ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 203-208

A New Dynamic LVQ-based Classifier and Its
Application to Handwritten Character

Recognition*

Sergio Bermejo', Joan Cabestany and Magda Payeras

AHA Group
Department of Electronic Engineering, Universitat Politécnica de Catalunya
(UPC).
Gran Capita s/n, C4 building, 08034 Barcelona, Spain
e-mail: shermejo@eel.upc.es

Abstract- In this paper we present a new dynamic learning strategy in LVQ's
framework that consists of a growing process and a posteriori pruning process.
This schema allows building a family of dynamic LVQ learning systems. To
evaluate this proposal, we have employed LVQ3 as a core of the leaming system.
We have done an empirical analysis of this system (DLVQ3) in order to
characterize its parameters and to compare it with non-dynamical LVQ algorithms.
Finally we present results on applying PCAg4+DLVQ3 to upper and lower
handwritten character recognition, obtaining on average test classification error
(with no rejection) 7.22% and 15.275 % respectively in front of 9.16% and
17.01% achieved with PCAg4+ non-dynamic LVQx's of similar size, 14.7% and
23.1 % with PCAg4+PNN [3] & 10.1% and 20.3% with PCA178+MLP [3].

1.Introduction

LVQ algorithms are a kind of vector quantizers that are strictly meant for a statistical
pattern classification, because of "its only purpose is to define class regions in the input
data space” (p.203; [1]). Starting on a training pattern set and by means of simple
supervised learning mechanisms repetitively applied over this set they finally obtain a
number of prototype (or codebook) vectors that allow to build class borders according to
the nearest neighbor rule. In this way, they define class regions over the input space.
Generalization in these systems, which we measure with patterns (test data) never used
in training, depends on:
e TFactors associated to codebook, as the number of codebook vectors assigned a
priori to each class and its initial values
e TFactors associated to learning algorithm, as the used adaptive mechanisms, the
learning rate fixed by the algorithm parameters and the chosen stopping criteria.
Thus, correct application of LVQ algorithms requires always bearing in mind these
factors, and because of these, like in other learning systems, it turns into an art. A
solution to this problem has been given by LVQ PAK [2]. In this software package, we

* This work has been funded by spanish CICYT action TIC96-0889
t granted by CIRIT action F197/0621

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 203-208

can find, among others, programs to initialize codebooks (eveninit y balance) and a
learning strategy based on use of a cascade of LVQ algorithms ordered from lesser to
greater complexity. With this strategy, they pursue to refine gradually the initial
codebook to a solution with a better generalization. When we apply it over training sets
extracted from real problems, we can observe that sometimes, although we have
initialized suitably a codebook with an optimal size, this learning system cannot learn to
define correctly all class regions. In other words, it can learn to form better some class
borders than others and thus it generalizes better in some classes than others. Without to
make a detailed analysis of the reasons for this behavior, since codebook vectors define
class regions, we can agree that:

e Either number of vectors to define each class is not the same

¢ Or vectors has not been properly placed due to learning dynamics

In this paper, we propose a dynamic LVQ learning algorithm that tries to solve this
problem. Since it allows incrementally placing new codebook vectors depending on the
codebook failure to classify each class well, our system tries to define all class regions
with identical accuracy. So this dynamic learning schema gets a system which intends to
improve global generalization via training error equalization between classes.

The rest of this paper is organized as follows. In section 2, we introduce our dynamic
learning schema. Section 3 presents the preliminary results of several experiments made
in the recognition of upper handwritten characters, in order to validate our algorithmic
- proposal. In section 4, we apply dynamic LVQ3 (our dynamic learning schema plus
LVQ3) in the recognition of upper and lower handwritten characters and also compares
our results, first with non-dynamical LVQ algorithms and then, with other neural
approaches found in [3]. Finally, in section 5 preliminary conclusions are given.

2. Proposed Dynamic LVQ Learning Algorithm.

The basic philosophy of our dynamical LVQ system is based on early proposals [4]. The
core of our system there is a (non-dynamical) LVQ learning algorithm that receives the
initial codebook. This algorithm refines the codebook and ends after a predefined
number of iterations. Then, the system decides with a well-defined criterion to finish
training with a pruning process or to continue. In the latter case, our system inserts on
the codebook a certain number of new vectors. In typical constructive LVQ systems,
new codebook vectors are placed in class regions where training patterns are bad
classified. As example, we can see Dynamic LVQ [5]. This algorithm inserts for every
class a new codebook vector that is the mean of bad-classified class training patterns.
Our proposal is a bit different, inspired by Fritzke's work in codebook construction of
LVQ quantizers [6] and follows OSLVQ proposal {7]. Since codebook vectors define
class regions, why don't we insert new vectors close to those which its failure is the
worst? With this strategy when training stops, we could get a system that tries to define
all classes with the same accuracy.

