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Abstract. Generalized learning vector quantization (GRLVQ) is a proto-
type based classification algorithm with metric adaptation weighting each
data dimensions according to their relevance for the classification task. We
present in this paper an extension for functional data, which are usually
very high dimensional. This approach supposes the data vectors have to
be functional representations. Taking into account, these information the
so-called relevance profile are modeled by superposition of simple basis
functions depending on only a few parameters. As a consequence, the
resulting functional GRLVQ has drastically reduced number of parame-
ters to be adapted for relevance learning. We demonstrate the ability of
the new algorithms for standard functional data sets using different basis
functions, namely Gaussians and Lorentzians.
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1 Introduction

Prototype based classification is an important issue of many data analysis prob-
lems. One of the most prominent class of algorithms is the heuristically moti-
vated family of Learning Vector Quantizers (LVQ) as introduced by Kohonen [4].
Sato and Yamada generalized this model such that an energy function reflect-
ing the classification error is optimized by stochastic gradient learning (GLVQ)
[7]. A further extension deals with metric adaptation to weight the input di-
mensions of the data according to their relevance for a given classification task
(GRLVQ) [3]. Usually, this so called relevance learning, is based on weighting
the Euclidean metric. After adaptation a relevance profile is obtained which
consists of a vector weighting each data dimension according to its importance
for classification. Yet, in Euclidean metric as well as in their weighted variant,
the data dimensions are processed as uncorrelated features, i.e. the sequence of
data dimensions does not contribute. This leads to a large number of indepen-
dently parameters to be optimized in relevance learning. Especially, if the data
are really high dimensional, as it is frequently in case of spectral data, time series
etc., the relevance optimization may become crucial. Otherwise, the dimensions
of data vectors obtained from such functional data carry lateral information and,
therefore, should not be ignored for relevance learning.
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In this paper we introduce a functional relevance learning scheme for LVQ taking
into account this functional information. For this purpose, the original vectorial
relevance profile is now interpreted as a function to be adapted. Thereby, we
propose to model the relevance function by superposition of a few parametrized
basis functions. In this manner, the number of free parameters to be optimized
in relevance learning is drastically reduced in comparison to original relevance
learning. This can be seen as a kind of inherent regularization in relevance
learning which also leads to greater stability.

2 Learning Vector Quantization by GRLVQ

Learning Vector Quantization as introduced by Kohonen is a heuristically mo-
tivated learning scheme. Given is a set of example data v ∈ V ⊂ RD with
their labels xv ∈ C = {1, 2, 3, ..., C}, the task is to distribute a set of prototypes
w ∈ W ⊂ RD such that they represent the data set for classification, i.e. the
classification accuracy should be minimized. For this purpose each prototype is
also equipped with a class label yw such that C is covered by all yw. After LVQ
training a data point is assigned to the class of that prototype w ∈ W which
has minimum distance.

A gradient based LVQ scheme was proposed by Sato and Yamada [7] (GLVQ)
using the following energy function:

E(W ) =
1

2

∑
v∈V

f(µ(v)) with µ(v) =
d+(v)− d−(v)

d+(v) + d−(v)
(1)

as approximation for the non-differentiable classification error. The function
f : R → R is monotonically increasing, usually chosen as sigmoidal. Further,
µ(v) is the classifier function with d+(v) = d(v,w+) denotes the distance bet-
ween the data point v and the nearest prototype w+, which has the same label
like xv = yw+ . In the following we abbreviate d+(v) simply by d+. Further,
d(v,w) is some differentiable dissimilarity measure with respect to w. Analo-
gously d− is defined as the distance to the best prototype of all other classes.

The stochastic gradient learning for E(W ) is performed by

∂sE

∂w+
=

∂sE

∂d+
∂d+

∂w+
,

∂sE

∂w− =
∂sE

∂d−
∂d−

∂w−
(2)

with ∂s

∂ denotes the stochastic gradient and

∂sE

∂d+
=

2d− · f ′(µ(v))

(d+ + d−)2
,

∂sE

∂d−
= −2d+ · f ′(µ(v))

(d+ + d−)2
.

