
Cross-Encoded Meta Embedding towards
Transfer Learning

Rickard Brännvall12 Johan Öhman3 György Kovács1

Marcus Liwicki1

1EISLAB Machine Learning - Lule̊a University of Technology, Sweden
2RISE ICE - Research Institutes of Sweden, Sweden

3Experimental Mechanics - Lule̊a University of Technology, Sweden

Abstract.

In this paper we generate word meta-embeddings from already existing em-
beddings using cross-encoding. Previous approaches can only work with
words that exist in each source embedding, while the architecture pre-
sented here drops this requirement. We demonstrate the method using
two pre-trained embeddings, namely GloVE and FastText. Furthermore,
we propose additional improvements to the training process of the meta-
embedding. Results on six standard tests for word similarity show that the
meta-embedding trained outperforms the original embeddings. Moreover,
this performance can be further increased with the proposed improve-
ments, resulting in a competitive performance with those reported earlier.

1 Introduction

Word embeddings (mappings of words from a natural language to a real vector
space – e.g. FastText [1], GloVE [2]) have become crucial in Natural Lan-
guage Processing (NLP) for a variety of tasks, including machine translation,
sentiment analysis, and response generation [3]. Meta-embeddings (created by
combining preexisting embeddings), have shown increased performance on some
tasks [4, 5, 6, 7]. The motivation for creating meta-embeddings is that different
embeddings encode words differently and thus in combination can enrich each
other. Factors accounting for these differences may include the data, architec-
ture, or loss function used in training embeddings. The performance of word
embeddings is commonly compared to human ratings on NLP tasks. In this
paper (following O’Neill and Bollegala [5]), we consider word similarities, by
comparing the correlation between embeddings of a word pair to human pro-
duced similarity scores, using well established benchmarks.

For learning meta-embeddings we propose a cross-encoder that can oper-
ate in auto-encoder mode, encoding from an original embedding to the meta-
embedding, then decoding back into an estimate of the original embedding (e.g.
from GloVE to the meta-embedding, and back to GloVE). It can also encode
from an original embedding and decode into an estimate of a different embedding
(e.g. from FastText to the meta-embedding, and to GloVE). Some additional
features are also implemented, namely a trainable weighting in the combiner
step of the cross-encoder, adaptive size limiting the bandwidth for infrequent
words, and compensation for the word frequency (se e.g. [8]).

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

631

Related Work Different approaches have been explored to generate meta-
embeddings. Coates and Bollegala investigated concatenating/averaging orig-
inal embeddings, and found that both leads to similar improvements over origi-
nal embeddings [6]. Yin and Schütze trained a meta-embedding by finding the
optimal projections from several original embeddings, and then combining these
projections [7]. Bao and Bollegala created meta-embeddings by auto-encoders,
investigating different architectures and their impact on performance [4]. As a
continuation, O’Neill and Bollegala investigated how different loss metrics affect
auto-encoder performance [5]. The above methods can only work with words
that are present in all original embeddings, while our proposed cross-encoder
architecture can discover meta-embeddings for words that exist only in one of
the original embeddings. This facilitates the combination of embeddings trained
on materially different corpora, opening up transfer learning opportunities.

2 Experimental Setting

Given two source embeddings X(0) and X(1), each a mapping between a set of
words a real-valued vector space, the cross-encoder architecture is used to find
the combined meta-embedding Z for the union both word sets. The architecture
can generally be applied to arbitrarily many source embeddings, but for this
paper we exemplify it for the case of two. For a word wi that exists in the

original embedding k, the source embedding X
(k)
i corresponding to that word is

passed through encoder E(k):

Z
(k)
i = E(k)(X

(k)
i) (1)

where E(k) is an Artificial Neural Network (ANN). A meta-embedding Zi is

then produced for the word based on Z
(k)
i . The precise details of this depend on

whether the word exists in one or more of the source embeddings (as detailed
below). The decoder step then predicts the initial source embedding(s):

Y
(k)
i = D(k)(Zi) (2)

Other encoder-decoder branches follow the same design (using different weights).
Auto-encoder mode: for a word that only exists in one original embedding k,

the source embedding X
(k)
i is passed through the auto-encoder E(k) according

to equation (1). The meta-embedding is simply set to Zi = Z
(k)
i , and is passed

directly to the decoder module (2), which predicts the initial source embedding.
Cross-encoder mode: for words that exist in both source embeddings, the cor-

responding embeddings X
(0)
i and X

(1)
i are fed in parallel to the cross-encoder,

each taking a separate branch. After the encoding stage we have prelimi-

nary branch-encodings for each branch Z
(0)
i and Z

(1)
i . The cross-encoder meta-

embedding is produced by combing the two preliminary branch-encodings such

as Zi = C(Z
(0)
i , Z

(1)
i , f) by a combiner module defined as

C(z(0), z(1), f) = (1− f)� z(0) + f � z(1) (3)

