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Abstract. The one-dimensional functional equation g(y(t)) = cg(z(t))
with known functions y and z and constant c is considered. The indeter-
minacies are calculated, and an algorithm for approximating g given y
and z at finitely many time instants is proposed. This linearization iden-
tification algorithm is applied to the postnonlinear blind source separa-
tion (BSS) problem in the case of independent sources with bounded den-
sities. A self-organizing map (SOM) is used to approximate the boundary,
and the postnonlinearity estimation in this multivariate case is reduced
to the one-dimensional functional equation from above.

1 Introduction

Linearization identification solves the functional equation 1. Intuitively, it cal-
culates g such that the two functions y and z are scalings of each other after
application of g i.e. the linear relationship between g ◦ y and g ◦ z already
determines g. It can be applied for separating postnonlinear mixtures given
various restrictions to the sources. We demonstrate this in the case of indepen-
dent bounded sources. Other possible applications include assumptions such
as sparseness or nonnegativity of the sources.

The paper is organized as follows: In the next section, we calculate the inde-
terminacies of linearization identification and give an algorithm for estimating
g. Section 3 applies this to postnonlinear BSS, and section 4 gives a computer
simulation thereof.

2 Linearization identification

Linearization identification describes the problem of finding a diffeomorphism
g on subsets of R with

g ◦ y = cg ◦ z (1)

for an unknown constant c �= ±1 and given continuously differentiable functions
y, z : (−ε, ε) → R with y(0) = z(0) = 0 and y′(0), z′(0) �= 0.
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2.1 Indeterminacies

First note that c is determined by y and z. Indeed by taking derivatives in
equation 1, we get c = y′(0)/z′(0), hence c �= 0. Furthermore g(0) = 0 because
otherwise c = 1.

If g is a solution of the linearization identification problem, then so is λg
for λ �= 0. So scaling is an obvious indeterminacy of the above. The following
theorem shows that there are no more indeterminacies.

Theorem 2.1. If equation 1 has an analytic solution, then it is unique (among
all analytical solutions) except for scaling.

We assume analyticity only for the sake of simplicity; in fact this result can
be generalized for only continuously differentiable functions.

Proof. Let g and ḡ solve equation 1. Then y = ḡ−1 ◦(cḡ)◦z, hence g ◦ ḡ−1(cḡ)◦
z = cg ◦ z. Setting h := ḡ ◦ g−1 and z̄ = g ◦ z, this guarantees h ◦ (ch) ◦ z̄ = cz̄
or ch(z̄) = h(cz̄). Taking derivatives and dividing by cz̄ (nonzero locally at 0)
yields h′(z̄) = h′(cz̄) locally at 0 and then inductively h(n)(z̄) = cn−1h(n)(z̄),
where h(n) denotes the n-th derivative of h. So h(n)(0) = 0 for n > 1 because
c �= ±1. But by assumption h is analytic, so h is already linear, say h(t) = λt.
Then ḡ = λg as was to show.

Later we will have to solve equation 1 for functions y and z defined only
on [0, ε); then we assume that the right differentials at 0 exist and fulfill the
above. Uniqueness in this case follows from the above theorem.

2.2 Algorithm

The goal of this section is to find an interpolation approach in order to solve
the linearization identification problem numerically, given samples y(t1), z(t1),
. . . , y(tT ), z(tT ) of the ’curves’ y and z. In the following, we present an al-
gorithm based on polynomial approximation using least-squares estimation.
Other estimation algorithms are possible — we get successful results with
derivative based polynomial approximation and multilayer-perceptron approx-
imation of g with natural gradient descent on E(g) from below — but are
omitted here due to limited space.

Note that we here assume that the samples of y and z are given at the same
time instants ti ∈ (−1, 1). In practice, this is usually not the case, so values of
z at the sample points of y and vice versa will first have to be estimated, for
example by using spline interpolation.

Furthermore in order to determine the constant c estimates of the derivative
of y and z at 0 are needed. Without loss of generality let t1 < . . . < tT and
ti−1 < 0 < ti. Then using y(0) = 0

c = y′(0)/z′(0) ≈ y(ti) − y(ti−1)
z(ti) − z(ti−1)

≈ y(ti)
z(ti)
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depending on whether single-side or both-side secant derivative estimation is
to be used. Therefore, in equation 1 only g is to be estimated.