The proposed dynamic learning algorithm follows: first of all, a codebook arrives at our
system. This is passed through a non-constructive LVQ algorithm during a number of
epochs fixed by the parameter EPUP (epochs to update). If meanwhile LVQ algorithm

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 203-208

is executed, the number of global iterations (length) is greater than RLEN (running
length), algorithm stops returning current codebook (STOPPING CONDITION #1)
passed through a pruning process. Once EPUP epochs have finished, the LVQ algorithm
presents a new codebook due to training. If new codebook does not improve
classification (STOPPING CONDITION #2) then system stops returning the last
codebook pruned. Otherwise it inserts, regulated by BETA, no more than MAV
(maximum added vectors) new codebook vectors in regions where current codebook
classifies worst. Now, we are going to define this stopping criterion, the heuristic to
place new codebook vectors and the pruning process.

STOPPING CONDITION 2 is defined in the following way:

sC w2[n+1)={E,(C,)< E. (C, & {length [+1]> —§-RLEN }

where C,={wj} is the codebook at time n and E7(Cy) is the number of misclassified
patterns by a 1-NN classified based in Euclidean distance that uses C, as its prototype
vector set. This stopping criterion pretends algorithm to stop when new vectors
placement doesn't improve classification error over training set. The right side of
condition was inserted to avoid stopping on a local minimum of classification error
function. We suppose that only we can find a global minimum in final training stage. It
is clear that this hypothesis can only be true in certain restricted conditions so stopping
criteria #2 must be revised in future research.

- The generation of new codebook vectors is computed in the following way:

1. Compute Cerr,,;, being this codebook of maximum size MAV, a set of those
codebook vectors that belongs to C,,;:

{ﬁ/j }= C,. D Cerr,,, = {Wi}; lCerr n+1|$ MAV
E®)2E@W,) Vj=1.|C,.|Vi=1..|Cer
where E(w;) is the number of classification errors due to codebook vector w;. In other

words, E(wj) is the number of input patterns which class is different from vector w; that
falls into its region of influence (ROI). E(w;) can be expressed as

EG)= 3 (o)

where c¢ is the number of classes and Eoyw;) is the number of class cl classification
errors due to codebook vector w; or (in other words) the number of class ¢l vectors that
fall in w; 's ROI, with w; belonging to another class.

2. For each w; that belongs to Cerr,,,,:

2.1. Compute the input pattern set T.,,(#,). This set is defined in the following way:

: Trf+1(ﬁ;i1} Tn[+1(wi)1= E, (Wi)

Tr:'+l (Wl) = {‘i’:m } = ar_l_g {max
where T/ (w,) represents those patterns of training set that belong to class cl and
fall into w; 's ROI with w; belonging to another class. It is clear that this set size is equal
to the number of class cl classification errors due to codebook vector w;.

2.2 Compute mean vector x,,,, of set {x,,}as:

n+l n+1|

. 1)
x 'O = -————-._ ‘x m
ored E el (wi) m=1
2.3.Create a new codebook vector with these values:
W, = w,+BETA &, -#,)

class [v_&,.']= class [%,,]

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 203-208

Once the growing process is finished, the pruning process removes those codebook
vectors that are not used for correct classification of the training set samples. With this
simple process added at the end of training, we hope to eliminate either redundant
codebook vectors that contribute to form class regions rightly, or those useless (if there
are any) that only contribute to misclassify.

3. Empirical Analysis of DLVQ3

In above section, we have presented a dynamic learning strategy that can use any kind
of LVQ algorithm as a core. To evaluate this proposal, we embedded LVQ PAK’s
LVQ3 in our learning system and called the resultant global system Dynamic LVQ3
(DLVQ3). In this section, we present empirical evaluation of DLVQ3 tested on upper
handwritten data set.

