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Abstract.  This paper presents the design and methodology used to
create a heterogeneous database for knowledge movement extraction in
Parkinson’s Disease. This database is being constructed as part of REM-
PARK project and is composed of movement measurements acquired from
inertial sensors, standard medical scales as Unified Parkinson’s Disease
Rating Scale, and other information obtained from 90 Parkinson’s Disease
patients. The signals obtained will be used to create movement disorder
detection algorithms using supervised learning techniques. The different
sources of information and the need of labelled data pose many challenges
which the methodology described in this paper addresses. Some prelimi-
nary data obtained are presented.

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease which symptoms are
caused by a decrease in the levels of dopamine, due to the death of the dopamine-
producing nerve cells in the brain. PD medications help increase dopamine pro-
duction and enable patients to reduce tremor and to improve motor control.
However, disease progression and long-term levodopa therapy produce compli-
cations in PD patients, being motor fluctuations the most common one. PD
patients alternate between ‘almost normal’ periods from the motor symptoms
point of view, known as ON periods and normally associated with the dopamin-
ergic medication intake, and periods where motor symptoms are more evident,
known as OFF periods usually produced when the medication blood level de-
creases. Although disease experience is variable, patients might cycle between
motor states from three to four times every day. During ON periods and end-
of-dose wearing OFF phenomena (the recurrence of PD motor symptoms before
next medication intake), dyskinesia may appear as involuntary movements or
dystonic movements, respectively. During OFF periods, patients can experience
the full range of classic PD symptoms: tremor, stiffness, dystonia or bradykinesia
(slowness of movement), among others.

An accurate reporting of PD motor states and symptoms during patients’
daily life will enable doctors to personalize medication intakes and, therefore,
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improve the response to treatment. Thus, many research efforts have been made
on the ambulatory detection of PD symptoms. Inertial sensors (accelerometers,
gyroscopes and magnetometers) are the most common sensors used. For in-
stance, in [1] the severity of tremor, bradykinesia and hypokinesia was detected
in 6 PD patients through four inertial sensors, at wrist, foot, thigh and sternum.
Tremor and bradykinesia were detected and quantified in 20 PD patients by
using two tri-axial gyroscopes located on each of the forearms [2]. In [3], gait
parameters of 22 patients were examined in laboratory and gait of only one was
analyzed at home through an accelerometer placed at the lower back. In [4],
the severity of tremor, bradykinesia and dyskinesia in 12 patients was estimated
while patients performed specific Unified Parkinson’s Disease Rating Scale (UP-
DRS) motor exercises in laboratory conditions. 8 uniaxial accelerometers were
located in upper and lower limbs. In [5], the detection of postures and gait in
32 people at laboratory and 5 PD patients at home while performing basic and
domestic activities was examined. In [6], dyskinesia and tremor were detected
by means of 5 accelerometers in 2 patients in uncontrolled home environment.

Most of the previous studies on PD symptoms detection were located in lab-
oratory and patients performed specific activities [1] [2] [3] [4]. Only few studies
took place at patient’s home: 1 patient in [3], 5 patients in [5] and 2 patients
in [6]. Thus, to the best of our knowledge, there is not any study that collects
movement signals from a large number of PD patients in an uncontrolled home
or outdoors environment. However, previous studies on PD symptom’s detection
rely on supervised learning techniques such as Decision Trees [1], linear classifiers
[2] or Support Vector Machines [4] [7] [6]. Considering that the conditions in
which the training database is constructed limit the applicability of the learning
algorithms, we believe that a database of signals collected in an uncontrolled
environment is necessary to obtain valid algorithms for the daily life of patients.

This paper describes the design and the technical solutions used to construct
a database that addresses the need of movement signals acquired in uncontrolled
environments. This database is constructed as part of the Personal Health Device
for the Remote and Autonomous Management of Parkinson’s Disease (REM-
PARK) project. The database will not only consist of movement sensor signals
that will allow the training of learning algorithms in uncontrolled environments
but also standard medical scales and information about the activities performed
by patients. This database is being constructed from data gathered in Spain,
Italy, Ireland and Israel. The database will be finished by June of 2013.

