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Abstract. Small recurrent neural network with two and three neurons
are able to control autonomous robots showing obstacle avoidance and
photo-tropic behaviors. They have been generated by evolutionary pro-
cesses, and they demonstrate, how dynamical properties can be used for
an effective behavior control. Presented examples also show how sensor
fusion can be obtained by evolution. Additional techniques are used to
excavate the relevant neural processing mechanisms underlying specific
behavior features.

1 Introduction

Robot intelligence is often associated with the concept of autonomous systems
which have to decide and act without central control, external technical guid-
ances, or human assistance. Especially autonomous mobile robots are nowa-
days conceived of as robots that can operate in complex, dynamically changing
environments. Following an A-Life approach to evolutionary robotics [3] these
systems have to learn to navigate, act, and survive in a sometimes unpredictable
world. Control mechanisms of robots, showing a goal-directed behavior, will
be modelled after their biological counterparts as neural networks of general
recurrent connectivity. As already demonstrated by Braitenbergs gedanken
experiments [1], the apparent complexity of robot behavior is not primarily
caused by the complexity of their neural control structures but reflects mainly
the complexity of the environment in which they are acting; i.e., very simple
mechanisms may lead to interesting life-like behavior.

Our main interest here is to learn about recurrent neural structures with
non-trivial dynamical behavior which are able to control the behavior of au-
tonomous physical robots in an effective way. Because in general the dynamics
of recurrent neural networks is difficult to analyse and to predict, an evolu-
tion algorithm is used to develop neural structures and at the same time to
optimize their parameters like the synaptic weights. As first basic behaviors
“exploration” of a given terrain and “light tropism” are evolved for a miniature
Khepera robot. Combining evolution with “lesion” experiments guided by an
appropriate hypothesis, one was able to identify an effective neurocontroller for
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obstacle avoidance of very simple type called the minimal recurrent controller
(MRC) [2]. Having understood that hysteresis is the underlying mechanism
for the excellent behavior control, in this paper we start with a corresponding
“hand shaped” controller, which is even more simple. To demonstrate one of
our strategies for sensor fusion, the so called restricted module expansion tech-
nique [4] is used to evolve a controller which, besides exploration and obstacle
avoidance behavior inherited from the “hand shaped” controller, also generates
positive photo-tropism. Again a kind of minimal recurrent neural network is
presented as one of the interesting solutions to the problem. Different from
a corresponding controller introduced in [4], which was evolved from scratch
with a different fitness function, this controller is even less complex and uses
less sensor inputs, demonstrating that mean values from suitable groups of
sensors are sufficient for a reasonable control.

2 MRC: A Controller for Obstacle Avoidance

The applied evolutionary algorithm [4] was originally designed to study the
appearance of complex dynamics and the corresponding structure-function re-
lationship in recurrent neural networks which act as embodied cognitive systems
in a sensorimotor loop. The goal is to find analyzable examples of such systems
which can be related to specific behavioral properties of the robot. That is, one
of the distinguishing features of the evolutionary algorithm is its simultaneous
acquisition of network topology and parameter optimization.

The following experiments use standard additive neurons with sigmoidal
transfer functions σ = tanh for output and internal units. The discrete-time
activity dynamics of a controller reads

ai(t + 1) =
k∑

j=1

wij · σ(aj(t)) , i = 1, . . . , k ,

where k denotes the number of units. Input units are only used as buffers.
Evolution of neural control is done with the 2-dim Khepera simulator. The

control can be switched any time from the simulator to the physical robot. The
final solution than can be downloaded onto the robot. Additional techniques
allow analysis of electrode-like signals from the neurons of the evolved network
while the robot is active, as well as “lesion experiments” to identify functional
subsystems of the controller.

Preceeding experiments [2] showed that effective obstacle avoidance is due
to hysteresis effects of neural control. To extricate exactly this mechanism we
try to be structurally as parsimonious as possible: for the following experiments
all six front proximity sensors are used, but the controller has only two inputs
I1, I2 and no internal neurons. One input I1 corresponds to the mean value of
the three left proximity sensors, the second input I2 to that of the three right
proximity sensors. They satisfy −1 < I1, I2 < 1, with increasing values by
decreasing distance to an obstacle. The two proximity sensors at the rear of

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 439-444



the robot are not used. Therefore initial neural structure for this experiment
has only two input and two output neurons. The input neurons 1, 2, are linear
buffers and the two output neurons, 3, 4, driving the left and right motor,
are of additive type with sigmoidal transfer function tanh. The corresponding
outputs are denoted by O3 and O4, turning the motors forward and backward.
Bias terms are set to zero. The fitness function Foa used for the evaluation of
the controllers is given by

Foa :=
T∑

t=1

κ1 (O3(t) + O4(t)) + κ2 (|O3(t) − O4(t)|), (1)

where κ1, κ2 denote appropriate constants. This fitness function rewards for-
ward turns of wheels and punishes backward turns and curving. It simply
states: For a given time T go straight ahead as long and as fast as possible.

Since the probability for inserting an internal neuron was set to zero, only
connections are added or deleted and their weights are changed stochastically.
There is also a stopping condition: If the robot collides before T time steps the
evaluation of the network stops.
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Figure 1: a) Evolved MRC with two input neurons. b) The principal structure
of an MRC.

Resulting networks, generating a very successful robot behavior, all had a
connectivity like the one shown in figure 1a. They were called minimal recurrent
controllers (MRC). The output neurons of a MRC have super-critical positive
self-connections, w33, w44 > 1, turning these motor neurons into hysteresis
elements. Furthermore, there is a recurrent inhibition between the output neu-
rons; i.e., w34, w43 < 0 which generates a third hysteresis domain. A physical
Khepera robot endowed with such an MRC shows both, obstacle avoidance and
exploration behavior. The behavior of physical Khepera robots, controlled by
this network, is comparable to that of the simulated one. Especially, the robots
are enabled to leave sharp corners as well as deadends.

