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Department of Mathematics and Computer Science

The Citadel
Charleston, SC 29409

USA
rigo.florez@citadel.edu

Robinson A. Higuita
Instituto de Matemáticas
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Abstract

We define two types of second-order polynomial sequences. A sequence is of Fibonacci-
type (Lucas-type) if its Binet formula is similar in structure to the Binet formula for the
Fibonacci (Lucas) numbers. Familiar examples are Fibonacci polynomials, Chebyshev
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polynomials, Morgan-Voyce polynomials, Lucas polynomials, Pell polynomials, Fermat
polynomials, Jacobsthal polynomials, Vieta polynomials and other known sequences of
polynomials.

We generalize the numerical recurrence relation given by Hosoya to polynomials by
constructing a Hosoya triangle for polynomials where each entry is either a product of
two polynomials of Fibonacci-type or a product of two polynomials of Lucas-type. For
every such choice of polynomial sequence we obtain a triangular array of polynomials.
In this paper we extend the star of David property, also called the Hoggatt-Hansell
identity, to these types of triangles. In addition, we study other geometric patterns
in these triangles and as a consequence we obtain geometric interpretations for the
Cassini identity, the Catalan identity, and other identities for Fibonacci polynomials.

1 Introduction

A second-order polynomial sequence is of Fibonacci-type (Lucas-type) if its Binet formula
has a structure similar to that for Fibonacci (Lucas) numbers. Familiar examples of such
polynomials are Fibonacci polynomials, Chebyshev polynomials, Morgan-Voyce polynomials,
Lucas polynomials, Pell polynomials, Fermat polynomials, Jacobsthal polynomials, Vieta
polynomials, and other sequences of polynomials. Most of the polynomials mentioned here
are discussed by Koshy [14, 15].

The Hosoya triangle, formerly called the Fibonacci triangle, [3, 6, 11, 14], consists of a
triangular array of numbers where each entry is a product of two Fibonacci numbers (see
A058071). If in this triangle we replace the Fibonacci numbers with the corresponding poly-
nomials from the sequences mentioned above, we obtain a Hosoya-like polynomial triangle
(see Tables 2 and 3). Therefore, for every choice of a polynomial sequence we obtain a dis-
tinct Hosoya polynomial triangle. So, every polynomial evaluation gives rise to a numerical
triangle (see Table 8). In particular the classic Hosoya triangle can be obtained by evaluating
the entries of Hosoya polynomial triangle arising from Fibonacci polynomials evaluated at
x = 1. For brevity we call these triangles Hosoya polynomial triangles and if there is no
ambiguity we call them Hosoya triangles.

The Hosoya polynomial triangle provides a good geometric way to study algebraic and
combinatorial properties of products of recursive sequences of polynomials. In this paper we
study some of its geometric properties. Note that any geometric property in this triangle is
automatically true for the classic (numerical) Hosoya triangle.

A hexagon gives rise to the star of David — connecting its alternating vertices with
a continuous line as in Figure 1. Given a hexagon in a Hosoya triangle can one determine
whether the vertices of the two triangles of the star of David have the same greatest common
divisor (gcd)? If both greatest common divisors are equal, then we say that the star of David
has the gcd property. Several authors have been interested in this property, see for example
[4, 6, 8, 13, 17, 18, 21]. For instance, in 2014 Flórez et al. [5] proved the star of David
property in the generalized Hosoya triangle. Koshy [13, 15] defined the gibonomial triangle
and proved one of the fundamental properties of the star of David in this triangle. In a short
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Figure 1: Star of David from a hexagon.

comment we establish the gcd property of the star of David for the gibonomial triangle.
Since every polynomial sequence of Fibonacci-type or of Lucas-type gives rise to a Hosoya

triangle, the above question seems complicated to answer. We prove that the star of David
property holds for most of the cases (depending on the locations of its points in the Hosoya
triangle). We also prove that if the star of David property does not hold, then the two
gcds are proportional. We give a characterization of the members of the family of Hosoya
triangles that satisfy the star of David property. From Table 1, we obtain a sub-family of
fourteen distinct Hosoya triangles. We provide a complete classification of the members that
satisfy the star of David property.

