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Abstract. Geometric algorithms for linear independent component
analysis (ICA) have recently received some attention due to their picto-
rial description and their relative ease of implementation. The geometric
approach to ICA has been proposed first by Puntonet and Prieto [6]
in order to separate linear mixtures. One major drawback of geomet-
ric algorithms is, however, an exponentially rising number of samples
and convergence times with increasing dimensiononality thus basically
restricting geometric ICA to low-dimensional cases. We propose to ap-
ply overcomplete ICA to geometric ICA [7] to reduce high-dimensional
problems to lower-dimensional ones, thus generalizing geometric ICA to
higher dimensions.

1 Basics

For m,n € N let Mat(m x n) be the R—vectorspace of real m x n matrices, and
Gl(n) := {W € Mat(n x n) | det(W) # 0} be the general linear group of R™.

In linear blind source separation (BSS), a random vector X : @ — R™
(mixed vector) originates from an independent random vector S : Q@ — R”
(source vector) by mixing with a mixing matrix A € Mat(m X n), ie.
X = AS. Here Q denotes a fixed probability space. Only the mixed vector is
known, and the task is to recover both the mixing matrix A and the source
signals S.

We will assume that the mixing matrix A has full rank. In the quadratic
case (m = n) A then is invertible ie. A € Gl(n) and S can be recovered from
A by S = A7'X. This is not the true in the overcomplete case where less
mixtures than sources are given (m < n); then the BSS problem is ill-posed,
hence further restrictions like source density assumptions have to be made.

In the following we denote two matrices B,C € Mat(m x n) to be equiv-
alent, B ~ C, if C can be written as C' = BPL with an invertible diagonal
matrix (scaling matrix) L € Gl(n) and an invertible matrix with unit vec-
tors in each row (permutation matrix) P € Gl(n). Similarly, B is said to be
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scaling-equivalent to C, B ~; C, if C' = BL holds, and B is permutation-
equivalent to C, B ~,, C, if C' = BP. Therefore, if B is scaling- or permuta-
tion-equivalent to C, it is equivalent to C, but not vice-versa. If we write

B=(bi]...|bn)

where b; = Be; are the columns of the matrix B, we have the following trivial
lemmata:

Lemma 1.1. B ~; C if and only if (c1]...|cn) = (Mb1] ... |[Anbn) with \; €
R\ {0}.

Lemma 1.2. B ~, C if and only if (c1|...|cn) = (bp1)l - [bp(n)) with p € S,
a permutation.

Corollary 1.3. B ~ C if and only if (c1]-..|ca) = (Mibpr)| - - - [Anbp(n)) with
Ai € R\ {0} and p € S,, a permutation.

If at most one of the source variables S; := m; 0 S is Gaussian (7; : R® — R
denotes the projection on the i-th coordinate) then for any solution to the
quadratic (m = n) BSS problem, i.e. any D € Gl(n) such that D o X is
independent, D~ is equivalent to A [3]. Vice versa, any matrix D € Gl(n)
such that D~ is equivalent to A solves the BSS problem, since we calculate
for the transformed mutual information

I(DoX)=I(LPA ' oX)=I(A""0 X)=1I(S) =0,

taking into account that the information is invariant under scaling and permu-
tation of coordinates.

For the overcomplete case no such uniqueness results exist. However it is
easy to see that in this case an estimate of the unknown mixing matrix can
only be obtained up to equivalence: If B is equivalent to A that is A = BLP,
then set S’ := LPS. S’ is independent because the mutual information is

invariant under scaling and permutation, and mixing S’ gives again X because
X =AS =BLPS = BS'.

2 Mixing dimension reduction

We consider quadratic ICA in n dimensions. The basic idea is to project the
mixtures X onto different subspaces and then to estimate the original mix-
ture matrix from the recovered projected matrices. With maximum likelihood
source recovery algorithms within overcomplete ICA, it can be shown exper-
imentally that the recovered sources are rather bad estimates of the original
sources [7]. Therefore we use multiple recoveries to estimate the original mizing
matriz A; we then only have to invert A to get the recovered sources.

