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Abstract. The process of model selection and assessment aims at finding
a subset of parameters that minimize the expected test error for a model
related to a learning algorithm. Given a subset of tuning parameters, an
exhaustive grid search is typically performed. In this paper an automatic
algorithm for model selection and assessment is proposed. It adaptively
learns the error function in the parameters space, making use of the Scale
Space theory and the Statistical Learning theory in order to estimate a
reduced number of models and, at the same time, to make them more
reliable. Extensive experiments are performed on the MNIST dataset.

1 Introduction

According to the No Free Lunch theorem [13], any learning algorithm is based
on assumptions which affect the learning process as a strong bias while making
it possible. Commonly these assumptions are modulated by meta-parameters
whose correct tuning had been proved to be extremely important in practice
for an effective assessment on the generalization performances [7]. The goal of
model selection (MS) is to find the suitable meta-parameters of a learning al-
gorithm on a given problem, in order to minimize the classification error over
independent set of data. Cross Validation (CV) is the family of most used sta-
tistically efficient data driven MS approaches [3]. Each CV method express such
statistical MS problem as the optimization one of finding a minimum over data-
dependent function which is commonly noisy and computationally expensive to
compute. Moreover an important requirement of the found minimum is stabil-
ity: the performance of the learning algorithm should be stable w.r.t. a small
meta-parameter variation. Despite different optimization methods for CV func-
tions have been proposed in literature [1, 11], one of the most used approach
to minimize the CV error function is still the Grid Search (GS). It consists in
sampling the error function over a given grid of tuning parameters then selecting
the point associated to the minimum error value. Up to our knowledge, it seems
that no algorithms (nor the GS) satisfy the requirement of stability.

In the context of statistical learning, two different lines of research has been
explored: one is coming from the statistical community, which have an extensive
literature of studies related to the efficiency and the convergence of CV methods
(see the work from Arlot et al. [3] for a complete review) and one is coming
from the machine learning community, in which a number of works that tackle
the problem of model selection optimization focusing on a specific learning al-
gorithms has been proposed, in particular for Support Vector Machines (SVM)
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and Kernel Regularized Least Squares (KRLS). The works from Cherkassky [5]
and Adankov et al. [1] propose two different methods for the selection of the
parameter C which controls the slack variables in the SVM algorithm, while
Chapelle et al. [4] apply the gradient descent method to an upper bound of the
classification error function in order to find a suitable kernel parameters for C-
SVM. An et al. [2] and Pahikkala et al. [11] proposed two different methods to
speed up the computation of the CV error function for estimating the regular-
ization parameter of the KRLS algorithm. The problem of model selection using
CV on learning algorithms is closely related to the global optimization of error
functions, sampled from few points and computationally intensive to evaluate in
each point. In this setting, Osborne et al. [10] propose to learn computationally
expensive functions from few sampled points and contemporarily to search its
minima using Gaussian Processes. Up to our knowledge there are no algorithms
that optimize the CV error using an automatic and adaptive learning process,
contemporarily aiming at the stability requirements of the solution and exploit-
ing the low dimensionality of the problem in order to sample the error function
using less points as possible.

In this paper a refined model selection procedure is presented: it employs
Scale Space and Statistical Learning Theories in order to exploit the stability
condition of the searched minima and the low dimensionality of the CV-function
requiring few evaluations of such function. The Adaptive Optimization for Cross
Validation (ACV) learns the error function adaptively by sampling and refin-
ing the approximation only on the regions of stable minima without demanding
strong computational efforts in parameters choice, compared to standard GS
approach. The ACV performances are compared to the GS approach on classi-
fication problems using Support Vector Machines (SVM).

2 The proposed method

The presented paper is organized as follows: the main contribution of this paper
is described in sections 2.1 and 2.2. Then the implementation details and the
obtained results are reported in section 3.

2.1 Adaptive Optimization for Cross Validation

Let A(X) be a supervised learning algorithm which depends on the meta-parameter
A € R? and let f(\) = £(X,,, A(\)) be the error function of a cross validation
scheme computed using A(A) with training set X,,. The goal of an efficient model
selection method is to find a suitable minimum plateau f(\) of volume ¢ using
a small number of evaluations of f, where o is the characteristic dimension. The
ACV algorithm adaptively learns an approximation of f(A), in order to describe
the global properties of the error function sampled over few points and then
refining it progressively the approximation in the neighborhood of the minimum
plateau. Given a characteristic dimension ¢, a maximum number of points 7
per level of refinement, a subset L of the parameter space A and a maximum
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number of refinement steps N, the algorithm works as show in the Algorithm 1
box.

