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Abstract. Autonomous robot navigation and dynamic obstacle avoid-

ance in complex, cluttered, indoor environments is a challenging task. A

robust solution would allow robots to be deployed in hospitals, airports

or shopping centres to serve as guides and fulfil other functions requir-

ing safe human–robot interaction. Previous studies have explored various

approaches to selecting sensor types, collecting data, and training mod-

els capable of safely avoiding unmapped, possibly dynamic obstacles in

an indoor environment. In this paper we address the problem of recog-

nizing and anticipating collisions, in order to determine when avoidance

manoeuvres are required. We propose and compare two sensor-fusion and

neural-network-based solutions, one in which models are trained separately

on static and dynamic samples and another in which a model is trained

on samples of collisions with both dynamic and static obstacles. The mea-

sured accuracies confirmed that the separately trained, ensemble models

had better recognition performance, but were slower at calculation than

the models trained without taking the obstacle types into account.

1 Introduction

The research conducted on object avoidance allows for new approaches to the
development of way-finding robots, that can be deployed to perform various
tasks in densely populated environments. Such robots could be used in complex
indoor environments, such as hospitals or airports, where a guide-robot can help
users navigate to their destinations within the building. This guidance also
entails that the robot is capable of navigating an environment in an optimal,
safe and predictable manner. However, there is a gap between the perception of
the environment and the decision-making required for such tasks.

This paper addresses the implementation of danger recognition required to
create a neural-network-based controller which can handle the detection of dy-
namic and static obstacles with which the robot might collide. This is achieved
by collecting data on scenarios leading to collision, and by training and combin-
ing convolutional and deep neural networks (CNNs and DNNs) for the recogni-
tion of situations that are likely to result in collisions. Our solution is designed
to classify static and dynamic obstacles in the environment, and estimate the
likelihood of the robot colliding with these obstacles. This situation assessment
system can then be used in combination with various avoidance policies to al-
low a robot to avoid collisions with both static and dynamic obstacles while
navigating in an indoor environment.
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In section 2 we provide an overview of related work. The proposed implemen-
tation is described in section 3. Section 4 describes the evaluation and results,
and section 5 presents a brief discussion and the main conclusions of this paper.

2 Related work

Several solutions have been proposed for navigating in dynamic environments.
Most recent approaches use fuzzy logic controllers, which have four main steps
[1]: (1) defining linguistic variables for input and output systems; (2) defin-
ing fuzzy set; (3) defining rules of the set; and (4) defuzzification. In such
systems, the linguistic variables for the inputs are robot sensor readings and
the outputs are values controlling the robot’s movement. In steps 2–3, the de-
fined rule set is applied on the transformed sensor data which produces one of
the expected outputs after step 4 [2]. The fuzzy logic model in such systems
can be defined by algorithms such as Minguez and Montano’s [3] nearness dia-
gram model. In their method, the robot re-analyses its environment after each
movement and determines the next action accordingly. In their approach, the
robot performs pre-programmed behaviour based on its ability to recognize a
defined set of scenarios. In another approach, Large et al. [4] use an NLVO
algorithm to predict future obstacle positions and whether collisions will occur.
Use of the A* algorithm [5] allowed their robot to react quickly to changes in
the environment and avoid high-risk situations. In the domain of neuro-fuzzy
control [1], neural networks compute the outputs used for navigation. Lecun
et al. [6] propose a neuro-fuzzy solution for off-road obstacle avoidance based
on a CNN, which outputs a set of steering angles computed from input from
two cameras. Data collection was performed in various off-road environments,
during which the steering angle was modified only when necessary and the dis-
tance from the avoided obstacle was kept consistent. The developed avoidance
model was reliable in multiple off-road environments. Wang et al. [7] describe a
similar solution for flying unmanned aerial vehicles (UAVs) in formation. Their
solution used a modified Grossberg neural net [8], trained to identify unmapped
obstacles. When such obstacles were recognized, a buffer-zone was assigned to
them, and the UAVs performed avoidance manoeuvres before realigning them-
selves into formation and continuing towards their destination. In Gandhi et
al.’s [9] approach to aerial dynamic object avoidance, deep neural networks were
trained on pre-existing negative (collision involving) and positive (collision free)
flying data, allowing a robot to be trained on real-world data without subjecting
it to a dangerous environment. They gather data from various environments
by flying in random directions to acquire footage that can be used to classify
safe and non-safe states and determine the optimal avoidance action. Their so-
lution permitted navigation in cluttered and confined spaces with both static
and dynamic obstacles. Milde et al. [10] present a system implemented on neu-
romorphic hardware for identifying situations requiring avoidance manoeuvres.
Their camera-based system could navigate in cluttered office environments and
demonstrated the speed-ups achievable by using neuromorphic hardware, over
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other neural-network-based solutions. Nasrinahar and Chuah [2] present another
fuzzy logic controller system that divides the problem into two recognition–action
sub-problems by constructing different behaviours for static and dynamic obsta-
cle avoidance. Their simulation of an indoor environment contained static and
dynamic obstacles of various shapes and sizes and their simulated robot had
forward-facing distance sensors. Recognition of situations requiring avoidance
was based on bearings and distances to detected obstacles. Obstacle type was
determined by tracking changes in these bearings and distances. The proposed
avoidance behaviours were fuzzified, pre-programmed actions. Finally, Huang et

