
Transformations for Variational Factor
Analysis to Speed up Learning

Jaakko Luttinen, Alexander Ilin, Tapani Raiko

Helsinki University of Technology TKK
Department of Information and Computer Science

P.O. Box 5400, FI-02015 TKK, Finland

Abstract. We propose simple transformation of the hidden states in
variational Bayesian (VB) factor analysis models to speed up the learning
procedure. The transformation basically performs centering and whitening
of the hidden states taking into account the posterior uncertainties. The
transformation is given a theoretical justification from optimisation of the
VB cost function. We derive the transformation formulae for variational
Bayesian principal component analysis and show experimentally that it
can significantly improve the rate of convergence. Similar transformations
can be applied to other variational Bayesian factor analysis models as well.

1 Introduction

Bayesian methods provide a principled way for learning models. Several basic
models use the assumption that the observed data vectors yn are constructed
from hidden states xn and they use the Gaussian distribution to construct the
prior for the states xn. Examples include probabilistic principal component
analysis (PCA) [1, 2] with

yn = Wxn + μ + εn , (1)

as well as its generalisations to exponential family [3] and nonlinear mappings
[4, 5]. We generalise these variants under the term factor analysis models.

In the fully Bayesian approach, the joint distribution over all the variables
is modelled. This often leads to intractable integrals and high computational
cost. These issues can be solved, for instance, using computationally efficient
variational Bayesian (VB) methods, which often approximate the posterior dis-
tribution by factorising it with respect to groups of variables. In the VB EM
algorithm, the approximate distributions are learned iteratively by updating one
group at a time. However, the variables in the model (1) are strongly coupled,
which causes the VB iteration to converge slowly.

Faster convergence can be achieved by using parameter expanded VB meth-
ods [6]. The general idea is to use some auxiliary variables to reduce the cou-
plings between variables in the original model. In this paper, we demonstrate
a similar idea for VB factor analysis models and show that it can sinificantly
speed up convergence. We propose simple transformations of the hidden states
xn and parameters W , μ which are derived from the minimisation of the VB
cost function. We use the VB PCA model [2] as an example but the same type
of transformations can be applied to similar models as well.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

2 Variational Bayesian PCA

Let us denote by {yn}N
n=1 a set of M -dimensional observations yn. The data

are assumed to be generated from hidden D-dimensional states {xn}N
n=1:

p(Y |W ,X,μ, τ) =
∏
n

N (
yn|Wxn + μ, τ−1I

)
,

where N (a|b,C) denotes a Gaussian probability density function over a with
mean b and covariance matrix C, W is an M × D loading matrix, μ is a bias
term and τ−1 represents the precision parameter of the Gaussian isotropic noise.

The prior models for the unknown variables are

p(X) =
M∏

m=1

N∏
n=1

N (xmn|0, 1) , p(μ) =
M∏

m=1

N (μm|0, β−1) ,

p(W |α) =
M∏

m=1

D∏
d=1

N (wmd|0, α−1
d) , p(α) =

D∏
d=1

G(αd|aα, bα) ,

p(τ) = G(τ |aτ , bτ) ,

where the hyperparameters β, aα, bα, aτ , and bτ are fixed to proper (small)
values, e.g., 10−3.

In VB PCA, the joint posterior density function is approximated with a
density function q which is often a product of the following factors [2]:

q(xn) = N (xn|xn,Σxn
), n = 1, . . . , N

q(wm) = N (wm|wm,Σwm
), q(μm) = N (μm|μm, μ̃m), m = 1, . . . , M

q(τ) = G(τ |ăτ , b̆τ), q(αd) = G(αd|ăαd
, b̆αd

), d = 1, . . . , D ,

where wm are the rows of W , G(χ|a, b) are Gamma density functions which have
the expectations 〈χ〉 = a/b and 〈log χ〉 = ψ(a)− log(b), with ψ(a) the digamma
function. The factors of the approximate distribution q are found iteratively by
maximising the lower bound of the marginal likelihood

L(q) =
∫

q(Θ) log
p(Y ,Θ)

q(Θ)
dΘ =

〈
log p(Y |Θ) − log

q(Θ)
p(Θ)

〉
, (2)

where Θ represents the set of all the variables and 〈·〉 denotes the expectation
over the q distribution.

3 Transformations for speeding up VB PCA

The maximisation of the function (2) can be seen to consist of two parts: making
the data more likely and minimising the Kullback-Leibler divergence between the
prior and approximate posterior distributions. Thus, the lower bound can be
improved by transforming the q distributions closer to the prior distributions if

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

this does not affect the reconstruction of the data. This gives an insight to the
transformations presented in the following. The proposed transformations can
be performed iteratively during learning. The additional computational cost is
rather small because the transformations are performed in the lower-dimensional
subspace of xn.

