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Abstract. This paper presents an original approach to visual motion analysis.
We propose an analog model of the vertebrate retina which performs a regulari-
sation of the retinal image and we show, from a signal processing viewpoint,
that a high-pass temporal filter and a spatial directional filtering, after this reti-
nal processing, can act naturally as a matched filter, insensitive to spatiotempo-
ral noise, to detect motion in an image sequences composed of translational
"‘moving objects. The motion detection and the directional selectivity are
achieved for local and global motion .

1. Introduction

Motion analysis in an image sequence is not still fully resolved: the approaches inspi-
red by biological studies such as the Reichardt model or the motion-energy model are
not unanimously approved {1}, and the more "theoretical” ones, such as those based
on the regularisation theory [2] or on the Markov random field theory [3], often re-
qu1re some heavy computational efforts without ensuring perfect results and sufficient
noise immunity. However these last two approaches come down to a problem of min-
imisation of an energy function {4], [5], [6] and might be solved with the use of ana-
log resistive networks [2], [6] in order to reduce the computational effort. Even
though analog neural networks are used to analyse the visual motion, their relations
with some bloloomal data are often very far in spite of a great interest in the biologi-
cal mechanisms involve.d in this process [7]. In the present paper, we propose a mixed
approach for the motion detection which consists initially of the inspiration of neuro-
biological data, especially about the neural structure of the vertebrate retina, and then
followed by the study of its motion processing in a signal processmo viewpoint. In
the second section, an analog model of the retinal processing is presented, which
might be an appropriate reply to the need of a spatiotemporal regularisation. The
equations and transfer functions are then derived from the analog circuit and used in
section 3 to find the type of the matched filters that can naturally appear after the first
level of retinal processing: the high-pass time filtering and the directional selectivity
might be the early visual process involved in the visual motion detection. In section 4,
we present some experimental results on artificial image sequence composed of basic
objects with and without addition of noise. Finally we will conclude on the neurophy-
siological plausibility of our retinal processing model and compare its advantages in
contrast to the motion representation given by the classical gradient equation [5].

2. A Spatiotemporal Model of the Retinal Processing

2.1 An Enhanced Analog Model

The retina is our main biological reference in early vision for two main reasons: first
it was the more studied neural structure in vision {9], and secondly, some analog real-

isations have been attempted [10], [8]. We present now a retinal model, derived from
the model of Mead [8], but including more complete and realistic features (Fig. 1).
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This enhanced model consists of two resistive grids, c(k,t) for the photoreceptors
layer and h(k,t) for the H-cell layer, where each node (neuron) is attached to a leaky
integrator (membrane characteristics). The output layer s(k,t), that is the bipolar cells
layer, is computed as the difference between the photoreceptors and H-cells layers,
and provides the global output of the Outer Plexiform Layer (OPL).
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Fig. 1. 1D analog model of the Outer Plexiform Layer (OPL) of the vertebrate retina: f; and f;,
are the same kind of circuits but with different parameters. f; stands for the coupling between
cones c(k,t), fj, stands for the coupling between horizontal cells h(k,t), s(k,t) is the output of the
triadic synapse ( c(k,t) - h(k,t) ) and provides an input to the bipolar cells.

2.2 The Spatiotemporal Transfer Function

The OPL transfer function can be derived from the Kirchhoff's current law at each
node of the circuit. We obtain for each resistive square mesh with input e and output

0:
o(k,t)/rs + C.do(k,t)/dt + [Zi cv o(k,t) - ok-i,t) J/R = [e(k,t) - o(k,D)/r 2.0
4
where k denotes the spatial position (kx,ky) of a node, the spatial sampling periods Ax

and Ay being equal to 1, 74 defines the spatial 4-neighbourhood in the grid, efk,t) is
the input signal and o(k,t) the output signal of the grid, rf, R, r and C are shown in
Fig. 1. By applying the Z-transform and the Fourier transform with respect to k and t
respectively, a frequency representation of (2.1) is derived:

(B +j2mfit + 4o - oLlzg + 237t + 2y + 2y71] + 1).0(Ex Ly, f) = Efx.fy.f0)
where o, B and t are given by /R, t/ry, and r.C respectively and z; = exp(j2=f;). fx and
fy are the spatial frequencies normalised to 1/Ax = 1, f is the temporal one. We obtain
the (discrete-in-space continuous in time) transfer function of a resistive grid:
Rifx.fy.fo) = Olfx.fy.f) / E(fx.fy.f) = (1++4a-20[cos(2nfx)+cos(2nfy)]+j2nft )l
The model includes two resistive grids, so two transfer functions: Re(fx,fy.fp for the
photoreceptors layer and Ry(fx,fy.fy) for the H-cells layer. Obviously each layer can

be characterised by different values for o, § and T. The output signal is the difference
between the outputs of these two layers, then the total transfer function is written as:

G(fx’fy,ft) = Rc(fx.’fy,ft) - -’Rh(fx’fy,ft) 1= (22)
Bn+20m[2-cos(2rfx)-cos(2nty)]+j2nfety
[1+Bc+20c[2-cos(2Rrfx)-cos(2nfy) ] +j2nfite]. [ 1+ Pn+20n[2-cos(2rfx)-cos(2nfy) ] +j2nfitn]
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The purely spatial transfer function (for long lasting steady images) is given at fig. 3a.