We want to find an approximation g̃ (in some parametrization) of g with
with g̃(y(ti)) = cg̃(z(ti)) for i = 1, . . . , T , so in the most general sense we want
to find

g̃ = argming

T∑
i=1

(g(y(ti)) − cg(z(ti)))2 =: argming E(g). (2)

As in theorem 2.1 we will assume that g is analytic and show how to approx-
imate g in this case. In order to estimate g, we can expand it locally at 0 into a
convergent power series g(t) =

∑∞
i=0 ait

i, with ai = 1
i!g

(i)(0). g can now be ap-
proximated as closely as desired (with error bounds given by Taylor’s formula)
by only taking the Taylor expansion to a certain degree d: g̃(t) :=

∑d
i=0 ãit

i.
We know g̃(0) = 0, and in order to eliminate the permutation indeterminacy,
we can furthermore set g̃′(0) = 1, so the d − 1 parameters ã2, . . . , ãd are to be
estimated from equation 1.

Putting this polynomial approximation into equation 2, the ’energy’ func-
tion to be minimized can be calculated as

E(g) =
T∑

i=1


 d∑

j=2

(y(ti)j − cz(ti)j)aj − (cz(ti) − y(ti))




2

This can obviously be transformed into the usual least-squares form by defining
a T×(d−1)−matrix M with entries Mij := y(ti)j−cz(ti)j and a T -dimensional
vector v with vi := cz(ti) − y(ti). Then the energy function can be written as
E(g) = ‖Ma − v‖2 with the coefficient vector a = (a2, . . . , ad)

� where ‖.‖
denotes the Euclidean norm. Equation 2 implies finding the polynomial g̃ with
coefficients ã such that

ã = argmina E(g) = argmina ‖Ma − v‖2.

We can assume that T ≥ d − 1. Then the above equation is well-known to
have the unique solution ã = M+v where M+ denotes the pseudo inverse of
M. Note that instead of polynomial approximation also other linearly para-
metrized models can be used for g̃ in exactly the same manner.

3 Postnonlinear ICA of bounded sources

The aim of independent component analysis (ICA) is to find statistically inde-
pendent data within a given random vector. An application of ICA lies in blind
source separation (BSS), where it is furthermore assumed that the given vector
has been mixed using a fixed set of independent sources. Good textbook-level
introductions to ICA are given in [2, 3].

We call a function f : R
n → R

n diagonal if each component fi(x) of f(x)
depends only on the variable xi. In this case we often omit the other variables
and write f(x1, . . . , xn) =

(
f1(x1), . . . , fn(xn)

)
.
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Consider the postnonlinear BSS model X = f(AS), where S is an n-
dimensional independent random vector, A an invertible real matrix and f
a diagonal nonlinearity. We assume that S (and hence X) has a bounded
density and that the components fi of f are injective analytic functions with
non-vanishing derivative. Then also f−1

i is analytic. It is known that this model
is separable given some further restrictions to the mixing matrix A, which are
fulfilled by almost all matrices in the measure sense [6].

An algorithm for finding the model and the sources given only X is presented
in [1] for two dimensions, based on spline interpolation of the boundary and
Hudson minimization of a joint energy function. In the following we will show
that the underlying postnonlinearity detection in arbitrary dimensions can be
reduced to the one-dimensional linearization identification problem from above;
this enables us to separate postnonlinearily mixed data using the polynomial
least-squares algorithm from section 2.2.

The separation is done in a three-stage procedure: In the first step, we
preprocess the data in the sense that we detect submanifolds in the mixture
data that are mapped onto lines by the nonlinearity. The second step esti-
mates the separating postnonlinearities using linearization identification. In
the final stage, the mixing matrix A and then the sources S are reconstructed
by applying linear ICA to the linearized mixtures f−1X.

3.1 Boundary detection

Let x(1), . . . ,x(T ′) ∈ R
n be i.i.d.-samples of the random vector X. We want

to construct vectors y(1), . . . ,y(T ) and z(1), . . . ,y(T ) ∈ R
n using clustering or

interpolation on the samples x(t) such that f−1(y(t)) and f−1(z(t)) lie in two
linearly independent one-dimensional subvectorspaces of R

m.
At first the mixture data X is preprocessed in order to highlight the bound-

ary ∂X. If the density pX of X is assumed to have greatest ascent at the
boundary, this can be done by estimating the gradient ∇pX and thresholding
its norm. For estimating the density pX given samples x(1), . . . ,x(T ) we use
kernel density estimation p̂X(x) = 1

Trn

∑T
t=1 K

(
x−x(t)

r

)
with kernel radius r

and the Epanechnikov kernel

K(x) =
{

1
2cn

(n + 2)(1 − ‖x‖2) if ‖x‖ < 1
0 otherwise

where cn denotes the volume of the n-dimensional unit sphere [5]. This kernel
is optimal in the sense that it yields minimum mean integrated square error.
The derivative of the density can then be estimated as

