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Abstract. We propose a preconditioned accelerated stochastic gradient

method suitable for large scale optimization. Inspired by recent popular

adaptive per-feature algorithms, we propose a speci�c preconditioner based

on the second moment of the gradient. We derive su�cient convergence

conditions for the minimization of convex functions using a generic class

of diagonal preconditioners and provide a formal convergence proof based

on a framework originally used for on-line learning. We show empirical

results for the minimization of convex and non-convex cost functions, in

the context of neural network training. The method compares favorably

with respect to current, �rst order, stochastic optimization methods.

1 Introduction

Gradient descent (GD) methods are prime candidates for large scale optimiza-
tion and are used in many areas of science due to their simplicity, low memory
footprint and light computational burden. Stochastic GD (SGD) methods [1]
are currently the default optimization algorithms for machine learning and deep
learning [2]. On top of SGD, inertia or averaging techniques can improve the
stochastic gradient quality [3] and per-feature adaptation can improve the prob-
lem conditioning, to achieve faster convergence [1, 4].

We propose a preconditioned accelerated SGD (PA-SGD) method with a
generic bounded preconditioner in this paper, and analyze its convergence prop-
erties for convex cost functions. The method couples Nesterov's accelerated GD
(NAGD) [3] with a varying diagonal preconditioner. The generic precondition-
er can be understood as per-feature adaptation of the learning rate similar to
ADAM [1]. Recently, [5] proposed a long term memory for the per-feature adap-
tation to guarantee convergence for momentum methods. We note that our work
only shares similar requirements, namely a bounded variation for the precondi-
tioner, otherwise being based on NAGD. NADAM [6] also combines per-feature
adaptation with NAGD however it relies on the gradient momentum to provide
an improved gradient for a Nesterov scheme and does not precondition directly
the instantaneous gradient, as we propose here.

This paper is organized as follows. We introduce the proposed algorithm in
Section 2 with details on its convergence in Section 3. In Section 4 we showcase
through simulations the convergence performance of the PA-SGD algorithm for
convex and non-convex cost functions, in comparison with ADAM, AMSGrad
[5], and a stochastic NAGD (NASGD). Finally, in Section 5 we summarize our
main contributions. We also sketch the convergence analysis for convex functions
in Appendix A.
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2 The PA-SGD algorithm

Our proposed method combines NADG [3] with a diagonal preconditioning ma-
trix that is applied directly to the instantaneous gradient at each iteration t. We
assume a sequence of cost functions ft at each given instant t, e.g. by sampling
the data in batches. We aim to �nd the solution θ that minimizes f , while
having access to only the stochastic realization ft at each iteration.

We introduce the stochastic PA-SGD algorithm as{
θt+1 = θt − µtat + (1 + µt+1)at+1

at+1 = µtat − αtPtgt,
(1)

where the preconditioning matrix Pt is diagonal with elements pt,i. We denote
the cost function gradient by gt = ∇ft(θt) with each element gt,i. The vector
at represents the accelerated gradient, used as a descent direction. We have a
varying step αt and acceleration parameter µt, across iterations. Note that by
performing a change of variable θ̃t = θt − µtat and selecting Pt to be identity
one can recover NASGD. We propose the following preconditioner

vt,i = max

(
βvt−1,i + (1− β)g2t,i, s

α2
t (1− βt)

α2
t−1(1− βt−1)

vt−1,i

)
pt,i =

(√
vt,i

(1− βt)
+ ε

)−1
.

(2)

We use an exponential averaging con�gured by β, 0 < β < 1. A stability
parameter s controls the preconditioner's rate of variation. It acts as a trade-o�
between convergence speed and stability. Note that for s = 0, the precondition-
ing in ADAM is recovered [1], however, our algorithmic updates remain di�erent
due to the NAGD scheme. A small ε > 0 is added for numerical stability.

3 Convergence properties

We analyze the convergence, for convex cost function, in the online learning
framework proposed by [7]. A sequence of convex functions ft(θt) for t = 1 : T
is assumed. At each iteration t, we aim to estimate the parameters θt with
respect to ft. Given estimates θt and functions ft we de�ne the regret function
R(T ) with respect to the best solution θ∗ = argminθ

∑T
t=1 ft(θ),

R(T ) =
T∑
t=1

(ft(θt)− ft(θ∗)) . (3)

R(T ) quanti�es the goodness of �t of ft(θt) against the ideal �t ft(θ
∗).