In [2] it was analyzed that the efficient behavior of the robots originates from
the interplay of the three different hysteresis effects. Small hysteresis, related
to left or right turning angles at obstacles, are provided by the super-critical
excitatory self-connections of the motor neurons; i.e., w33, w44 > 1. A broader
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hysteresis interval, necessary to leave sharp corners or deadlock situations, is
generated by the even super-critical 2-loop; i.e. w34 ·w43 > 1. Having identified
this output configuration as the essential structural component for effective
robot behavior, it can be shown that optimal controllers for obstacle avoidance
and exploration behavior are of structural type depicted in figure 1b. They can
be described as Braitenberg controllers [1] with additional hysteresis domains.
One can use also symmetrical connectivity with u, v, w > 0 and a relation
roughly given by u ≈ 4u, v ≈ 2u, and u > 1.

3 Photo-tropism

Using a MRC for obstacle avoidance, the Khepera robot now should be endowed
with a light seeking behavior; i.e., the Khepera should look for a light source,
turn to it, and stay in front of it. This behavior may be given the interpretation:
Look for food and eat as much as you can. Starting with the MRC the robot
will always move forward as fast as possible. Therefore the controller has to be
modified in such way that the robot comes to a halt in front of a light source.
To be able to detect a light source in its environment, the robot controller
is endowed with additional four inputs L1, . . . , L4. They represent the mean
values of the two left, the two front, the two right, and the two rear light sensors
of the Khepera robot. Values 0 < L1, . . . , L4 < 1 are increasing while the robot
approaches a light source.

To evolve a convenient controller, we use the so called restricted module
expansion technique [4]. This means the new controller will “grow” upon the
MRC. The first generation starts with the MRC as controller but now with the
additional four light sensor inputs. The structure and the weight values of the
MRC with its two proximity sensor inputs are fixed, but additional neurons
and connection may appear during the evolutionary process.

The fitness function Fls for the light seeking task simply adds the input
signals coming from the two light sensors at the front:

Fls :=
T∑

t=1

L2(t) , (2)

An average number of 50 individuals per generation is chosen, and an incremen-
tal evolution process is applied. This means for the first 10 generations there
are several light sources distributed in an environment with only a few obsta-
cles. Then gradually the number of light sources is reduced and the number of
obstacles increased. The initial position for all robots in one generation is the
same. It changes randomly only from generation to generation. Finally, after
around 300 generations there are individuals which solve the task sufficiently
well.

One of these solutions is shown in figure 2a. It uses only one additional
internal neuron H1 with a super-critical inhibitory self-connection and takes all
four inputs from the light sensors and the two inputs from the proximity sensors.
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a) b)

Figure 2: An evolved neural controller generating exploratory behavior with
photo-tropism: a.) the full network, b) detail without light sensor inputs.

Furthermore, it has an odd recurrent loop with one of the motor neurons O4
and inhibits the other motor neuron O3. Figure 2b displays the same network
without connections from the light sensor inputs for better visibility. A 2-
neuron configuration like (H1, O4) was named a chaotic 2-module in [5] because
it allows all kinds of complex dynamics like oscillations and chaos.

Of course these dynamical properties should be reflected in the behavior
of the robot. First, the behavior of the simulated robot appeared to be quite
successfull as can be read from the following figures. Figure 3a demonstrates
the basic search behavior of the robot: it moves along large circles avoiding
walls and obstacles. The next two figures show positive photo-tropism of the
robot: If no obstacles are present, the robot finally gets attracted by the light
source and moves slowly around it in a roughly constant distance (figure 3b).
Figure 3c demonstrates that the robot is able to find the light source even if it
is at the end of a corridor, and it stays in front of the light source, because it
can not move aside in this situation. What can not be seen from these pictures
is the fact that the robot stays near the light source by oscillating forward and
backward. Second, the behavior of the physical Khepera robot was studied in
a dark room with a small light bulb, the intensity of which was adjustable. The
robot showed roughly the same behavior as its simulated counterpart, although
the sensitivity and the noise of the physical light sensors are quite different from
those of simulated ones. The oscillations of the robot near a light source are of
course not really desirable.

Analysis of the central 2-neuron module (H1, O4) as well as “electrode
data” taken from hidden neuron H1 while the robot is active revealed that the
controller is really working in the complex dynamics domain. One reason for
this evolutionary solution is, that the fixed MRC allows the robot only to move
at almost maximal speed. So stopping before a light source is only possible by
an exact ballance of input signals (which is impossible because of the sensor
noise), or by the kind of oscillation observed for this solution.
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a) b) c)

Figure 3: The simulated robot: Its obstacle avoidance and photo-tropic behav-
ior in different environments.

4 Conclusions

Although the considered behavior tasks are simple and standard for autonomous
mobile robots the presented results demonstrate, that evolved neural networks
with non-trivial dynamical features can control the behavior of autonomous
robots efficiently. Additional techniques like “lesion” of subsystems and “elec-
trode data” may help to understand basic mechanisms of neural signal process-
ing. Then, with this knowledge, located structures with specific functionality
can be “manually” designed for specific control tasks. Finally one should re-
mark, that incremental evolution allows to develop robust controllers, in the
sense that they run comparably good on different robot platforms (compare
http://www.ais.fraunhofer.de/INDY/MO ME/BBR/BBR.html).
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