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Abstract. We propose a semi-supervised fuzzy vector quantization
method for the classification of incompletely labeled data. Since informa-
tion contained within the structure of the data set should not be neglected,
our method considers the whole data set during the learning process. In
difference to known methods our approach uses neighborhood coopera-
tiveness for stable prototype learning known from Neural Gas. Further
improvement of the classification accuracy is achieved by including class
border sensitivity inspired by Support Vector Machines again improved by
neighborhood learning.

1 Motivation

Supervised classification based on labeled data and unsupervised clustering
based on unlabeled data are common tasks in the field of machine learning.
There exist a variety of algorithms for either paradigm. Some famous clustering
methods are c-Means, Self Organizing Maps (SOM), Neural Gas (NG), Affinity
Propagation, and variants thereof to improve the performance, consider overlap-
ping data (fuzziness), incorporate neighborhood relations or to attend to sparsity
to name just a few. On the other hand there are classifiers like Learning Vector
Quantizers (LVQ, GLVQ, RSLVQ etc.) or Nearest Prototype Classifiers (NPC,
SNPC, FSNPC etc.) to solve classification problems.

Obtaining labeled data sets often is a difficult and costly procedure requiring
expert knowledge and – especially if the labelling has to be done manually – a
considerable amount of time. Therefore, sometimes only a fraction of a data set is
labeled impeding complete classification learning. To utilize the above mentioned
methods for this kind of data, either the labels are neglected to do unsupervised
clustering or the data set itself is reduced considering only labeled data samples
for the classification. In either case, information is lost. For this reason several
semi-supervised classification methods namely FLSOM and FLNG [1] have been
developed for crisp data. These methods closely follow the standard SOM and
NG procedures yet also take labeled data into consideration. Pedrycz proposed
an alternative semi-supervised vector quantization scheme based on Fuzzy c-
Means (FCM) [2], but also pays attention to the labeled data samples. For this
partially supervised clustering the original FCM cost function is extended by an
additional term expressing a level of coincidence between the FCM membership
degrees and the expert provided class information [3, 4]. This way the class
information as well as the structure of the data inherent in the whole data set
is taken into consideration.

Further, special interest frequently is given to the knowledge about decision
borders between classes. This problem is explicitly addressed in Support Vector
Machine (SVM) learning, which determines so-called support vectors approxi-
mating and indicating the borders between the classes [5, 6]. Recently, the idea
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of emphasizing the class borders while training several instances of unsupervised
(Fuzzy) c-Means algorithms (FCMs) based on the Euclidean distance is pro-
vided in [7]. In this model several FCM instances interact with each other while
learning the classification task.

In this paper we propose partially supervised class border sensitive vector
quantization by taking up the idea of partially supervised clustering as intro-
duced in [3, 4] and extending this method with class border sensitive prototype
positioning similar to [7]. For the latter aspect we extend the algorithm pro-
posed in [8] by introducing neighborhood cooperativeness similar to FSOM [9]
and FNG [10] on both levels, i. e. the prototype learning as well as the class
border detection. Thus, both learning processes are stabilized, which drastically
reduces the problem of getting stuck in local minima.

2 Partially supervised Vector Quantization

Commonly, the initial situation for performing any kind of clustering is an unla-
beled data set. Yet in those cases, where (only partial) label information is avail-
able, this additional information should be considered adequately in the learning
process. For crisp vector quantization schemes like SOM and NG the respective
variants are proposed in [11, 12, 13]. In the context of fuzzy vector quantization
two methods stand out: Cebron & Berthold combined unsupervised FCM
with LVQ to handle incomplete labelling [14] and Pedrycz proposed Partially
Supervised FCM (PS-FCM), where semi-supervised learning is integrated in the
framework of FCM [3, 4]. Following we provide details of the latter method PS-
FCM. The generalization to other fuzzy vector quantization methods is straight
forward and follows afterwards.

In the first step each data point vi ∈ V is equipped with a boolean variable
bi = 1 if a class label is available, else bi is set to zero. The fuzzy data labels are
stored in a matrix F ∈ RN×M with fi,k ∈ [0, 1]. The objective function is

J (U, V,W,F, ξ) =
M
∑

k=1

N
∑

i=1

[

(1− ξ) · um
i,k + ξ · (ui,k − fi,kbi)

m]

(di,k)
2 (1)

with a convex weighting factor ξ ∈ [0, 1) for the influence of the labeled data,
the fuzzy assignments ui,k stored in U as known from FCM, and a distance di,k,
usually the Euclidean distance. In this model it is assumed that each class C is
represented by exactly one prototype wk ∈ W , i. e. C = M . [3]

