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Abstract

Regularisation is a popular method to overcome the ill-
conditioning learning problems in neural networks. This is
achieved by penalizing the performance criteria adding some
prior distribution on the weights, usually a quadratic weight
function, i.e. E°=w'Kw. Find out the regularisation matrix K
included in the regularisation solution of learning problems, is a
difficult and computationally expensive task [2]. This paper
provide an efficient and easy way for K matrix calculation and
the development of this method for Zero and Second Order
Regularisation.

1. Introduction

Let‘S={ (Xi’Yi) e R"xRli= 1,,,,,N} be a set of data we want to approximate by a

function f. The Tikhonov’s regularisation approach [6] consists in looking for the

function f that minimizes the functional [1], [4], [S], H[f]=zN:(y. _ f(x.))z . Mlpf"z
i=l

where P is a constraint operator, stabilizer or regulariser (usually a differential
operator ), |||| is a norm of the space functions (usually the L? norm), I pf||2 =_[| pf|2dx=

=J'f(x)13pf(x)dx, and A (regularisation parameter) is a positive real number,

controlling the compromise between the degree of smoothness of the solution and its
closeness to the data.

From the point of view of training Radial Basis Functions Systems and Neurofuzzy
models, regularisation is a popular method to constrain weight optimization [2]. We
are looking for a function, f{x,w)=G(x;x), where G(x;x) is a combination of Radial
Basis Functions, that minimizes the cost function J=MSE+AE® where MSE is the
Mean Square output Error and Elisa penalizing error that may take different forms,
but if it is represented by a quadratic weight function E‘= w'Kw, the solution to the
cost function becomes w = (R+K, )'lp where R=G”G is the autocorrelation matrix and
p=G"y is the cross-correlation matrix.

In the next section we present the main results obtained by Poggio and Girosi [4], [5]
to be applied in our approach to calculate the regularisation matrix. In the sections 3
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and 4, we establish the relation of the Tikhonov’s approach with the standard statistics
approach and we present how the regularisation matrix is obtained when the Radial
Basis Functions are fixed.

2. Tikhonov’s regularisation solution recovers the RBF method

Minimization of the functional H leads to the associated Euler-Lagrange equations.
For a functional H[f] that can be defined

HIF 1= [F(f fo oo o Py B Fy Oy
;

the Euler-Lagrange equations of extremity condition are

d d 2° d° d* , 0"
ey Ty T gy T T G =0
If we define aaf ((x) =8(x-x) ( Dirac’s delta ), for a functional that is only function
i

of f we obtain the partial differential equation ppf(x) =%i(yi - f(xi))s(x_xi)

i=t
where Pis the adjoin of the differential operator P. Its solution can be written as the
integral transformation of its right side with a kernel given by the Green’s function of
the differential operator PP, the function G satisfying the following distributional
differential equation PPG(x;£) = 8(x—E)  (Green’s relation)

Finally we obtain the solution of the regularisation problem

= def N

fx)= 2%—£(Xi)G(x;xi) = Z,wi G(x:x,)=G(x,,x)-w

where a polynomial term should be in the right side if the null space of the stabilizer is
different of the null function. To obtain in a direct form the unknown coefficients
w,-=},'1(y,~-f(x,~) ), we use for the coefficients the linear system (G+ADw=y where (y);=y;,
(W)i=w;, (G)i=G(x;x;).

If the operator P is translationally and rotationally invariant, G = G(|x—g]) will be a
radial function and the method of Radial Basis Functions may be recovered.

2.1. Reduction of the computational complexity. Extension of the regularisation
approach to moving centers: GRBF

The function that minimizes the functional H is specified by N coefficients, where N is
the number of examples or training patterns; when N is very high the computation of
the coefficients of the expansion can become a very time consuming operation.

To reduce the complexity of the problem, we concentrate the solution on a finite basis.
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The approximated solution f* to the regularisation problem implies a lower number of

centers with a different distribution [3], g« (X)=2n’w G(x;t ) n<<N, where the
a=1

coefficients w, and the parameters ¢, are unknown. If G is the Green’s function of the

operatorf’P, the set of coefficients {wy,ty Ja=1,...,n} can be obtained in a simple way
by minimizing Hf*].

The explicit form of the system equations to be satisfied for the coefficients depends
on the specific restriction operator used.

This form of solution has the desirable property to be a universal approximation for
continuos functions and to be the only choice that consistently recovered the correct
solution in case n = N and {#;}; = {x;};.

2.2. A generalization of multidimensional splines.

We consider the stabilizer
™ M
I = [, Zan(Pr ) ax= fim Soafomrf

with the functional associated to multidimensional splines

n B o 2 _ d am 2
=Lt $ L[5

ipeedp i

where P"=V""  p?™I_yy" and V?=A is the Laplacian. The coefficients a,, are
positive real numbers.