One problem arises, however. As mentioned in the previous section, ICA
algorithms can only find the mixing matrix up to equivalence (in the overcom-
plete case, it is not known if there is even more non-uniqueness to account for),
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so we have to take that into account when comparing the various recovered ma-
trices. We then eliminate permutation by comparing the correlation matrices
of the sources estimated with overcomplete ICA form each recovered mixing
matrix. Finally scaling will be accounted for by normalizing each recovered
mixing matrix.

3 Equivalence after projections

Let A € Gl(n), n > 2 be the invertible mixing matrix. Now let m € N with
1 < m < n, and let M denote the set of all subsets of [1,n] := {1,...,n} of
size m. For an element 7 € M let 7 = {r,...,7n} such that 7 < ... < 7.
Let 7, denote the (ordered) projection from R™ onto those coordinates given
by 7, ie.

m:R* — R”
(xla"'axn) — ($T17"'7me)'

Obviously there are (;L) such projections for fixed m and n. For 7 € M, we
will consider the projected mixing matrix A, :=m, 4 : R* — R™.

Lemma 3.1. Let A, B € Gl(n) and let t*,...,7% € M such that |J; 7" = [1,n].
Then if A;i ~5 B,i for all i, A ~4 B.

Proof. From lemma 1.1 we know that for each ¢ = 1,... k there exist A; €
R\ {0} such that b,: = Ma,: for j = 1,...,m. As |J; 7" = [1,n], we deduce
that for each I = 1,...,n there exists i and j such that b, = )\;al, which again
by lemma 1.1 means that B is scaling-equivalent to A. O

Now assume that the first row of A does not contain any zeros that is a1; # 0
for j =1,...,n. This is a very mild assumption because A was assumed to be
invertible, and the set with A’s as above is dense in Gl(n).

As usual let [z] denote the smallest integer larger or equal to z € R. Then

let k = [;g;jl] and define 7% := {1,2+ (m — 1)(i —1),...,2 + (m — 1)i — 1}

fori <kand 7% :={1,n—m+2,...,n}. Then |J, 7 =[1,n] and N, 7* D {1}.
Given any B',..., B¥ € Mat(m x n;R), define Api . gk by

1 1
(B")2,1/(B')1,1 (B )2,n/(B)1,n
(BYma/(BYis o (BYmn/(BY
(B*)2,1/(B*)1,1 (B*)2,n/(B*)1,n
ABl ..... Bk = .
(B* " ma /(BF )1 (B* Y /(B¥ " )1,n
(Bk)3+k'(m—1)—n,l/(Bk 1,1 (Bk)3+k:(m—l)—n,n/(Bk 1,n

BYor/(BYs e (BYmn/(BYin
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Lemma 3.2. Let A € Gl(n) and let BY,..., B¥ € Mat(m x n;R) such that
A.i~y B fori=1,...k. Then Ap1 . pr ~s A, in particular Ag: g ~ A.
Proof. From lemma 1.1 we know that for each i = 1,...,k there exist /\é €
]R\ {0} such that (Bi)j’l = )\;(ATi)j,l, hence (Bi)j’l/(Bi)l,l = (Ari)j,l/(A-ri)l,l-
One can check that by the choice of the 7’s we then have (Ag: _ pgr)ji =
Aji/A;j 1 and therefore Agi  pr ~, A. O

The above lemma can be used to cancel out scalings when putting together
the recovered mixing matrices. In order to eliminate permutations however,
we have to make the further assumption that the source data is sparse in the
sense that its source distribution is supergaussian in every direction.

4 Reduction Algorithm

The reduction algorithm now is very simple. Pick k and 7',...,7% as in the
previous section. Now perform overcomplete matrix-recovery [7] with the pro-
jected mixtures 7(X) for i = 1,...,k and get matrices B*. We assume that

this recovery has been carried out without any error; then every B is equivalent
to A,: in this ideal case.