For convergence guarantees, we require several su�cient conditions: (A1)
the diagonal elements of the preconditioning matrix Pt are positive, pt,i > 0,∀i,
lower bounded, p−1t,i ≤ Cp,∀i with resulting preconditioned absolute gradient
values bounded, ‖Pt |gt| ‖∞ ≤ Cpg; (A2) the acceleration µt and step size αt
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are decaying as µt = µ0λ
t, 0 < λ < 1 and αt = α0t

−c, 0 < c < 1; (A3) both
the gradients and the variation of the parameter are bounded, ‖gt‖∞ ≤ Cg and
‖θt − θ∗‖∞ ≤ Cθ; (A4) the rate of change of the preconditioner is bounded,
αtpt,i ≤ αt−1pt−1,i,∀i. Here we denote by index i the ith element of a vector.
The �rst three assumptions are used in other algorithms, e.g ADAM [1].

To prove convergence under these assumptions, we upper-bound |at+1,i|, and
gt,i (θt,i − θ∗i ). Using these bounds we �nd an upper bound for R(T ), as in
Theorem 1. A sketch of the derivations is presented in Appendix A. We show
in Corollary 1 that the cost function ft(θ) asymptotically converges to ft(θ

∗).

Theorem 1. Under assumptions (A1-4), R(T ) is bounded from above as

R(T )≤ Cp

2α0

∑d
i=1

[
T cC2

θ + α2
0C

2
pg

(
1+2µ0

1−µ0

)2 (
2(1−µ0)

1−λ + 1
(1−λ2)2

)
+

2µ2
0α0CθCpg

(
1

1−λ2 + 1
(1−µ0)(1−λ3)2

)
+ α2

0C
2
pg (1 + 2µ0)

2∑T
t=1 t

−c
]

≤O
(
T c +

∑T
t=1 t

−c
)
.

(4)

Corollary 1. Under the assumptions from Theorem 1 it follows that the regret

function grows slower than T , namely that limT→∞
R(T )
T = 0.

Proof. In Theorem 1, all terms from (4) grow slower than T since the hyper-

harmonic series,
∑T
t=1 t

−c, for 0 < c < 1, divergence is proportional to T 1−c. �

4 Simulations and results

We study the convergence properties of the proposed PA-SGD method in com-
parison with ADAM [1], AMSGrad [5] and NASGD [3]. For all simulations we
use the MNIST hand written number database. For better visibility, we report
the average evolution of the cost function values across iterations, for the best
choice of con�guration parameters selected via a grid search. We investigate
the convergence on both convex problems and non-convex problems. We use a
stochastic mini batch of size 128 and start all algorithms from the same initial-
ization, θ normally distributed with variance 0.1. For ADAM and AMSGrad
we de�ne β1,t as the gradient momentum parameter, β2 as the equivalent of β
from (2) in PA-SGD and αt as the step size. We set β = 0.999, β2 = 0.999,
λ = 1− 10−8, and ε = 10−8 for all experiments, similarly to ADAM.

For convex cost function, we present, in Fig. 1, a least squares regression
directly with respect to the labels and a logistic regression experiment to classify
digit 5. The step size decay used is c = 0.5. The convergence rate PA-SGD is
better compared the other tested methods, reaching within 3% − 4% of the
optimal LS solution in around 20 epochs. It shows the best performance for a
larger acceleration parameters µ0 = 0.99 and α0 = 10−3. The logistic regression
simulations also show a good behavior, PA-SGD having a similar cost function
value at 50 epochs as ADAM at 150. We note that the convergence plots of
ADAM and AMSGrad almost overlap. We observed that µ0 moderates the
convergence rate together with the step size. For a smaller step size, a larger
acceleration is bene�cial, while for larger step sizes this becomes detrimental.
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Fig. 1: Convex cost function: evolution for the best performing parameter con-
�guration for (left) the least squares cost (right) the logistic regression cost.
PA-SGD converges faster and achieves an almost optimal cost in 10−20 epochs.
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Fig. 2: Neural network training: (left) evolution of the mean squared error cost;
(right) evolution of the multinomial logistic regression cost. For low value µ0,
PA-SGD is similar to ADAM and AMSGrad. For larger µ0, PA-SGD has a faster
�nal convergence albeit with slower start.