We also study other geometric properties that hold in a Hosoya triangle, called the
rectangle property and the zigzag property. A rectangle in the Hosoya polynomial triangle is
a set of four points in the triangle that are arranged as the vertices of a rectangle. Using
the rectangle property we give geometric interpretations and proofs of the Cassini, Catalan,
and Johnson identities for Fibonacci-type or for Lucas-type sequences.

2 Preliminaries and the main theorem

In this section we summarize some concepts given by the authors in earlier articles. For
example, the authors [2] have studied the polynomial sequences given here. The authors
[3] have also studied polynomial triangular array. Throughout the paper we consider poly-
nomials in Q[x]. The polynomials in the Subsection 2.1 are presented in a formal way.
However, for brevity and if there is no ambiguity after Subsection 2.1 and throughout the
paper we avoid these formalities. Thus, we present the polynomials without explicit use of
“x”. We return to this formality if we need to evaluate a polynomial at a particular value.
Another exception of this mentioned informality are the familiar examples of Fibonacci-type
and Lucas-type polynomials. We adhere to the conventional formality as they appear in the
literature (see, for example, Table 1).
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2.1 Second-order polynomial sequences

We now define two types of second-order polynomial recurrence relations:

F0(x) = 0, F1(x) = 1, and Fn(x) = d(x)Fn−1(x) + g(x)Fn−2(x) for n ≥ 2, (1)

where d(x), and g(x) are fixed non-zero polynomials in Q[x].
We say a polynomial recurrence relation is of Fibonacci-type if it satisfies the relation

given in (1), and of Lucas-type if

L0(x) = p0, L1(x) = p1(x), and Ln(x) = d(x)Ln−1(x) + g(x)Ln−2(x) for n ≥ 2, (2)

where |p0| = 1 or 2 and p1(x), d(x) = αp1(x), and g(x) are fixed non-zero polynomials in
Q[x] with α an integer of the form 2/p0.

To use similar notation for (1) and (2) on certain occasions we write p0 = 0, p1(x) = 1
to indicate the initial conditions of Fibonacci-type polynomials. Some familiar examples of
Fibonacci-type polynomials and of Lucas-type polynomials are in Table 1 (see also [2, 3, 9,
10, 14]).

If Gn is either Fn or Ln for all n ≥ 0 and d2(x) + 4g(x) > 0 then the explicit formula for
the recurrence relations in (1) and (2) is given by

Gn(x) = t1a
n(x) + t2b

n(x),

where a(x) and b(x) are the solutions of the quadratic equation associated to the second-order
recurrence relation Gn(x). That is, a(x) and b(x) are the solutions of z2 − d(x)z− g(x) = 0.
If α = 2/p0, then the Binet formula for Fibonacci-type polynomials is stated in (3) and the
Binet formula for Lucas-type polynomials is stated in (4) (for details on the construction of
the two Binet formulas see [2]).

Fn(x) =
an(x)− bn(x)

a(x)− b(x)
(3)

and

Ln(x) =
an(x) + bn(x)

α
. (4)

Note that for both types of sequences the identities

a(x) + b(x) = d(x), a(x)b(x) = −g(x), and a(x)− b(x) =
√

d2(x) + 4g(x)

hold, where d(x) and g(x) are the polynomials defined in (1) and (2).
A sequence of Lucas-type (Fibonacci-type) is equivalent or conjugate to a sequence of

Fibonacci-type (Lucas-type), if their recursive sequences are determined by the same poly-
nomials d(x) and g(x). Notice that two equivalent polynomials have the same a(x) and
b(x) in their Binet representations. Examples of equivalent polynomials are given in Table
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1. Note that the leftmost polynomials in Table 1 are of Lucas-type and their equivalent
Fibonacci-type polynomials are in the fifth column on the same line.

For most of the proofs involving these sequences it is required that

gcd(p0, p1(x)) = 1, gcd(p0, d(x)) = 1, gcd(p0, g(x)) = 1, and gcd(d(x), g(x)) = 1. (5)

Therefore, for the rest the paper we suppose that these four conditions hold for both types
of sequence studied here. We use ρ to denote gcd(d(x), G1(x)). Notice that in the definition
of Pell-Lucas we have Q0(x) = 2 and Q1(x) = 2x. Thus, the gcd(2, 2x) = 2 6= 1. Therefore,
Pell-Lucas does not satisfy the extra conditions that we imposed in (5). So, to resolve this
inconsistency we use Q′

n(x) = Qn(x)/2 instead of Qn(x). Flórez et al. [4] have worked on
similar problems for numerical sequences.

