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Abstract. In this paper, we propose a novel algorithm to design multi-
class kernels based on an iterative combination of weak kernels in a schema
inspired from the boosting framework. Our solution has a complexity lin-
ear with the training set size. We evaluate our method for classification
on a toy example by integrating our multi-class kernel into a kNN clas-
sifier and comparing our results with a reference iterative kernel design
method. We also evaluate our method for image categorization by con-
sidering a classic image database and comparing our boosted linear kernel
combination with the direct linear combination of all features in a linear
SVM.

1 Context

Recent machine learning techniques have demonstrated their power for classify-
ing data in challenging contexts (large databases, very small training sets, huge
training sets, dealing with user interactions...). However, emerging problems are
pushing these methods to their limits with sereval hundred of image categories
to be classified, with millions of images both in training and testing datasets.

A key component in a kernel machine is a kernel operator which computes
for any pair of instance their inner-product in some induced vector space. A
typical approach when using kernels is to choose a kernel before the training
starts. In the last decade, many researches have been focused on learning the
kernel to optimally adapt it to the context and propose a computational alter-
native to predefined base kernels. Such approaches are particularly interesting
in the context aforementioned of huge image databases with hundreds of object
categories. In fact, it is pretty much unlikely that a unique base kernel would
be adequate to separate all categories while grouping all data from the same
category. For instance, Gehler et al. [1] propose to linearly combine several base
kernels in order to improve the performance of the major kernel function hence
designed for multi-class supervised classification.

In this paper, we propose to design a linear combination of weak base kernels
using the boosting paradigm, similarly to [2]. However, we focus on a strategy
for multi-class learning using many different features.

Before designing a method for the combination of base kernels, it is necessary
to define a target kernel K⋆ that reflects the ideal case on a given training set.
In the case of two-class context, this kernel can be defined by K⋆(xi,xj) = 1
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if the training samples xi, xj are in the same class, −1 otherwise. This can
be expressed on a training set as the Gram matrix K⋆ = LL⊤, where Li is the
class label of the ith training sample. Then, the design of the kernel combination
K(., .) is driven by the optimization of a criterion between the Gram matrix of
kernel combination K and target kernel K⋆. Several criteria have been proposed
among which class separability [3] and data centering [4]. The most classic one is
probably the kernel alignment proposed by Cristianini et al. [5] which is defined
as the cosine of the angle between the two Gram matrices K1 and K2 of two
kernels k1 and k2.

In the context of multi-class classification, the definition of target kernel is
not straightforward. Let L be the nX × nC matrix of annotations that is for
nX training samples and nC classes, with Lic = 1 if the ith training sample
belongs to c class and −1 otherwise. Then a naive target kernel can be defined
by the Gram matrix KL = LL⊤. In the following we denote the outer-product
XX⊤ by KX. A first improvement of this target kernel is the introduction
of centering, which accounts the high unbalance of multi-class context. Thus,
it is recommended to center all Gram matrix (target and combination) using
the centering matrix H, and centered Kernel-Target Alignment AH as in [6].
Furthermore, Vert [7] proposed a solution that handles the case of the classes
with correlations.

Our learning method based on boosting is presented in section 2. In the
following section 3, we present a target for weak learner. The section 4 presents
some experiments of classifying both toy data and real data from a standard
image database. We then conclude and present the perspectives of this work.

2 Linear kernel combination using boosting

To overcome the inter-class dependency, we propose to consider the matrix Q of
the QR decomposition of HL. We only select the columns where the diagonal
element of R is not zero. Thus Q is a nX × nC full rank matrix, assuming that
classes are independent. Our target Gram matrix is then defined asKQ = QQ⊤.
The specific form of this target matrix is further exploited to find the optimal
boosting increment (i.e. the kernel evolution direction towards the next best
major kernel alignment). Furthermore, as we will see in the next section, the
properties of the QR decomposition ensure the convergence of our strategy.

The second contribution is a new boosting method for kernel design. We
design a kernel function K(., .) as a linear combination of base kernel functions
kt(., .):

KT (xi,xj) =

T
∑

t=1

βtkt(xi,xj)

where xi is the feature vector for training sample i, for instance colors and
textures in the case of images. We consider base kernel functions defined by
kt(xi,xj) = ft(xi)ft(xj), where ft(.) is a function built by a weak learner.