We also investigate the performance for neural network (NN) training. Here,
we use constant step sizes α. For PA-SGD, the stability parameter s is set to
0. For a �rst experiment, we train a NN with, two, 32 neuron hidden layers,
with tanh activation, to directly predict the MNIST numerical label. We use
the mean squared error (MSE) as a cost function. The second experiment uses a
similar NN with, two, 32 neuron hidden layers, with ReLu activation, resulting
in a sub-gradient based optimization. We solve a softmax multinomial logistic
regression with respect to the 10 digits. The convergence behavior is presented
in Fig. 2. For the �rst experiment our method compares favorably with ADAM
and AMSGrad. For the classi�cation task, PA-SGD requires a lower step size
and a larger acceleration to outperform the other methods.

Overall, a good practical range for the con�guration parameters for PA-SGD
is α ∈ [10−6, 10−4] and µ0 ∈ [0.9, 0.99]. We observed that, for NN training, a
lower step size works best together with a larger acceleration parameter µ0.

5 Conclusions

We proposed a preconditioned accelerated stochastic gradient method that com-
bines Nesterov's accelerated gradient descent with a class of diagonal precon-
ditioners. We analyzed the convergence for the minimization of convex cost
functions and showcased empirically the behavior for convex and non-convex
optimization tasks. The proposed method compares favorably with current s-
tochastic optimization methods in terms of convergence speed while maintaining
a low computational complexity, making it well suited for fast NN training.
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A Sketch for the convergence proof

Lemma 2. Given a convex function f : Rd → R, then for any x,y ∈ Rd we

have f(y) ≥ f(x) +∇f(x)†(y − x).
Property 3. Under assumptions (A1), (A2) and (A4), and for a given iteration

t and index i of the accelerated gradient, |at+1,i| is bounded from above as

|at+1,i| ≤ α0Cpg

(
t−c +

λt

1− µ0

)
. (5)

Proof. From (1) we can expand |at+1,i| such that

|at+1,i| = | − αtpt,igt,i −
∑t−1
j=1 αjpj,igj,i

∏t
k=j+1 µk|

≤(A1) αtpt,i|gt,i|+
∑t−1
j=1 αjpj,i|gj,i|

∏t
k=j+1 µk ≤(A1) αtCpg+∑t−1

j=1 αjCpg
∏t
k=j+1 µk ≤(A2) α0Cpg

(
t−c +

∑t−1
j=1 j

−c∏t
k=j+1 µ0λ

k
)

≤ α0Cpg

(
t−c +

∑t−1
j=1 j

−cµt−j0 λt
)
≤ α0Cpg

(
t−c + λt

∑t−1
j=1 µ

j
0

)
.

We have used
∏t
k=j+1 λ

k ≤ λt since 0 < λ < 1 and j−c ≤ 1. Replacing the
geometric progression with its upper bound we arrive at (5). �

Property 4. Under assumptions (A1-3) and for any given iteration t and index

i the quantity gt,i (θt,i − θ∗i ) is bounded from above as

gt,i (θt,i − θ∗i ) ≤
Cp

2α0

[
α2
0C

2
pg (1 + 2µ0)

2
(
t−c + 2 λt

1−µ0
+ λ2ttc

(1−µ0)2

)
+

2µ2
0α0CθCpg

(
λ2t + λ3ttc

1−µ0

) ]
+ 1

2α0pt,i

[
tc (θt,i − θ∗i )

2 − tc (θt+1,i − θ∗i )
2
]
.

(6)
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Proof. From (1) we have θt+1 = θt+µtµt+1at−(1 + µt+1)αtPtgt. By expressing
each component i, subtracting the ideal solution θ∗ and squaring we get

(θt+1,i − θ∗i )
2
=(θt,i − θ∗i )

2
+ (−µtat,i + (1 + µt+1) at+1,i)

2
+

2 (µtµt+1at,i − (1 + µt+1)αtpt,igt,i) (θt,i − θ∗i ) .
Additionally, we use (1) to replace µtµt+1at − (1 + µt+1)αtPtgt by −µtat +
(1 + µt+1)at+1. Rewriting the equality to express gt,i (θt,i − θ∗) we arrive at

gt,i (θt,i − θ∗i ) ≤ 1
2(1+µt+1)αtpt,i

[
(θt,i − θ∗i )