In case of Euclidean metric usually applied in GLVQ ∂d(v,w)/∂w = −(v−w).
GRLVQ is obtained if the scaled Euclidean metric is used for d(v,w):

dλ(v,w) =

D∑
j=1

λj(vj − wj)
2 (3)
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with λj ≥ 0 and ∥λ∥1 = 1. Additionally, in GRLVQ the λj are adapted again
as gradient learning on E:

∂sE

∂λj
=

∂sE

∂d+
∂d+

∂λj
+

∂sE

∂d−
∂d−

∂λj
and λj := λj − ϵλ

∂sE

∂λj
. (4)

Thereby, 0 < ϵλ < 1 is the learning rate which has to be chosen such that an
adiabatic change compared to prototype learning is guarantied. The vector λ
is called relevance profile. Further, note that the data dimensions are treated
independently in this relevance learning scheme.

3 Generalized Functional Relevance LVQ

We now consider high dimensional data, which represent functions, i. e. vj =
v(tj) and, hence, prototypes will represent functions, too. Thus, the vector
dimensions are not longer independently, yet, the index carries spatial or time
information (depending on the interpretation on t). Consequently, the relevance
profile should be interpreted as a function λj = λ(j), too.

Frequently, such functional data like spectra or time series may have data di-
mensions in the thousands or more. In that case, relevance learning in GRLVQ
may become instable or/and slow in convergence due to the independent hand-
ling of data dimensions. Therefore, we suggest to reduce the number of free
parameters in relevance learning by taking into account the functional character
of the relevance profile.

In particular, we propose the approximation of λ(j) by a weighted sum of K

basis functions λ(j) =
∑K

k=1 βk · λk(j) with βk > 0 and
∑

k βk = 1. Common
choices for λk(j) are standard Gaussians or Lorentzians, the latter for more
sharply peaked profiles:

λk(j) =
1

σk

√
2π

e
−(j−Θk)2

2σ2
k , λk(j) =

1

π

ηk
η2k + (j −Θk)2

. (5)

For both functions Θk is the center whereas the width and the height are deter-
mined by σk ≥ 0 and ηk ≥ 0, respectively. Now, relevance learning consists in
adaptation of the weights and the parameters of these basis functions according
to gradient learning on E. For example for the Gaussians, we preserve:

∂sE

∂βk
=

∂sE

∂d+
∂d+

∂βk
+

∂sE

∂d−
∂d−

∂βk
(6)

with

∂d(v,w)

∂βk
=

1

σk

√
2π

D∑
j=1

e
−(j−Θk)2

2σ2
k (vj − wj)

2 (7)

for βk adaptation. The parameter Θk, σk and ηk are handled analogously:
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In particular, for the Gaussians we obtain

∂d(v,w)

∂σk
=

βk

σ2
k

√
2π

D∑
j=1

(
(j −Θk)

2

σ2
k

− 1

)
e

−(j−Θk)2

2σ2
k (vj − wj)

2 (8)

∂d(v,w)

∂Θk
=

βk

σ3
k

√
2π

D∑
j=1

(j −Θk)e
−(j−Θk)2

2σ2
k (vj − wj)

2 , (9)

whereas for the Lorentzians we get:

∂d(v,w)

∂βk
=

1

π

D∑
j=1

ηk
η2k + (j −Θk)2

(vj − wj)
2 (10)

∂d(v,w)

∂Θk
=

βk

π

D∑
j=1

2ηk(j −Θk)

(η2k + (j −Θk)2)2
(vj − wj)

2 (11)

∂d(v,w)

∂ηk
=

βk

π

D∑
j=1

(j −Θk)
2 − η2k

(η2k + (j −Θk)2)2
(vj − wj)

2 . (12)

In that way the total number of free parameters becomes 3 ∗K for both models,
which should be drastically smaller than D for reasonable K.

