Proceedings of the ASME 2020

International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference

IDETC/CIE 2020
August 16—-19, 2020, St. Louis, MO, USA

IDETC2020-22774

ENHANCEMENTS TO THE PERFECT MATCHING APPROACH FOR GRAPH
ENUMERATION-BASED ENGINEERING CHALLENGES

Daniel R. Herber
Colorado State University
Department of Systems Engineering
Fort Collins, CO 80523
Email: daniel.herber@colostate.edu

ABSTRACT

Graphs can be used to represent many engineering systems and
decisions because of their ability to capture discrete composi-
tional and relational information. In this article, improved meth-
ods for effectively representing and generating all graphs in a
space defined by certain complex specifications are presented.
These improvements are realized through enhancements to the
original perfect matching-inspired approach utilizing a compo-
nent catalog definition to capture the graphs of interest. These
enhancements will come in many forms, including more efficient
graph enumeration and labeled graph isomorphism checking,
expansion of the definition of the component catalog, and the
effective inclusion of new network structure constraints. Sev-
eral examples are shown, including improvements to the orig-
inal case studies (with up to 971X reduction in computational
cost) as well as graph problems in common system architecture
design patterns. The goal is to show that the work presented
here and tools developed from it can play a role as the domain-
independent architecture decision support tool for a variety of
graph enumeration-based engineering design challenges.

1 INTRODUCTION

Graphs are one of the fundamental objects in mathematics but
are also essential to many fields in science and engineering
because graphs can capture discrete compositional and rela-
tional information through vertices and edges. Many studies
utilize graph representations and generation methods includ-
ing problems in areas such as general system architecture de-

cisions [1, 2], automotive [3-8], electric circuits [9, 10], air-
craft [11-13], geartrains [14—-16], chemical molecules [17-19],
biochemical topologies [20], and others [21-26]. Graph enumer-
ation, or the generation of all graphs that satisfy some certain
set of specifications, has played a role in many of these stud-
ies [1-7,9,11,12,14,16,18-20,23,25-28].

There is a variety of constructions that can formalize the
graphs of interest. These constructions create graphs from a po-
tentially constrained set of graph-modifying actions such as ad-
jacency/connectivity matrices [1, 5, 29], rules and graph gram-
mars [15,22,30-33], and catalogs [3,4, 6,23,26-28, 34]. Many
of these representations are used within an optimization frame-
work [7,8,10, 13, 15,21, 25,33, 35] to identify the best or most
promising candidate solutions [11, 13,24,36,37]. In this work,
we will only consider the task of generating all graphs. While
enumeration-based methods will always suffer from combinato-
rial complexity [1, 36], the development of both the theory and
tools for generating graphs based on complex specifications is
possible for many pressing engineering design challenges.

The basis of this work is the catalog-based, perfect match-
ing (PM)-inspired algorithm presented in Ref. [34] for gener-
ating a desired set of graphs. This approach was shown to
have a certain level of success over alternative enumeration
strategies by limiting the number of generated infeasible and
nonunique (nonisomorphic) graphs. Some infeasible graphs
were avoided by directly including some network structure con-
straints (NSCs) [11,36,37] in the generation process. Nonunique
graphs were avoided by leveraging the assumed structure of the
graphs of interest. However, many improvements to this ap-

Copyright © 2020 by ASME

mailto:daniel.herber@colostate.edu

ALGORITHM 1: Original perfect matching-inspired, re-
cursive, brute-force algorithm.

Input :V — vector of remaining ports for each component replicate
E — vector of edges in sequential pairs (initially empty)
A — expanded potential adjacency matrix
cVf — cumulative sum of the original V plus 1
G — set of graphs, initially empty
Output: G — set of graphs

1 iL « find(V,first)
2 L « cVF(iL)-V(@iL)
3 V(L) « V(iL)-1

4 Vallow « Vo A(iL,:)
5 | « find(Vallow)
6 for iR < Ido

// find first nonzero entry

// left port

// remove port

// zero infeasible edges

// find nonzero entries

// loop through all nonzero entries

7 R « cVIi(iR)-V(iR) // right port
8 E2 « [E,L,R] // combine left, right ports for an edge
9 V2V // local remaining ports vector
10 V2(iR) « V2(iR) -1 // remove port (local copy)
11 A2~ A // local expanded potential adjacency matrix
12 if all V2 is zero then // no remaining connections
13 ‘ Gi{end+1} « E2 // save missorted perfect matching
14 else

i | G« Algorithm I with (V2,E2,A2,cVf,G) // recursive
16 end

17 end

18 G « Convert all G to a proper graph

proach are possible.

1.1 Original Algorithm

In Ref. [34], a PM-inspired, brute-force algorithm was presented
that generates the set of vertex-labeled graphs in the graph struc-
ture space G [29,34] defined by (L, P, R) and various additional
NSCs [34,36]. The collection (L, P, R) is termed the component
catalog where: L is the label sequence representing n compo-
nent types', P € NG is the port sequence indicating the number
of ports (or connections) for each component type, and R € N"
is the replicate sequence indicating the number of replicates for
each component type. The (L, P, R) catalog representation can
be alternatively expressed as:

LPOM PP ()

DL = (pl)Ll’id.e.l
which is termed the labeled expanded port sequence and can also
be canonically ordered for a unique representation of a particular
component catalog. We also denote the total number of ports and
replicates as N, = P- R and N, = 1- R, respectively. Finally,
the expanded port sequence D is simply D’ without the label
superscripts and is in Nf)v ". An example is shown in Fig. 4.

The original graph enumeration algorithm is shown in
Alg. 1. This is a PM-inspired algorithm because the algorithm

The original catalog definition in Ref. [34] used C and colored to indicate
component types, but here we now prefer L and labeled, primarily because color-
ing in the context of graph theory typically implies that vertices with same color
are not incident.

seeks to generate all valid PMs, where a PM is a set of edges
such that no two have a vertex in common and all vertices contain
exactly one edge [38]. Therefore, the upper bound on the num-
ber of graphs generated is (N, — 1)!! [34,38] or A001147 [39].
Unfortunately, the generated set of graphs G can be (sometimes
much) larger than G because G is defined as all unique feasible
graphs (UFGs) while Alg. 1 can produce graphs which do not sat-
isty all specified NSCs and are isomorphic to another in G (see
Definition 1). One of the motivating factors behind the structure
of Alg. 1 was specific features that efficiently avoid producing
infeasible, isomorphic graphs during the generation process.

Only a few additional NSCs were directly addressed in
Ref. [34], namely connected graphs, mandatory components
(i.e., must be in the final graph), path constraints (i.e., two types
must or must not have a path [40, p. 6] between them), multi-
edges, and direct connection constraints (i.e., disallowing partic-
ular types to be connected). Only direct connection constraints
were handled effectively in Alg. 1; all graphs in G are feasible
with respect to any direct connection constraints because of the
operations on line 4. The others, including any additional NSCs,
were checked for each candidate graph once the algorithm termi-
nated.

As previously mentioned, there are a few other catalog-
based approaches for defining G [3, 6,23, 26-28]. Refs. [3,28],
in particular, use quite similar ideas for generating all graphs.
Another popular technique is constructing graphs through con-
straint programming [4, 6, 26] approaches which can utilize ef-
ficient solvers. However, these methods can suffer isomorphism
issues [6] and can be less effective than a tailored algorithm.

In the context of graph algorithms, Alg. 1 is not an orderly
algorithm [41]. In an orderly algorithm, the next list of sequences
is constructed from a previous sequence and augmenting opera-
tor. Each candidate sequence then has some test applied to it that
is independent of the other sequences to ensure that it is needed
(i.e., is in a canonical form). Here the sequences represent sets of
edges, and the augmenting operator is a valid PM edge addition.
However, no canonicity is performed in Alg. 1. A common test
is for graph isomorphisms, but the inclusion of such a test would
not make this an orderly algorithm because the test requires com-
parisons to all other sequences. The graph enumeration problem
is also similar to the degree-constrained enumeration but with the
addition of vertex labels.

1.2 Overview
In this article, we will describe several enhancements to the orig-
inal algorithm. These enhancements will come in many forms,
including more efficient graph enumeration, expanding the def-
inition of the component catalog, and the effective inclusion of
new NSCs.

The remainder of this article is organized as follows. Sec-
tion 2 describes breaking the enumeration task into subcatalogs,
while Sec. 3 discusses the various enhancements for the enumer-

Copyright © 2020 by ASME

DL = [IR 1R 1R 2G 7G 35}

L=[R G B
P=[1 2 3 D=[1 11 2 2 3]
R N, =10

component [3 2 1]
N, =6
catalog
P00RAGR

“~component

(#)

loop’

edge

G
@ o
@ ’ \multledg,e

>}gz

perfect matching

one valid graph another valid graph

(all ports connected)

FIGURE 1: Example of the original catalog definition (catalog from Case Study 1).

ation of a single catalog. Section 4 describes the improvements
checking for labeled graph isomorphisms in a set of graphs. Fi-
nally, Sec. 5 demonstrates the enhancements through several ex-
amples, and Sec. 6 presents the conclusions.

