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Abstract. Many exact, heuristic, and metaheuristic algorithms have
been proposed to effectively produce high quality solutions to vehicle rout-
ing problems. However, it remains an open question which algorithm is
the most appropriate for solving a given problem instance, mostly because
the different strengths and weaknesses of algorithms are still not well un-
derstood. We propose an extensive feature set for describing capacitated
vehicle routing problem instances and illustrate how it can be used in al-
gorithm selection, and how different feature selection approaches can be
used to recognize the most relevant features for this task.

1 Introduction

Vehicle routing problem is one of the most intensively studied problems in op-
erations research because of its many applications. Recently we proposed using
an autoencoder based approach [6] to recognize interesting Capaciated Vehicle
Routing Problem (CVRP) features [7]. These features were proposed earlier in
[14], where we demonstrated that the features can be used in algorithm config-
uration and unsupervised learning. In this study we focus on feature selection
and gaining a deeper understanding on feature relevance in meta-optimization.
More specifically, we study the predictive accuracy of subsets of the proposed
features in a task of algorithm selection of classical CVRP heuristics.

Automatically selecting the most suitable algorithm for solving Traveling
Salesman Problems (TSPs) has been studied for example in [16, 5, 10] and for
Vehicle Routing Problems (VRPs) in [8, 11, 21, 18]. However, recognizing the
most relevant features has received little attention. The questions by Smith-
Miles and van Hemert [16] are relevant here: Which of the features prove useful
when predicting algorithm performance and solution quality?

According to Rice’s framework [15, 17] the requirements for successfully ap-
plying algorithm selection on a given problem are: (i) that there are large and
diverse problem instance sets available, (ii) there are several competitive algo-
rithms for solving those problem instances, (iii) there is a way to measure the
algorithm performance or accuracy, and (iv) access to features that are suitable
to describe the problem instances can be recognized. Addressing (i) and (iii)
is trivial as the quality of a VRP heuristic algorithm is usually measured with
the optimality gap and there are many well-known problem sets for CVRP [22].
For the other requirements we have proposed feature extractors for CVRP in
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[14] and have implemented 15 classical heuristics in [13]. To recognize the most
relevant features, we propose two algorithm selection scenarios and use them to
show how an ensemble of VRP algorithms can yield high quality solutions.

2 VRP Feature Extraction and Selection

In this study, we consider the classical capaciated vehicle routing problems.
Through the years, several algorithms have been proposed to solve them effec-
tively [20]. The modern metaheuristics rely on stochasticity to produce high
quality results in a reasonable time, but the stochasticity can make experimen-
tal study of heuristic algorithms tricky [12]. Furthermore, the computational
experiment conventions have been inconsistent and limited, which makes build-
ing algorithm selection scenarios from the results published by different authors
impossible. To sidestep these issues, we used our open-source library of classical
CVRP algorithms [13]. The classical heuristics are ideal for experimentally ver-
ifying the suitability of our proposed feature set because of their deterministic
behavior and ability to solve also the larger problem instances.

Problem instances come from the CVRPLIB1 problem sets A, B, E, F, M,
P, X, CMT, RT, Golden, and Li, together with additional CVRP instance sets
Gaskell, V, and van Breedam. Together, these form a heterogeneous set of
454 problem instances. For descriptions of these sets we refer to [22] and [13].
To characterize the instances, we further extended our comprehensive set of
CVRP features proposed in [14]: The measurements of the number of checked
and accepted local search moves, as proposed earlier for TSP in [10], are now
included. Additionally, the ratio between integer and non-integer values and
their distribution from an exact solver probing are recorded similarly to [5].
The problem instances with the maximum route duration constraint in this
study warranted additional features describing the tightness of this constraint.
This was calculated using a greedy TSP algorithm and the DBSCAN clusters.
In total, our feature extractor set2 produces 433 values for each instance.

As one can see, we followed the recommendation of [3] and erred on the side
of being inclusive instead of risking to omit useful information in the feature
construction stage. Unfortunately, this means that the proposed feature set
is quite extensive and the issues due to the curse of dimensionality must be
addressed, especially since we only have relatively few problem instances. The
canonical way is to use principal component analysis (PCA), but also many
feature selection (FS) methods can be used. These allow recognizing a relevant
subset Fr of the set of features [3], which has an additional advantage of being
able to omit the computation of any unnecessary features.

1http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
2http://users.jyu.fi/\%7Ejuherask/selection/FEtable.pdf
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3 Experimental Procedure

Infinite feature values were replaced with a value 10 times the largest real valued
measurement and the features were normalized by scaling the values to the [0, 1]
range. Furthermore, similarly to Pihera and Musliu [10], we did our experiments
also with discretized feature data. As a discretization algorithm we used the
MDLP multi-interval algorithm of Fayyad and Irani [1].