Polynomial of Ln(x) d(x) g(x) Polynomial of Fn(x) d(x) g(x)
Lucas-type Fibonacci-type

Lucas Dn(x) x 1 Fibonacci Fn(x) x 1
Pell-Lucas Qn(x) 2x 1 Pell Pn(x) 2x 1
Fermat-Lucas ϑn(x) x −2 Fermat Φn(x) x −2
Chebyshev first kind Tn(x) 2x −1 Chebyshev second kind Un(x) 2x −1
Jacobsthal-Lucas jn(x) 1 2x Jacobsthal Jn(x) 1 2x
Morgan-Voyce Cn(x) x+ 2 −1 Morgan-Voyce Bn(x) x+ 2 −1
Vieta-Lucas vn(x) x −1 Vieta Vn(x) x −1

Table 1: Fn equivalent to Ln.

2.2 Hosoya polynomial triangle

We now give a precise definition of both the Hosoya polynomial sequence and the Hosoya
polynomial triangle. We recall that for brevity throughout the paper we present the poly-
nomials without specifying the variable “x”. For example, instead of Fn(x) we use Fn.

Let p0, p1, d, and g be fixed polynomials as defined in (1) and (2). Then the Hosoya
polynomial sequence {H(r, k)}r,k≥0 is defined using the double recursion

H(r, k) = dH(r − 1, k) + gH(r − 2, k)

and
H(r, k) = dH(r − 1, k − 1) + gH(r − 2, k − 2),

where r > 1 and 0 ≤ k ≤ r − 1, with initial conditions

H(0, 0) = p20; H(1, 0) = p0p1; H(1, 1) = p0p1; H(2, 1) = p21.

This sequence gives rise to the Hosoya polynomial triangle, where the entry in position k
(taken from left to right), of the rth row is equal to H(r, k) (see Table 2).
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H(0, 0)
H(1, 0) H(1, 1)

H(2, 0) H(2, 1) H(2, 2)
H(3, 0) H(3, 1) H(3, 2) H(3, 3)

H(4, 0) H(4, 1) H(4, 2) H(4, 3) H(4, 4)
H(5, 0) H(5, 1) H(5, 2) H(5, 3) H(5, 4) H(5, 5)

Table 2: Hosoya polynomial triangle.

We say that the Hosoya triangle is of Fibonacci-type, denoted HF , if p0 = 0 and p1 = 1,
and d and g are as in (1). Similarly, the Hosoya triangle of Lucas-type (denoted HL) can be
defined.

In the definition of the Hosoya polynomial sequence the polynomials d, g, p0, and p1
can be any four polynomials in Q[x]. Thus, these four polynomials need not be as defined
in (1) and (2). However, in this paper we impose the restrictions above since we want
a relationship between the sequences of Fibonacci-type and of Lucas-type for the Hosoya
polynomial triangles. This relation is given by Proposition 1 (see Flórez et al. [3, 5]).

Proposition 1 ([3]). If Gn is either Fn or Ln for all n ≥ 0, then H(r, k) = GkGr−k.

Proposition 1 implies that the entries of a Hosoya polynomial triangle are the product of
two polynomials that are of the form as described in (1) or in (2). We observe that Table 2
together with this proposition give rise to Table 3.

G0G0

G0G1 G1G0

G0G2 G1G1 G2G0

G0G3 G1G2 G2G1 G3G0

G0G4 G1G3 G2G2 G3G1 G4G0

G0G5 G1G4 G2G3 G3G2 G4G1 G5G0

Table 3: H(r, k) = GkGr−k.

Some examples of H(r, k) are in Table 4, obtained from Table 1 using Proposition 1.
Therefore, some examples of Hosoya polynomial triangles can be constructed using Tables 3
and 4. It is enough to substitute each entry in Table 2 or Table 3 by the corresponding entry
in Table 4. Thus, we obtain a Hosoya polynomial triangle for each of the specific polynomials
mentioned in Table 1. So, Table 4 gives rise to 14 examples of Hosoya polynomial triangles.