2 SUBCATALOGS IN THE GENERATION PROCESS

2.1 New Component Catalog Definition

Utilizing the original algorithm, G contained all graphs for every
valid subcatalog of (L, P, R) (i.e., graphs where the number of
replicates for all components are bounded by 0 and R) due to
a property of enumerating PMs (namely, the edge set for prob-
lem size N, contains all edge sets for N, —2). If we were in-
terested in these subcatalogs, then unnecessary replicates could
be removed [34]. However, this approach is decidedly inefficient
and unintuitive. Here we consider the following more natural
representation of the component catalog:

1. L is the label sequence representing n distinct component
types (same as the previous definition)

2. P =[P, P] is the collection of two sequences that define
lower and upper bounds on the number of ports for each
component type with conditions: P < P, P e N, P e N¢

3. R =[R,R] is the collection of two sequences that define
lower and upper bounds on the number of replicates for each
component type with conditions: R < R, R e N, R € N"

The modifications to P permit a more natural specification of
port count bounds, such as all components of a particular type
must have between 3 and 8 ports. Components in physical sys-
tem modeling [8, 24] and system architecture decisions [1] can
have nonfixed port counts. Similarly, the modifications to R
permit a more natural specification of replicate count bounds,
such as every graph must have been between 2 and 4 replicates.
While various “tricks” were available to represent graph structure
spaces with port and replicate bounds, these tricks were ineffi-
cient and unintuitive. We also note that a subcatalog definition
could allow for general sets defining P and R (e.g., we require
{0,2,4} replicates), but for simplicity, we present only the current
definition of the catalog.

2.2 Subcatalog Enumeration Algorithm

We now define the set of all subcatalogs C of (L, P, R), under
the new definition, as all possible valid combinations. With no
additional constraints, the number of subcatalogs is:
LI [R /. 5
Jj+Pi=P;
ICl= (.)
20

@)

i=1

where the binomial coefficient represents the number of ways
that j identical objects can be placed into P; — P; + 1 labeled bins
(a variation of the “stars and bars” problem [42]). This equation
provides the general structure of an algorithm to enumerate C: 1)
go through each component type, 2) then go through each possi-
ble replicate value, 3) now generate all valid binnings of the cur-
rent replicates, 4) then construct the Cartesian product of these
partitions with previous intermediate catalogs, and 5) repeat un-
til all component types have been considered. Two important
computational techniques utilized were flexible array prealloca-
tion and memoization of the function that generates all binnings
because the same inputs are frequently provided and the function
is relatively expensive. To see the implementation, please refer
to Ref. [43].

2.3 Subcatalog Constraints

The enforcement of NSCs on all subcatalogs can help improve
the usefulness of G and reduce overall computational expense.
Here we consider two classes of subcatalog constraints: branch-
ing and filtering. The characteristic feature of branching-type
constraints (BTCs) is that the constraints can be checked dur-
ing subcatalog enumeration. On the other hand, filter-type con-
straints (FT'Cs) can only be checked when a complete subcatalog
is available because the constraint condition is only valid when
the subcatalog composition can no longer change. For example,
consider a constraint on the minimum value of N, for a particular
subcatalog. Then a subcatalog can only be declared infeasible if
there are no more component types left to add because one addi-
tional component type could lead to the satisfaction of the con-
straint (so an FTC). However, for this particular constraint, we
can bound the maximum number of additional ports that could be
added at any stage of the subcatalog enumeration procedure (sim-

Copyright © 2020 by ASME

ilar to a branch and bound algorithm). Therefore, we have a BTC
if implemented in this form. BTCs can be more effective at re-
ducing overall computational expense because these constraints
reduce the number of FTC checks. In both cases, arbitrary sub-
catalog constraints may be defined which use the current infor-
mation available. Some possible subcatalog constraints include:

e Linear penalty constraints (BTC) where p- R < @ and p de-
fines the penalty for each replicate. Some common penalty
functions include a maximum system cost or mass. Upper
bounds on the total number of ports (N, < N,,) and replicates
(N, £ N,) are also specific linear penalty constraints.

o Conflicting component constraints (BTC) where either type L;
or L; are included, but not both, represented as R; || R; < 1.

e Linear satisfaction constraints (BTC) where p- R > « and p
defines the benefit for each replicate. A common linear sat-
isfaction constraint is linked to system requirements where p
is boolean valued and 1 indicates that replicate can satisfy the
requirement, while O indicates it cannot. Lower bounds on the
total number of ports (N, > N,) and replicates (N, > N,) are
also specific linear satisfaction constraints.

e Paired component constraints (FTC) where if type L; is in-
cluded, then so should at least one Lj, represented as —R; ||
-R; > 1.

o Even total ports condition (FTC) because for any subcatalog,
the N, must be even. This is a necessary condition for a PM
and was specified in the original algorithm [34].

o A simple graph condition (FTC) based on the application of
the Erd6s-Gallai theorem [44] can be used when the graph
is required to have no multiedges or loops (called a simple
graph [40,45]). If the condition is satisfied, then at least one
simple graph exists (with no additional NSCs).

e A connected graph condition (FTC) can be used if a graph
is required to be connected and have no multiedges or loops.
Since a tree graph has the fewest number of edges to real-
ize a connected simple graph with N, vertices, a simple lower
bound condition must be satisfied:

Np>2(N,-1) 3)
Equality can be enforced if the graph is required to be a tree
graph.

e A bipartite graph condition (FTC) can be used when A, is
used to define a bipartite graph (using block diagonal zero ma-
trices) [45, p. 6]. First, the number of ports for both types must
be equal and the Gale-Ryser theorem must be satisfied [46].

2.4 Overall Procedure

Now that every possible subcatalog is directly enumerated, we
no longer want to remove any vertices from the generated graphs
in order to preserve the specific D’. Otherwise, such graph mod-
ifications could produce graphs that are already in another sub-
catalog or are the result of an invalid subcatalog. Therefore, we
require that every replicate is mandatory when enumerating with

ALGORITHM 2: Generate the set of unique feasible
graphs using subcatalogs.

Input : (L, P, R) - component catalog under new representation
NSC — network structure constraints
Output: g — set of unique feasible graphs

1 C « Create subcatalogs using (L, P, R) and all branching constraints
// see Secs. 2.2 and 2.3

2 C « Filter C with all filtering constraints // see Sec. 2.3

3 N « Count rows in C // number of subcatalogs

4 for k < 1 to N do in parallel

5 [l, p, r] « Extract subcatalog k from C

6 nsc < Modify NSC for only the included replicates in r

7 g{k} < Generate feasible graphs using (I, r, p, nsc) and all
replicates are mandatory

8 g{k} « Determine set of unique (nonisomorphic) graphs in g{k}

9 end

10 G « Catenate all g // each set is independent

subcatalogs.

The overall procedure for generating the set of unique, fea-
sible graphs using subcatalogs is shown in Alg. 2. Both the
graph generation and eventual isomorphism checks for a specific
subcatalog can be performed parallel because none of the gen-
erated graphs in a specific subcatalog have the same canonical
D" as any other subcatalog (which is a necessary condition for
two graphs to be isomorphic, see Sec. 4). Individual subcatalog
enumeration can take varying amounts of time so randomized or-
dering or sorting by decreasing N, can help reduce the average
computation time.

Algorithm 1 does not leverage parallelization during the
graph generation procedure. A similar procedure was presented
in Ref. [47] for Alg. 2 but without the methods for generating
subcatalogs using the new catalog representation and all subcat-
alog constraints.

3 ENHANCEMENTS FOR THE ENUMERATION OF A
SINGLE CATALOG

In this section, we will focus on some enhancements for the enu-
meration of a single catalog. A technical report was previously
published discussing many of these enhancements [47]. How-
ever, numerous changes have been made, which will be discussed
in the following sections.

3.1 Alternative Spanning Tree Traversals

Algorithm 1 can be interpreted as generating paths in a directed
graph with a root vertex (empty graph) and target vertices (PMs
that define G which contains all graphs in G). The union of these
paths is a spanning tree between the root and target vertices. The
vertices and edges between the root and targets are based on the
allowable edge pairs in Alg. 1 and any termination conditions
such as the detection of a saturated subgraph. This representa-
tion is visualized in Fig. 2 (cf. example in Fig. 4). This following

Copyright © 2020 by ASME

enhancements are based on the fact that there are different ways
to create and traverse an appropriate spanning tree while still en-
suring that every graph in G is present in G.