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

632

where � indicates Hadamard product, and f is a vector (the same length as the
meta-embeddings) that in the base configuration includes only 0.5 entries. Zi is
passed to both decoder branches to predict both original source embeddings.
Loss function: is simply summing over the normed prediction error, which
itself is defined as the difference between the original source embedding and the
predicted source embedding for each word. We considered both the L2-norm
and the squared cosine loss (SCL), but based on our preliminary experiments,
decided on the former:

lL2 =
∑
i∈Iall

‖xi − yi‖22 ωi (4)

Note that each individual loss is weighted by ωi which is specific to word wi, as
defined below
Word frequency weighting: words do not occur with the same frequency
in a language, instead some words are orders of magnitude more common than
others. Zipf’s law describes this based on an observed power law in empirical
data (see e.g. [8] for a review). When training an embedding from a real corpus
the relative frequencies will be approximately respected as the methods are based
on sampling from the texts. However, a meta-embedding is trained on data from
pre-trained embeddings where each word occurs at most once in every source
set. To better reflect the natural word frequencies also when training meta-
embeddings, we introduce a power-law function based on rank (i.e. the order
the words occurred in the original source corpus) that up-weights common words
relative to uncommon words

ωi ∝ r−ξi (5)

where ri is the rank of the word wi in the combined embedding set and ξ is a
non-negative power law coefficient.
Trainable combiner weights: an extension of the model lets the encoder
weighting f in Eq. (3) be learnt when training the model, for example imple-
mented as a sigmoid element-wise transformation of a constant vector. More
complex models could have this be a function of the intermediate embeddings

on each path, Z
(k)
i , or for the case of more than three source embeddings, the

signature of which of the these that has the word wi among its supported words.
Adaptive embedding size: overfitting is a well known and frequently occur-
ring problem when data is sparse and the high capacity of a model is exploited
by the optimizer to achieve good scores on training set at the cost of poor
out-of-sample performance. The embeddings of infrequent words in the original
corpus could then be troubled by overfitting as very few contexts were available
to determine their precise vector representation. The word-frequency weighting
discussed above goes some length to prevent noise from rare words to swamp
the signal for frequent words, however as a further mitigating step we want to
explore adaptive embedding length introduced by Baevski and Auli [9] where
the capacity is assigned according to word-frequency.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

633

The encoder step is now split into the following sub-steps, where each of the

sub-encodings Z
(k,1)
i and Z

(k,2)
i are of length d/2 for Z

(k)
i of length d.

Z
(k,1)
i = E(k,1)(X

(k)
i) (6)

m
(k)
i = 1(r

(k)
i > r∗) (7)

Z
(k,2)
i = Z

(k,1)
i +m

(k)
i E(k,2)(X

(k)
i) (8)

The sub-encodings are then concatenated to produce the branch encoding

Z
(k)
i = (Z

(k,1)
i , Z

(k,2)
i). For an infrequent word the rank will be below the

threshold r∗ and the result will just be the concatenation of two identical vec-
tors, however more frequent words can explore the second sub-embedding layer
to add complexity to the representation on top of the residual connection.

This approach could of course be extended to having three or more sub-
embeddings (with residual connections) that be concatenated in a similar manner
as just described above for the case of only two such layers. Note that the
complexity (in terms of trainable parameters) can decrease substantially with the
number of splits for sub-embedding modules based on standard fully connected
neural-network cells more than one level deep.
Datasets: two pretrained word embeddings are used to generate the meta-
embedding. The first is the Glove embedding pretrained on Wikipedia 2014
and the GigaWord 5 datasets [2]. The second pretrained embedding is FastText
pretrained on the Wikipedia 2017 and the statmt.org news datasets [10]. Both
original embeddings are vectors in R300. The top 100000 words from each dataset
are used for training of the cross-encoder.
Training Procedure: the model is trained using the popular Adam optimiser
for between 50 and 500 epochs. From all the embedding data, a random sample
of 20% is set aside as validation set. Loss score at each epoch during training
is recorded for both training and validation sets. Hyperparameter selection is
based on the validation score using gridsearch on a predefined grid. Based on
this the optimal architecture choice has only a single hidden layer, uses batch-
normalization for regularization, doesn’t apply early stopping and has a self-
adaptive size of 1000 (where applicable).

3 Results

We adapted the word similarities test described by O’Neill and Bollegala [5].
The test is performed on six different word similarity datasets (Simlex [11],
WordSim-353 [12], RG [13], MechanicalTurk-771 [14], RareWord [15] and MEN
[16]) using the GenSim [17] software package. These data sets consist of word
pairs and associated correlation scores. The test then correlates the score with
the score obtained from the embeddings. The spearman correlation-coefficient
for both the original embeddings and the cross-encoder is shown in Table 1. The
best performing auto-encoder from [5] is also presented for reference.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

634

Model Wordsim SimLex MTurk MEN RW RG avg score
FastText 0.6782 0.4330 0.6847 0.6842 0.5315 0.7575 0.6282
GLoVe 0.6752 0.3692 0.6501 0.7485 0.4275 0.7693 0.6066
CrossCoder 0.6812 0.3895 0.6740 0.7545 0.4761 0.8057 0.6302
+ ZipfLaw 0.7118 0.4314 0.7141 0.8038 0.5532 0.8187 0.6721
+ TrainComb 0.6621 0.3753 0.6495 0.7400 0.4755 0.7770 0.6132
+ AdaptSize 0.6786 0.3747 0.6534 0.7715 0.4729 0.8242 0.6292
+ All 0.7214 0.4562 0.7165 0.7928 0.5423 0.8588 0.6813
Reference 0.7244 0.4485 0.7063 0.8194 0.5074 0.8541 0.6767

Table 1: Comparison of results on six standard word similarity tests.