For example, using the first polynomial in Table 4 and Proposition 1 in Table 3 we obtain
the Hosoya polynomial triangle HF where the entry H(r, k) is equal to Fk(x)Fr−k(x). This
is represented in Table 5 without the points that contain the factor F0(x) = 0.

Observe that H(r, k) in the first column of Table 4 is a product of polynomials of
Fibonacci-type. Therefore, G0 = 0. So, the edges containing G0 as a factor in Table 3,
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H(r, k) p0 p1 d g H(r, k) p0 p1 d g

Fk(x)Fr−k(x) 0 1 x 1 Dk(x)Dr−k(x) 2 2x x 1
Pk(x)Pr−k(x) 0 1 2x 1 Qk(x)Qr−k(x) 2 2x 2x 1
Φk(x)Φr−k(x) 0 1 x −2 ϑk(x)ϑr−k(x) 2 3x x −2
Uk(x)Ur−k(x) 0 1 2x −1 Tk(x)Tr−k(x) 1 x 2x −1
Jk(x)Jr−k(x) 0 1 1 2x jk(x)jr−k(x) 2 1 1 2x
Bk(x)Br−k(x) 0 1 x+ 2 −1 Ck(x)Cr−k(x) 2 x+ 2 x+ 2 −1
Vk(x)Vr−k(x) 0 1 x −1 vk(x)vr−k(x) 2 x x −1

Table 4: Terms H(r, k) of the Hosoya polynomial triangle.

will have entries equal to zero. From the sixth column of Table 4 we see that H(r, k) is a
product of polynomials of Lucas-type. So, the edges containing G0 as a factor in Table 3
will not have entries equal to zero.

1
x x

x2 + 1 x2 x2 + 1
x3 + 2x x(x2 + 1) x(x2 + 1) x3 + 2x

x4 + 3x2 + 1 x(x3 + 2x) (x2 + 1)2 x(x3 + 2x) x4 + 3x2 + 1

Table 5: The Hosoya triangle HF where H(r, k) = Fk(x)Fr−k(x).

2.3 Star of David property in the Hosoya polynomial triangle

In this subsection we state the main results, namely the star of David properties for both
type Hosoya polynomial triangle, Lucas-type and Fibonacci-type. These properties hold in
the Pascal triangle, the Fibonomial triangle, the gibonomial triangle, and in both the Hosoya
and the generalized Hosoya triangle.

Koshy [16, Chapters 6 and 26] discussed that some properties of star of David are present
in several triangular arrays. These properties — called the Hoggatt-Hansell identity, the
Gould property, or gcd property — were also proved in [5, 6] for Hosoya and generalized
Hosoya triangles. The results in this paper generalize several results in the articles [5, 6, 11,
16] that were proved for numerical sequences.

Those familiar with the gibonomial triangle (see Koshy [13] or Sagan [19]), may find it
interesting that the gcd property also holds in this triangle. The proof of this fact follows
by adapting the numerical proof in Hillman and Hoggatt [7], to polynomials.

From Figure 2 we can see that the star of David is formed by two triangles. For the
rest of paper when we refer to the star of David we assume that it is embedded in a Hosoya
polynomial triangle. We show that the product of points in one triangle equals the product of
points in the second triangle. We also find conditions that ensure that the gcd of the points
in the leftmost triangle are equal to the gcd of the points in the rightmost triangle (this is
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true if gcd(ρ,Gn/ρ) = 1, where ρ = gcd(d,G1) and Gn is either Fn or Ln). For example,
the polynomials in Table 1 that satisfy this condition are: Fibonacci, Lucas, Pell-Lucas,
Chebyshev first kind, Jacobsthal, Jacobsthal-Lucas, and both Morgan-Voyce polynomials.
The polynomials in Table 1 that satisfy gcd(ρ2, Gn) 6= 1 are: Pell, Fermat, Fermat-Lucas,
and Chebyshev second kind.

Gm+1Gn-2

GmGn

GmGn-1

Gm+1Gn Gm+2Gn-1

Gm+2Gn-2

c=Gm+1Gn-1

Figure 2: Star of David in a Hosoya triangle where Gk is either Fk or Lk for all k ≥ 0.

