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Abstract. In this paper we show that several Support Vector methods,
including one-class SVM and a number of non-standard SVM classifica-
tion techniques, can be viewed as special implementations of a general
regularization network. Formally, the connection is obtained by choosing
the appropriate loss function and parametrized by the exponent of the
offset in the penalty term. The mathematical properties of the underlying
algorithms can then be more conveniently studied within the theoretical
framework of regularization networks.

1 Introduction

As shown in [7] Support Vector Machines (SVM) can be seen as a particular
instance of a wider class of learning algorithms usually called Regularization
Networks (RN). In the RN formulation the original SVM problem is stated as
the minimization problem of a regularized functional on a Reproducing Kernel
Hilbert Space (RKHS).

Recently, several learning algorithms were inspired by SVMs. In the attempt
to obtain algorithms easier to implement, for example, a number of non standard
support vector methods have been proposed (3, 9, 10, 11, 8]. In addition, support
vector methods for novelty detection (or one-class SVM (17, 14]) have been
introduced through an analogy with the geometrical intuition of the original
SVM for binary classification.

In this paper we show that the algorithms of above can be regarded as reg-
ularization networks. As a result, we can formally justify the various methods
within a unifying framework and analyze the mathematical properties of exis-
tence and uniqueness, explicit form of the solution, and generalization properties
in a coherent setting.

The paper is organized as follows. In Section 2 we introduce the general
formulation of RN and discuss the meaning of the offset term. In Section 3 we
deal with the casc of one-class SVM, while in Section 4 with several non standard
SVMs. Finally, we draw the conclusions of our analysis in Section 5.
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2 Binary Classification and Regularization Networks

Throughout the paper we assume some familiarity with the learning from ex-
amples problem. The notation is consistent with [13], while for comprehensive
introduction see, for example [7, 18, 6].

A learning algorithm is a map that, given a training set D of {(x;,v:)}{;
examples, with x; € X C R™ and y; = £1 for all ¢ drawn i.i.d. with respect to
some fixed but unknown probability distribution, provides us with a classifica-
tion rule. The class of algorithms we consider are the so called Regularization
Networks solution of the following minimization problem

L1 2
min{ ;V(wa(xz)) + A5 (D)
where the first term measures how well the function f fits the data and the
second, the squared norm of f in the RKHS H, is a penalty term controlling the
complexity (or smoothness) of the solution. The parameter A is the regulariza-
tion paramcter tradcoff between the two terms.

The function V (y, f(x)) can be interpreted as a measure of the loss we incur
when classifying by f(x) a new input x the label of which is y. In the classi-
fication setting the loss function V usually depends on its arguments through
the product y f(x). This particular dependency rests on the implicit assumption
that false negatives (y = +1 and f(x) < 0) and false positives (y = —1 and
f(x) > 0) are equivalent. More general situations have been considered in the
literature (see for example [12]) leading to describe a loss function as

Viy, f(x)) = L)V (yf(x)). (2)

Different loss functions lead to different learning algorithms [7]. The choices
we consider in the following are

e the square loss V(y,w) = (w —y)? = (1 — wy)?,
e the hinge loss V(y, w) = max{l — wy,0} =: |1 —wyl;.
e the truncated square loss V (y, w) = max{1 — wy, 0}* =: [1 — wy|%.

In the most general case a regularization network can be obtained as the
minimization of a functional written as

£
1 2
min {- Viy,, f(x:) +b) + A + b 3
(i g 2V )+ 0+ AN + 99} 3)
where b is an offset term and ¢ a parameter.

For ¢ = 0 the constant offset is not penalized. As shown in [5] this is equiv-
alent to a functional minimization in which the penalty term is a semi-norm in
a RKHS. For ¢ = 2 the offset term can effectively be absorbed by redefining the
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kernel function as K + 1 and leaving the rest unchanged. The case ¢ = 1 singles
out the case of one-class SVM in which it is also necessary to make full use of
the more general definition of loss function given in (2) due to the presence of
examples from one class only in the training stage.

3 One-class Support Vector Machine

One-class classification techniques were originally developed to cope with binary
classification problems in which statistics for one of the two classes was virtually
absent {17, 14]. In this setting the component of the training set (x;,:)i_;
labeled according to the minority class (y = —1 in the following) is intentionally
removed, generating the reduced one-class training set (xi)f;.

Intuitively the idea behind one-class SVM algorithm is to look for the smallest
sphere enclosing the examples in data space. Hence, the training procedure
amounts to the solution of the following constrained minimization problem with
respect to balls of center a and radius R in input space

£y
rlgg;w;fi + R?}, (4)

s.t. the existence of a vector a for which V ¢ < £,
(xi—a) - (x;—a)l SR*+&, &>0.