To avoid instabilities in learning which may lead to the fact that the center of
basis functions become more or less equal, the following penalty term is added
with a weighting factor αr > 0 to the energy function (1):

E(W ) =
1

2

∑
v∈V

f(µ(v)) + αr P with P =
K∑
i=1

K∑
j=1
j ̸=i

e
−

(Θi−Θj)
2

2ζiζj (13)

This term can be interpreted as a repulsion between the centers depend on the
range of influence of the basis functions, e. g. ζk = σk and ζk = ηk, respectively.
This leads to an additional term for the gradient learning of Θk and σk for
Gaussians:

∂P

∂Θk
=

K∑
i=1
i̸=k

2(Θi −Θk)

σiσk
e
− (Θi−Θk)2

2σiσk (14)

∂P

∂σk
=

K∑
i=1
i̸=k

(Θi −Θk)
2

σiσ2
k

e
− (Θi−Θk)2

2σiσk (15)

and analogously with ηk for Lorentzians. Hence, a minimum spreading of the
basis function centers is guarantied.
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(a) Tecator spectra
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(b) Wine spectra
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(c) Tecator learned with 40 prototypes
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(d) Wine learned with 12 prototypes
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(e) Single weighted Gaussians

5001000150020002500300035004000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Wavenumbers[cm−1]

(f) Single weighted Lorentzians

Fig. 1: Examples of both data sets and the relevance profiles with a different
number of basis functions. Last row: Distribution of the adapted weighted basis
functions (Gaussians/Lorentzians) for Tecator (left) and Wine data (right) for
the case K = 10 basis functions.

4 Experiments

We tested the GFRLVQ for classification on two well known real world data
sets obtain from StatLib and UCI, Tecator (100 dimensions) and Wine (256
dimensions), respectively. Both data sets are spectra and, therefore, functional.

The Tecator data set consists of 215 spectra obtained for several meat probes,
available on [1], see Fig.1a. The spectral ranges is between 850 − 1050 nm
wavelength. The data are split randomly into 144 training and 71 test data and
labeled according to the two fat levels (low/high).

The Wine data set contains 121 absorbing infrared spectra of wine between 4000
and 400 cm−1 devided into 91 training and 30 test data [2], see Fig.1b. The data
are classified according to their two alcohol levels (low/high) as given in [5].

According to the general shape of the data, we applied GFRLVQ with Gaussian
basis functions for Tecator and Lorentzians for Wine, because the latter one is
more sharply peaked. For both data sets we varied the value K ∈ {1, 5, 10}
(number of basis functions) and the number of prototypes. Hence, the relevance
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Tecator Wine set
K \ |W | 10 20 40 4 8 12

1
70.8% 84.1% 90.0% 90.1% 91.2% 93.4%
70.5% 70.5% 85.3% 73.3% 80.0% 83.3%

5
71.1% 81.7% 90.0% 91.2% 89.0% 93.4%
71.6% 75.8% 83.2% 76.7% 73.3% 83.3%

10
75.0% 83.0% 90.8% 89.0% 90.1% 93.4%
76.8% 80.0% 84.2% 80.0% 80.0% 86.7%

GRLVQ
71.7% 87.5% 94.2% 93.4% 91.2% 93.4%
70.5% 77.9% 83.2% 83.3% 86.7% 80.0%

Table 1: Correct classification rate of the training (1st value) and test (2nd
value) sets with a different number of basis functions K and prototypes |W |

parameters are drastically reduced from 100 and 256 for Tecator and Wine,
respectively. The results are depicted in the Tab.1. The achieved accuracy is
also comparable to standard GRLVQ (see Tab.1) or other approaches, see [5],
but with considerably lower number of parameters to be adapted. The obtained
relevance profiles are depicted in Fig.1c,d which are also in good agreement
with earlier publications [6], [5]. As one can expect, the shape of the relevance
profile becomes richer with increasing K-value. The achieved distribution and
the adapted shape of the weighted basis functions are depicted in Fig.1e,f for both
data sets exemplary for the case K = 10. One can observed that height, width
as well as the centers of the weighted basis functions were properly adapted.

5 Conclusion

We presented a functional extension of standard GRLVQ stressing the functional
behavior of the data. In this way the number of parameters to be adapted for
relevance learning is significantly reduced in case of such data, which are usually
very high dimensionally. This can also be seen as a kind of inherent regularization
in GFRLVQ compared to GRLVQ which leads to faster convergence preserving
almost the accuracy.
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