Using the algorithm performance and accuracy data from [13] we set the
classification label to be the best algorithm for each problem instance. Here, the
total solution cost was the primary comparison criteria and the ties were resolved
by solution time. Hence, the class label of each problem instance is determined
by the best algorithm. Predicting this class among the 14 alternatives (see Fig.
3 and [13] for a list) is our first scenario. Foreseeing that this is a difficult task,
we also prepared an easier scenario where the class is predicted among the three
most successful algorithms: GAP, PTL, and PS|G2P.

In addition to PCA we applied three different FS methods: minimal-redun-
dancy-maximal-relevance criterion (mRMR) [9], Correlation-based Feature Se-
lection (CFS) [4], and feature boosting with extremely randomized trees [2]
(ERTB). Then, four classifiers: 3-nearest neighbor (3NN); multilayer percep-
tron Softmax classifier (MPL) with hidden layer of |Fr| neurons, sigmoid acti-
vation functions, and quasi-Newton backpropagation; random forest with 100
trees and max. depth of 10 (RF); and C-support vector machine (SVM) with
C = 1.0 and γ = 1/|Fr| were trained and evaluated. We used leave-one-out
cross validation with and without MDLP discretization, and GNU parallel [19]
and Scikit-learn on a 72 core F-series Azure VM to compute the results.

4 Results and Conclusions

It turned out that many of the proposed features do not have any MDLP [1] cut
candidates that satisfy the minimum description length criterion. For these, all
values belong to the same bin and they no longer contribute to the algorithm
selection task. With those features removed, we are left with 163 features on
the 14 algorithm scenario and 190 on the three algorithm scenario.

According to the feature importance analysis (see Fig. 4), there is a sharp
change in feature importance after 10 features. These 10 features together with
the ones recognized by other feature selection methods are presented in Fig.
1 together with the earlier results from the autoencoder (AE) based method
[7]. Unsurprisingly, the final scoring reveals that the local search probing (LSP)
features are highly relevant in the heuristic selection task, but also features
related to exact solving attempt (BCP), constraints (DC), and nearest neighbor
digraph (NN) are important.

For the scenario of selecting between the 14 heuristics the baseline accuracy
(majority class heuristic) is 21.6%. The best measured accuracy was 48.5%
with the RF classifier and 100 features from the mRMR feature selection. This
was also the upper limit for the number of features in our experiments, and it
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Fig. 1: Top 10 discretized features on the three algorithm scenario.

is possible that RF could have benefited from additional features. The most
problematic decision boundaries seem to be between GAP, PLT, and PS|G2P
heuristics (see Fig. 3). Please note that in this scenario the best algorithm can
be determined with a very small margin. If we accept predictions where the
heuristic is among the three best for each instance the accuracy rises to 75.3%.
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Fig. 2: Savitzky-Golay smoothed classifier accuracy on the discretized data.

For the three algorithm scenario, the baseline is 41.4% and the best accuracy
is 74.0% with 75 features chosen using ERTB (see Fig. 4). The accuracy level
and the improved the selection accuracy when using discretization are similar
to the 3-class experiments in [10] where the accuracy ranged from 64% to 69%.
Steinhaus [18] managed to choose the best performing algorithm with 84 %
accuracy between three alternatives. However, in our study the algorithms
were chosen according their proven performance, which makes our three class
scenario more challenging than the one of Steinhaus.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

376



Predicted label

PS

PS|πλ
NN

SwLS

SwRI

PS|IMS

INS

1PTL

2P

GAP

RFCS

LR3OPT

PS|G2P

MBSA

T
ru

e
la
b
el

0

10

20

30

40

50

Fig. 3: Confusion matrix for the 14
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Regarding the validity of our results, please note that we did not use a sep-
arate training set for the feature selection or discretization due to the limited
number of samples. We acknowledge that this may induce some positive bias to
the selection accuracy. In an extended study it would be advisable to use nested
cross-validation, although it would probably necessitate the use of problem gen-
erator with the related pitfalls [12, p. 271-273]. Furthermore, while our feature
extraction framework is already quite comprehensive, it would be possible to
further extend it to describe other VRP variants, and, e.g., to include addi-
tional metrics typically used in TSP and VRP solution space analysis. Here,
algorithm selection of automatically configured modern metaheuristics would
be the most natural, albeit computationally intensive, direction to extend our
study to. Aforementioned extensions to the experiments would enable a more
in depth analysis of the discriminatory power of the most important features.

Taken together, feature and algorithm selection allowed us to recognize the
most interesting and relevant features among the extensive set of 433 features
proposed in this study. Additionally, we have shown that the feature set has a
good discriminating power and it can be used to leverage an ensemble of vehicle
routing heuristics with good results.
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