The first observation is based on the difference between
depth-first search (DFS) and breadth-first search (BFS) tree
traversal [48,49]. Algorithm 1 can be classified as a recursive
DFS implementation. A BFS implementation has a distinct fea-
ture not possible with DFS. Namely, since the tree is traversed
by level in BFS (where a level is equivalent to adding one edge),
isomorphism checking can be performed at each level to ensure
that only the unique graphs continue to be enumerated. This dif-
ference is visualized in Ref. [47]. However, isomorphism check-
ing can be expensive (see Sec. 4), and since many paths may
result in infeasible graphs, checking if they are unique is an un-
necessary expense. Therefore, it has been observed that neither
is the clear choice for all graph enumeration problems. Gener-
ally speaking, it seems that in problems with more NSCs, DFS is
favorable, while the BFS implementation is more effective with
fewer NSCs. Note that a BFS implementation does not add any
new vertices to the spanning but might remove some.

These next two modifications can change the specific ver-
tices present in the spanning tree. The first is the simple observa-
tion that the ordering of (L, P, R) effects the number of graphs
generated using Alg. 1. Consider a catalog with two distinct
single-replicate components with 2 and 4 ports, respectively. If
Alg. 1 is applied with the 2-port component connected first, then
3 graphs are generated. However, if the 4-port component is con-
nected first, then 4 graphs are generated. It has been generally
observed that the most effective sorting method is using P such
that types with fewer ports are connected first.

The second modification is termed touched vertex promo-
tion. During the enumeration process, when a vertex has at least
one edge, it is termed “touched”. Then V is modified by promot-
ing touched vertices to the front of V such that iL always choses a
touched vertex before an untouched one. This enhancement still
covers the desired G because we are simply reordering (and not
removing) the available connections. It has been observed that
we want to 1) arrive at graphs that are infeasible and 2) select
vertices that generate fewer branches (feasible edges) earlier in
the generation process. This enhancement is a heuristic that tries
to help with both of these observations. In most cases, the inclu-
sion of this enhancement has reduced number of vertices visited
in the spanning tree and the size of G.

3.2 Replicate Ordering
This enhancement is similar to the port-ordering feature that
Alg. 1 was designed around. Now, we will eliminate some of
the component-type isomorphisms [34] during the graph genera-
tion process.

Consider a single component type and its set of n replicates.
Now, consider a single replicate numbered n and n # 1. During
an iteration of Alg. 1, a single edge is added. If replicate n—1 still

infeasible or generated
redundant graph graphs

Lfound

LI-I\; edge added
Ly-Ls edge added
'8

empty

additional levels

graph

(root) path E

lovels = 1 2 "n—1

evels edge edges edges edges

FIGURE 2: Spanning tree representation of Algorithm 1.

1 10
2@@ @<®9
3@ % X X @8
4®® ®®7
5 6

(a) Replicate ordering.

O—O-©

Graph

GO GB

Line Graph

(b) Line-connectivity constraint.

No saturated subgraph Saturated subgraph present

(c) Connected graph constraint.

FIGURE 3: Visualizations for some enhancements for enumerat-
ing a single catalog.

has no ports connected, then adding this edge to replicate n will
produce a graph isomorphic to the graph created when adding the
edge to replicate n — 1. This claim is based on the component-
type isomorphism issue where we currently have two identical
replicates with no edges. Therefore, we only need to allow a
connection to n— 1 and not to n, and the algorithm will continue
generating G. When n = 1, an edge will always be allowed be-
cause there is no other replicate to compare against.

Since we want to limit connections with this enhancement,
we can construct the appropriate vector similar to the rows of
the expanded potential adjacency matrix and then include this
vector on line 4. This enhancement is implemented efficiently
with the circshift function [47] and by ensuring that the initial

Copyright © 2020 by ASME

replicate connections are always allowed. An example is shown
in Fig. 3a for the initial iteration and 5/9 edges are not allowed
because of this enhancement. Please see Ref. [47] for additional
details and examples. The more replicates, the more effective
this enhancement will be at reducing the number of generated
graphs.

3.3 Loops

A loop is an edge that connects a vertex to itself [40, p. 28].
Using Alg. 1, loops were always required if we wanted to gen-
erate graphs without the maximum number of each replicate,
even if the feasible graphs should not have any loops [34, 47].
In Ref. [47], a special condition was determined so that loops
could be disallowed without compromising G. However, with
the change to subcatalogs as discussed in Sec. 2, replicates no
longer need to be removed to generate G. Therefore, we can
more naturally decide if loops are desired or not. Specifying if
loops are allowed can be done for each component type.

In order to not conflict with the reduced potential adjacency
matrix A, that disallows connections between component types,
the diagonal elements of the expanded potential adjacency matrix
A are based on the user loops specification only. For example,
we can now disallow connections X — X, but still allow X with
loops. This enhancement can reduce the number of graphs gen-
erated and should be seen as a compliment to A, for limiting
direct connections.

3.4 Multiedges

A multiedge is formed when two or more edges are incident to
the same two vertices [40, p. 28]. In Ref. [34], a multiedge NSC
was enforced but only as a FTC, which was extremely inefficient.
However, this NSC can and should be implemented as a BTC as
is now discussed.

Consider when a component type is required to have unique
connections (no multiedges). Due to the sequential nature of
Alg. 1, a single edge must be added between two replicates be-
fore a second edge is added (creating a multiedge). Therefore,
when the first edge is added between two replicates, we can uti-
lize the expanded potential adjacency matrix A to disallow any
future connections between those two specific replicates. Since
by definition a feasible graph would not have any multiedges for
those specific component types, the algorithm with this enhance-
ment will continue generating G but without the graphs that will
eventually be declared as infeasible because of the multiedge
NSC.

For the algorithmic implementation, consider two replicates
L; and L;. If either is required to have no multiedges, then after
the initial edge is added between them, we can zero the appro-
priate entries A2; ; = A2;; = 0 of the local expanded potential
adjacency matrix after line 11 in Alg. 1. Now, no subsequent it-
erations will be allowed to add another edge between L; and L;.
Please see Ref. [47] for additional details and examples.

3.5 Line-connectivity Constraints

The line graph of G is a graph with the edges of G as its vertices,
and where two edges of G are adjacent in the line graph if and
only if they are incident in G [45, p. 10]. Consider the graph
and its corresponding line graph in Fig. 3b with three numbered
component types. If L; is connected to L;, we can specify if a
connection between types L; and Ly is allowed. This is equiva-
lent to specifying if line type (i, j) can be connected to line type
§15)

For each line-connectivity constraint, a triple of integers is
supplied representing the included component types. Therefore,
each triple (7, j,k) is interpreted as: if types L; and L; are con-
nected, do not allow connections between types L; to Ly. These
triples help construct the reduced 3-D array (similar to the re-
duce 2-D array A,) that can be expanded and sliced in a simi-
lar manner as A to limit potential connections. Since this NSC
requires knowledge of the current edge, it is implemented after
line 11 in Alg. 1 on the local expanded potential adjacency ma-
trix A2, similar to the multiedge constraint in Sec. 3.4. Since this
limits branches in Alg. 1, it is a BTC. With a suitable number
of line-connectivity constraints, conditions such as the follow-
ing can be enforced: if types L; and L; are connected, then type
L; must be connected to type L. Please see Ref. [47] for ad-
ditional details and examples. The engineering applications in
Refs. [10, 13,24,34] have utilized these constraints to great suc-
cess.

3.6 Connected Saturated Subgraphs

A subgraph of a graph G is another graph formed from a subset
of the vertices and edges of G [40, p. 3]. A saturated subgraph
is a subgraph with no empty ports which may contain multiple
connected saturated subgraphs (CSSs) [27]. Since a saturated
subgraph has no empty ports, no new components can be con-
nected to any of the components in this subgraph during further
iterations of the graph generation procedure. This property al-
lows us to include a few additional enhancements.

These enhancements are inspired by the work in Ref. [27]
for enumerating molecules where graphs are required to be con-
nected with all atoms present. Therefore, the detection of a sat-
urated subgraph before all atoms have all connections filled in-
dicates the current graph will be infeasible and can be discarded
because the resulting graph cannot be a connected graph. Here
we allow the specification of more general conditions on satu-
rated subgraphs in G.

First, we can bound the number of CSSs. Requiring at most
one CSS is equivalent to requiring a connected graph. These
bounds can also be interpreted as the number of connected group-
ings we desire in G. The upper bound is a BTC while the lower
bound is implemented as a FTC. Second, each CSS is composed
a specific subcatalog of the original (L, P, R). Therefore, the
subcatalog constraints described Sec. 2.3 can also be specified
for any CSS in G. Both the paired and conflicting component

Copyright © 2020 by ASME

constraints are now more stringently path constraints, where we
require a path to exist, or not exist, between the two component
types. CSS subcatalog constraints are implemented as a BTC
but with the condition that the constraints are only checked when
the current graph is a saturated subgraph (so could be considered
both a BTC and FTC). Additionally, all constraints are uniformly
applied across all CSSs.