The stabilizer is rotationally and translationally invariant and its Green’s function
satisfies the distributional differential equation:

i(_l)m a, V™ G(x~8) =§x~E) (Relation Green’s Function - Stabilizer )

m=0

By using the Green’s formulas, the m-th term of P; can be written as
Ld(me*(x))zdx=(—-1)de f*(x) PP pr(x)dx

Because f* is a expansion of Green’s functions, each term containing G gives a delta
function and the integral disappears, yielding

I = L Sau P00 ax=0m[, Sia 120 P (rkix=

= w(gw/’ G(x;tﬂ)](gwaé(x—ta) X = iwawp Glt,:ty)

a,f=1

Defining a rectangular N x n - matrix G as (G),, = G(x;ty) and a symmetric n x n
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square matrix (g)ag = G(t, ;1g), the functional can be written as H/f*] =w'( GTG+}Lg)w-
2wGTy+yy , a quadratic form in the coefficients w,,. For each fixed set of centers e
the coefficients optimal vector is then given by w=( G'G+Ag)” G7y.

Defining R= G'G; p=G"y; K=g, we obtain w=( R+AK)" p. This expression for the
coefficients is equivalent to that obtained for standard regularisation. So, our main
work will be to show that functional cost are equivalent too.

2.3. Simplification to Multidimensional Splines

We consider the stabilizers ||0‘“ f*“z, obtained in 2.2 when, a;=0, Vk#m, a,,=1 to profit

all the last information. Green’s function associated to this regulariser satisfies
(-1)"VP"G(x-E)=8x-&), where V"™ is the m-th Laplacian in d dimension, and the
solution is

G(r)= {”r"zm-dz;Tl I_Z(HHD (2m> d)&(d =3)
Il otherwise

The approximated solution has then the following form, with p,, ,(x) a polynomial of

degree m-1. f*(x, wi)=iW,» G(x:t,)+p,.(x)
i=1

3. Multidimensional spline ( m = 0 ) - Zero Order Regularisation

Green’s function associated to this regulariser satisfies G(x-§)=§&x-&), then the
approximated solution has the following form

f*(x’wi)zztwiS(x_ti)
The linear system associated to the coefficients is w=(G'G+Ag)' G'y, where

(8)ap =G(t4 -1)=Id or, applying definitions, w=( R+AK)" p, where K=Id

The cost function or functional becomes

1=MSE+No° A’ =Ms1«:+kfw (f*(x)"dx=

=MSE+2[, (g,wia(x— ti)].[gwjﬁ(x— tj)}ix= MSE + 13 w? =

i=1

= MSE +Aw"w= MSE +Aw'Kw , where K=Id

This is the commonest regularisation, known as ridge regression by statisticians. The
penalty term K¢ =-[md | f*(x,wi)lp(x)dx where p(x) is the probability density

function, represents the expected size of the output. This can be approximated by a
quadratic penalty function given by, E! =w"w= =w"Kw, where K=Id.
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If we observe the linear system for the solution to this cost function in section 1, we
conclude that Tikhonov’s regularisation approach gives the same results that the RBF
standard regularisation approach, and we obtain a specific form for the radial basis
functions.

4. Multidimensional spline ( m = 2 ) - Second Order Regularisation

The distributional differential equation associated is, in this case, ( V2)’G(x-&)=§x-&)

4—d
and the solution is Glr) = Il - i) =2
(13 d#2

This solution is known as thin plate spline when d=2. The approximated function
f*(x’wi ) = Ewi G(X;tj) + P1 (X)
i=1

has coefficients that accomplish the linear system associated as in the previous case
but now K=g. The cost function or functional is given by

T=MSE+ 0’ =MSE+xfw(P2f*(x))zdx=L,,f*(x)(v2)2fk(x)dx=

=MSE + zn:wi G(tj;ti) + pl(tj)Iiij= MSE + Aw’gw + iwj pl(tj)(;)
] =1 =1

i=1

= MSE + w"gw= MSE + w"Kw , where K=g

(DIf n = N and {x;};={t;}; , the term polinomic term is 0 [4]; in other cases this
condition is a new linear system of equations to be accomplished for the moving
centers and the coefficients.
This form of regularisation makes the assumption that the function is smooth, and
hence the expected curvature of the output is used to penalize the cost function,

d? p(x,w,)
dxz

d_
= ha

(x)dx

where p(x) is the probability density function. E? can be approximated by [2]

E® = i[ﬁﬁi‘_’w_ﬂ = i[kfw]z =ink,k‘Tw=wTKW

2
i=1 dx i=1

To obtain the regularisation matrix K in the previous expression is computationally
intensive, because is necessary to compute the 2nd differential of the multidimensional
basis functions.

Therefore, the Tikhonov’s regularisation approach identifies the K matrix and
calculations are no difficult if we choose the specified radial basis functions from the
Green’s condition.
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5. Conclusions and future research.

In this paper we have employed the Thikonov’s regularisation approach to provide an
efficient and easy expression for the regularisation matrix K, if the radial basis
functions are indicated, and we develop this method for the Zero and Second Order
Regularisation [2]. It could be interesting to express the approximated function
expansion over other class of functions, calculate the differential equations satisfied
and find out the new expressions for the regularisation matrix. On the other hand,
higher order regularisation can be compared with our approach; we have only shown
two examples where analogies are direct, but the results, K=g and the cost function
equivalence, are general equivalencies.

Many options exist to select radial basis functions, but it has been pointed out that the
thin plate splines, that are associated with the second order regularisation of the
Tikhonov’s approach, works very well in terms of modeling accuracy [7]. This
practical result could have a motivation in the best approximation property of this
class of functions in the ideal case, when n=N and centers are the original training
patterns, and the fact that the approximated function is a reduced version of the total
one.
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