In the following three theorems we generalize the Hoggatt-Hansell identity and Gould
property to polynomials. We also analyze the relationship between the point that is within
the two triangles of the star of David (see the point c in Figure 2) and the two diagonals of
the star of David. We now state the main results — for their proofs see Section 3 page 12.
We recall that for brevity we always suppose that the star of David is embedded in a Hosoya
polynomial triangle.

Theorem 2. Suppose that Fm+1Fn−2, FmFn, and Fm+2Fn−1 are the points in a triangle of
the star of David and FmFn−1, Fm+2Fn−2, and Fm+1Fn are the points in the second triangle
of the star of David. If m ≥ 1 and n > 1, then

(1) gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) is equal to

{

β gcd(FmFn−1,Fm+2Fn−2,Fm+1Fn), if m and n are both even;

gcd(FmFn−1,Fm+2Fn−2,Fm+1Fn), otherwise,

where β is a constant that depends on d,m, and n.

(2) Let c = Fm+1Fn−1 be the point within the two triangles of the star of David. Then
gcd(Fm+1Fn−2,Fm+1Fn) · gcd(FmFn−1,Fm+2Fn−1) is equal to either c, cF2, or cF2

2 .
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Theorem 3. Suppose that Lm+1Ln−2, LmLn, and Lm+2Ln−1 are the points in a triangle of
the star of David and LmLn−1, Lm+2Ln−2, and Lm+1Ln are the points in the second triangle
of the star of David. If m ≥ 0 and n ≥ 0 and LmLn 6= L0L0, then

(1) gcd(Lm+1Ln−2,LmLn,Lm+2Ln−1) is equal to
{

β′ gcd(LmLn−1,Lm+2Ln−2,Lm+1Ln), if m and n are both even;

gcd(LmLn−1,Lm+2Ln−2,Lm+1Ln), otherwise,

where β′ is a constant that depends on L1,m, and n.

(2) Let c = Lm+1Ln−1 be the point within the two triangles of the star of David. Then
gcd(Lm+1Ln−2,Lm+1Ln) · gcd(LmLn−1,Lm+2Ln−1) is equal to either c, cL1, or cL2

1.

Theorem 4. Suppose that Gk is either Fk or Lk for all k ≥ 0. If Gm+1Gn−2, GmGn, and
Gm+2Gn−1 are the points in a triangle of the star of David and GmGn−1, Gm+2Gn−2, and
Gm+1Gn are the points in the second triangle of the star of David, where Gm Gn 6= G0 G0,
then

(Gm+1Gn−2) · (GmGn) · (Gm+2Gn−1) = (GmGn−1) · (Gm+2Gn−2) · (Gm+1Gn).

3 Proof of the main theorems

In this section we prove Theorems 2 and 3. The proof of Theorem 4 is straightforward.
In addition, we present some corollaries of the main theorems, a few divisibility properties,
and gcd properties that are true for both types of polynomial sequences. Proposition 5 is a
generalization of [6, Proposition 2.2], both proofs are similar.

Proposition 5. Let a, b, c and d be polynomials in Q[x].

(1) If gcd(a, b) = 1 and gcd(c, d) = 1, then

gcd(ab, cd) = gcd(a, c) · gcd(a, d) · gcd(b, c) · gcd(b, d).

(2) If gcd(a, c) = gcd(b, d) = 1, then gcd(ab, cd) = gcd(a, d) · gcd(b, c).

Proof. The proof of Part (1) follows from the multiplication property of the gcd. The proof
of Part (2) follows from [6, Proposition 2.2] by replacing a, b, c and d integers by a, b, c and
d polynomials in Q[x].

Proposition 6. If Gi is either Fi or Li for all i ≥ 0, then

Gm mod d2 =

{

gk−1 (kdG1 + gG0) , if m = 2k;

gk (kdG0 +G1) , if m = 2k + 1.
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Proof. We use mathematical induction. Let S(m) be the statement

Gm mod d2 =

{

gt−1 (tdG1 + gG0) , if m = 2t;

gt (tdG0 +G1) , if m = 2t+ 1.

The basis step, S(1) and S(2), follows from the following two facts;

G1 ≡ G1 = g0 (0dG0 +G1) mod d2

and
G2 ≡ G2 = g0 (dG1 + gG0) mod d2.