To detect if the current graph is a saturated subgraph, we
simply check if the replicates can be categorized as having no
remaining ports (in the saturated subgraph) or their original port
counts (not in the saturated subgraph): all(=V || =(Vo—V)) where
Vo is the original port counts. An example is shown in Fig. 3c.
Please see Ref. [47] for additional details and examples. Note
that in Ref. [47], this enhancement focused more on the han-
dling of mandatory components (no longer necessary), was able
to only specify if a single CCS should be present or not, and the
general subcatalog constraints were not included.

4 IMPROVEMENTS ON SET-BASED
GRAPH ISOMORPHISM CHECKING

The graph generation algorithms in this work are not perfect gen-
erators for the general component catalog problem, so they may
produce graphs that are identical in the context of labeled graph
isomorphisms. The issue of isomorphic graphs in the context of
engineering applications has been discussed in Refs. [5,6,26,29],
but the specific structure of the set of graphs is typically not ef-
fectively utilized to create more efficient algorithms.

Definition 1 (Labeled Graph Isomorphism). Consider
two labeled graphs G| = (A1, L) and Gy = (A, Ly). Gy and G,
are isomorphic if and only if there exists a permutation matrix
Py suchthat 1) Ay = Pl Ay P and 2) diag(L) = P.diag(L,) P,
where diag(L) is a diagonal matrix with L as the diagonal
elements.

In this work, we seek the largest subset of graphs G from
the generated set of graphs G where no two graphs in G are iso-
morphic based on Def. 1. To determine G, a basic comparison
approach would require between n (only one unique graph) and
n* +n (all graphs unique) pairwise labeled graph isomorphism
checks (LGICs) with an algorithm such as v£2 [50].

However, the number of LGICs can be greatly reduced
through the use of graph invariants. Graph invariants are graph
properties which are equivalent for isomorphic graphs (i.e., they
are necessary conditions) [40, p. 3]. The ones utilized in this
work include the number of vertices and edges, determinant, la-
bel sequence, labeled degree sequence, labeled loop sequence,
labeled connected component sequence, spectrum, and label-
shifted spectrum. In Ref. [34], the graph invariants where termed
preliminary isomorphism checks and only the number of ver-
tices/edges and label sequences were considered. The labeled
sequences (which all have the same number elements) are con-
structed by sorting the sequence with respect to a canonical D

LABELED

(e.g., alphabetical order). For the labeled connected component
sequence, all connected components are identified and the la-
bels within each subgraph are sorted for a graph invariant rep-
resentation. For example, consider two graphs with the fol-
lowing labeled connected component sequences [A B| A B C|
and [B C A | B A] where | signifies the start of a new connected
component grouping. Utilizing a canonical ordering, these two
graphs may be isomorphic because their labeled connected com-
ponent sequences are identical while a third graph with the se-
quence [A A B| B C] cannot be isomorphic to either of the first
two graphs. The effectiveness of graph invariants in reducing the
number of LGICs is due to the fact that they are 1) easily com-
putable, 2) only need to be computed once, and 3) a candidate
graph’s invariants can be compared efficiently to all other graphs
through matrix operations.

The most effective graph invariants were found to be the
spectrum and novel label-shifted spectrum where the spectrum
p(A) is an ordered sequence of eigenvalues of A [45]. To define
the label-shifted spectrum, first consider the following theorem.
Theorem 1. Let A be a permutation invariant matrix where
A = P]AP; for any permutation matrix Py. If p(A1) = p(A»),
then p(A1 +A) = p(Az + A).

Proof. Two matrices A; and A, are cospectral if and only
if there exists a permutation matrix P, such that A; =
P, A, P, [45, p. 164]. For the case of interest:

A] +A= P;AQP,T+A = P;AQPH+P7;AP,, (43)
=Pl(Ay+ NP, (4b)

Therefore a valid permutation matrix is 15”, and the two matrices
Aj;+ A and A + A are cospectral due to the existence of an
appropriate permutation matrix. [

Since p(A) does not account for the labels in any way, the
idea behind the labeled-shifted spectrum is to introduce pertur-
bations that are graph invariant with respect to the labels. While
infinitely many valid A exist, here we consider the form where
the labels are mapped to unique (small) integers which compose
the diagonal entries of a diagonal matrix (similar to Definition 1).
Due to the errors in numerical computation, a relative error tol-
erance condition is defined:

llo(A1 +A) —p(Az + Mlleo _ .
llo(A1 + Mlleo -

where € = 107°. Further investigations into the appropriate A and
€ should be conducted.

Additionally, in Ref. [34], a “port-type isomorphism filter”
was defined as an initial test to determine if any pair of graphs
were isomorphic using only the identity permutation matrix P;.
This type of trivial isomorphism is present in the graph genera-
tors, but their occurrence is greatly minimized with the enhance-
ments described in this article. This is efficiently computed by
finding the unique rows in a matrix with rows representing the
flattened adjacency matrices of each graph with the same D”.

&)

Copyright © 2020 by ASME

ALGORITHM 3: Determine set of unique labeled graphs.

Input : G - set of labeled graphs
Output: G — set of unique labeled graphs

1 G « Check for trivial isomorphisms in G
2 Compute graph invariants for all G
3 lunique « 1

4 for k « 2 to length(G) do

// port-type LGIC

// first graph is always unique

5 Icheck « Determine all G(lunique) that have same graph
invariants to G(k)

6 Islso « false // initialize graph as unique
7 for i «— Icheck do // check for graph isomorphism
8 Islso « Check if G(k) and G(Icheck(i)) are isomorphic

9 Terminate loop if Islso is true, otherwise continue

10 end

11 if Islso is false then

12 ‘ lunique(end + 1) « k // add unique graph
13 end
14 end

15 G <« G(lunique)

// extract unique graphs

The general algorithm for determining the set of nonisomor-
phic graphs from a given set is presented in Alg. 3 and is quite
similar to the one shown in Ref. [34] without bins. This algo-
rithm and matlab implementation in Ref. [43] could be used
with any set of labeled graphs, including those created with al-
ternative graph generation methods.

5 GRAPH ENUMERATION EXAMPLES

In this section, a variety of examples are presented using the
component catalog representation and enumeration algorithms
described in the previous sections. These examples represent
both new and existing graph enumeration problems from both
mathematics and engineering with the intention to demonstrate
the breadth of graph enumeration problems that can be posed and
demonstrate the ways in which this approach can be considered
as domain-independent architecture decision support [1].

The matlab tool developed using the methods described
in this article is available at Ref. [43]. The computer archi-
tecture used in obtaining the results for all case studies was
a desktop workstation with an i7-6800K CPU at 3.8 GHz, 32
GB DDR4 3200 MHz RAM, matlab R2020a update 2, python
3.8.3, python-igraph 0.8.2, and windows 10 build 18363.836.

5.1 Case Studies from the Original Paper
Three case studies were presented in Ref. [34].

5.1.1 Case Study 1 The following component catalog was
the first case study in Ref. [34]:

=[RGB], P=P=[123], R=R=[321] (6)
The results for two different problem variations with Catalog (6)

are shown in Table 1. In both variations, both the number of can-
didate graphs generated and computational cost were decreased.

patn 1 ¥ 23330 HA-K0A Pen2 $TI-AT-0 020

ot
T T T T 7T
—
= =
- '
i
= =
— v
Ve
-~ &
e~ '
- N
= o)
—
=
=
—
N,

v
=N
—* =
— o | 4
=\t
™ i

i

| I Y S I |

(
SN

fa

S H N WA OO N W A

T T T T

Edges Available Edges Available Edges Available

(ST RSO

(a) Catalog (6) spanning tree using Alg. 1 (top), with enhancements ex-
cept touched vertex promotion (middle), and all enhancements (bottom).

2 5F
ol A;/A 10 A;/ /| /Nﬁ\m/m /& (h\ ¢\

'Sy

o = o ow

(1] [

T TRAATT TN TT’TT’TTT AATATIATAR T ARATn AT
LTt Tonth ot T\TT\HT\HT\T\TTTHTT\ T\TTHTTT\T\ g
: — I — :
L /?\ <~ A KT /(./i<\A SN
,T/\TT(‘\Y/'\(':':\/*:\ /‘\('l*(\:\ 4

gf
xi//
|

Edges Available Edges Available Edges Availab

S =N WA UO E N W R O

(b) Catalog (6) with NSCs spanning tree using Alg. 1 (top), with en-
hancements except touched vertex promotion (middle), and all enhance-
ments (bottom).

