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Abstract. In this paper we evaluate the performance of Support Vector
Machines (SVMs) and Multi-Layer Perceptrons (MLPs) on two different
problems of Particle Identification in High Energy Physics experiments.
The obtained results indicate that SVMs and MLPs tend to perform very
similarly.

1. Introduction

Support Vector Machines (SVMs) have been recently introduced as a technique
for pattern recognition which approximately implements structural risk mini-
mization. Whereas previous techniques, like Multi-Layer Perceptrons (MLPs),
are based on the minimization of the empirical risk, that is the minimization
of the number of misclassified points of the training set, SVMs minimize a
functional which is the sum of two terms. The first term is the empirical risk,
the second term controls the confidence with which the obtained separating
surface behaves on previously unseen data points. SVMs are attracting in-
creasing attention because they rely on a solid statistical foundation [8,9] and
appear to perform quite effectively in many different applications [2-5,7]. A
clear advantage of SVMs over MLPs is due to the intuitive interpretation and
understanding of the behavior of SVMs on each particular problem. After
training, the separating surface is expressed as a certain linear combination of
a given kernel function centered at some of the data points (named support
vectors). All the remaining points of the training set are effectively discarded
and the classification of new points is obtained solely in terms of the support
vectors.

In this paper we compare SVMs against MLPs on two different problems of
Particle Identification (PI) in High Energy Physics (HEP) experiments. MLPs
are commonly accepted by the HEP community as a standard technique for
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PI. The aim of our work is to assess the potential of SVMs as an alternative
(or complementary) method for solving pattern recognition problems, with em-
phasis on PI problems. We consider two PI problems. The first uses simulated
data from DELPHI about the process ete™ — 7777, the second real data
about the process J/¢ — e~et. The input points are vectors in 14- and 8-
dimensional spaces respectively. The training and test sets vary from a few to
several thousands of points.

The organization of the paper is as follows. In section 2 we review briefly
the main properties of SVMs for pattern recognition. In section 3 we present
a short description of the physical origin of the used data. The experiments
performed with SVMs and MLPs are discussed in section 4. Finally, we discuss
the conclusions which can be drawn from our analysis in section 5.

2. Support Vector Machines

Let us briefly review the theory of SVMs. For a more detailed account and the
connection between SVMs and the minimization of the structural risk we refer
to [9].

We assume we are given aset S of N pointsx; € IR" (i =1,2,..., N). Each
point x; belongs to either of two classes identified by the label y; € {—1,1}. In
the further assmption that the two classes can be linearly separable, the goal
is to establish the hyperplane, named Optimal Separating Hyperplane 9OSH),
that divides S leaving all the points of the same class on the same side while
maximizing the distance of the closest point. It can be shown [9] that the OSH
is the solution to the problem

Minimize 1w .w
subject to  y;(w-x;+b)>1, i=12,...,N

where w is the normal of the hyperplane, and b/w the distance of the hyper-
plane from the origin. If we denote with & = (&1, s, ..., an) the N nonneg-
ative Lagrange multipliers associated with the constraints, the solution to this
problem is equivalent to determining the solution to the dual problem

Maximize —%aTDa +> o
subject to Y y;a; =0
a >0,
where the sums are for i = 1,2,..., N, and D is an N x N matrix such that
Dij = yiyjxi - %j. (1)

The solution for w reads N
w = Z QY Xy, (2)
i=1

The only &; that can be nonzero in Eq.(2) are those for which the constraints
of the first problem are satisfied with the equality sign. Since most of the a;
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are usually null, the vector w is a linear combination of a often relatively small
percentage of the points x;. These points are termed support vectors because
they are the only points of S needed to determine the OSH.

The problem of classifying a new data point x is now simply solved by
looking at the sign of

w-x+b
with b obtained from the Khun Tucker conditions.

If the set .S cannot be separated by a hyperplane, the previous analysis can
be generalized by introducing N nonnegative variables € = (£1,£,...,&n) such
that

yi(W'Xi+b)Zl_€i, 1=1,2,...,N. (3)

The so called generalized OSH is then regarded as the solution to

Maximize iw-w+CY ¢
subject to  y;(w-x;+b)>1-& i=12,...,N

§£>0.

Similarly to the linearly separable case, the dual formulation requires the solu-
tion of a quadratic programming problem with linear constraints. Once again it
turns out that the points that satisfy the constraints of above with the equality
sign are termed support vectors and are the only points needed to determine
the decision surface.