The paper is divided as follows. In Section 2 we describe the design and
requirements for the database. In Section 3 the methodology and the technical
solution employed to implement the database design are described and real data
already gathered are given. In Section 4, we present the conclusions.

2 Movement Signals Database Design

REMPARK database aims to create algorithms for identifying motor status and
motor symptoms of PD patients in an uncontrolled environment. As previously

414



ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

stated, it is required that the database construction takes place in an uncon-
trolled environment, both at patient’s home and in its surroundings, in order to
obtain algorithms suitable to be used during the daily life of PD patients. The
database protocol used to collect the data was designed by medical experts and
complied with ethical approval. The data collection protocol was designed to be
homogeneous to facilitate reproducibility of results.

The main objectives are the obtaining of a database of properly identified
inertial signals in order to I) train learning algorithms for motor states detec-
tion; IT) train learning algorithms for detecting the following symptoms: tremor,
Freezing of Gait (FoG), bradykinesia of lower and upper limbs and dyskinesia;
III) obtain signals corresponding to movements and activities that can be mis-
taken for PD motor symptoms, potential false positives (FP); and IV) develop
algorithms for extracting the gait speed and step/stride length.

In order to accomplish these objectives, before the training phase of the learn-
ing algorithms for symptoms detection, inertial signals must be labelled as the
presence or absence of each symptom. For instance, the training of algorithms
for dyskinesia detection would need several minutes, or hours, of sensor signals
with dyskinesia and several more without dyskinesia. For non-symptoms detec-
tion, the value to estimate is needed as a gold-standard, e.g. for stride length
estimation the actual stride length of several patients and their corresponding
sensor signals are needed. These requirements have been taken into account
in the database design in such a way that the collection and labelling of pres-
ence/absence data is facilitated by asking patients to perform specific activities.
For instance, patients are asked to walk through a door, make turns and walk
through narrow spaces with the aim of provoking and recording FoG episodes
[8]. However, at the same time free activity is allowed so that daily life activi-
ties are recorded and labelled as well. Thus, the database includes two types of
experiments:

e Short controlled tests where the patient is asked to perform certain activi-
ties so that specific motor symptoms, FP, UPDRS scale values, gait speed
and step/stride length are obtained. These tests must be closely controlled
so that an accurate gold-standard is used.

e Free activity monitoring of the patient so that natural symptoms and activ-
ities are recorded. This monitoring may last hours and the gold-standard
used is required to be not as accurate as in the previous case.

The obtention of signals that could be mistaken with PD symptoms is a diffi-
cult task since there are, potentially, infinite FP. Researchers thought many FP’s
and they were included in the experiments as short controlled tests. However,
assuming that there are more FP, the free activity monitoring is expected to
provide the habitual FP that are produced in the daily life of PD patients and
that were not thought by the researchers.

The two types of experiments take place alternatively during the data gath-
ering of a patient, which is specified to last from 6 to 8 hours to have at least two
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motor states. Thus, when the patient is in the first OFF phase, the specific con-
trolled tests for the OFF symptoms will be conducted and the remaining OFF
state time will be used for monitoring their free and natural activity. Similarly,
when the patient enters in the first ON phase, some short tests for capturing
ON symptoms will be performed and the rest of the time is devoted to monitor
the free natural activity.

Since supervised learning techniques will be used, it is crucial that signals are
correctly labelled, i.e. a reliable gold standard is used. Thus, on the one hand,
video recording will be used as a gold-standard of the first kind of experiments
and, on the other hand, during the second type of experiments only annotations
in an electronic support are required. REMPARK database is composed of the
video, annotations and signals acquired during the experimentation. UPDRS
values and other sociodemographic and PD information are the rest of it.

3 Methodology and technical implementation

This section describes the different issues that arise during the implementation
of the design presented in the previous section. The technical solutions taken
are presented and the process applied to the collected data until they are ready
for the creation of learning algorithms is described.