3.1 Translation of X and μ

We note that one can move a constant bias term between X and μ as

yn = Wxn + μ = W (xn − b) + (Wb + μ) = Wxn∗ + μ∗ .

Motivated by this relation, we consider the following transformation:

q(X∗) =
∏
n

N (xn∗|xn − b,Σxn
) ,

q(μ∗) =
∏
m

N (μm∗|μm + wT
mb, μ̃m) .

The lower bound of the loglikelihood to be maximised is〈
log p(Y |W ,X∗,μ∗, τ) − log q(X∗)

log p(X∗)
− log q(μ∗)

log p(μ∗)

〉
+ const ,

where the expectation is taken over the transformed q distributions and const is
used to represent terms that are constant with respect to the translation. If μ
has flat prior (i.e., β → 0), the third term is constant. Then taking the derivative
with respect to b and equating the result to zero yields

b =
1
N

N∑
n=1

xn,

which implies that the expected mean of the latent variables xn should be trans-
formed to zero.

3.2 Rotation of X and W

The loading matrix W can be rotated arbitrarily by compensating it in X as

yn = Wxn + μ = (WR)(R−1xn) + μ = W∗xn∗ + μ .

Thus, we consider the following transformation:

q(W∗) =
∏
m

N (wm∗|RTwm,RTΣwm
R) ,

q(X∗) =
∏
n

N (xn∗|R−1xn,R−1Σxn
R−T) ,

q(α∗) =
∏
d

G(αd∗|aα +
1
2
M, bα +

1
2
rT

d

〈
W TW

〉
rd) ,

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

where rd is the d-th column of R, q(α∗) is motivated by the update rule of q(α)
in [2]. The lower bound to be maximised as a function of R is〈

log p(Y |W∗,X∗,μ∗, τ) − log q(X∗)
log p(X∗)

− log q(W∗)
log p(W∗|α∗)

− log q(α∗)
log p(α∗)

〉
+ const

(3)

where the expectation is taken over the transformed q distributions. The deriva-
tion of the result is shown in the appendix. To summarise, the rotation matrix
is formed as R = UΛV , where U and V are orthogonal matrices, and Λ is a
diagonal matrix. Matrices U and Λ can be found from the requirement

UΛ2UT =
1
N

〈
XXT

〉
or equivalently

1
N

〈
X∗XT

∗
〉

= I (4)

and matrix V should satisfy the following condition

V TΛUT
〈
W TW

〉
UΛV =

〈
W T

∗ W∗
〉

= diagonal matrix. (5)

The matrices can be found using eigendecompositions. Thus, the transformation
basically whitens the hidden states xn and orthogonalises the columns of the
loading matrix W .

4 Experiments

In this section, we present a simple example which illustrates the significance of
the transformations. We generate N = 500 data points with M = 50 dimensions
having standard deviation of 5 along ten orthogonal directions and standard
deviation of 1 along the remaining directions. The VB PCA model is fitted
considering 20% of the data as missing, and using that part as a validation
set. The model parameters are learned using D = 30 dimensions for the latent
subspace. The Matlab toolbox for the experiments is available online at http:
//www.cis.hut.fi/projects/bayes/.

Fig. 1 shows the results for the models both with and without the presented
transformations. The graphs show the VB cost (i.e., the negative of the log-
likelihood lower bound) and root mean square error (RMSE) for the training
and validation sets. Clearly, the transformations cause the iteration to converge
much faster (notice the logarithmic scale). In both runs, the dimensionality of
the latent space (5) was identified correctly but the transformations helped to
determine the correct dimensionality much faster. This explains the overfitting
effect in the run without transformation (see Fig. 1b,c).

5 Conclusions and discussion

In this paper, we showed how simple transformations of the latent space can
speed up leaning of the variational Bayesian PCA model. The presented ap-
proach resembles the more general idea of using auxiliary parameters in VB

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

10
0

10
1

10
2

10
3

10
4

10
5

3

4

5

6

7

8
x 10

4

time (s)

no transformations
using transformations

(a) VB cost

10
0

10
1

10
2

10
3

10
4

10
5

0.6

0.7

0.8

0.9

1

1.1

time (s)

no transformations
using transformations

(b) Training RMSE

10
0

10
1

10
2

10
3

10
4

10
5

1.1

1.15

1.2

1.25

1.3

1.35

time (s)

no transformations
using transformations

(c) Validation RMSE

Fig. 1: Experimental results obtained for the artificial data.

learning [6]. We gave theoretical justification and showed experimentally that
the proposed transformations can significantly improve the rate of convergence.
The transformations become extremely significant for large-scale datasets. More
generally, we suggest that similar transformations can improve the algorithms
for other variational Bayesian latent variable models. The exact formulae for
other models can be derived using the presented methodology.