We suppose that S(m) is true for m = 2k and m = 2k + 1. The proof of S(m + 1)
requires two cases, we prove the case for m+ 1 = 2k + 2, the case m+ 1 = 2k + 3 is similar
and is omitted. We know that Gm+1 = dGm + gGm−1. Thus, G2k+2 = dG2k+1 + gG2k. This
and the inductive hypothesis imply that G2k+2 mod d2 is

d
(

gk (kdG0 +G1)
)

+ g
(

gk−1 (kdG1 + gG0)
)

.

Simplifying, we obtain

G2(k+1) ≡ gk ((k + 1)dG1 + gG0) (mod d2).

This completes the proof.

Lemma 7 ([2]). If m and n are positive integers, Ft is a Fibonacci-type polynomial, and Lt

is a Lucas-type polynomial, then these hold

(1) gcd(d,F2n+1) = F1 and gcd(d,L2n+1) = L1.

(2) gcd(d,F2n) = d and gcd(d,L2n) = 1.

(3) gcd(g,Fn) = gcd(g,F1) = 1 and gcd(g,Ln) = gcd(g,L1) = 1.

(4) If 0 < |m− n| ≤ 2, then

gcd(Lm,Ln) =

{

α−1d, if m and n are both odd;

1, otherwise.

(5) If 0 < |m− n| ≤ 2, then

gcd(Fm,Fn) =

{

d, if m and n are both even;

1, otherwise.
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Lemma 8. Suppose that Gk is either Fk or Lk for all k ≥ 0. Let Gm+1Gn−2, GmGn, and
Gm+2Gn−1 be the points in a triangle of the star of David and GmGn−1, Gm+2Gn−2, and
Gm+1Gn be the points in the second triangle of the star of David, with m and n positive
integers where Gm Gn 6= G0 G0. If ∆t = gcd(Gt, Gt−2), then

gcd(GmGn−1, Gm+1Gn, Gm+2Gn−2) = gcd(Gn, Gm,∆m∆n)

and
gcd(Gm+1Gn−2, GmGn, Gm+2Gn−1) = gcd(Gn−2, Gm+2,∆n∆m).

Proof. We prove that

gcd(GmGn−1, Gm+1Gn, Gm+2Gn−2) = gcd(Gn, Gm,∆m∆n).

From Lemma 5 Part (2) we have

gcd(GmGn−1, Gm+1Gn) = gcd(Gm, Gn) · gcd(Gn−1Gm+1).

Therefore,

gcd (GmGn−1, Gm+1Gn, Gm+2Gn−2) = gcd (gcd (GmGn−1, Gm+1Gn) , Gm+2Gn−2)

= gcd ((gcd(Gm, Gn) · gcd (Gn−1Gm+1)) , Gm+2Gn−2) .

From Lemma 7 Parts (4) and (5) we know that

gcd(Gm+2Gn−2, gcd(Gn−1, Gm+1)) = 1.

So,

gcd (GmGn−1, Gm+1Gn, Gm+2Gn−2) = gcd (gcd (Gm, Gn) , Gm+2, Gn−2)

= gcd (Gm, Gn, Gm+2Gn−2)

= gcd(Gm, gcd(Gn, Gm+2Gn−2)).

This and Lemma 5 imply that

gcd(GmGn−1, Gm+1Gn, Gm+2Gn−2) = gcd(Gm, gcd(Gn, Gm+2∆n))

= gcd(Gn, gcd(Gm, Gm+2∆n))

= gcd(Gn, gcd(Gm,∆m∆n))

= gcd(Gn, Gm,∆m∆n).

Similarly, we have gcd(Gm+1Gn−2, GmGn, Gm+2Gn−1) = gcd(Gn−2, Gm+2,∆n∆m).
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3.1 Proof of the main theorems

Proof of Theorem 2. If in Lemma 8 we consider Gn = Fn, we have

gcd(FmFn−1,Fm+1Fn,Fm+2Fn−2) = gcd(Fn,Fm,∆m∆n) (6)

and
gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) = gcd(Fn−2,Fm+2,∆m∆n), (7)

where ∆t = gcd(Ft,Ft−2).
For this proof we consider three cases depending on the parity of m and n.

