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Abstract. Whilst machine learning is principally concerned with func-
tion approximation from noisy data there are situations where the data
maybe noise-free. This arises, for example, in metamodelling where we
seek models of computationally expensive high fidelity simulation models.
In this paper we derive a noise-free version of generalised cross valida-
tion (GCV) which can be used for model selection and hyperparamter
estimation in metamodelling. This noise-free GCV measure is applied to
the determination of the optimal kernel width in a reproducing kernel
Hilbert space interpolation problem.

1 Introduction

Within computational engineering design and simulation, codes such as compu-
tational fluid dynamics and finite element methods are routinely used. These
are applied, for example, to the solution of aerodynamic flows, electromagnet-
ics and structural analysis [4]. However, the computational costs associated
with using such high fidelity simulation models can severely restrict the space
of engineering designs which can be successfully searched by, for example, a
multi-objective optimisation algorithm [3].

Metamodelling is receiving increasing attention in a number of application
areas where the original models are computationally very expensive. Meta-
or surrogate models are simply computationally efficient models of models.
Due to the high computational cost (often hours or days) of generating data
points from the original model, model selection and hyperparameter estimation
becomes a real problem in metamodelling.

Algorithms for model selection and hyperparameter estimation are usually
based on optimising the generalisation performance of the model. Various
measures of generalisation performance exist which are based on the predic-
tive mean-squared error of the model, the most obvious being to measure the
generalisation performance on some independent validation data set. However,
in metamodelling the computational expense of generating a validation set is
often too high.

Various measures of generalisation performance which do not require an
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independent validation set have been proposed. These include various forms
of cross validation, including ordinary (OCV) and generalised cross validation
(GCV) [5], and measures based on the empirical risk plus some additional
term which measures model complexity, for example Mallow’s C), statistic or
the Akaike Information Criterion (AIC). A common feature of all these mea-
sures though is that they are statistically based and assume that the data is
noisy. They are therefore not immediately applicable to metamodelling, which
is inherently a noise-free problem.

In this paper we derive a noise-free version of the GCV measure for function
approximation in reproducing kernel Hilbert spaces (RKHS). Our final result
is identical to one given in [5] on the convergence of the GCV measure for
spline approximation but not derived there. We also compare our noise-free
GCYV measure to the asymptotic performance of the traditional OCV and GCV
measures.

2 Measuring Generalisation Performance

Given a RKHS, F, the set of reproducing kernels, {kl}fil C F, and the set
of observations y; = L; f the RKHS interpolation problem is to find a function
f € F such that y; = L;f,i = 1,...,N. The (Tikhonov) regularised solution
is given by [1]

fA=L*MN[+LL*) 'y (1)

where L = Zgl(Lif)ei, e; is the ith standard basis vector, L* is the adjoint
operator of L and A is the regularisation parameter.
Define the predictive mean-square error, T'(A), as [5]

N
TO) = 3 Y (Lif — Laf)* @

i=1

Obviously if the function estimate, f, exactly interpolates the (noise-free)
observations L;f, T'(\) will be zero. Define the influence matrix, A(\), by

Ly fa
: = ANy (3)
L fa

where A(\) = K(K + X)~! and K = LL*. Then
(N = %I~ A (1)

The expectation of T'(A) may be expected to provide more information in the
noise-free case. Assuming, temporarily that the data are noisy and
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and letting g = [L1f,..., Ly f]7 we have
1
ET(O) = LEIAN+4 — gl ()
2
= I AN + Tt a2, 7

Since 0> = 0 and A()\) = I for strict interpolation of noise-free data we see
that the expected value of T'()) is also equal to zero. Many measures of gen-
eralisation peformance, such as Mallow’s C},, and AIC are based on similar
forms. They are only applicable to noisy data and are not relevant in our
case. We therefore seek alternatives measures of interpolation generalisation
performance. The cross validation procedure is well-known as a measure of
generalisation performance [5].
The well-known GCV measure is given by

x I — ANyl
[xtr(l — AN)P?

where tr is the trace operator. GCV is a predictive mean-square error criteria
which was introduced to achieve certain desirable invariance properties which
do not hold for ordinary cross validation [5]. It has been widely applied and
has been found to provide a reliable estimate of generalisation performance.
However, in the case of noise-free data, strict interpolation gives V' (X) = 0/0
and therefore it is not directly applicable to such cases. In the next section we
use "Hopital’s rule to derive a noise-free version of GCV.