Algorithm 1 Adaptive Optimization for Cross Validation

Z 0
while N > 0 and vol(L) > ¢? do
n < min (7, vol(L)o %)
A, < Sample(L,n)
Z «— ZJI{\ fFO))IN e A}
¢ < SmoothKRLS(Z,0)
m < [, ¢(A)dX
L e X6 < m}
N +N-1
end while
return GlobalMinimum(¢, L)

At each step the function f is sampled in a number n of points extracted from
the region L and a function ¢ is learned over these sampled points. Then the
mean m of ¢ in L is computed. In the end, the region L is updated restricting
the sampling region only where ¢(\) < m, following the simple heuristic that
the global minimum of a function is always lower than its mean value. The
algorithm stops if the volume of L is less than the reference volume ¢ or if the
maximum number of steps N has been reached.

One of the main contributions of this paper is the study and the development
of the algorithm to learn the error function, called Smooth Kernel Regularized
Least Squares (Smooth KRLS), which combines the KRLS algorithm with the
Linear Scale Space theory. This method is able to deal with the noise of the
error function f()), which is induced both by the finiteness of the training set
X, and by the sparse sampling of the f(A). The role of Linear Scale-Space
theory as extensively proved by Lindeberg [8] is crucial to partially suppress the
effect of the noise of the f(A) and to reduce the possibility of finding local or
small volume minima in favor of bigger ones. To this extent, the linear Scale-
Space approach suggests to learn the function ¢(A\) = (Ny2 x f)(\) over a set of
samples {\;, f(\;)}, which is the original function f convoluted with a Gaussian
of standard deviation o, instead of the raw f, in order to reduce the effect of
the noise-induced structures of characteristic dimension smaller than ¢ while
substantially preserving the structures bigger than o. To summarize, N, x f
preserve plateaus of characteristic dimension greater or equal ¢ while reducing
the sampling noise.

2.2 Smooth Kernel Regularized Least Squares

In this section a variation of Kernel Regularized Least Squares Regression, based
on mathematical framework in [12], is presented. Given a noisy function f
sampled in n points, the novel approach of Smooth KRLS learns the simpler
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function ¢ = A= * f that is f convoluted with a Gaussian of variance 2.

Let the input space A be a metric space (e.g: R?) and Z,, = {(\i, y:) }1<i<n C
A xR be the set of input-output couples independently and identically distributed
according to an unknown probability distribution p(\,y) = n(A\)¥(y|z). More-
over let f(X) = [ ydiy(y|\) be the function whose convoluted version ¢ = N2 f
we want to estimate. Thus we introduce the kernel machinery, namely the Re-
producing Kernel Hilbert Space H associated to a given translation-invariant
kernel function K (A, u) = k(A — p) : A X A — R on the input space A (e.g: the
gaussian kernel) and the associated dot product - - such that K\ f = f(Xo) for
any f € H and Ky, (1) = k(. — Xo) € H for any A9 € A. Then the convolution
operator G,2 € L(H) is defined as

e :/ fl{A@Q}(t—r)KtK:dth (1)
X K

where F is the Fourier transform operator, N> = F(N,2) and K = F(K). The
operator acts in the following way K G,z f = (N2 x f)(\).

Instead of searching the less expensive function which best approximates a
given set of points according to the standard KRLS [6] approach, in this setting
we aim at the function whose deconvoluted version best approximates the points,
which is defined as follows:

- : 1 < _
¢ = argmin, ey~ Y (K, Gole — i) + vl @
=1

where q~5 is the learned version of ¢. This equation can be rewritten as gz~5 =
argmin, ey L with £ = 0 g g —29)Y +YTY + vy, g, = snG;} and
Sp= K, ., Kx,) T H =R and Y = (y1,...,yn)