3.1. Handwritten Database and its preprocessing.

This handwriting data set (and the lower set used in section 4) can be found in [3] in
directories: train‘hsf 4, train/hsf 6 and train/hsf 7. We have chosen the last one as test
set (11992 uppercase binary images) and the two others as training set (24420 images).
These images (32x32 pixels) have been preprocessed with a Principal Component
* Analyzer that extracts 64 components from each image (NIST's mis2evt utility). The
correlation matrix of PCA was computed from training set.

3.2. Experiments.

We have done three experiments in order to characterize Dynamic LVQx parameters
and to compare it with non-dynamical LVQ systems.

3.2.1. Codebook Initialization and default parameters in DLVQ3.

Every experiment related to DLVQ3 applies in cascade firsteveninit, balance, olvql, lvql & lvq2 programs
from LVQ_PAK to obtain a DLVQ3's initial codebook. The parameter values used in the calling process of
these programs follow. Eveninit: noc=<initial codebook size>; olvql: 1len=90000; Ivql: rlen=90000,
alpha=0.01; lvq2: rlen=90000, alpha=0.01, win=0.3. Default parameters values used throughout experiments,
those related with LVQ3 algorithm embedded in DLVQ3, are the following: alpha=0.01, win=0.3, epsilon=0.1.
3.2.2.Experiment 1.

DLVQ3 was trained with two MAV values (2 and 10) for several initialcodebook sizes (50, 150, 234 and 280),
BETA values (0.2, 0.5, 0.7, 0.9 and 1.0) and EPUP values (1, 5 and 20). We applied in cascade 4 times
DLVQ3 with RLEN=500000. A total of 480 DLVQ3 simulations were performed.

3.2.3.Experiment 2.

DLVQ3 was trained with a low initial codebook size (50) for two values of MAV (2 and 5) and BETA (0.2,
0.5, 0.7, 0.9 and 1.0). We applied in cascade 4 times DLVQ3 with RLEN and EPUP having these values:
(100000, 1), (500000,5), (500000,10) and (15000000, 20).

3.2.4.Experiment 3.

We compare best results obtained in experiment 1 with results from applying in cascade LVQ_PAK learning
systems (eveninit->balance->olvqi->lvgl->lvg2->lvg3 to obtain a codebook of similar sizes. Parameter
values are the same of those appeared in section 3.2.1 except RLEN (2500000 in lvg3 and 150000 otherwise).

3.3. Preliminary Results.
Because of brevity of this paper, we only report a list of conclusions extracted from
simulations:

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 203-208

* Leaming rate increases smoothly as BETA does and is more stable in time (e.g. no
local minim of training error) with low values of EPUP.

¢ Exists an optimal value of BETA (<=1.0) in terms of generalization (test) error and
this value is affected mainly by EPUP.

¢ The number of vectors pruned mainly depends on MAYV, although EPUP plays a
secondary role (High values of EPUP=>less redundancy). If MAV increases
redundant vectors does, even when EPUP is high.

e If EPUP and RLEN vary dynamically on training, we can obtain smaller
codebooks.

e Generalization is better in DLVQ3 than in LVQ's system with the same codebook
size, even when DLVQ3 begins on a small codebook.

e Variance of class training error (training error for each class) is higher in LVQ
systems than in DLVQ3 (ratio 15:1). The higher MAV is, the lesser variance is
obtained.

e DLVQ3 offers at the end of the growing process a solution more redundant than
LVQ's. So after pruning, DLVQ3's codebook is smaller than pruned LVQ's.

® We observed that pruned codebook is not completely used for test set. If we pruned
again codebook with test set (that is a data set not seen on training) as a reference
training error stands. This can be an indication of one of possible roles that should
play validation sets in these systems.

MAV 2 10 2 | 5

Initial Codebook Size 50 | 150] 234 [280 | 50 | 150 | 234 | 280 | 50 | 50
EPUP 1 |1 |1 {1 | 1|1 1] 1 |Dynl|Dyn
BETA 07 [09[09|10|09]|05]|09]|05]07]07
RLEN= (5x10°)x 1 | 4 | 4] 44|43 4] -]-
o0| Final Codebook Size | 494 | 278 | 361 | 723 | 730 | 830 | 723 | 908 | 723 | 908
2 §|__ Training Error 612 | 6.13 | 4.9 | 451|465 | 417 | 3.18 | 3.07 | 7.04 | 5.85
~ Test Error 9.01 |8.48(792(7.79|8.01|781]739|723]|9.28! 885
Final Codebook Size | 351 | 277 | 351 | 413 | 504 | 484 | 656 | 622 | 208 | 242
Training Error 622 | 6.13| 49 | 451 |465|4.17|3.18 | 3.07 | 7.04 | 5.85