Obviously, this assumption is not realistic. Therefore Bouchachia &

Pedrycz suggested the following generalization to deal with this problem [4]:
They consider a number of classes C ≤ M and a partition of the prototypes such
that Mc prototypes are responsible for class c ∈ {1, . . . , C}. Hence,

∑

c Mc = M
is valid. The cost function to be minimized is defined as

J̃
(

U, Ũ, V,W, F̃, ξ
)

=
M
∑

k=1

N
∑

i=1

[

(1− ξ) · um
i,k − ξ · (ui,k − ũi,k)

m]

(di,k)
2 (2)

whereby the new assignments ũi,k are optimized according to stochastic gradient
of the cost function
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Q
(

Ũ, F̃
)

=
C
∑

c=1

N
∑

i=1

bi

(

f̃c,i −
M
∑

k=1

δc (k) ũi,k

)2

(3)

where the value δc (k) = 1 holds if the prototype wk is defined to be responsible
for class c and zero elsewhere. The matrix F̃ ∈ RC×N plays the role of given
fuzzy assignments f̃c,i ∈ [0, 1] for vi to the class c. The value ϑc,i = f̃c,i −
∑M

k=1 δc (k) ũi,k triggers the minimization of the difference between (fuzzy) class
assignments ũi,k and the prototype assignments ui,k for the labeled data. In
consequence, both quantities J̃ and Q have to be minimized in parallel [4].

The update rule for the class assignments ũi,k necessary for calculating (2)
is obtained by optimizing (3) and yields

∆ũi,k = 2bi

C
∑

c=1

(

f̃c,i −
M
∑

s=1

δc(s)ũi,s

)

. (4)

The updates of the prototypes wk and the fuzzy prototype assignments ui,k are
derived as solutions of the Lagrange minimization problem

J̃i

(

U, Ũ, V,W, F̃, ξ
)

=
M
∑

k=1

[

(1− ξ) · um
i,k + ξ · (ui,k − ũi,k)

m]

(di,k)
2 − Li. (5)

with the Lagrange term Li = λi

(

∑M
k=1 ui,k − 1

)

. For the special case of the

quadratic Euclidean distance and the fuzzifier m = 2 the update rules yield

wl =

∑N
i=1

[

(1− ξ) · u2
i,l + ξ · (ui,l − ũi,l)

2
]

vi

∑N
i=1

[

(1− ξ) · u2
i,l + ξ · (ui,l − ũi,l)

2
] (6)

ui,s =
1− ξ

2ξ−1

∑M
j=1 ũi,j

∑M
j=1

(

di,s

di,j

)2 +
ξ · ũi,s

2ξ − 1
(7)

and have to be performed in alternating adaptation steps analogously to FCM.
Note that this idea can also be transfered to other FCM variants proposed by
Bezdek.

Neighborhood learning for prototypes easily can be incorporated simply by
replacing the squared dissimilarities (di,k)

2 by local costs known from FSOM [9]
and FNG [10]:

lcSOM/NG
σ (i, k) =

M
∑

l=1

hSOM/NG
σ (k, l) · (di,l)

2 (8)

with the respective neighborhood functions

hSOM
σ (k, l) = cSOM

σ · exp

(

−
(dA (k, l))2

2σ2

)

(9)

hNG
σ (k, l,W ) = cNG

σ · exp

(

−
(rkk (wl,W ))2

2σ2

)

(10)
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referring to the relation dA(k, l) of the prototypes to each other according to
the external grid structure A (FSOM) or the distance ranks rkk(wl,W ) of the
prototypes to each other (FNG). Further details (also concerning the here left
undefined variables) can be found in the mentioned articles.

3 Class Border Sensitive Vector Quantization

As mentioned before, border sensitive prototypes as known from SVMs (support
vectors, [5, 6]) are an interesting feature exploring the class related data space.
The in [8] proposed method positions prototypes in a LVQ-like manner, where
close prototypes belonging to different classes are moved towards each other. It
is assumed that the data are partitioned into subsets V = V1∪V2∪· · ·∪VC based
on known class assignments and in the first step a separate FCM network for each
subset is utilized to place the prototypes as known from FCM. In the second step
selected prototypes of different classes respectively FCM networks are drawn to
each other, i.e. in direction of the class borders. An additional attraction force
realizes the information transfer between the FCM networks, which means that
neighborhood relations of the prototypes across the class borders are taken into
account to move the prototypes in direction of the class borders. We combine
this method with the PS-FCM as described in the last section and reduce the
model to one FCM network, which takes the available (partial) class information
into account implicitly.