In order to build the combination, we work on finite matrix on a given
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training set X, which leads to the following expression, with ft = ft(X) and

Ft = (f1 f2 . . . ft)β
1

2 :

Kt =
t

∑

s=1

βsfsf
⊤

s = FtF
⊤

t

In the following we mix functions (f , K,...) and their values on the training
set (written in bold f , K...).

We select base kernels iteratively in a boosting scheme:

Kt = Kt−1 + βtftf
⊤

t ⇔ Ft = (Ft−1 β
1

2

t ft)

where βt, ft = ζ(Ft) is the result of the problem solved by ζ :

ζ(F) = argmaxβ>0,f AH(FF⊤ + βff⊤,QQ⊤)

For a f given, the optimal β can be solved analytically by methods of linear
algebra. We build f using least mean squares (LMS) and a target function
presented in the following section.

3 Weak learners optimal target

In order to train weak learners, we need to choose a target function f⋆, a function
that leads to the best alignment. In the case of two-class context, it can be
defined by f⋆(xi) = 1 if training sample i is in the first class, −1 otherwise.
However, in the case of multi-class context, this not obvious, since we need to
spread each class data around equidistant centers [8, 7, 9].

We propose to consider the centers of (orthonormalized) classes in the space
induced by the current combination kernel Kt = FtF

⊤

t :

Gt = Q⊤Ft

The rows of Gt are coordinates of class centers.
The idea of our method is to move each center to make it equidistant from

others. In [8], Vapnick states that the largest possible margin is achieved when
the c vertices of (c−1)-dimensional unitary simplex are centered onto the origin.
A sufficient means to achieve this properties is to build c orthonormal vertices,
whose projection on a (c−1) dimension space is the unitary simplex. In our case,
that means that an ideal target set of class centers G⋆

t is such that G⋆
t (G

⋆
t )

⊤ is
proportional to the identity matrix Idc,c.

If we apply the Cauchy-Schwarz inequality to the alignment, we can show a
similar observation:

AH(Kt,QQ⊤) = 1 ⇐⇒ ξ(Gt)ξ(Gt)
⊤ = Idc,c with ξ(G) =

√

‖QQ⊤‖F
‖HF(HF)⊤‖F

G

The aim is to find weak learners that lead to this identity. In other words
we are looking for a function f⋆ such as:

‖Idc,c − ξ(Gt)ξ(Gt)
⊤‖ > ‖Idc,c − ξ(G⋆

t )ξ(G
⋆
t )

⊤‖
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Fig. 1: Converge of the method to regular 2-simplex in 3 classes case after 2
steps(a) and 45 steps(b). Evolution of alignment for 10 classes(c)

As we proceed iteratively, we can only focus on the new column g⋆ of G⋆
t =

(Gt g
⋆). A good candidate is:

g⋆ =

√

1− λ
‖QQ⊤‖F

‖HFT(HFT)⊤‖F
v

where λ is the smaller eigen value of GtG
⊤

t and v the eigenvector.
Thanks to this result, we can select the target function f⋆ for weak learners.

It can be shown that f⋆ = Qg⋆ always leads to the convergence of the whole
algorithm.

4 Experiments and results

In a first experiment (Figure 1) we illustrate the convergence of the method to
a regular (#class− 1)-simplex.

We consider a toy dataset with 2 classes and 200 examples per class (100
for training and 100 for testing). We use a pool of 10 features of 2 dimensions.
For each class c and each feature f , a center Cc,f is picked up at uniformly
random in [0, 1]2. Each example is described by the 10 features with a gaussian
with 0.5 standard deviation centered on Cc,f . For visualisation we use PCA
on Ft and select the two first dimensions. After 2 iterations Figure 1 (a), our
algorithm separates each class but the distances between classes are uneven.
After 45 iterations Figure 1 (b), the classes barycenters converge to the vertex
of a regular 2-simplex.