Additionally it would be of interest to see if the local structure from the
original embeddings are preserved. It is desirable that nearby words in the
original embedding also are nearby in the meta embedding. To investigate this,
a test is performed where, for each word in the meta-embedding it checks if the
closest word is in the top-1, top-3 and top-5 of nearby words in the original
embeddings. For all words in the meta-embedding the most similar word is also
the most similar word in the Glove embedding. For the FastText embedding the
top-1 scores are ranging between 94% − 98% for the different implementations
of the meta-embedding. The top-5 score is above 99% for all cases.

4 Analysis

Comparing the results in Table 1 we find that the basic cross-encoder outper-
forms both original embeddings on total score, and at least one of the original
embeddings on each separate test. Regarding further modifications, we see the
largest performance boost when adding Zipf’s law for weighting the training
data. This is expected since the meta-embeddings trained on the basic cross-
encoder lose the information about word frequency and give too high weight
to rare words. The two other modifications, trainable combiner weights and
adaptable size, had little or adverse affects on the performance when applied
individually.

The cross-encoder with all modifications applied outperforms or performs on
par with the reference model on the individual tests. One should be aware that
we did not have access to the exact implementation of the tests for the reference
meta-embedding. Therefore the numbers should not be compared strictly and
overall it is hard to say if one performance better than the other.

5 Conclusions and Future Work

With the proposed meta-embedding it was possible to increase the performance
compared to that of the original embeddings on word similarity tests. Fur-
thermore the meta-embedding proposed here outperformed previously reported
results for meta-embeddings on some tests (albeit with only modest improve-
ments). The importance of weighting the training data according to Zipf’s law

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

635

is demonstrated and should be applied when creating meta-embeddings from
already existing embeddings. The introduction of trainable combiner weights
and adaptable size modifications also improved the performance when used in
combination with Zipf’s weighting.

The original embeddings used for training the meta-embedding are trained on
similar kind of data sets. Both are, for instance, trained on some version of the
Wikipedia corpus. For future work it would therefore be of interest to see if the
performance of meta-embeddings is improved when the original embeddings are
trained on corpora from different contexts. Alternatives to the word similarities
test could also be investigated as it might not be best equipped to measure the
transfer learning capacity of the cross-encoder.

References

[1] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.

[2] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. In Proc. EMNLP, pages 1532–1543, 2014.

[3] Yoav Goldberg. A primer on neural network models for natural language processing.
CoRR, abs/1510.00726, 2015.

[4] Danushka Bollegala and Cong Bao. Learning word meta-embeddings by autoencoding.
In Proc. COLING, pages 1650–1661, 2018.

[5] James O’Neill and Danushka Bollegala. Angular-based word meta-embedding learning.
CoRR, abs/1808.04334, 2018.

[6] Joshua Coates and Danushka Bollegala. Frustratingly easy meta-embedding - computing
meta-embeddings by averaging source word embeddings. CoRR, abs/1804.05262, 2018.

[7] Wenpeng Yin and Hinrich Schütze. Learning word meta-embeddings by using ensembles
of embedding sets. CoRR, abs/1508.04257, 2015.

[8] David M. W. Powers. Applications and explanations of zipf’s law. In Proc. NeM-
LaP3/CoNLL, pages 151–160, 1998.

[9] Alexei Baevski and Michael Auli. Adaptove input representation for neural language
modeling. arXiv preprint arXiv:1809.10853v3, 2019.

[10] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand
Joulin. Advances in pre-training distributed word representations. In Proc. LREC, 2018.

[11] Felix Hill, Kyunghyun Cho, Sebastien Jean, Coline Devin, and Yoshua Bengio. Embedding
word similarity with neural machine translation. arXiv preprint arXiv:1412.6448, 2014.

[12] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolf-
man, and Eytan Ruppin. Placing search in context: The concept revisited. ACM Trans.
Inf. Syst., 20(1):116–131, January 2002.

[13] Herbert Rubenstein and John B. Goodenough. Contextual correlates of synonymy. Com-
mun. ACM, 8(10):627–633, October 1965.

[14] Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda Koren. Large-scale learning
of word relatedness with constraints. In Proc. ACM SIGKDD, pages 1406–1414, 2012.

[15] Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wojciech Zaremba. Addressing
the rare word problem in neural machine translation. In Proc. ACL-IJCNLP, pages 11–19,
2015.

[16] Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. Distributional seman-
tics in technicolor. In Proc. ACL, pages 136–145, 2012.

[17] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proc. LREC, pages 45–50, 2010.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

636