El Test Brror 9.01 | 848792779801 7.71]739| 723|928 8.85
§ g@,_%ns Med. | 586 |539(4.93|447|445|4.18|3.01|287!6.61|4.96
OE 5 Var. | 517 |514|345[323|198|137|147|1.17] 435|476

Figure 1. Best Simulation Results on experiment 1 (first 8 columns) and experiment 2.
4. Upper and Lower Handwritten Recognition with DLVQ3

In this section, we apply the DLVQ3 for upper and lower handwriting characters
recognition using the same partitions of handwritten database and preprocessing
introduced in section 3.1. In a first phase we have determined parameter values that
allows system to generalize optimally. Then, ten training runs with DLVQ3 were
computed using ten different random sequences of training set. Finally, we have
proceeded equally on a LVQ system, with codebook of same size, training in cascade
with LVQ_PAK programs. Results can be found on figure 4. We can observe that

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 203-208

DLVQ3 generalizes better and is more stable (low test error variance) than LVQ-based
system. Also, it has superior performance than other neural approaches reported in [3],
where test error on upper & lower recognition are 14.7% and 23.1 % with PCA+PNN &
10.1% and 20.3% with PCA ,3+MLP respectively.

Codebook Size 198 245 298 349 412 498 624

Training Error 8.53 8.48 755 | 6.83 6.81 6.25 5.96

Test Error 11.16 | 11.27 | 1066 | 994 | 10.13 | 9.67 | 9.25
Med

6.505 | 6.195 | 583 | 5.65 | 528 | 4.69 | 4.785

Var

Class
training
error

60.64 | 62.75 | 56.74 | 557 | 52.56 | 53.16 | 52.49

Figure 2. Simulation results on applying the LVQ_PAK learning strategy to upper handwriting
characters (experiment 3).
Upper Lower

Expert Test Error Final Csize Test Error Final Csize
Med Var Med Var Med Var Med Var
PCA4+DLVQ3 (without pruning) | 7.27 | 0.016 | 893 | 605.5 | 1528 | 0.021 { 419 | 31.15

PCAg+DLVQ3 (with pruning) | 7.22 | 0.015 | 671 | 870.8 | 1527 | 0.021 | 322 | 6245

PCA,+LVQ PAK 9.16 | 0074 | 729 0 17.01 | 0.843 | 325 0

Figure 3. Upper & Lower Handwritten Recognition with DLVQ3 & LVQ’s algorithm executed in
cascade (expressed in table as LVQ_PAK). DLVQ3 parameter values in upper & lower are
respectively: initial codebook size=280, EPUP=1, BETA=0.5, MAV=10, RLEN=500000x4;
initial codebook size=280, EPUP=1, BETA=0.5, MA V=2, RLEN=500000x4. LVQx’s parameter
values are the same as section 3.2.4. except olvql,lvql,lvq2 rlen=190000.

5. Conclusions

A new dynamic LVQ-based classifier has been presented and the obtained results
compared with a number of similar strategies. The discussed technique is promising and
it will be used as a part of an ICR system.

References

[1] Kohonen, T. "Self-organizing Maps", 2nd Edition, Springer-Verlag (1996)

[2] Kohonen et al. "LVQ_PAK. The Learning Vector Quantization Program Package.
Version 3.1", Helsinki University of Technology (1995)

[3] Garris et al. "NIST Form-Based Handprint Recognition System (Release 2.0)",
National Institute of Standards and Technology (1997)

[4] Fritzke, B."Growing Self-organizing Networks-Why?", ESANN'96, 61-72 (1996)

[5] Zell et al. “Stuttgart Neural Network Simulator”, Version 4.1 (1995)

{6] Fritzke, B. "The LBG-U Method for Vector Quantization-an Improvement over
LBG Inspired form Neural Networks", Neural Processing Letters, 5, 35-45 (1997)

[7] Cagnoni, S. & Valli, G. "OSLVQ: a training strategy for optimum-size Learning
Vector Quantization classifiers”, ICNN'94, 762-765 (1994)