In a second experiment, we compare experimentally our method with a recent
Multiple Kernel Learning algorithm proposed by Kawanabe et al. [6] which
computes the optimal linear combination of features. We consider a toy dataset
with 10 classes and 60 examples per class (30 for training and 30 for testing).
We use a pool of 25 features of 16 dimensions. For each class c and each feature
f , a center Cc,f is picked up at uniformly random in [0, 1]16. Each example is
described by the 25 features with a gaussian with 0.5 standard deviation centered
on Cc,f .
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k 1 2 3 4 5 6 7 8 9 10
Kawanabe 20 24 16 13 8 6 5 5 4 5

Our method 14 18 11 9 8 7 7 6 5 5

Fig. 2: % of error with k-nearest neighbor algorithm

Classes 1 2 3 4 5 6 7 8 9 10 All
lab16 12.4 9.4 24.6 16.0 9.4 11.2 9.0 8.0 27.2 10.9 14.0
lab32 10.7 8.1 45.7 27.1 34.2 15.9 10.0 9.1 27.0 25.6 22.8
lab64 10.0 12.5 47.9 28.5 37.5 19.1 9.9 16.4 31.7 50.3 26.3
lab128 18.7 24.7 46.6 28.8 34.1 20.0 16.0 16.5 33.2 50.0 28.7
qw16 14.0 46.8 55.5 15.1 7.5 14.6 8.3 21.0 25.6 11.2 22.0
qw32 38.5 52.2 60.2 22.2 7.7 15.9 8.9 36.0 36.9 25.6 30.4
qw64 43.0 53.1 63.4 22.0 14.2 18.8 13.2 43.3 37.5 36.2 34.4
qw128 47.9 57.4 65.6 25.8 14.8 20.3 21.6 45.5 33.2 48.6 37.6
All 52.1 58.2 72.2 37.4 38.5 27.1 26.7 44.4 39.5 56.1 45.3
Our 52.2 63.1 75.9 43.8 41.6 27.6 27.2 52.7 41.9 56.6 48.3

Fig. 3: Average precision in % (VOC2006) for linear SVM

Figure 1(c) shows that the alignment of our method increases at each itera-
tion on both training and testing data. When comparing the two methods with
respect to their alignment results for the same dataset and the same features,
their alignment is 0.772469 on train and 0.773417 on test while our method, as
seen on Figure 1(c), reaches after 180 iterations an alignment of 0.8507977 on
train and of 0.8034482 on test.

Both methods have linear complexity in the number of training samples but
Kawanabe et al. approach [6] has a quadratic complexity in the number of
features while our method is linear.

We have also compared our features and Kawanabe features in a multi-class
classification context. On the same second synthetic dataset, we classified test
data with k-nearest neighbor classifier (kNN) for different k (Figure 2). Our
method outperforms Kawanabe et al. when considering fewer neighbors. It
aggregates more examples per class.

In a third experiment, we have also compared our method on real data. We
evaluate the performance of our algorithm on Visual Object Category (Voc)2006
dataset. This database contains 5304 images provided by Microsoft Research
Cambridge and Flickr. Voc2006 database contains 10 categories (cat, car, mo-
torbike, sheep ...). All images can belong to several categories. There are two
distinct sets, one for training and one for testing with 9507 annotations. We
create our weak kernels from 8 initial features: normalized (L2) histograms of
16, 32, 64, 128-bins for both color CIE L*a*b and quaternion wavelets.

Then we use linear SVM (normalized with L2) to compare the features ex-
tracted from the final F matrix with the initial features. We have also evaluated
the performance of each extracted feature form F again a feature concatenat-
ing all 8 initial features (Figure 3). For all classes our methods reaches higher
average precision.

We numerically assess the performance of our method on Oxford Flowers 102
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[10]. As the authors of this base [10], we use four different χ2 distance matrices
to describe different properties of the flowers. Results show that our method
improves the performance from 72.8% [10] to 77.8%.

5 Conclusion

In this paper, we propose a new algorithm to create a linear combination of
kernels for multi-class classification context. This algorithm is based on an
iterative method inspired from boosting framework. We thus reduce both the
computation time of final kernel design and the number of weak kernels used.

Considering the QR decomposition leads to a new solution to address the
problem of inter-class dependency and provides quite interesting properties to
develop an interactive method.

The proposed solution is linear in the number of training samples.
Our method shows good results both on a toy dataset when compared to

a reference kernel design method and on a real dataset in image classification
context. We are currently working on a generalization of our method to collab-
orative learning context. Indeed, the same algorithm can target a kernel matrix
for collaborative learning by considering that initial annotation matrix stores all
previous retrieval runs.
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