The entire construction can also be extended rather naturally to include
nonlinear separating surfaces [9]. Each point x in input space is mapped into
a point z = ¢(x) of a higher dimensional feature space (possibly of infinite
dimension). The mapping ¢ is subject to the condition that the dot product
< ¢(x),¢(y) > in feature space can be rewritten through a kernel function
K = K(x,y). Admissible kernel functions, for example, are the polynomial
kernel of n-th degree

Kxy)=(0+x-y)" -1

or the Gaussian kernel

K(x,y) = exp(|lx - y[l/207)

3. Data description

In this paper we consider data from two different HEP experiments. In the
first we use simulated data, while in the second data gathered from a real
experiment.

The simulated data of the present analysis are the same data which have
been used in [6]. Event simulation is widely used to define methods of extraction
of signal from background, study the effects of possible systematic errors, and
model the detector effects on the events. Here, events where a 77~ pair is
produced in the decay of a Z° from the annihilation of a ete™ pair must be
selected from the overwhelming background of Z° decays into hadrons. The
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simulated events, obtained according to a procedure described in [6] are in the
same format as the real data. A number of physical variables pointing out
certain characteristics of every kind of event, 14 in the present case, are then
defined and the separation between different classes of events is obtained in
terms of the different probability distribution of the variables for the different
classes.

The real data are taken from experiment E760 at Fermilab [1]. This experi-
ment was searching for events with inclusive J /v decaying to et e~ produced in
p—p interactions. Each track is described as a feature point in an 8-dimensional
space. As electrons for the training set we used p — p — x2 — J/¢by —
ete~7y events selected requiring good exclusive kinematic fit (prob. > 0.2)%.
The background for the training set was selected using 2pb~! data taken at
energy far away from charmonium resonances (E.y, = 3510MeV), keeping all
events with invariant mass above 2.4GeV/c?. The goal was to identify back-
ground events that almost perfectly simulate the signal. We ended up with a
training set with far less than 1% of contaminated data (that is, electrons in
background or background in electrons data).

4. Performed experiments

For MLPs we use JETNETS3.0, a package for the training of neural networks de-
veloped for PI applications and available via ftp from ftp://www.then.lu.se.
The best results have been obtained with a number of hidden units equal to
twice the number of the input variables (that is, 28 and 16 respectively).

For SVMs we use the implementation available in our lab, based on the
decomposition algorithm proposed in [4] and a solver which transforms the dual
problem, a QP problem with linear constraints, in a linearly complementary
problem. We used polynomial and Gaussian kernels for the two experiments
respectively. The degree of the polynomial and the variance of the Guassian
kernel (over ten possible values) were determined by looking at the minimum
of the quantity R?w? on the training set, with R the radius of the minimal ball
enclosing the training d ata in feature space and w the computed margin.

The overall results for the two experiments are summarised in Tables 1
and 2. The reported results refer to the percentage of correct classifications
obtained on the entire test set using all the points of the training set. For
the case of simulated data the training and test sets consist of 10000 and 5000
points, while for the case of real data of 3600 and 1400 respectively.

As it can easily be inferred from Tables 1 and 2, the two methods give al-
most indistiguinshable results. The SVMs give slightly better recognition rates
on both simulated and real data but probably not enough to be statistically
significant (though in the case of simulated data SVMs performed consistently
better than MLPs).

IThese selection criteria provide a very clean set of electron tracks without introducing
bias in the feature points.



ESANN'1999 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 257-262

Table 1: Overall results on simulated data

Method Error rate
Best MLP (Manhattan alg.) 95.5
Polynomial SVM (8th degree with C = 10) | 96.6

Table 2: Overall results on real data

Method Error rate
Best MLP (Manhattan alg.) 83.6
Gaussian kernel SVM (¢ = 1.5 with C = 10) | 84.4

Extensive experimentation indicate that the two methods tend to give sim-
ilar results also on training sets of reduced size. This can be seen, for example,
in Figure 4. which shows the performance of MLP and SVM in the case of
real data as a function of the training set size. For both methods, the error

bars mark the best and worst performance obtained by random sampling of
the training sets.
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5. Conclusions

In this paper we have presented results of a comparison between MLPs and
SVMs on two problems of Particle Identification. The results obtained so far
indicate that the methods tend to produce very similar results. In the two
specific problems we have considered SVM perform always at least as well as
MLP (that is, within the error margin of the performed experiments) and, in
the case of simulated data, consistently better.

While more experiments are needed to reach a final virdict, we can al-
ready draw a number of conclusions. First, SVMs seem to work well even in
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the presence of large training sets drawn from input spaces of relatively small
dimension. Second, contrary to theoretical expectations, we have found an un-
usually large number of support vectors (often more than 50% of the points of
the training set). This is probably due to the large amount of noise affecting
the input points. Third, and finally, the procedure of selecting the appropri-
ate degree for a polynomial kernel or the variance for the Gaussian kernel by
means of the empirical minimization of the quantity R*w” proved to be rather
effective.
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