The database design specifies two gold-standards: video recordings and an-
notations. A mobile phone camera (Nexus S Google) was chosen since mobile
phones are less intrusive than standard video cameras, which are bigger, and
due to its HD quality and small weight. A specific JAVA-based application that
is executed in a tablet (DELL Latitude ST) was developed to allow annotations
of symptoms, daily life activities, postures and medication intakes.

Additionally to the gold-standards, movement sensor signals are the third
source of information. Two inertial sensors are used to collect data: one in the
wrist for assessing tremor and bradykinesia and one in the waist near the Iliac
Crest for detecting the rest of symptoms, as well as bradykinesia. Wrist device
contains a triaxial accelerometer (LIS344ALH, +6g range where g ~ 9.81m/s?),
a microcontroller (PIC24F) and a communications unit. The microcontroller
acquires samples at 80 Hz and sends them to the waist sensor unit using a
Bluetooth (BT) 2.1 link. Waist device is composed of a triaxial accelerometer
(LIS3LV02DQ, +6g range), a triaxial gyroscope (IDG650+I1SZ650, +2000°/s
range), a triaxial magnetometer (HMC6042+HMC1041Z, £6G range), a micro-
controller (dsPIC33F), a BT unit and a memory unit. The microcontroller is
in charge of sampling data at 200 Hz and saving them, together with the wrist
data received by BT, in a uSD memory card. Finally, waist sensor includes a
Real-Time Clock/Calendar (RTCC, ABS06 at 32.768 Khz) that was calibrated
against both Network Time Protocol (NTP) servers and frequency meters. A
temperature correction by using an internal sensor is applied, obtaining a devi-
ation lower than 40 ms. in a 48-h period. The sensor RTCC synchronization is
given from the tablet to the waist sensor by BT previously to collect data.

The three sources of information enable the training of learning algorithms
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only if they share the same timeline. Moreover, this is even more crucial since the
labels of the signals corresponding to the videotaped parts will be obtained from
the video. Thus, clocks of the three sources must be synchronized. There are
two common ways of synchronizing clocks against the same timeline: obtaining
current time from N'TP servers or GPS signals. In our case, GPS signal might not
be available at patient’s home, neither Internet connection for NTP. Therefore,
both mobile phone and tablet clocks, and consequently movement sensor clock
as well since it gets the time from the tablet, are updated in the investigator’s
laboratory by NTP before going to patient’s home. However, the clocks can
deviate from each other during the experimentation given the minimum duration
of 6 hours. The solution employed consists of measuring the time difference
between tablet and mobile phone clocks several times during the experiment
(before and after a video recording) so that they can be later corrected through
a linear transformation, similarly to [10]. Time differences are obtained in the
tablet by cable after connecting the mobile phone.

The described synchronization process provides a synchronization error be-
tween signals and video of until 1 s. This error is due to the delay that the mobile
phone Operative System adds, since the video’s initial and final time might be
saved with delay. In order to correct this delay, an event which can be identified
in both video recordings and movement signals is used to synchronize them. A
fall of the sensor has been chosen, since a peak is obtained which clearly iden-
tifies the signals, as shown in Fig. 1. This event is performed at the beginning
and at the end of each video recording. This way, both video and signals can be
synchronized with less than 100 ms. of error.

The synchronization process described is applied by means of specifically de-
veloped applications once the experimentation has finished. These applications
enable the labelling of videos as well. Fig. 2 shows the signals obtained from the
OFF videotaped part of one of the first patients and some of the corresponding
labels obtained with the applications.
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Fig. 1: Synchronization event

4 Conclusions

In this paper, a methodology that is being used to create a database of PD
symptoms measured by means of a waist and a wrist movement sensor has been
shown. The database will enable the creation of detection algorithms in real daily
life conditions through supervised learning techniques that will allow clinics to
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Fig. 2: Waist data and its synchronized Activity /Posture and FoG label

manage PD in a more accurate way. The total number of recruited patients will
be 90, distributed among 4 countries. The access to the database is restricted
to part of REMPARK consortium.
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