2.3 The Signal Processing in the Retinal Model

Let us denote g(x,y,t) the impulse response of this retinal filter (which has (2.2) as
transfer function). It is written, where = is the 3D-spatiotemporal convolution:

g(x,y.0 = Re(x.y.0 # [ 8(x.y,0) - Rp(x.y,0) ]

Rc and Rh are the impulse response of each resistive grid. If i(x,y,t) designates the
brightness in the input image, the output of the retinal OPL model is expressed by:

SOGY0 = glxyt) = i(x,y,b)

Both the filters, Rc and Rh, are spatiotemporal low-pass filters, then our retinal model
computes a difference of spatiotemporal low-pass filters (that is a spatiotemporal
band-pass filter). Therefore it is a generalisation of the well-known lateral inhibition
to the time domain. This spatiotemporal inhibition leads to some interesting proper-
ties as the predictive coding, the redundancy reduction [11] which express the en-
hancement of the spatiotemporal events (that is edges and motion). Figure 2 shows
the result of this processing on an image sequence.

Fig. 2. Result of the simulation of the retinal processing on a real image sequence: at left-top
an input image of the sequence (256x256x8bits) where some people walk in a street, at right-
top the image of the photorecepior layer, at left-bottom the image of the horizontal layer and at
right-bottom the image of the bipolar layer. This last image is rough: no thresholding has been
made. One can see at this early level. that moving parts are highlighted. Further processing is
needed to remove the remaining static objects.

We wish to emphasise here a fundamental property of the retinal filtering which must
be noted: its temporal and its spatial filtering components are not separable.
Therefore, this system should behave in a specific way with respect to the images
where the time and space variables are bound, that is moving patterns,
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3. Motion Analysis and the Retinal Outer Plexiform Layer
3.1 The OPL Response to a Translational Moving Pattern

Let us consider a 2D pattern i(x,y) with a Fourier transform given by I(fx,fy). If this
pattern has a translational velocity V = (vx,vy), the spatiotemporal pattern can be writ-
ten i(x-vy.t,y-vy.t) and its Fourier transform I(fy,fy.fp), after the spatial sampling, can
be written as:

Ity fy ) = [ Ifxfy) . S(f+vx.fxtvy.fy) ] 81,1(fxfy) 3.1)

where () is the Dirac distribution, 87 1(.,.) is the 2-D Dirac brush and means that the
spectrum becomes periodic due to the sampling. The resulting aliasing is in fact
strongly reduced by the crystalline lens filtering and by an irregular sampling [12].
So, for simplicity, let us drop the term 81 ,1(.,.) and let us interest in the main period.
If this spatiotemporal pattern is applied as input to the retinal filter, we obtain a retinal
output s(x,y,t) that is expressed in the frequency domain by:

S(fx,fy,ft) = G(fx,fy,ft) . I(fx,fy) . 8(ft+Vx.fx+Vy.fy) (3.2)
The term d(f+vy.fx+vy.fy) means that the output is only defined for f; = -vx.fx-vy.fy .

Thus, (3.2) can be rewritten as:
S(fx.fy.fp) = Gfx.fy,-vx-fx-vyfy) - I(fx,fy) - S(fr+vx.fxtvy.dy) (3.3)

(a) (® © (@

IGl

U

Fig. 3. Frequency responses for (a) the spatial OPL filter G(fy.fy,0) to a static pattern, (b) the
OPL filter G(fy,fy,-vy.fx-vy.fy) for a moving image, (c) the spatial aspect of a pure temporal
filter W(fy) under same motion and (d) the result of G.Y¥ for the moving image.

Therefore, G(fx,fy,-Vx-fx-Vy fy) expresses a spatial retinal transfer function related to a
given velocity. We have drawn in fig. 3b this spatial filter for a given velocity. This
curve shows a preferential direction (according to the basin between the two peaks),
that is perpendicular to the direction of the moving object. That means simply that the
OPL filter enhances the spectral components of the moving image, in the direction of
movement, leaving unchanged the spectral components perpendicular to the direction
of movement. For a fixed object, no orientation is privileged (Fig. 3a).