al. [11] proposed an obstacle recognition solution based on computing bounding
boxes around point clouds generated from LIDAR readings. To handle occlu-
sion, a second classification was proposed using the mean and variance of laser
intensity of the identified obstacles. The system could identify single pedestrians,
crowds, vehicles and other types of obstacles.

3 Implementation

We propose a collision anticipation system which could serve as the basis of a
neural-network-based navigation controller. Our solution combines a number of
models, trained separately for static and dynamic collision recognition. The sys-
tem is implemented on a Pepper robot,1 a humanoid robot used in human–robot
interaction. This platform was selected for its range of available sensors and in-
tegration possibilities. The Pepper robot can be programmed via a graphical
interface provided by its manufacturer. However, in order to access and utilise
its full range of sensors, either its provided Python SDK or ROS must be used.
Our proposed system is implemented using the SDK, however a basic navigation
extension would require ROS in order to integrate simultaneous localisation and
mapping (SLAM).

3.1 Data collection

To gather the required data for the solution, a negative, collision-involving sam-
ple collection was used, as proposed by Gandhi et al. [9]. In addition, the collision
data involving dynamic and static obstacles were separately gathered to allow
for the training of two types of model. The recorded data holds frames gathered
with the robot’s two 2D cameras, and distance values gathered from its forward-
facing sonar and forward-, left-, and right-facing laser rangers, each covering a
60 degree wide field.

In order to label the dataset entries, the sonar and laser ranger distance
measurements were used to identify frames in which obstacles approached too
close2 to the robot, resulting in a collision. The samples describing situations
resulting in a collision within one to three seconds were labelled based on the
difference from the timestamps of the collision samples.

1https://www.softbankrobotics.com/emea/en/pepper, visited: 30/01/2019
2Closer than 20cm in any direction, as below that distance the robot performs an emergency

stop even with reduced safety settings.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

657



The resulting dataset holds information on over 3000 samples, describing
collisions with both static and dynamic obstacles, as well as more than 2000
additional samples providing information on situations preceding collisions by
up to three seconds. As a side-product of the negative sample collection method,
information about collision-free samples was collected, resulting in over 8900
samples.

3.2 Designed neural networks

Our proposed system compares two approaches to neural network training: one
using collisions with both static and dynamic obstacles; and another that trains
separate models for static and dynamic obstacles.