FIGURE 4: Case Study 1 spanning trees with different implemen-
tations.

This problem is small enough that the spanning tree repre-
sentation portrayed in Fig. 2 can be visualized for both problem
variations and different algorithm implementations. In Fig. 4a,
the spanning trees using Alg. 1 and versions utilizing the en-
hancements with and without touched vertex promotion are
shown. The paired nodes on the branches indicate which com-
ponent types were connected with this additional edge. Branches
that have faded paired nodes (and no children) indicate that either
the branch was determined to be isomorphic to another branch or
a NSC was violated. The original algorithm has no terminated
branches, while a few occur early with the enhancements. Even
though only a few branches were removed, because of the growth
properties of the algorithm, the number of generated graphs is
significantly smaller.

Figure 4b shows the spanning tree for one subcatalog with
the additional NSCs described in Table 1. Since loops were not

Copyright © 2020 by ASME

TABLE 1: Comparison between original and current methods for the Case Studies from the Original Paper.

Additional NSCs NST CG NIFG UFG LGIC t(s)
Catalog (6) original 244 86 77 16 153 0.050

current 95 33 33 16 17 0.013
Catalog (6), connected, no multiedges, original 244 86 23 5 23 0.028
no loops, R=1[00 1] current 59 11 11 5 6 0.016
Catalog (7) original 3441 1119 767 274 12948 2.481

current 1804 629 338 274 64 0.084
Catalog (7), connected, no multiedges, original 3441 1119 767 140 2007 0.466
no loops, R=[1000 0] current 1632 393 190 140 50 0.082
Catalog (7), connected, no multiedges, original 3441 1119 31 12 100 0.156
no loops current 387 54 22 12 10 0.016
Catalog (7), connected, no multiedges, original 3441 1119 34 14 102 0.153
no loops, R=[12111] current 493 64 25 14 11 0.022
Catalog (8) original 1761015019 158154694 1943862 12480 28471024 17903.200

current 5230799 210637 40432 12480 27952 18.433

NST: nodes in spanning tree, CG: candidate graphs from enumeration algorithm, NIFG: non-trivially isomorphic and feasible graphs, UFG: unique feasible graphs,
LGIC: labeled graph isomorphism checks

allowed, Alg. 1 employed the appropriate A,, and a number of
branches were eliminated. The connected saturated subgraph en-
hancement greatly reduced the number of generated graphs. Ob-
serving the bottom spanning tree, nearly all potential branches
were removed. All three spanning trees displayed the property
that the number of intermediary graphs grows at first but then
decreases due to the NSCs. For example, the middle tree has
2 -6 - 14 — 17 — 8 vertices with children (feasible partial
graphs) at each level.

5.1.2 Case Study 2 The following component catalog was
the second case study in Ref. [34]:
L=[PRGBOQ] (7a)
P=P=[11234], R=R=[12211] (7b)
The results for the four different problem variations are shown in
Table 1. Again, the number of candidate graphs from the enumer-
ation algorithm, feasible and not trivially isomorphic graphs, and
isomorphism checks were greatly decreased while still produc-
ing the same desired G. These reductions translated into notice-
able computational cost reductions (between 6 and 30X overall
speedups).
Impressively, every isomorphism check had a 100% hit rate,
i.e., when line 8 in Alg. 3 was reached, the two graphs were deter-
mined to be isomorphic. This is substantially better than the orig-
inal methods and represents a considerable computational cost
savings. This is a testament to the effectiveness of the improve-
ments discussed in Sec. 4.

5.1.3 Suspension Case Study The primary engineering-
focused case study in Ref. [34] was of a quarter car vehicle sus-

sprung
mass

o: port

e

A

FIGURE 5: Suspension Case Study catalog visualization.

unsprung
mass

road

pension. Different graphs representing the physical behavior of
different suspension architecture concepts were expressed using
the following catalog:

L=[SUMKBFPP], P=P=[11122234] (8a)
R=[11000100], R=[11222122] (8b)

where no multiedges or loops are allowed, a connected graph
is required, and several direct connection constraints and line-
connectivity constraints are specified. The additional custom
NSCs included conditions that a path between U and S must
exist with at least one (K, B, F), no cycles that contain only a
single P, and only specific orderings of the series connections
are allowed because permuting series connections results in an
equivalent model (e.g., K— B and B— K in series are physically
equivalent). The catalog is visualized in Fig. 5. For more details,

Copyright © 2020 by ASME

-

E
|
B
(a) Connecting. (b) Permuting.
RDM IYK DR 10
GEO
P P P 1 x
e \o\o
(c) Partitioning. (d) Assigning.
& @Ps SAR @ ror ic ific svr 1@y iy
(e) Downselecting. (f) Combining.

FIGURE 6: Example graphs representing the different patterns.

please see Refs. [34,43].

With all the enhancements, the number of candidate graphs
was reduced 751, the number of feasible graphs reduced 48X,
and the number of isomorphism checks reduced 1019x. This
translated into a computational cost decrease of 971x. Again,
a 100% isomorphic checking hit rate was observed. This case
study demonstrates that the generation of a complex G can be
done efficiently, and the still too common notion that enumera-
tion can only be performed with naive methods should be recon-
sidered.

5.2 Patterns in System Architecture Decisions

In Ref. [1], six canonical classes of architectural decisions,
termed patterns, were presented, namely the connecting, permut-
ing, partitioning, downselecting, combining, and assigning pat-
terns. In this section, we will show that these patterns can be rep-
resented using the problem definitions in this work (similar to the
mappings between the patterns in Ref. [1]). However, it is impor-
tant to note that the considered implementation might not be the
most efficient method for generating architecture candidates for
a particular pattern. However, the work presented here and tools
developed from it can play a role as the domain-independent ar-
chitecture decision support tool desired in Ref. [1].

5.2.1 Connecting Pattern This pattern seeks all edge lists
for a given set of vertices. While no specific problem was given

10

in Ref. [1], a generic connecting pattern problem is:
L=[A~'~'~Z], P=]1 R 1], P=[n -'-'-n] (9a)
R=[1-"1], R=[n-"-n] (9b)
where no multiedges or loops are allowed. With no other NSCs,
this is equivalent to A006125, number of graphs on n labeled
nodes [39]. The number of unique graphs growths extremely
fast with |G| = 2=/ 2; there are already 32768 graphs when
n =6 (73.0 s) and essentially captures all other patterns for large
enough n since we are generating all possible adjacency matrices.
As stated in Ref. [34], “with this generality comes an enormous
space, potentially too large to be useful for certain graph prob-
lems”. The primary motivator for the original work on Alg. 1
in Ref. [34] was to move away from adjacency matrix permuta-
tions towards a more useful construction of the desirable graphs.
The PM-based approach was shown to have much more desir-
able properties for the set of graphs defined by a component cat-
alog and was compared to index stack blocks [29], an adjacency
matrix permutation method. Most of the enhancements in this
article leverage the specified catalog structure in some way.

In Ref. [1], connecting subpatterns termed architecture
styles were defined to add more graph structure. Simpler archi-
tecture styles such as the trees, stars, and rings can be more easily
defined using a component catalog and some NSCs, while more
complex styles, such as a mesh, may be more challenging to ef-
fectively represent.

5.2.2 Permuting Pattern This pattern seeks to arrange a set
of elements in different orderings [1]. The example from Ref. [1]
simply contains five generic elements:

L=[STRABCDE], P=[11-21], P=[12-2-2] (10a)

R=R=[11-1] (10b)
where no multiedges or loops are allowed. The label STR in-
dicates the starting point of the permutation, and the compo-
nent type with one port is the endpoint. With no other NSCs,
this is equivalent to A0O00142 (number of permutations of n ver-
tices) [39]. Since n = 5 in Catalog (10), we have 120 unique per-
mutations (0.03 s). Here we note that the graph generator only
generates unique graphs so isomorphism checking is not strictly
required.

Many potential NSCs can be included. Direct connection
constraints could ensure that two types are not adjacent to one
another. Line-connectivity constraints could constrain relative
position of nodes with respect to the greedy/incremental archi-
tecture styles [1]. Custom subcatalog NSCs can be defined if the
component types have different costs associated with their abso-
lute and relative positions.

5.2.3 Partitioning Pattern This pattern occurs when there
is a set of entities that need to be grouped into nonoverlapping
subsets [1]. The example from Ref. [1] is concerned with placing

Copyright © 2020 by ASME

instruments on different spacecraft (represented by partitions P).
All non-P types in the catalog are different instruments, and this
partitioning problem is represented by:

L =[P LDR RDR RDM IMG SND GPS] (11a)
P=[112%1], P=[61%1] (11b)
R=[11-%1], R=[61-%1] (11c)

where multiedges and loops are not allowed, no P— P connec-
tions allowed, all non-P types can only be connected to P, and
the subcatalog filters for bipartite graphs from Sec. 2.3 can be
used. With no other NSCs, this is equivalent to A000110, num-
ber of ways to partition a set of n labeled elements [39]. Since
n = 6 in Catalog (11), we have 203 unique partitions (0.07 s).