A non-linear extension of the previous algorithm can be directly achieved by
substituting scalar products with kernel functions. From a more geometrical
point of view we consider balls in a suitable feature space. It can be shown (see
for example [4]) that the centers a can be mapped one to one with the functions
f of the RKHS H of kernel K(x,s) = ®(x) - ®(s). This correspondence is such
that ®(x)-a = f(x), so that the constraints of the problem (1) can be rewritten
as the existence of a function [ € H for which Vi < 4.

K(xi,%:) — 2f(x;) + I f]5, < R*+ &, & > 0.

In the minimization problems above the relevant complexity measure R? runs
over non negative real values. In order to interpret the above problems from
a regularization point of view it is convenient to slightly modify the problem
allowing the penalty to run over unconstrained reals. This is obtained simply by
replacing 2 with the real number p. The two problems are essentially equivalent
since it is straightforward to verify that whenever C' > i they have the same

solution. On the other hand if C' < i both problems are trivial: for any solution

of (4) we have R = (0 while no solution exists if R? is replaced by p.

Introducing the offset b and the fixed bias function D(x), and suitably rescal-
ing the parameter C and the kernel K, problem (4) in which R? is replaced by
p becomes

s
PO 6+ 51+ o), Q
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s.b. Vi< €L
Dx;) + f(xi)+b>—&, & >0,
with
b= 5o Ifl ~ K(0,0).
Dix) = %(K(x,x) _ K(0,0)),
- 1
C = ZC
K = 2K.

Finally, problem (5) considering the loss function
Viy,w) =0(y) - | — wyl, (6)
which matches the general form of Eq.(2), can be rewritten as
£
. 1 2
min {5V D) + f(x) +b) + M| FA7 +0)}- ™
feEHDbER ¢ 7

For translation invariant kernel functions (e.g. the Gaussian kernel), the fixed
bias function D(x) vanishes and problem (7) fits the general regularization net-
work form (3) with ¢ = 1.

4 Non Standard SVMs Revisited

In the following each method is viewed in the primal formulation considering the
general non-linear setting through the use of the feature map ®(x) (see [18]).
4.1 Constant Offsct not in the Pcnalty Term

We first consider L2-SVM and least square SVM, algorithms in which the offset
term is not penalized. We start off with L2-SVM (see [3] for reference) which
looks for the solution of the problem

w,b,8;

¢
min {CZ&? + % (w,w)} (8)
i=1
s.t. Vi

vilw- ®(x) +b) 21§, & =0

In the primal formulation the constrained minimization problem (8) can be
rewritten using the truncated square loss as

£
i (5 S0 0x) + DR + A1) (9)

i=
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which is a specialization of the regularization network (3) with ¢ = 0.

Similarly, least-square SVM (see [3] and [16] for reference) aims at solving the
same problem by replacing the inequality constraints with equality constraints.
Therefore, a least square SVM looks for the solution of problem (8) s.t. V ¢

yi(w-®(x;) +b) =1-&, & >0.

It is easy to see that, in the primal formulation, this leads to a constrained
minimization problem which is a specialization of the regularization network (3)
with ¢ = 0 in which the loss function is the square loss.

4.2 Constant Offset in the Penalty Term

Finally, we consider (i) modified SVM, (ii) smooth SVM, and (44) proximal
SVM, algorithms for which the constant offset appears explicitly in the penalty
ter.

In the modified SVM (see {10] for reference) the problem is

w,b,&:

£
min (C 326+ 2 (wyw) +)) (10)

s.t. Vi
yi(w-®(x;) +b) >1-6&, & >0,

The equivalence with the regularization network of (3) with ¢ = 2 with the hinge
loss as loss function is readily established.

In the case of smooth SVM (see [11] for reference) the only difference is in
the squares of the slack variables leading to the same regularization network of
above in which the hinge loss is replaced by the truncated square loss.

Finally, prozimal SVM (see [8] for reference) solving the same problem of
smooth SVM in which the inequality constraints are replaced by equality con-
straints, lead to a regularization network of (3) with ¢ = 2 with the square loss
as loss function, that is a standard least squares regularization network.

5 Conclusions

In this paper we showed that several Support Vector methods are particular
instances of functional minimization on a RKHS. Each algorithm can be derived
from the general RN framework by choosing the appropriate loss function and
exponent for the constant offset in the penalty term. Tn the case of one-class
SVM it turns out that the underlying problem is truly a binary classification
task for which no example from one of the two classes is available in training.
From our analysis many theoretical results easily follow.

Consistency results are available for all the non standard SVM algorithms
considered (see for example [15] and reference therein). Representation theorems
for the form of the solution in the various cases can be applied. In particular,
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recent results ([5], [19]) express the solution in closed form exploiting a convexity
assumption on the loss function. Results about existence and uniqueness can be
found in [2] and [5] for all the non standard SV algorithms with the exception of
L2-SVM (which however can be easily dealt with using results on the standard
SVM).
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