3.2 Matched Filter to The Retinal OPL Response

Let us consider now a more realistic (noisy) input image: a moving pattern i(x,y,)
with an additive independent noise n(x,y,t). The response of the retinal OPL to this
new pattern can be written as:

Sa(%,Y,0) = 2x,y,0 * [i(x-vx.Ly-vy.) + nX,y,0 ]

85,0 = sy D + gX,Y,0 * n(xy.0 = s(x,y,0) + 0'(x,y.1)
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Let us search a filter y(x,y,t) matched to the signal of interest s(x,y,t):
YX,Y,0) * sp(X,y,0) = Wx,y,0 * s(x,y,0) + Wx,y,0) * n'(x,y,0)

In order to maximise the signal-to-noise ratio at time t and at the position (x,y), the
matched filter must satisfy [13]: y(x,y,1) = s(-x,-y,-t), that is in the frequency domain:
W(fx.fy.f0) = S ™ (fx.£y.f) = Complex Conjugate of S(fx,fy.f)

W(fx.fy.f) = G (Fx.fy, -V fx-vy.fy) . ' (Ex.fy) . S(Eitvy fictvy.fy)

Such a filter would be only matched with a given image I(fx,fy), moving in a given
direction with a given velocity (vx,vy): it is obviously unrealistic. But one can imag-
ine a filter matched only to the velocity, that is respecting only the form of G where f;

intervenes:
P(fy £y f) = G (0,0.f) = G(0,0,-f)

In other words, using (2.2), we obtain:
Y(fp = (a - j2rfity) / [ (1+a-j2rfi.t1).(1+b-j2rf.1)) |

If we suppose that a is small and if we keep a causal form for spatial low-pass com-
ponents, we obtain W(fy) a time derivative filter convolved with a time low-pass filter:

W) = (- j2nfe i) / [ (1+§2r011).(1+b+2mt 1) |

Because of motion, we use f = -vy.fx-vy.fy. Hence, this temporal filter is equivalent
to a purely spatial filter matched to a given velocity at least for low spatial frequen-
cies. Fig. 3c shows the magnitude of this spatial filter. This shape simply expresses
that the time derivative of the retinal filter is naturally matched to the velocity vector
of the moving objects. Notice that the low-pass component helps keeping a low level
of noise.

3.3 The Time Derivative: A Matched Filter for Mdtion Detection

We have stressed previously the fact that a kind of time derivative filtering can act as
a matched filtering after the retinal processing. Let us consider now any filter y(t) of
the time derivative type. Let us apply it to the retinal output s(x,y,t). Thus, we obtain
a new output s'(x,y,t), that is, if y(t) is the ideal time derivative:

§' (X,y,0) = 9s(x,y,0)/at = o[g(x,y,t) * i(x,y,D)]/ot
which can be written in the frequency domain, using (3.3):
S'(fx.fy.fo) = j2mfy . Glfy fy,-vx fx-vyfy) . lx.fy) . S(Ertvx fxtvy fy)  (3.4)
This last expression, using the identity f; = -vx.fx-vy.fy , becomes:
S'(tx.fyfp) =j2m . (- vxfx - vyfy ) . S(Ex.fy.f0) 3.5)
Therefore, the time derivative filter is equivalent to a space derivative filter if the in-
put image is a translational moving object. Fig. 3d shows the result of the convolution
of the retinal filter and the time derivative filter. It is very easy to verify that the mo-
tion detection is performed: let us consider a fixed object, that is with a null velocity

(vx=0 & vy=0). The expression (3.3), which denotes the frequency response of the

retinal OPL filter, becomes:
S(fx,fy,fo = G(fx,fy,O) Iy fy) - 8(fp =0
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Thus, the retinal OPL filter is not sufficient for the motion detection (see at right-
bottom of fig. 2). On the contrary, the expression (3.5), which denoted the frequency
response of the time derivative filter applied to the retinal filter, gives:

S'(Exfy,fo) = 21 . 0 . GlEx,£,0) . I fy) . 8(E) = 0

Applying a time derivative filtering on the output of the retinal filiering is then a natu-
ral way to detect moving objects and more particularly their motion-oriented compo-
nents (Compare figures 3b and 3d).