V() = (8)

3 GCV for Interpolation

We first re-write (8) in terms of the eigenvalues, A;, of K as [2]

Y= (25) % aw
(£ 525)

where we introduce the last equality for convenience and the z; = T'y where
A=ToT.

If we set A = 0 we have V(0) = 0/0. We therefore seek a solution as A — 0
by iteratively applying I’Hopital’s rule:

V() = 9)

a(\) da()\) /O 8" a(\) /oA

ooy~ A e /an T A G o (10)
Now
2 & 2 &
N Z: A (A + >\ ; >\ + >\ (D
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and
N
8 1 Aj
— — . 12
V(i) (fEaks)
Therefore, applying ’'Hopital’s rule,

. a(A) .. da(A)/OX 0
I 300 = A B0 /an ~ 0 (13)

Taking the next iteration

82a(N) 2 &L A + A% = 3AN (A + M),
_ 2 : 14
ON2 N 1:21 YESNE i (14)
N 2 _
_ 2o, 15)
N = (Ai+A)*
and
%(\) gi by gi A\
X \N — (X +2)° N = (X +A)?
N N
2 A 1 L2 (M + )
* <N;Al+>\> (NX; i+ )1 )
N 2 N N
2 Ai 2 A 2 Ai
= (N;(A )2 ) * <N;>\i+>\> <N;(>\ ) )
We now have
lim a(N)/OX° = NZZ ! >\4Z = NZ _12 (16)
A0 020N /0N T (2 <N A )Y (1N 1)\
(ﬁ Zi:l F) (ﬁ Zi:l )\_i)
Finally, this is equivalent to
9% 2 L|K-1yl2

© A0 02b(N\) /o2 (%trK*l)T

4 Example

The noise-free GCV measure was applied to the determination of the optimum
value of 3 in the noise-free interpolation problem of estimating the function

y(z) = sinc(6x) (18)
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on the interval [—0.5,0.5] using 10 data points and the reproducing kernel
k;(z) = exp(—p||z — z;||?). Figure 1 shows the variation with \ of the normal
GCV, OCV and calculated leave-one-out cross validation (LOOCV) measures
for 10 uniformly spaced data points. For A < 107° the values are seen to
converge before those for GCV and OCV suddenly increase around A = 10714,
This is due to the limited machine precision preventing accurate calculation of
GCV and OCV. Theoretically these estimates are computable for any A > 0
and the equations will only fail in the specific case of A = 0. The value of
GCV in the plateau around 1073 < X < 107° is identical to the value of
V(0) = 0.0016 given by (17). The form (17) is therefore consistent with the
trend of the usual GCV as A — 0 before machine precision becomes a problem.

10° : <

Cross validation error

Figure 1: Comparison of cross validation measures for simple interpolation
problem. Shown are GCV ("—’), OCV (’—=") and LOOCV (’—-—’) estimates.

The variation of V(0) with 8 is shown in Figure 2 where the solid line
represents the average GCV error of a Monte Carlo study of 50 realisations
of the data points with the inputs drawn from a uniform distribution. The
dashed line is from a single run with the inputs uniformly spaced in the interval
[—0.5,0.5]. In both cases a clearly defined optimum value of 3 can be located.

5 Conclusions
A noise-free measure of generalisation performance for RKHS based machine
learning algorithms has been derived. This was motivated by the problem of

metamodelling which requires computationally efficient methods for assessing
generalisation performance. The potential of the measure was demonstrated
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Figure 2: Variation of V(0) with 8 for Monte Carlo study (’—’) and linearly
space data ("——").

on an example function interpolation problem where the optimum value of the
hyperparameter 3 in the well-known Gaussian kernel was determined. Future
work will focus on how to calculate the measure for large data sets where ill-
conditioning of the kernel Gram matrix becomes a problem and investigating
the consistency of V' (0) for estimating model hyperparameters.
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