2 − (θt+1,i − θ∗i )
2
+(

µt|at,i|+ (1 + µt+1) |at+1,i|
)2

+ 2µtµt+1|at,i|| (θt,i − θ∗i ) |
]

≤(A3) 1
2(1+µt+1)αtpt,i

[
(θt,i − θ∗i )

2 − (θt+1,i − θ∗i )
2
+ 2µtµt+1Cθ|at,i|+(

µt|at,i|+ (1 + µt+1) |at+1,i|
)2] ≤(5),(A2) 1

2(1+µt+1)αtpt,i

[
(θt,i − θ∗i )

2−

(θt+1,i − θ∗i )
2
+ 2µ2

0α0CθCpgλ
tλt+1

(
t−c + λt

1−µ0

)
+

α2
0C

2
pg

(
µ0λ

t
(
t−c + λt

1−µ0

)
+
(
1 + µ0λ

t+1
) (

(t+ 1)−c + λt+1

1−µ0

))2 ]
≤(A1,2) tc

2(1+µ0λt+1)α0pt,i

[
(θt,i − θ∗i )

2 − (θt+1,i − θ∗i )
2
+

α2
0C

2
pg(1 + 2µ0λ

t)
2
(
t−c + λt

1−µ0

)2
+ 2µ2

0α0CθCpgλ
tλt+1

(
t−c + λt

1−µ0

)]
which, under (A1) and (A2), further reduces to (6). �

Theorem 1. Proof. We construct an upper bound for (3) using Lemma 2. For

each index i, summed for t = 1 : T in ft(θt)− ft(θ∗) ≤ g†t (θt − θ∗) we have

R(T ) ≤(6)
∑d
i=1

∑T
t=1

1
2α0pt,i

[
tc (θt,i − θ∗i )

2 − tc (θt+1,i − θ∗i )
2
]
+

Cp

2α0

[
α2
0C

2
pg (1 + 2µ0)

2
(

1
tc + 2 λt

1−µ0
+ λ2ttc

(1−µ0)2

)
+ 2µ2

0α0CθCpg

(
λ2t + λ3ttc

1−µ0

) ]
≤ 1

2α0

∑d
i=1

[
1
p1,i

(θ1,i − θ∗i )
2
+
∑T
t=2

((
tc

pt,i
− (t−1)c

pt−1,i

)
(θt,i − θ∗i )

2
)
−

T c

pT,i
(θT+1,i − θ∗i )

2
]
+

Cp

2α0

[
α2
0C

2
pg (1 + 2µ0)

2∑T
t=1

(
1
tc + 2 λt

1−µ0
+ λ2ttc

(1−µ0)2

)
+

2µ2
0α0CθCpg

∑T
t=1

(
λ2t + λ3ttc

1−µ0

) ]
.

Relying on (A3) and (A4) written as tc

pt,i
− (t−1)c

pt−1,i
> 0 for αt = α0

1
tc , we have

R(T ) ≤(A2) 1
2α0

∑d
i=1

[
C2
θ + C2

θ

∑T
t=2

(
tc

pt,i
− (t−1)c

pt−1,i

)
− T c

pt,i
(θT+1,i − θ∗i )

2
]

+
Cp

2α0

[
α2
0C

2
pg (1 + 2µ0)

2∑T
t=1

(
t−c + 2 λt

1−µ0
+ λ2ttc

(1−µ0)2

)
+

2µ2
0α0CθCpg

∑T
t=1

(
λ2t + λ3ttc

1−µ0

) ]
≤(A4) Cp

2α0

∑d
i=1

[
T cC2

θ + α2
0C

2
pg (1 + 2µ0)

2∑T
t=1

(
t−c + 2 λt

1−µ0
+ λ2ttc

(1−µ0)2

)
+

2µ2
0α0CθCpg

∑T
t=1

(
λ2t + λ3ttc

1−µ0

) ]
.

The resulting inequality can be bounded using the upper bounds for the geomet-
ric series

∑T
t=1 λ

t ≤ 1
1−λ and

∑T
t=1 λ

2t ≤ 1
1−λ2 and for the arithmetic-geometric

series
∑T
t=1 λ

2ttc ≤ 1
(1−λ2)2 and

∑T
t=1 λ

3ttc ≤ 1
(1−λ3)2 . This produces (4). �
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