3.4 The Directional Space Derivative: A Matched Filter to the Motion Direction

We have shown previously with (3.4) and (3.5) that the time derivative filtering is
equivalent to a spatial derivative filtering. (3.5) can be rewritten as:

S'(fx,fy,f() = y{(fx,fy,VX,Vy ) . S(f)bfy’ft) (36)
with #H(fx,fy,vx,vy ) = H(vx.fx + vy.fy ) and H(p) = -j2m.@

H (fx,fy,vx,vy) denotes the spectrum of the spatial filter equivalent to the time deriva-
tive. However, a filter with an impulse response written as f(x,y,a,b) = f(a.x+b.y) .
8(a.y-b.x) has a Fourier transform written as ¥ (fyfy.a,b) = p2. F( [a.fy+b.fy] . p2)
with p2 = a2 + b2, Fig. 4 shows such a filter: it is a spatial directional filter along the
line given by the equation a.y-b.x = 0.

Fig. 4. Form of the filter given by f(x,y) = fla.x+b.y) . d(a.y-b.x)

In expression (3.6), 7, F, a and b can be identified with # H, vx and vy respectively.
Thus the temporal derivative, which is a filtering matched to the motion, is equivalent
to the directional spatidl derivative of the image along the line given by the equation
Vx.y-vy.x = 0, that is in the direction of the velocity vector. Therefore, this directional
filter (a directional gradient) is also a filter matched to the motion, moreover, because
it is purely spatial, it can be designed to match exactly the anti-causal form of ‘¥(fp) in
section 3.2. A set of directional filters covering the whole 2D space can then be natu-
rally designed. The more matched filter to the direction of the motion will have the
strongest response. This set of filters can be worked out after the time high-pass filter
(Y -pathway) or even directly on the OPL output (X-pathway).

4. Results

The following results (more qualitative than quantitative) do not intend to show that
the retina is capable of performing the best motion detection. Instead we want to em-
phasise that it is a neural structure that must inspire the designers of smart visual sen-
sors in order to realise some early visual stages in a quick and simple way.

Figure 5a shows an image sequence at a given time. It consists of two squares with
the same light intensity, one moving (the left one) and the other being motionless (the
right one). Figure 5b shows the result of the OPL filtering (the bipolar image) on this
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seyuence. The fixed vbject gues tirougl 4 purely spatial band-pass filter (see fig. 3aj:
the edges are enhanced and the homogeneous areas (low spatial frequencies) are re-
moved. The moving object goes through a different filter: the spatial components in
the direction of the motion are accentuated, while the more low-pass ones decrease
with the adaptation. Moreover, a negative trace, that disappears with time, follows the
moving object. Figure 5c¢ is the result of a time derivative filtering on the positive part
of 5b: the fixed object is removed and the moving object remains. Figures 6a, 6b and
6¢ show the result on a noisy version of the same sequence.

In figures 7a, 7b and 7c¢ (respectively 8a, 8b and 8c) a spatial gradient was performed
on the OPL output (bipolar image), on its positive part and on the ON-IPL output
(time derivative of this positive part): the local gradient is represented by a vector and
the result is suspiciously like the optical flow. The local motion does not only appears
but the global motion also emerges.

i

i
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() o (b) ) ©
Fig. 5. Results on a noiseless image sequence: (a) a sample of the input sequence, (b) after
OPL filtering, (c) after time derivative of the positive part of (b).
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Fig. 6. Results on a noisy image sequence,

(a) (b) (c)
Fig. 7. Spatial gradient performed for the noiseless image sequence: (a) on the result of the
OPL filtering, (b) on the positive part of (a), and (c) on the time derivative of (b).
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Fig. 8. Spatial gradient performed for the noisy unage sequence.
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5. Discussion

A bionic-inspired solution has been presented for the motion detection and the direc-
tional selectivity. A retinal model is used to regularise the input image. Time and di-
rectional derivative filters, which are naturally matched to the motion, detect the
moving objects after the retinal regularisation. All the results fit with neurobiological
evidences. Our retinal filtering might be a model for the processing that occurs in the
Outer Plexiform Layer of the vertebrate retina. The time derivative filtering might
model the processing of some amacrin cells in the Inner Plexiform Layer [14] while
the directional selectivity might occur in area 17 of the visual cortex. Furthermore, the
output of the filter g can be split up into two sustained channels X-ON and X-OFF to
distinguish dark and bright objects, just as the output of the time derivative filtering
into two transient channels Y-ON and Y-OFF to distinguish dark and bright moving
objects. Our work results from the use of the frequency representation of the motion
fr+vyfxtvyfy = 0. Jtis a frequency generalisation of the well-known Horn &
Schunck equation, di(x,y,1)/dt = - V . Vi(x,y,t), that is the classical gradient equation
[5] which leads mainly to an unreliable estimation of the local velocity in the direc-
tion of the spatial gradient Vi (aperture problem) due to its very high sensitivity to
spatiotemporal noise. Efficient numerical simulations have been worked out to con-
firm these theoretical results. VLSI implementation of this processing and application
to the global motion estimation are yet to be considered.
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