration from [10] and propose a simple approach to enable
adaptation to new classification tasks using feedback from the user. We argue
that this approach can be practical in many real-world applications, as many
use cases of semi-supervised few-shot adaptation imply interaction with a user
and therefore active learning is often possible.

We use the following formulation of the one-shot active classification problem.
There is a training set which consists of a large set of classes and we have access
to labeled samples from each class in the training set. At test time, the task is
to separate samples from N previously unseen classes by requesting N samples
from the user. We follow the recent literature and use the episodic regime of
training and evaluation, as we explain in the following section.

2 Prototypical Networks

The episodic training of PN iterates between the following steps. A subset
of N classes is randomly selected to formulate one training task. For each
training task, a support set S = {(x1, y1), ..., (xn, yn)} and a query set Q =
{(xn+1, yn+1), ..., (xn+m, yn+m)} are created by sampling examples from the se-
lected classes, where xj are inputs and yj are the corresponding labels.

Prototypical Networks compute representations of the inputs x using an em-
bedding function g parameterized with θ: z = g(x,θ). Each class c is represented
in the embedding space by a prototype vector which is computed as the mean
vector of the embedded inputs for all the examples Sc of the corresponding class
c:

mc =
1

|Sc|
∑

(xj ,yj)∈Sc

g(xj ,θ) . (1)

The distribution over predicted labels y for a new sample is computed using
softmax over negative distances to the prototypes in the embedding space:

p(y = c|x, {mc}) =
exp(−d(z,mc))∑
c′ exp(−d(z,mc′))

. (2)

Parameters θ are updated so as to improve the likelihood computed on the
query set: ∑

(xj ,yj)∈Q

log p(y = yj |xj , {mc}) ,

which is computed using (2) with the estimated prototypes.

3 Active One-Shot Learning

In this paper, we extend the semi-supervised few-shot classification approach
from [7] to active one-shot learning. There are two sources of errors which the
semi-supervised adaptation algorithm proposed in [7] can accumulate: 1) errors
due to incorrect clustering of data, 2) errors due to incorrect labeling of the
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clusters. The second type of errors can occur when the few labeled examples are
outliers which end up closer to the prototype of another class in the embedding
space. In this paper, we advocate that the most practical way to correct the
second type of errors can be through user feedback, since in many applications
of the semi-supervised few-shot adaptation, interaction with the user is possible.
This idea is inspired by the work of [10] who introduced a clustering approach
that allows a user to iteratively provide feedback to a clustering algorithm.

Consider the previously introduced example of few-shot learning in photo
management applications. Although it is possible to ask the user to label a
few photographs and use those labels to classify the rest of the pictures, it is
extremely difficult and tiresome for the user to scroll through all the photos
and decide which samples should be labeled. Instead, using the observation
that “It is easier to criticize than to create” [10], one can initially cluster the
photos and then request the user to label certain photos (or provide other types
of feedback) so that the data are properly clustered and labeled. The user
can provide feedback in various forms and therefore can effectively introduce
various constraints that can further guide the clustering process. For example,
a user can assign the whole cluster to a particular class, assign a sample to a
particular cluster, mark that a particular sample does not belong to the assigned
cluster, split and combine clusters. These constraints could be easily induced
in basic clustering algorithms such as K-means. For examples, [11] introduced
constraints between samples in the data set such as must-link (two samples
have to be in the same cluster) and cannot-link (two samples have to be in
different clusters) and the clustering algorithm finds a solution that satisfies all
the constraints.

Even outside the context of few-shot learning, this active learning approach
can be used to adapt a pre-trained classifier. Assume that we have a classifier
that clusters the classes of a particular classification task such as ImageNet.
Then, during test time it is possible to interactively split clusters to make coarse-
grained classifications or to assign multiple clusters to a super-cluster (to make
hierarchical predictions).

In this paper, we assume that the user can provide feedback only in the
form of labeling a particular sample or labeling the whole cluster. We propose
to use Prototypical Network as a feature extractor, cluster the samples in the
embedding space using K-means and then label the clusters by requesting one
labeled example for each cluster from the user. For each cluster c′, we choose
sample zc′ to be labeled by the user by maximizing an acquisition function
a(z, c′):

zc′ = max
z∈Uc′

a(z, c′) ,

where Uc′ is the set of embedded inputs belonging to cluster c′. We explore a
few acquisition functions:

• Random: Sample a data point uniformly at random from each cluster.
This is a baseline approach.
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• Nearest: Select the data point which is closest to the cluster center:

a(z, c′) = −d(z,mc′) ,

where mc′ is the mean (cluster center) of cluster c′.

• Entropy: Select the sample with the least entropy:

a(z, c′) =
∑
c

p(y = c|z) log p(y = c|z)

Thus, we select a sample with the least uncertainty that it belongs to a
certain cluster.

• Margin: Select a sample with the largest margin between the most likely
and second most likely labels.

a(z, c′) = p(y = c1(z)|z)− p(y = c2(z)|z)

where c1(z) and c2(z) are the most likely and the second most likely clusters
of embedded input z respectively. This quantity was proposed as a measure
of uncertainty by [12].