For performing sensor fusion, regardless of the samples used for training,
the laser and sonar readings have to be used to train a separate model from the
ones trained by the two cameras. Therefore, for the distance-measurement-based
classification, a two-layer deep neural network (DNN)3 was constructed, which
takes all distance readings and the robot’s gyroscope values as input and, after
two dropout layers, provides an estimation of the time until a possible anticipated
collision, if any. The use of wheel position actuator values – tracked by the
gyroscope – contributes to improved danger recognition and better estimation
of time to collisions, because they describe the robot’s velocity, which correlates
with the relative speed of obstacles in the environment. The two camera feeds
were used for the training of one convolutional neural network (CNN) each.
These networks were modelled on Bojarski et al.’s [12] CNN for autonomous
virtual vehicle navigation using a camera feed.

In order to use the outputs of all three models, a weighted average ensemble
(WAE) was used to calculate the labels assigned to the frames. The chosen
weights were in accordance with the individually measured evaluation accuracies
of the models. As a result, for all three types of model trained on the different
datasets, the sensor-input classifying DNN was assigned the highest weight of
80% while the other two CNNs each contributed to the resulting label with
weights of 10%.

For the training of the models, three datasets were used: one containing all
samples; one containing samples where the robot collided with only static ob-
stacles; and a third where it only collided with dynamic obstacles. We had a
train–test split of 95%–5%, and used a validation split of 10% from the selected
training samples. The models were compiled to calculate MSE loss and mon-
itor accuracy as well. The implemented early stopping prevented overfitting if
training an epoch did not result in significant improvement. After training a
sensor classifier DNN and two camera image classifier CNNs with all samples,
the resulting models were combined by calculating a WAE. The same procedure
was repeated for only static, and dynamic samples, and the resulting six models
were ensembled.

Lastly, to explore the possibility of determining whether the obstacle involved

3With both layers having 50 nodes, a dropout rate of 0.4, and ‘tanh’ activation.
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Fig. 1: Separately trained ensemble – Raw (a) and normalized (b) confusion
matrices for predicted vs. true labels over the test set.

in a collision is static or dynamic, an altered version of the aforementioned
CNN model was trained with smaller convolutional layer node counts and higher
dropout rates.

4 Evaluation and results

The models were evaluated separately and, after applying a WAE to combine
them and produce two classification pipelines, their accuracy was evaluated with
the Keras model’s predict function4 and a 20 segment cross-validation. Based
on the individual model accuracy evaluation, the DNNs were weighted to give
80% of the classification, while the CNNs contributed 10% each in case of the all-
data-trained model. These values were halved when calculating the final value
of the static- and dynamic-data-trained models.

The evaluation showed that the overall accuracy for classifying if a situation
is dangerous or not, or if it will be within the next 3 seconds (5 labels in total,
see Fig. 1) was on average 54.73% for the ensemble consisting of the separately
trained models and 45.8% for the ensemble consisting of the 3 models trained on
both types of sample. Based on the calculated confusion matrices, the greatest
confusion occurred when determining how much time was left until a collision,
the safe state was recognised over 87% of the time on average (ranging between
87.04% and 99.63%). In addition, we achieved an accuracy of 50.12% when using
CNNs whose hyperparameters had not been optimized to classify whether the
colliding obstacle was static or dynamic.

5 Discussion

In this paper we propose a solution for using sensor and image data for recog-
nizing and anticipating collisions during indoor robot navigation. We compared
the performance of a model trained on collisions with both static and dynamic
objects with one that combined networks trained separately on dynamic and

4Generates a numpy array consisting of output predictions for input samples.
https://keras.io/models/model/#predict, visited: 30/01/2019
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static obstacle collisions. The comparison showed that even with a small sample
size, the split training outperforms the all-sample-based one. Moreover, it was
observed that, within the weighted ensemble methods, the individual DNN mod-
els contributed with more accurate predictions than the CNNs. We expect that,
with more samples, the DNNs could be reliably used for the recognition, with
the CNNs supporting classification. However, based on the binary classification
CNN created in addition, the CNNs should not be used for the recognition of
danger, but only for discriminating between static and dynamic obstacles which
are about to collide with the robot. This approach may mean that less data
is required for training danger recognition, as the proposed DNNs, unlike the
image-based models, did not require a large dataset to achieve a reasonable
danger recognition accuracy.
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