Acknowledgements

This work was supported in part by the Academy of Finland under the Centers for

Excellence in Research Program and Alexander Ilin’s posdoctoral research project and

the IST Program of the European Community, under the PASCAL2 Network of Ex-

cellence.

References

[1] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of
the Royal Statistical Society, Series B, 61(3):611–622, September 1999.

[2] C. M. Bishop. Variational principal components. In Proceedings of the 9th International
Conference on Artificial Neural Networks (ICANN’99), volume 1, pages 509–514, 1999.

[3] M. Collins, S. Dasgupta, and R. Schapire. A generalization of principal components analysis
to the exponential family. In Advances in Neural Information Processing Systems 14
(NIPS), Cambridge, MA, 2002. MIT Press.

[4] H. Lappalainen and A. Honkela. Bayesian nonlinear independent component analysis by
multi-layer perceptrons. In M. Girolami, editor, Advances in Independent Component
Analysis, pages 93–121. Springer-Verlag, Berlin, 2000.

[5] A. Honkela and H. Valpola. Unsupervised variational Bayesian learning of nonlinear mod-
els. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Pro-
cessing Systems 17, pages 593–600. MIT Press, Cambridge, MA, USA, 2005.

[6] Y. Qi and T. S. Jaakkola. Parameter expanded variational Bayesian methods. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Pro-
cessing Systems 19, pages 1097–1104. MIT Press, Cambridge, MA, 2007.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

A Derivation of the rotation

We maximise the function (3) w.r.t. the rotation parameter R and therefore
“const” in the following means a constant w.r.t. R.

The first term is constant for the proposed rotation. Assuming flat prior for
α (i.e., aα → 0 and bα → 0), the fourth term is also constant, thus, the following
terms remain:

〈log p(X∗)〉 = −1
2

tr(R−1
〈
XXT

〉
R−T) + const ,

−〈log q(X∗)〉 =
1
2

∑
n

log |R−1Σxn
R−T| + const = −N log |R| + const ,

〈log p(W∗|α∗)〉 =
1
2
M

∑
d

〈log αd∗〉 −
1
2

tr(diag 〈α∗〉RT
〈
W TW

〉
R) + const ,

−〈log q(W∗)〉 =
1
2

∑
m

log |RTΣwm
R| + const = M log |R| + const .

The flat prior yields 〈αd∗〉 ≈ M/(rT
d

〈
W TW

〉
rd) and therefore the second term

in 〈log p(W∗|α∗)〉 is a constant:

−1
2

tr(diag 〈α∗〉RT
〈
W TW

〉
R) ∝

∑
d

〈αd∗〉rT
d

〈
W TW

〉
rd =

∑
d

M = const .

We represent R using its singular value decomposition as R = UΛV , where
U and V are orthogonal matrices and Λ is diagonal. Matrix V affects only the
term

M

2

∑
d

〈log αd∗〉 ≈ −M

2
log

∏
d

1
2
rT

d

〈
W TW

〉
rd + const .

Maximisation of this term w.r.t. V is equivalent to minimisation of the product
of the diagonal elements of V TΛUT

〈
W TW

〉
UΛV . For a positive definite and

symmetric matrix, the product of its diagonal elements is bounded below by the
determinant1 and it equals the determinant if the matrix is diagonal. Since an
orthogonal rotation does not change the determinant, the optimal V is obtained
when V TΛUT

〈
W TW

〉
UΛV is diagonal, that is, V has the eigenvectors of

ΛUT
〈
W TW

〉
UΛ in its columns. This yields

M

2

∑
d

〈log αd∗〉 ≈ −M

2
log |RT

〈
W TW

〉
R| = −M log |R| + const

and therefore the overall lower bound simplifies to

−1
2

tr
(
(UΛ)−1

〈
XXT

〉
(UΛ)−T

) − N log |UΛ| + const .

The result (4) is obtained by equating the derivative w.r.t. UΛ to zero.
1This can be seen using the Cholesky decomposition of a positive definite and symmetric

matrix C = LLT, where L is lower triangular, and therefore |LLT| = |L|2 =
QD

d=1 l2dd ≤
QD

d=1

Pd
i=1 l2id which is the product of the diagonal elements of C.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