Again, many potential engineering NSCs can be read-
ily added such as the minimum/maximum number of parti-
tions through R; and R, respectively. Similarly, the mini-
mum/maximum number of elements in a partition can be lim-
ited through P, and Py, respectively. Using line-connectivity
constraints, we can decide if two types can be in the same parti-
tion. A custom NSC could be defined to limit a maximum cost
for each partition. Such additional NSCs can have the benefit of
improving the usefulness of the generated graphs and reducing
computational cost. For example, consider the number of parti-
tions for n = 10 with the modifications limiting G to only contain
2 — 5 partitions with 2 — 3 elements. Then there are 7245 unique
partitions found in 0.75 s vs. 115975 partitions found in 10.50 s
without the modifications.

5.2.4 Downselecting Pattern This pattern seeks a subset
of entities among a set of options. The example from Ref. [1] is
concerned with selecting which instruments should be selected
for an Earth observing system, and this downselecting problem
is represented by:

L =[LDR RDR RDM IMG SND GPS SAR SPM] (12a)

p=pP=023%2, rR=10%0, R=01-31 «2v
where only loops are allowed (limited using A,). With no other
NSCs, this is equivalent to AO00079, number of binary vectors of
length n [39]. Since n = 8 in Catalog (11), we have 256 unique
graphs (0.38 s). We note that this computational cost includes
a fair amount of overhead because we are directly computing a
graph representations of these binary vectors and tailored binary
enumeration methods could be more efficient (or simply not gen-
erating the graphs but only the set of subcatalogs which only took
0.01 s).

Again, additional NSCs can be readily added such as lin-
ear penalty constraints to limit the maximum system cost or
number or replicates and linear satisfaction constraints to en-
sure that a downselection meets all system requirements. For
example, consider the cost linear penalty constraint captured by
p=1[4,5,5,3,3,6,4,4] and a = 10, then there are only 38 graphs

11

(0.07 s). Additionally, R can be modified to define the number
of maximum replicates to include if multiple copies of the same
component type can be included. NSCs in this pattern are really
only applicable to the subcatalog since each valid subcatalog has
exactly one unique graph. Again, alternative tailored tools such
as ones for the 0 — 1 knapsack problem could be more effective
for this type of pattern [1].

5.2.5 Combining Pattern This pattern seeks a combina-
tion of exactly one option for each decision. The example from
Ref. [1] is based on Ref. [2] for different decisions for the Apollo
program:

L = [EOR EL LOR MA MD CMC LMC SMF LMF] ~ (13a)
P=P=1222,R=10-20], R=[111111312] (13b)

where only loops are allowed (limited using A,) and R repre-
sents the number of alternatives minus one. Therefore, the se-
lected alternative for each type is simply related to the number of
replicates in the graph. Here, we have 1536 unique combinations
(0.04 s), equivalently defined as the Cartesian product of the deci-
sion sets. Including the Apollo logical constraints from Ref. [2]
as custom subcatalog constraints reduces number of valid mis-
sion plans to 108 (0.04 s).

All types of subcatalog constraints could be included to re-
strict G. However, this representation is certainly a bit cum-
bersome, but directly allowing for set definitions in the catalog,
as discussed in Sec. 2.1, would facilitate better the inclusion of
NSCs with the combining pattern.

5.2.6 Assigning Pattern This patterns seeks to assign one
set of entities to another set. The example from Ref. [1] seeks to
assign instruments to orbits for an Earth observing system:

instruments orbits

L =[LDR RDR RDM IMG SND GEO SUN POL] (14a)
P=[0-2.00-20], P=[3-2-353.5] (14b)
R=R=[121131] (14¢)

where no multiedges or loops are allowed, instrument-to-
instrument connections, no orbit-to-orbit connections, and the
subcatalog filters for bipartite graphs from Sec. 2.3 can be used.
There are many feasible subcatalogs (51711) for the 262144
graphs (700.63 s) for Catalog (14). The normal use of parallel
computing with respect to this many subcatalogs was found to
be inefficient.

Again, once some reasonable NSCs are added, the num-
ber of graphs decreases significantly, and the methods described
in this work become much more attractive. For example, con-
sider the case with precisely 1 replicate of each instrument, and a
given orbit can have a maximum of 3 instruments. Now the time
needed to generate the 510 unique feasible graphs is only 0.06 s.

Copyright © 2020 by ASME

4 - - - 100522 » fime
So10%p —— 1005252 x v/time 3
~ —e— A000041 9
a0 —e— A000262 14
< A005177 g 13)
0 —e— A056156
10tk -
2! —o— A289158 _ze®31
<L 30
° o
=i 11
g 102
=
[
o) v
Fe 100 Lz
1072 107! 10° 10! 10?
time (s)

FIGURE 7: Number of unique feasible graphs for the OEIS ex-
amples vs. computational time (multiple values of n shown).

5.3 Additional Graph Enumeration Examples

The On-Line Encyclopedia of Integer Sequences (OEIS) is a
database containing thousands of integer sequences, many cor-
responding to different graph enumeration problems. Here, five
different sequences are replicated using the problem definitions
in this work and can serve as some validation for the presented
algorithms as the number of graphs is the same between OEIS
and the results of this work. Additionally, these examples pro-
vide significant insights into how to pose new problems using
the component catalog definition. The number of UFGs vs. com-
putational time is shown in Fig. 7. Note the variation in the num-
ber of UFG graphs generated per second but generally similar
growth rates. Many more OEIS examples can be found in the
code repository [43].

5.3.1 A000041 This sequence represents the number of par-
titions of a number n [39]. This sequence can be generated by
counting all graphs with the following catalog:

L=[0], P=P=[2], R=R=[n] 15)

where multiedges and loops are allowed. The sequence values
were validated up to n =31 (139 s).

5.3.2 A000262 This sequence represents all labeled rooted
skinny-tree forests on n vertices [39]. This class of graphs was
used in Ref. [25]. All graphs in this sequence can be generated
with the following catalog:

L=[ROOTA-".Z, P=[11-"1] (16a)
P=n2"2], R=R=[1-"1] (16b)

where no multiedges or loops are allowed, a connected graph
is required, and the number of ports must be equal to 2n (tree
graph condition). The sequence values were validated upton =9

12

(144 s).

5.3.3 A005177 This sequence represents the number of con-
nected regular graphs with n nodes [39]. All graphs in this se-
quence can be generated with the following catalog:

L=[A, P=[0], P=[n-1], R=R=[n] (17
where no multiedges or loops are allowed, a connected graph is
required, and a custom subcatalog function is used to filter out
any subcatalogs that do not have the same number of ports for
every replicate (regular graph condition). The sequence values
were validated upton =11 (47 s).

5.3.4 A056156 This sequence represents the number of con-
nected bipartite graphs with n edges, no isolated vertices, and a
distinguished bipartite block, up to isomorphism [39]. All graphs
in this sequence can be generated with the following catalog:
L=[AB], P=[11], P=[nn], R=[11], R=[nn] (18)
where no multiedges or loops are allowed, a connected graph is
required, only A — B connections allowed using A,, the number
of ports must be equal to 2n (double the number of edges), and
the subcatalog filters for bipartite graphs from Sec. 2.3 can be
used. The sequence values were validated up to n = 14 (97 s).

5.3.5 A289158 This sequence represents the number of con-
nected multigraphs with n nodes of degree at most 4 and with
at most double edges [39]. In chemistry, these graphs represent
molecules (excluding stereoisomers) without triple bonds, given
n carbon atoms. All graphs in this sequence can be generated
with the following catalog:

L=[C], P=[0, P=[4, R=R=[n (19
where no loops are allowed, a connected graph is required, and
the maximum number of multiedges is limited to 2 using the

methods in Sec. 3.4. The sequence values were validated up to
n=9(2935s).

5.4 Physics-based Engineering Design Case Studies
It is important to note that while the techniques described in this
article are quite technical, the tool developed using these tech-
niques has had an impact on several physics-based engineering
design case studies that leveraged the tool in Ref. [43].