The cost function of the model proposed in [8, 7] consists of a sum over the
costs of the C seperate FCM networks and an additional force term:

EBS =
C
∑

l=1

Ml
∑

k=1

Nl
∑

i=1

um
i,k(l)(di,k)

2 + FC (W,V ) . (11)

The force term is defined as FC(W,V ) =
∑N

i=1 d
(

ws+(i),ws−(i)

)

where s+ (i)
and s− (i) are determining the closest prototype of the correct class and the
closest prototype of all incorrect classes for a given data vector vi.

We modify this method in several ways. First, we replace the first term of
(11) by the PS-FCM cost function J̃ (2). This way a method utilizing just one
network and being able to handle data sets with partial class information is
obtained. And secondly, knowing the limits of FCM we introduce neighborhood
cooperativeness to improve convergence. For the first term it is straightforward
replacing the distance (di,k)2 with the local costs lcσ (i, k) (8). More attention
has to be given to an appropriate redefinition of the attraction force FC(W,V )
from (11). Let W−

i be the set of all prototypes which are assigned to different
classes than the class ci for a given data point vi and

hNG
σ
−

(k, l,W−) = cNG
σ
−

· exp

(

−
(rkk(wl,W

−))2

2σ2
−

)

(12)

be a NG-like neighborhood function according to (10) but restricted to W− with
neighborhood range σ−. Then the new neighborhood-attentive attraction force
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is defined as

Fneigh(W,V ) =
N
∑

i=1

M
∑

k=1∧wk∈W−

hNG
σ
−

(

k, s+(i),W−
)

d
(

ws+(i),wk

)

(13)

which reduces to FC(W,V ) for σ− → 0. The term Fneigh(W,V ) again compels
the prototypes to move to the class borders. However, the neighborhood cooper-
ativeness speeds up and stabilizes this process scaled by neighborhood range σ.
Thereby, the responsibilities of the prototypes for the different class borders of a
certain class are not predetermined. Rather they are results of a self-organizing
process, which provides a great robustness and stability. The new cost function
yields

EBSneigh =
M
∑

k=1

N
∑

i=1

[

(1− ξ) · um
i,k − ξ · (ui,k − ũi,k)

m]

lcσ (i, k) + Fneigh (W,V ) .

(14)
Depending on the chosen neighborhood cooperativeness we refer to this new
method as Border Sensitive FCM (BS-FCM), Border Sensitive FSOM (BS-
FSOM), or Border Sensitive FNG (BS-FNG).

4 Illustrative Experiments

In this section we present two illustrative examples to demonstrate the improve-
ment in classification accuracy achieved by considering a classification dataset
with partially missing label information.

The first dataset consists of two two-dimensional Gaussian distributions,
where we provided appropriate class labels for a part of each distribution, see
Fig. 1 (left). Comparing the results obtained by performing BS-FNG according
to (14) only for the labeled data and for the complete but partially labeled data
set shows a significant improvement of the test classification accuracy from 0.64
to 0.98. Using the whole dataset in semi-supervised learning causes class specific
prototypes to be positioned also in those regions of the data space, for which no
class information is provided.

In the second experiment addressed to class border sensitive learning, two-
dimensional data samples are randomly distributed as pictured in Fig. 1 (right).
About 10% of the data points selected by chance are labeled referring to two
classes. In the course of the learning process the prototypes move in direction
of the class border and take class responsibility according to the surrounding
labeled data samples. Classifying test data, which also cover the gap, yields an
accuracy of 0.97 for semi-supervised learning as compared to 0.72 obtained by
ignoring unlabeled data.

Further, we observe that the prototype density near the class border is higher
than elsewhere as a consequence of border sensitive learning.

5 Conclusion

In this paper we propose neighborhood and class border sensitive learning in
fuzzy vector quantization for partially labeled data. During the learning pro-
cess the whole data set is considered, taking class information into account if
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Fig. 1: Partially labeled Gaussian distributions (left) and randomly distributed data
points (right). The class labels represent two different classes.

available. The work proposed in [3, 4] is based on FCM, yet was extended here
to incorporate neighborhood cooperativeness to stabilize the learning process
and ensure convergence. Further, inspired by [8] we added a force term to the
cost function which makes the prototypes move in direction of the class borders
again incorporating neighborhood cooperativeness. After all, we showed in il-
lustrative examples that the classification accuracy of our method considering
all data samples significantly improves compared to the classification based on
labeled data only and that class border sensitive learning leads to an improved
border detection.
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