The B? however are not scaling-equivalent to the A.:, so we will have to
establish this in the next step of the algorithm. Therefore do the following
iteratively for each i = 1,...,k: Apply the overcomplete source-recovery [7] to
7¢(X) using B* and get recovered sources S*. For all j < 4, consider the absolute
correlation matrices (| Cor(Sy, S7)|)(y,s)- Using the maxima in every column of
this matrix, we claim that the row positions of these maxima are pairwise
different because the original sources were chosen to be independent. Thereby
we get a permutation matrix P! indicating how to permute B?, C? := B*P?, so
that it fits nicely in the above sense to the previously recovered C?’s, for j < i.
Finally, we have constructed matrices C* with C* ~, B? such that there exists
a permutation P with C% ~, AiP foralli=1,...,k.

Now we can apply lemma 3.2 and get a matrix Ac1 or With Aca, on ~s
AP and therefore Ac1 o1 ~ A as desired.

5 Experimental Results

In this section, we give some demonstration of the algorithm. The calculations
have been performed on an AMD Athlon 1 GHz computer using Matlab and
took no more than five seconds at most.

As example we consider a mixture of three high-kurtosis signals (n = 3) as
pictured in figure 1, top left picture. They were mixed with the mixing matrix

0.7071 —-0.2182 —0.8018
A= 07071 0.4364 0.5345
0 0.8729 —0.2673
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Figure 1: Example: Mixture of three high-kurtosis signals. The top left image
shows a 3-dimensional scatterplot of the sources, the top right image shows the
3-dimensional scatterplot of the mixtures. The two lower pictures show the
scatterplot of the mixtures after projecting onto the 1 —2- and the 1 — 3-plane
respectively. Furthermore, the stars and the numbers indicate the neurons that
were used for the geometric overcomplete matrix-recovery algorithm.

The rather complicated general framework for the projections simplifies in the
case n. =3, m = 2 to k = 2 and to two projections 7 5y and my 3y, which we
also denote by 7 2 and m 3.

We performed overcomplete ICA using the geometric algorithm from [7]
with 4000 sweeps and initial learning rate of 1.0. The two recovered matrices
were

B12Z:Blz

)

—0.8430 0.4283 0.7275
0.5379  —0.9036 0.6862

and

)

B173 =

0.9680 0.3681  0.0896

so the recoveries were indeed very good (see figure 1). The correlation matrix
between the recovered sources S and S? is

0.0544 —0.9368 0.3244
Cor(S',S8%) = | —0.8660 0.0535 —0.0134 |,
0.0289  0.2584 —0.9022

B ( —0.2508 0.9298 —0.9960 )

so the first column of B2 belongs to the second of B!, the second of B? to the
first of B! and the third of B? to the third of B'. Hence, we get the recovered
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matrix

1.0000  1.0000  1.0000
A'=1| -2.1099 -—0.6381 0.9432 ,
—-3.8601 0.3959 —0.0900

and the crosstalking error of A and A’ is E; (A1 A") = 0.4440.

6 Conclusion

We have shown how to generalize geometric algorithms to higher dimensions.
We propose to apply overcomplete ICA to various projections of the mixture
data; then, taking into account the permutation equivalence of the recovered
mixing matrices, we estimate the final mixing matrix from these recovered
matrices. We proved that the estimated mixing matrix is equivalent to the
original mixing matrix. This algorithm has been successfully applied to the
case n = 3, and can now readily be generalized to higher dimensions.

For further research, we suggest two directions. First, the above algorithm
has to be examined in more detail, especially how well it generalizes to large
n, and we have to test if the high sample requirements for traditional geomet-
ric algorithms in high dimensions are indeed greatly reduced as indicated by
first experiments. Furthermore, other overcomplete algorithms [5] [2] could be
plugged into the above framework, and the quadratic 'FastGeo’ algorithm [4],
a histogram-based geometric algorithm, could be used to improve the speed of
the geometric algorithm. Second, it would be interesting to know if the above
algorithm can be reduced to the well-known quadratic ICA algorithm formula
introduced by Bell and Sejnowski [1].
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