The functional of the problem 2 is convex in ¢, so, imposing its first derivative
to zero, we obtain ¢ = (9n gn + u)_1 g Y =gl (G+v) 'Y with G € R™",
(G)ij = K; G;Q?K ;> Where the second equality is a consequence of spectral
calculus. The smoothed learned function qg()\) is expressed in closed finite form

o(N) = K¢ =a;(G+v)'Y (3)
with (ay) = (K;G;}K)\l, . .,K;G;;K,\n)—r € R™. The dot products can be
calculated analytically. We note that when K is a gaussian kernel K (u,A) =
CNgz(pn — A) of variance 9% and a constant C > 0, we have K| G, K, =
CNyz_g2(A — p) and K;\'—G;QQKM = CNy2_o52(X — ). We stress the fact that,
in order to have two bounded dot products, we should choose 62 > 2¢2.

3 Experiments

In this section, the proposed method was extensively evaluated on the MNIST
data set [9], which is a collection of 60,000 images of handwritten digits. In
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Fig. 1: Left: box and whisker plot of the A% accuracy gain/loss of ACV w.r.t.
GS, computed varying the characteristic dimension o while keeping fixed the
maximum number of sample per level 71, using 50 runs per couple (o, 7). Right:
histogram of A% accuracy for all the possible combinations of the classes with
parameters n = 5 and o = 0.5 using 20 runs per couple.

all the following experiments, 1000 training images and 1000 validation images
per class were randomly sampled from the set of 50,000 training images and
1000 images per class were sampled from the set of 10,000 test images. In
order to show the core idea, a very simple representations of the subregions, the
samples and the global minimization function had been chosen. The region of
interest L is represented as an hyperbox. The sampling function Sample(L,n)
selects n equispaced points with uniform probability in L. GlobalMinimum/ (¢, L)
uniformly samples the learned function ¢ in L and then it performs a gradient
descent optimization in order to find its minimum. For the implementation of the
SmoothKRLS(Z, ), a Gaussian Kernel with 62 variance is chosen. The choice
of 0 is fully automatic and it is done using the mean of the distances of the
points from their associated Nearest Neighbor points in the Z set. In the same
way, the regularization parameter v for the Smooth KRLS function is selected
automatically using a Leave-One-Out Cross Validation computed over the set
of points Z. For classification purposes, SVM were used. In this case, the two
parameters to tune are the weight of the Slack Variables C' and the parameter
v of the Gaussian Kernel: K(z,y) = exp‘"’“f”_y”z where v is the variance of
given Gaussian distribution. During all the experiments, the starting hyperbox
in the parameters space was set to (logC,logvy) € L = [-6,0] x [0,6] The
comparison between the ACV and the standard GS has been done using the same
setting: once the ACV algorithm is run, then the GS samples the same number
of points in the parameters space over an equispaced grid, in order to maintain

the results comparable between the two different methods. For all experiments,

100 es —ef
the accuracy measure A% is computed as follows: A% = N PR o7 .

i
where ef and e/ are the error of the i-th test respectively of ACV and GS
method and N are the number of repetitions of the tests. The A% measure
indicates how much the ACV performed with the respect to the maximum error
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of the GS method: for positive values the ACV outperformed GS, and viceversa.
Figure 1(left) shows binary classification performances between a subset of digits.
The box and whiskers plot indicates that ACV outperformed GS, especially in
the setting with few samples per level: this means that, despite the small number
of sample points used to estimate the function, the presented method refines the
error function in the correct subspace L still obtaining generalized models. In
Figure 1(right), the performances of binary classification for all the possible
combinations of classes are shown: in this setting the ACV outperforms GS in
88.9% of the cases, with a mean accuracy of 16.7%(% 29.6%). This behavior
confirm the stability of the presented method especially in finding stable minima
of the error function without loosing generality over independent sets of data.

4 Conclusions

In this paper a fully automated approach for model selection is presented and
validated. The Adaptive Optimization for Cross Validation learns the error func-
tion adaptively by sampling and refining the approximation only on the regions
of stable minima with no overheading in parameters choice compared to stan-
dard GS approach. The effectiveness and the efficiency of this novel approach are
showed by presenting experiments of binary classification tasks over the MNIST
dataset. The proposed algorithm is able to find stable minima with few eval-
uations of the error function, outperforming the standard Grid Search. Future
works will include an improvement and refinement of the presented method,
employing the theoretical bounds of the Smooth KRLS routine.
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