In Ref. [24], graphs from the vehicle suspension case study
in Sec. 5.1.3 were further constrained with additional NSCs, and
for every candidate suspension graph, a combined plant and con-
trol design problem was solved using a dynamic model auto-
matically generated from the suspension graph representation.
In Ref. [10], passive electric circuits were generated, and non-
linear fitting problems were solved to match desired frequency
responses and realize low-pass filters. In Ref. [25], different
single-split fluid-based thermal management architectures where
generated and optimized. While A000262 [39] captured the de-
sired counts of all labeled rooted skinny-tree forests, the explicit

Copyright © 2020 by ASME

enumeration of the graphs was required. Finally, in Ref. [13],
a customized graph enumeration procedure utilizing Ref. [43]
was used to generate candidate aircraft air cycle machines for
thermal management. Modelica models were then automatically
constructed to assess the performance of the given graph. Many
of these studies would not have been possible without enhance-
ments to the original Alg. 1.

6 CONCLUSION

This article built upon the perfect matching-inspired, brute-force
algorithm presented in Ref. [34] (and implemented in Ref. [43])
for generating all graphs in a specified graph structure space that
is suitable for representing many graph-based engineering design
challenges. First, a new component catalog definition was pro-
posed that naturally expanded the potential graphs that could be
represented. Next, the use of subcatalogs in the generation pro-
cess was discussed, including the handling of a variety of subcat-
alog constraints.

Then several enhancements for the enumeration of a specific
subcatalog were presented. Some of the enhancements reduced
the number of isomorphic graphs generated, such as the BFS im-
plementation, sorted catalogs, and replicate ordering while others
formalized certain specific NSCs in the graph generation algo-
rithm. Finally, because the graph generators are not perfect, some
of the generated graphs may not be unique. However, the effec-
tive use of graph invariants, including the label-shifted spectrum,
significantly reduced the number of expensive labeled graph iso-
morphism checks to only a few pairs which had an extremely
high probability of being isomorphic. All of these enhancements
worked together to produce an approach that is more parallelized
and requires fewer basic and expensive operations.

A variety graph enumeration examples were presented, in-
cluding examples from the original paper [34], patterns in sys-
tem architecture decisions [1], OEIS [39], and previous physics-
based engineering design problems [10, 13,24, 25]. In the ve-
hicle suspension case study, an overall computational speedup
of 971x was observed compared to the original method. For
the patterns, the constrained versions of the patterns were shown
to be efficiently generated. However, tailored graph generators
could always be more effective than the generalized approach
considered here. Additionally, the OEIS sequences provided ad-
ditional validation and insights into how to pose diverse graph
enumeration problems with this approach. Overall, the exam-
ples demonstrate the ways this approach can be considered as a
domain-independent architecture decision support tool.

Future work items include developing more standardized
NSCs to make it easier to define the desired problem, determin-
ing better heuristics for the catalog representation and sorting la-
bels, complete inclusion of directed graphs and structured com-
ponents [34], and investigating randomized generation methods
that can produce a suitable sampling of G for use in population-

13

based optimization or designer-in-the-loop graph exploration for
a large G. While the combinatorial growth of enumeration-based
methods will always be a persisting issue, the advancements in
graph-based tools make the previously unthinkable achievable.

REFERENCES

[1] Selva, D., Cameron, B., and Crawley, E., 2017. “Patterns in sys-
tem architecture decisions”. Syst. Eng., 19(6), Nov., pp. 477-497.
doi: 10.1002/sys.21370

[2] Simmons, W. L., 2008. “A framework for decision support in sys-
tems architecting”. PhD thesis, Massachusetts Institute of Technol-
ogy.

[3] Snavely, G. L., and Papalambros, P. Y., 1993. “Abstraction as a con-
figuration design methodology”. In Advances in Design Automa-
tion, Vol. 65, pp. 297-305.

[4] Miinzer, C., Helms, B., and Shea, K., 2013. “Automatically trans-
forming object-oriented graph-based representations into boolean
satisfiability problems for computational design synthesis”. J. Mech.
Des., 135(10), July, p. 101001. doi: 10.1115/1.4024850

[5] Bayrak, A. E., Ren, Y., and Papalambros, P. Y., 2016. “Topology
generation for hybrid electric vehicle architecture design”. J. Mech.
Des., 138(8), June, p. 081401. doi: 10.1115/1.4033656

[6] Silvas, E., Hofman, T., Serebrenik, A., and Steinbuch, M., 2015.
“Functional and cost-based automatic generator for hybrid vehicles
topologies”. IEEE/ASME T. Mech., 20(4), Aug., pp. 1561-1572.
doi: 10.1109/TMECH.2015.2405473

[7] Silvas, E., Hofman, T., Murgovski, N., Etman, P., and Steinbuch,
M., 2017. “Review of optimization strategies for system-level de-
sign in hybrid electric vehicles”. IEEE Trans. Veh. Technol., 66(1),
Jan., pp. 57-70. doi: 10.1109/TVT.2016.2547897

[8] Docimo, D. J., Kang, Z., James, K. A., and Alleyne, A. G., 2020.
“A novel framework for simultaneous topology and sizing optimiza-
tion of complex, multi-domain systems-of-systems”. J. Mech. Des.,
142(9), Mar. doi: 10.1115/1.4046066

[9] Foster, R. M., 1932. “Geometrical circuits of electrical net-

works”. Trans. Am. Inst. Electr. Eng., 51(2), June, pp. 309-317.

doi: 10.1109/T-AIEE.1932.5056068

Herber, D. R., 2017. “Advances in combined architecture, plant,

and control design”. Ph.D. Dissertation, University of Illinois at

Urbana-Champaign, Urbana, IL, USA, Dec.

Zeidner, L. E., Reeve, H. M., Khire, R., and Becz, S., 2010.

“Architectural enumeration and evaluation for identification of

low-complexity systems”. In Aviation Technology, Integra-

tion, and Operations (ATIO) Conference, no. AIAA 2010-9264.

doi: 10.2514/6.2010-9264

Zeidner, L. E., St. Rock, B. E., Desai, N. A., Reeve,

H. M., and Strauss, M. P., 2010. “Application of a technol-

ogy screening methodology for rotorcraft alternative power sys-

tems”. In Aerospace Sciences Meeting Including the New Hori-

zons Forum and Aerospace Exposition, no. AIAA 2010-1505.

doi: 10.2514/6.2010-1505

Herber, D. R., Allison, J. T., Buettner, R., Abolmoali, P., and Pat-

naik, S. S., 2020. “Architecture generation and performance evalua-

tion of aircraft thermal management systems through graph-based
techniques”. In Science and Technology Forum and Exposition,
no. AIAA 2020-0159. doi: 10.2514/6.2020-0159

Pennestri, E., and Valentini, P. P., 2015. “Kinematics and enumera-

tion of combined harmonic drive gearing”. J. Mech. Des., 137(12),

Oct., p. 122303. doi: 10.1115/1.4031590

Konigseder, C., and Shea, K., 2015. “Comparing strategies for

topologic and parametric rule application in automated computa-

tional design synthesis”. J. Mech. Des., 138(1), Nov., p. 011102.

doi: 10.1115/1.4031714

[10]

(11]

[12]

[13]

(14]

[15]

Copyright © 2020 by ASME

http://doi.org/10.1002/sys.21370
http://doi.org/10.1115/1.4024850
http://doi.org/10.1115/1.4033656
http://doi.org/10.1109/TMECH.2015.2405473
http://doi.org/10.1109/TVT.2016.2547897
http://doi.org/10.1115/1.4046066
http://doi.org/10.1109/T-AIEE.1932.5056068
http://doi.org/10.2514/6.2010-9264
http://doi.org/10.2514/6.2010-1505
http://doi.org/10.2514/6.2020-0159
http://doi.org/10.1115/1.4031590
http://doi.org/10.1115/1.4031714

[16]

(171

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

[30]

[31]

del Castillo, J. M., 2002. “Enumeration of 1-DOF planetary gear
train graphs based on functional constraints”. J. Mech. Des., 124(4),
Nov., pp. 723-732. doi: 10.1115/1.1514663

Ruddigkeit, L., van Deursen, R., Blum, L. C., and Reymond, J.-L.,
2012. “Enumeration of 166 billion organic small molecules in the
chemical universe database GDB-17". J. Chem. Inf. Model., 52(11),
Nov., pp. 2864-2875. doi: 10.1021/ci300415d

Carhart, R. E., Smith, D. H., Brown, H., and Djerassi, C.,
1975. “Applications of artificial intelligence for chemical infer-
ence. XVIIL. approach to computer-assisted elucidation of molecu-
lar structure”. J. Am. Chem. Soc., 97(20), Oct., pp. 5755-5762.
doi: 10.1021/ja00853a021

Faulon, J.-L., 1998. “Isomorphism, automorphism partitioning, and
canonical labeling can be solved in polynomial-time for molecular
graphs”. J. Chem. Inf. Comput. Sci., 38(3), Mar., pp. 432-444.
doi: 10.1021/ci9702914

Ma, W, Trusina, A., El-Samad, H., Lim, W. A., and Tang,
C., 2009. “Defining network topologies that can achieve bio-
chemical adaptation”. Cell, 138(4), Aug., pp. 760-773.
doi: 10.1016/j.cell.2009.06.013

Wu, Z., Campbell, M. I., and Ferndndez, B. R., 2008. “Bond
graph based automated modeling for computer-aided design of
dynamic systems”. J. Mech. Des., 130(4), Mar., p. 041102.
doi: 10.1115/1.2885180

Schmidt, L. C., Shetty, H., and Chase, S. C., 2000. “A graph gram-
mar approach for structure synthesis of mechanisms”. J. Mech. Des.,
122(4), Dec., pp. 371-376. doi: 10.1115/1.1315299

Maxwell 111, J. T., de Kleer, J., and Klenk, M., 2019. “Insane design
of lumped element models”. In International Workshop on Qualita-
tive Reasoning.