We also try to simulate a case when the user can label the whole cluster, as in
some applications it can certainly be possible. This approach directly measures
the clustering accuracy and we call it “oracle”.

• Oracle: We label each cluster based on the distance of the cluster mean
to the prototypes computed from the true labels of all the samples.

4 Experiments

We tested the proposed method on the miniImagenet recognition task proposed
by [4]. The dataset consists of downsampled 84x84 images from 64 training
classes, 12 validation classes, and 24 test classes from ImageNet. We use the
same split as [5]. At test time, every task contains N classes with M unlabeled
examples from each class and the system is allowed to request labels for any N
samples from the total N×M samples. The accuracy of the method is evaluated
against the ground truth labels of the unlabeled examples in the test set. We
evaluate the model over 2400 tasks from the 24 classes reserved for testing.

In the experiments with miniImagenet we use a Prototypical Network (PN)
trained in the episodic mode as the feature extractor. We simulate active learn-
ing on test tasks by first doing K-means clustering in the PN embedding space
and then requesting one labeled example for each cluster using the acquisition
functions described earlier. Note that multiple clusters can be labeled to the
same class if the requested labels guide it that way. We observe that this is the
largest source of error. Table 1 presents the classification performance of each
strategy for test tasks with a varying number of unlabeled samples, where the
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M Random Nearest Entropy Margin Oracle

PN (ours)

15 49.19 54.42 53.95 56.12 58.96
30 49.23 54.73 56.02 57.58 60.27
60 50.73 56.12 57.63 59.24 62.09
120 50.74 57.45 57.88 61.42 63.23

Resnet PN

15 51.10 57.50 58.24 60.00 62.44
30 51.16 57.63 59.45 60.29 62.94
60 51.36 57.68 59.77 60.43 63.21
120 51.56 58.09 60.19 60.49 63.71

Table 1: Average 1-shot classification accuracy on miniImagenet of the proposed
method for different number of unlabeled samples per class (M) available at test
time. For comparison, the 1-shot accuracy (one labeled sample per class and no
unlabeled samples) of PN and Resnet PN are 48.06% and 51.69% respectively.

method was allowed to request labels for one example per class. There, we also
present the accuracy of the oracle clustering. It can be seen that the active learn-
ing strategies perform significantly better than the random baseline. Overall,
the margin approach worked best in our experiments. The 1-shot classification
accuracy with 120 unlabeled samples per class even surpassed the 5-shot accu-
racy of some well-recognized previous methods. We tested the method with the
same two architectures used in [7]: 1) a four layer convolutional network, 2) a
Wide Residual Network [13]. The four layer architecture scales well with increas-
ing the number of unlabeled samples closely matching the performance of the
ResNet in the case of 120 unlabeled samples per class and even outperforming
it while using the margin strategy.

5 Conclusion

In this paper, we extended Prototypical Networks to adapt to new classification
tasks in the active few-shot learning scenario, where a task consists of many
unlabeled examples from unseen classes and it is possible to request labels for
one example per class from the user. Contrary to the semi-supervised few-
shot learning setting where the labeled samples are provided beforehand, we
advocated that in many real-world applications it can be possible to request the
few labeled examples from the user, which can yield better performance. We
proposed to use the clustering approach to semi-supervised classification where
the samples are first clustered and then labeled by active interaction with the
user. This is different to recent deep semi-supervised learning papers which
constrain the classifier using unlabeled data.

The proposed solution of active one-shot adaptation is based on doing K-
means clustering in the embedding space found by Prototypical Networks. These
two methods make a good fit because they make similar assumptions about the
data distribution: In Prototypical Networks, the distribution of each class is
represented by its mean and the variances of class distributions are assumed
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equal. The same assumptions are made by K-means.
The fundamental bottleneck of the proposed approach in improving the clas-

sification performance is the ability of the feature extractor to cluster unseen
data. Although we used an embedding network trained using Prototypical Net-
works, the adaptation mechanisms proposed in this paper can be performed
using other feature extractors as well. A feature extractor explicitly trained
to cluster data can further improve the few-shot classification performance and
this is an area of active research [14, 15, 16]. Building feature extractors that
allow better generalization is largely an unsolved problem and it requires further
exploration.
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clustering with background knowledge. In ICML, volume 1, pages 577–584, 2001.

[12] Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden Markov models
for information extraction. In International Symposium on Intelligent Data Analysis,
pages 309–318. Springer, 2001.

[13] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[14] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning
via lifted structured feature embedding. In Computer Vision and Pattern Recognition
(CVPR), 2016 IEEE Conference on, pages 4004–4012. IEEE, 2016.

[15] Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin Murphy. Deep metric learning
via facility location. In Computer Vision and Pattern Recognition (CVPR), 2017.

[16] Marc T Law, Raquel Urtasun, and Richard S Zemel. Deep spectral clustering learning.
In International Conference on Machine Learning, pages 1985–1994, 2017.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

588




