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Abstract. In independent component analysis (ICA), given some sig-
nal input the goal is to find an independent decomposition. We present
an algorithm based on geometric considerations [11] to decompose a lin-
ear mixture of more sources than sensor signals. We present an efficient
method for the matrix-recovery step in the framework of a two-step ap-
proach to the source separation problem. The second step — source-
recovery — uses the standard maximum-likelihood approach.

1 Introduction

In overcomplete ICA more sources are mixed to less signals, and the goal is
to recover the original signals. The ideas used in overcomplete ICA originally
stem from coding theory, where the task is to find a representation of some
signals in a given set of generators which often are more numerous than the
signals, hence the term overcomplete basis. Olshausen and Fields first put these
ideas into an information theoretic context decomposing natural images into
an overcomplete basis [10]. Later, Harpur and Prager [4] and, independently,
Olshausen [9] presented a connection between sparse coding and ICA in the
quadratic case. Lewicki and Sejnowski [8] then were the first to apply these
terms to overcomplete ICA, which was further studied and applied by Lee et
al [7]. De Lathauwer et al [6] provided an interesting algebraic approach to
overcomplete ICA of 3 sources and 2 mixtures by solving a system of linear
equations in the third- and fourth-order cumulants, whereas Taleb [12] reduced
the n x 2 case to solving a partial differential equation in the second-order
cumulants. Bofill and Zibulevsky [2] treated a special case (’delta-like’ source
distributions) of source signals after Fourier transformation. In this paper we
generalize their approach for arbitrary supergaussian source distributions using
a geometric matrix-recovery algorithm.

For m,n € N let Mat(m x n) be the R—vectorspace of real m X n matrices,
and Gl(n) := {W € Mat(n x n) | det(W) # 0} be the general linear group
of R”. In the general case of linear blind source separation (BSS), a random
vector X : Q — R™ composed of sensor signals is given; it originates from an
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independent random vector S : Q@ — R™, which is composed of source signals,
by mixing with a mixing matrix A € Mat(m X n), i.e. X = AS. Here Q
denotes a fixed probability space. Only the sensor signals are known, and the
task is to recover both the mixing matrix A and the source signals S. We will
assume that the mixing matrix A has full rank and any two different columns
of A are linearly independent. The problem stated like this is ill-posed for the
overcomplete case (m > n), hence further restrictions will have to be made.

2 A Two Step Approach to the Separation

In the quadratic case it is sufficient to recover the mixing matrix A in order to
solve the separation problem, because the sources can be reconstructed from A
and X by inverting A. For the overcomplete case as presented here, however,
after finding A in a similar fashion as in quadratic ICA (matrix-recovery
step), the sources will be chosen from the n — m-dimensional affine vector
space of the solutions of AS = X using a suitable boundary condition (source-
recovery step). Hence with this algorithm we follow a two step approach
to the separation of more sources than mixtures; this two-step approach has
been proposed recently by Bofill and Zibulevsky [2] for delta distributions. It
contrasts to the single step separation algorithm by Lewicki and Sejnowski [8],
where both steps have been fused together into the minimization of a single
complex energy function. We show that our approach resolves the convergence
problem induced by the complicated energy function, and, moreover, it reflects
the quadratic case as special case in a very obvious way.

2.1 Matrix-Recovery Step

In the first step, given only the mixtures X, the goal is to find a matrix A’ €
Mat(m x n) with full rank and pairwise linearly independent columns such that
there exists an independent random vector S” with X = A'S".

For geometric matrix-recovery, we use a generalization of the geometric
ICA algorithm [11]. Later on, we will restrict ourselves to the case of two-
dimensional mixture spaces for illustrative purposes mainly. With high dimen-
sional problems, however, geometrical algorithms need very many samples [5],
hence seem less practical; but for now let m > 1 be arbitrary.

Let S : Q — R? be an independent n-dimensional Lebesgue-continuous
random vector describing the source pattern distribution; its density function is
denoted by p: R* — R. As S is independent, p factorizes into p(x1,...,x,) =
p1(z1) ... pn(xy), with the marginal source density functions p; : R — R.

As above, let X denote the vector of sensor signals and A the mixing matrix
such that X = AS. A is assumed to be of full rank and to have pairwise
linearly independent columns. Since we are not interested in dealing with
scaling factors, we can assume that the columns in A have Euclidean norm
1. The geometric learning algorithm for symmetric distributions in its
simplest form then goes as follows:
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Pick 2n starting elements wy,w}, ..., w,,w!, on the unit sphere S™ 1 C R™
such that w; and w} are opposite each other, i.e. w; = —wj fori =1,...,n, and
such that the w; are pairwise linearly independent vectors in R™. Often, these
w; are called neurons because they resemble the neurons used in clustering
algorithms and in Kohonen’s self-organizing maps. If m = 2, one usually takes
the unit roots w; = exp(”T_lm'). Furthermore fix a learning rate n : N — R
such that n(n) > 0, >, cyn(n) = 0o and Y, .y n(n)? < co. Then iterate the
following step until an appropriate abort condition has been met:

Choose a sample z(t) € R™ according to the distribution of X. If z:(t) = 0
pick a new one — note that this case happens with probability zero since the
probability density function px of X is assumed to be continuous. Project z(t)
onto the unit sphere to yield y(t) := % Let ¢ be in {1,...,n} such that w;
or w; is the neuron closest to y with respect to the Euclidean metric. Then set

wi(t + 1) := m(w;(t) + n(t) sgn(y(t) — wi(t))),

where 7 : R™ \ {0} — S(™~1 denotes the projection onto the (m — 1)-
dimensional unit sphere S~ in R™, and

wi(t+ 1) == —w;(t + 1).