∇p̂X(x) =
1

Trn

T∑
t=1

∇K

(
x − x(t)

r

)
=

n + 2
Trn+2cn

∑
‖x(t)−x‖<r

x − x(t)

Taking only samples x(t) with ‖∇p̂X(x(t))‖ > θ for an appropriate thresh-
old θ > 0, we can estimate the mixture density boundary under the above
assumption.
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In the next step, the boundary submanifolds are estimated using a selfor-
ganizing map (SOM) algorithm, a clustering algorithm often used for the visu-
alization of high-dimensional data. SOMs have been developed by Kohonen in
1981 [4] and have since then become a widely used and studied visualization
and clustering technique.

We simply approximate ∂X using a SOM with neuron structure {1, . . . , k}n

(rectangular topology in two dimensions). After training, neurons with 1 or k
at some index position give approximations of the boundary. In practice it is
advisable to prewhiten the data before applying the SOM algorithm [7].

Other algorithms for estimating boundary lines are possible — for example
similar to histogram based density estimation, the boundaries can be approxi-
mated in a piecewise linear fashion by discretizing the space in each coordinate
direction and taking minima and maxima; this is done in the two-dimensional
case in [1]. The advantage of the presented method is that we use standard
algorithms and do not have to estimate the boundary corners separately —
this is done by the rectangular structure of the SOM automatically.

3.2 Postnonlinearity estimation

Given the subspace vectors y(t) and z(t) from the previous section, the goal is
to find diffeomorphisms gi : R → R such that g1 × . . . × gm maps the vectors
y(t) and z(t) onto two different linear subspaces.

In abuse of notation, we now assume that two functions y, z : [0, 1] → R
m

are given with y(0) = z(0) = 0. These can for example be constructed from the
discrete sample points y(t) and z(t) from the previous section by polynomial
or spline interpolation.

Let i �= j be fixed. In [6] it was shown that the analytical nonlinearities fi×
fj are already uniquely determined (except for scaling) by knowing the images
of two nonlinearly transformed lines under the postnonlinear mapping fi ×
fj

(
πijA), where πij denotes the projection onto the i-th and j-th coordinate.

So in fact after projection of y(t) and z(t) using πij it is sufficient to consider
the case m = 2 and g2 is to be reconstructed, which we will assume in the
following.

We can assume that the indices i, j were chosen such that the two lines f−1◦
y, f−1◦z : [0, 1] → R

2 do not coincide with the coordinate axes. Reparametriza-
tion (ȳ := y ◦ y−1

1 ) of the curves lets us further assume that y1 = z1 = id.
Then the condition that the separating nonlinearities g = g1 × g2 must map y
and z onto lines can be written as g ◦ y = (g1, ag1) and g ◦ z = (g1, bg1) with
constants a, b ∈ R \ {0}, a �= ±b. This is equivalent to g2 ◦ y2 = ag1 = a

b g2 ◦ z2.
So determining g2 (and similarly g1) is equivalent to performing lineariza-

tion identification for g2 using the functions y2 and z2. Theorem 2.1 shows that
in this case g2 is uniquely determined by y2 and z2 (this gives an indication how
to prove separability in the analytical case [6]) and the least-squares algorithm
from section 2.2 can be used to estimate g2 (hence g) from sample data.
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Figure 1: Example 2. A postnonlinear mixture of two uniform signals is sepa-
rated. In (a), the mixture density of X together with the trained SOM for the
boundary estimation is shown. (b) gives the whitened ∂X with the SOM, and
(c) depicts the recovered source density together with the SOM boundaries.

4 Simulation

In order to demonstrate the algorithm, in [−1, 1]2 uniform data (2000 samples)
is mixed first linearly and then nonlinearly using the postnonlinearity f(x) =
(tanh(x1)+x1, tanh(2x2)+x2). A 50×50 rectangular SOM was used to approach
the mixture boundary (approximated using r = 1, θ = 0.05) in 10 epochs. The
learnt polynomials of degree 10 were rather linear, and we were able to recover
the sources with SNRs of 22 and 13 dB with respect to the original sources,
see fig. 1. This error could be minimized by approximating the boundary with
other algorithms: if we use the real (calculated) boundary, we get recovery
SNRs of 30 and 22 dB. Still, also in this case, the polynomials were not fully
able to approximate the nonlinearities. The performance can be enhanced by
not only using two lines of the mixtures but the whole boundary, which leads
to a similar least-squares optimization as above.
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