Herber, D. R., and Allison, J. T., 2019. “A problem class with com-
bined architecture, plant, and control design applied to vehicle sus-
pensions”. J. Mech. Des., 141(10), May. doi: 10.1115/1.4043312
Peddada, S. R. T., Herber, D. R., Pangborn, H. C., Alleyne, A. G.,
and Allison, J. T., 2019. “Optimal flow control and single split archi-
tecture exploration for fluid-based thermal management”. J. Mech.
Des., 141(8), Apr. doi: 10.1115/1.4043203

Hartmann, C., Chenouard, R., Mermoz, E., and Bernard, A.,
2018. “A framework for automatic architectural synthesis in con-
ceptual design phase”. J. Eng. Des., 29(11), Oct., pp. 665-689.
doi: 10.1080/09544828.2018.1532494

Faulon, J.-L., Churchwell, C. J., and Visco, D. P., 2003. “The sig-
nature molecular descriptor. 2. Enumerating molecules from their
extended valence sequences”. J. Chem. Inf. Comput. Sci., 43(3),
May, pp. 721-734. doi: 10.1021/ci0203460

Mittal, S., and Frayman, F., 1989. “Towards a generic model of
configuration tasks”. In International Joint Conference on Artificial
Intelligence, pp. 1395-1401.

Wyatt, D. F., Wynn, D. C., and Clarkson, P. J., 2014. “A scheme for
numerical representation of graph structures in engineering design”.
J. Mech. Des., 136(1), Jan., p. 011010. doi: 10.1115/1.4025961
Schmidt, L. C., and Cagan, J., 1997. “GGREADA: a graph
grammar-based machine design algorithm”. Res. Eng. Des., 9(4),
Dec., pp. 195-213.

Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Her-
nandez, N. V., and Wood, K. L., 2011. “Computer-based design

14

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]
[43]

[44]

(45]
[46]

[47]

(48]
(49]

[50]

synthesis research: an overview”. J. Comput. Inf. Sci. Eng., 11(2),
June, p. 021003. doi: 10.1115/1.3593409

Campbell, M., 2009. A graph grammar methodology for generative
systems. Tech. rep., University of Texas at Austin.

Behbahani, S., and de Silva, C. W., 2013. “Automated identifica-
tion of a mechatronic system model using genetic programming and
bond graphs”. J. Dyn. Syst. Meas. Contr., 135(5), May, p. 051007.
doi: 10.1115/1.4024171

Herber, D. R., Guo, T., and Allison, J. T., 2017. “Enumeration of
architectures with perfect matchings”. J. Mech. Des., 139(5), Apr.,
p- 051403. doi: 10.1115/1.4036132

Chapman, W. L., Rozenblit, J., and Bahill, A. T., 2001. “System
design is an NP-complete problem”. Syst. Eng., 4(3), pp. 222-229.
doi: 10.1002/sys.1018

Wyatt, D. F., Wynn, D. C., Jarrett, J. P., and Clarkson, P. J., 2012.
“Supporting product architecture design using computational de-
sign synthesis with network structure constraints”. Res. Eng. Des.,
23(1), pp. 17-52. doi: 10.1007/s00163-011-0112-y

Bryant, C. R., McAdams, D. A., Stone, R. B., Kurtoglu, T., and
Campbell, M. 1., 2005. “A computational technique for concept
generation”. In International Design Engineering Technical Confer-
ences, no. DETC2005-85323. doi: 10.1115/DETC2005-85323
Rispoli, F. J., 2007. Applications of Discrete Mathematics, up-
dated ed. McGraw-Hill, ch. Applications of subgraph enumeration,
pp- 241-262.

The on-line encyclopedia of integer sequences (A000041, A0O00079,
A000110, A000142, A000262, A001147, A005177, A006125,
A056156, A289158). Online. url: https://oeis.org
Diestel, R., 2017. Graph Theory, 5th ed.
doi: 10.1007/978-3-662-53622-3

Colbourn, C. J., and Read, R. C., 1979. “Orderly algorithms for
generating restricted classes of graphs”. J. Graph Theory, 3(2),
pp. 187-195. doi: 10.1002/gt.3190030210

Feller, W., 1968. An Introduction to Probability Theory and Its Ap-
plications, 3rd ed., Vol. 1. Wiley.

PM architectures project. Online.
danielrherber/pm-architectures-project
Choudum, S. A., 1986. “A simple proof of the Erdos-Gallai theorem
on graph sequences”. B. Aust. Math. Soc., 33(1), Feb., pp. 67-70.
doi: 10.1017/S0004972700002872

Godsil, C., and Royle, G., 2001. Algebraic Graph Theory. Springer.
doi: 10.1007/978-1-4613-0163-9

Brualdi, R. A., and Ryser, H. J., 1991. Combinatorial Matrix The-
ory. Cambridge University Press.

Herber, D. R., and Allison, J. T., 2017. Enhancements to the perfect
matching-based tree algorithm for generating architectures. Tech.
Rep. UIUC-ESDL-2017-02, Engineering System Design Lab, Ur-
bana, IL, USA, Dec. url: https://hdl.handle.net/2142/98990

Skiena, S. S., 2008. The Algorithm Design Manual, 2nd ed.
Springer. doi: 10.1007/978-1-84800-070-4

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., 2009.
Introduction to Algorithms, 3rd ed. The MIT Press.

Cordella, L. P, Foggia, P., Sansone, C., and Vento, M., 2001. “An
improved algorithm for matching large graphs”. In Workshop on
Graph-based Representations in Pattern Recognition, pp. 149-159.

Springer.

url: https://github.com/

Copyright © 2020 by ASME

http://doi.org/10.1115/1.1514663
http://doi.org/10.1021/ci300415d
http://doi.org/10.1021/ja00853a021
http://doi.org/10.1021/ci9702914
http://doi.org/10.1016/j.cell.2009.06.013
http://doi.org/10.1115/1.2885180
http://doi.org/10.1115/1.1315299
http://doi.org/10.1115/1.4043312
http://doi.org/10.1115/1.4043203
http://doi.org/10.1080/09544828.2018.1532494
http://doi.org/10.1021/ci020346o
http://doi.org/10.1115/1.4025961
http://doi.org/10.1115/1.3593409
http://doi.org/10.1115/1.4024171
http://doi.org/10.1115/1.4036132
http://doi.org/10.1002/sys.1018
http://doi.org/10.1007/s00163-011-0112-y
http://doi.org/10.1115/DETC2005-85323
https://oeis.org
http://doi.org/10.1007/978-3-662-53622-3
http://doi.org/10.1002/jgt.3190030210
https://github.com/danielrherber/pm-architectures-project
https://github.com/danielrherber/pm-architectures-project
http://doi.org/10.1017/S0004972700002872
http://doi.org/10.1007/978-1-4613-0163-9
https://hdl.handle.net/2142/98990
http://doi.org/10.1007/978-1-84800-070-4

	Introduction
	Original Algorithm
	Overview

	Subcatalogs in the Generation Process
	New Component Catalog Definition
	Subcatalog Enumeration Algorithm
	Subcatalog Constraints
	Overall Procedure

	Enhancements for the Enumeration of a Single Catalog
	Alternative Spanning Tree Traversals
	Replicate Ordering
	Loops
	Multiedges
	Line-connectivity Constraints
	Connected Saturated Subgraphs

	Improvements on Set-based Labeled Graph Isomorphism Checking
	Graph Enumeration Examples
	Case Studies from the Original Paper
	Case Study 1
	Case Study 2
	Suspension Case Study

	Patterns in System Architecture Decisions
	Connecting Pattern
	Permuting Pattern
	Partitioning Pattern
	Downselecting Pattern
	Combining Pattern
	Assigning Pattern

	Additional Graph Enumeration Examples
	A000041
	A000262
	A005177
	A056156
	A289158

	Physics-based Engineering Design Case Studies

	Conclusion