All other neurons are not moved in this iteration.

Similar to the quadratic case, this algorithm may be called absolute win-
ner-takes-all learning. It resembles Kohonen’s competitive learning algo-
rithm for self-organizing maps with a trivial neighbourhood function (0-neigh-
bour algorithm) but with the modification that the step size along the di-
rection of a sample does not depend on distance, and that the learning process
takes place on S(™=1) not in R(™m=1)

2.2 Source-Recovery Step

Using the results given above, we can assume that an estimate of the original
mixing matrix A has been found. We are therefore left with the problem of
reconstructing the sources using the sensor signals X and the estimated matrix
A. Since A has full rank, the equation © = As yields the n — m-dimensional
affine vectorspace A~'{x} as solution space for s. Hence, if n > m the source-
recovery problem is ill-posed without further assumptions. An often used [8§]
[2] assumption can be derived using a maximum likelihood approach, as will
be shown next.

The problem of the source-recovery step can be formulated as follows: Given
a random vector X : Q@ — R™ and a matrix A as above, find an independent
vector S : 0 — R™ satisfying an assumption yet to be found such that X =
AS. Considering X = AS, i.e. neglecting any additional noise, X can be
imagined to be determined by A and S. Hence the probability of observing
X given A and S can be writen as P(X|S,A). Using Bayes Theorem the



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 217-222

posterior probability of S is then

P(X|S,A)P(S)

P(SIX, 4) = ===,

the probability of an event of S after knowing X and A. Given some samples
of X, a standard approach for reconstructing S is the maximum-likelihood
algorithm which means maximizing this posterior probability after knowing
the prior probability P(S) of S. Using the samples of X one can then find
the most probable S such that X = AS. In terms of representing the observed
sensor signals X in a basis {Ae;} this is called the most probable decomposition
of X in terms of the overcomplete basis of R™ given by the columns of A.

Using the posterior of the sources P(S|X, A), we can obtain an estimate of
the unknown sources by solving the following relation

S = argmaxx_,gP(5|X,A4)
= argmaxy_,5P(X|S,A)P(S)
= argmaxy_,5P(5).

In the last equation, we use that X is fully determined by S and A, and hence
P(X|S,A) is trivial. Note that of course the maximum under the constraint
X = AS is not necessarily unique.

If P(S) is assumed to be Laplacian that is P(S;)(t) = aexp(—|t|), then
we get S = argminy_ ,5|S|1, where |v|; := >, |v;| denotes the 1-norm. We
can show that the solution S is unique, which may not be the case for other
norms; The general algorithm for the source-recovery step therefore is the max-
imization of P(S) under the constraint X = AS. This is a linear optimization
problem which can be tackled using various optimization algorithms [3].

In the following we will assume a Laplacian prior distribution of S which
is characteristic of a sparse coding of the observed sensor signals. In this case,
the minimization has a nice visual interpretation, which suggests an easy to
perform algorithm: The source-recovery step consists of minimizing the 1-norm
|sali under the constraint Asy = z, for all samples x). Since the 1-norm of
a vector can be pictured as the length of a path with parallel steps to the
axes, Bofill and Zibulevsky call this search shortest-path decomposition —
indeed, one can show that sy represents the shortest path to z) in R™ along
the lines given by the matrix columns Ae; of A.

3 Experimental Results

In this section, we give a demonstration of the algorithm. The calculations
have been performed on a AMD Athlon 1 GHz computer using Matlab and
took no more than one minute at most.

We mixed three speech signals to two sensor signals as shown in figure 1,
left side and middle. After 10° iterations, we found a mixing matrix with
satisfactorily small minimal column distance 0.1952 to the original matrix, and



ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 217-222

-1 -2

Figure 1: Example: The three sources to the left, the two mixtures in the
middle, and the recovered signals to the right. The speech texts were ’califor-
nication’, 'peace and love’ and ’to be or not to be that’. The signal kurtosis
were 8.9, 7.9 and 7.4.

after source-recovery, we calculate a correlation of estimated and original source
signals with a crosstalking error [1] E; (Cor(S,S")) = 3.7559. In figure 1 to the
right, the estimated source signals are shown. One can see a good resemblance
to the original sources, but the crosstalking error is still rather high.

We suggest that this is a fundamental problem of the source-recovery step,
which, to our knowledge, using the above probabilistic approach cannot be
improved any further. To explore this aspect further, we performed an exper-
iment using the source recovery algorithm to recover three Laplacian signals

mixed with
A = 1 cos(a) cos(2a)
T\ 0 sin(a) sin(a) )’

where we started the algorithm already with the correct mixing matrix. We
then compared the crosstalking error E(Cor(S, S’)) of the correlation matrix of
the recovered signals S” with the original ones (S) for different angles a € [0, 7].
We found that the result is nearly independent of the angle, which makes
sense because one can show that the shortest-path-algorithm is invariant under
coordinate transformations like A,. This experiment indicates that there might
be a general border on how good sources can be recovered in overcomplete
settings.
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4 Conclusion

We have presented a two-step approach to overcomplete blind source separa-
tion. First, the original mixing matrix is approximated using the geometry
of the mixture space in a similar fashion as geometric algorithms do this in
the quadratic case. Then the sources are recovered by the usual maximum-
likelihood approach with a Laplacian prior.

For further research, two issues will have to be dealt with. On the one
hand, the geometric algorithm for matrix-recovery will have to be improved and
tested, especially for higher mixing dimensions m. We currently experiment
with an overcomplete generalization of the quadratic "FastGeo’ algorithm [5], a
histogram-based geometric algorithm, which looks more stable and also faster.
On the other hand, the question if there is a natural information theoretic
barrier of how well data can be recovered has to be treated.
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