Case m and n are odd. From Lemma 7 Part (5) we have ∆m = ∆n = 1. This, (6), and
(7) imply that

gcd(FmFn−1,Fm+1Fn,Fm+2Fn−2) = 1

and
gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) = 1.

Case m and n have different parity. From Lemma 7 Part (5) we have ∆m∆n = d. This,
(6), and (7) imply that

gcd(FmFn−1,Fm+1Fn,Fm+2Fn−2) = gcd(Fn,Fm, d)

and
gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) = gcd(Fn−2,Fm+2, d).

From Lemma 7 Part (1) we have gcd(Fn,Fm, d) = 1 = gcd(Fn−2,Fm+2, d). Therefore,
gcd(FmFn−1,Fm+1Fn,Fm+2Fn−2) = gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) = 1.

Case both m and n are even. Suppose that n = 2k1 and m = 2k2 for some k1, k2 ∈ N.
So, from Lemma 7 Part (5) we have that ∆m = ∆n = d. Since F0 = 0 and F1 = 1, by
Proposition 6 we have

F2k1 ≡ k1g
k1−1d (mod d2),

F2k2 ≡ k2g
k2−1d (mod d2).

This and gcd(d, g) = 1 imply that

gcd(FmFn−1,Fm+1Fn,Fm+2Fn−2) = gcd(k1g
k1−1d, k2g

k2−1d, d2) = d gcd(d, k1, k2).

Similarly we have that gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) = d gcd(d, k1 − 1, k2 + 1).
Let β = (gcd(d, k1 − 1, k2 + 1)) / (gcd(d, k1, k2)). Therefore,

gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) = β gcd(FmFn−1,Fm+1Fn,Fm+2Fn−2).

We now prove Part (2). Factoring, we have that

gcd(Fm+1Fn−2,Fm+1Fn) · gcd(FmFn−1,Fm+2Fn−1)

is equal to
Fm+1Fn−1 · gcd(Fn−2,Fn) · gcd(Fm,Fm+2).

The conclusion follows using Lemma 7 Part (5).
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Proof of Theorem 3. In Lemma 8 if we take Gn = Ln, we have

gcd(LmLn−1,Lm+1Ln,Lm+2Ln−2) = gcd(Ln,Lm,∆m∆n) (8)

and
gcd(Lm+1Ln−2,LmLn,Lm+2Ln−1) = gcd(Ln−2,Lm+2,∆n∆m),

where ∆t = gcd(Lt,Lt−2). If m and n are not both odd, then the proof follows in a similar
way as in the proof of Theorem 2.

Suppose that both m and n are odd, that is n = 2k1 + 1 and m = 2k2 + 1 where k1, k2
are non-negative integers. Therefore, by Lemma 7 Part (4) we know that ∆m = ∆n = L1.
Since L1|d, by Proposition 6 we have

Ln ≡ ngk1L1 (mod L2
1)

and
Lm ≡ mgk2L1 (mod L2

1).

This and (8) imply that

gcd(LmLn−1,Lm+1Ln,Lm+2Ln−2) = gcd(ngk1L1,mgk2L1, (L1)
2).

This and gcd(d, g) = 1 imply that gcd(LmLn−1,Lm+1Ln,Lm+2Ln−2) = L1 gcd(n,m,L1).
Similarly we can prove that

gcd(Lm+1Ln−2,LmLn,Lm+2Ln−1) = L1 gcd(L1, n− 2,m+ 2).

Let β′ = (gcd(L1, n− 2,m+ 2)) / (gcd(L1, n,m)). Then,

gcd(Lm+1Ln−2,LmLn,Lm+2Ln−1) = β′ gcd(LmLn−1,Lm+1Ln,Lm+2Ln−2).

We now prove Part (2). Factoring, we have that

gcd(Lm+1Ln−2,Lm+1Ln) gcd(LmLn−1,Lm+2Ln−1)

is equal to
Lm+1Ln−1 gcd(Ln−2,Ln) gcd(Lm,Lm+2).

The conclusion follows using Lemma 7 Part (4).

3.2 Corollaries of the main theorem

Theorems 2, 3, and 4 are also true for the star of David with a vertical configuration as
depicted in Figure 3 (with similar proofs). The following corollaries are a formalization of
some results that are in the proofs of Theorems 2 and 3. For the following three corollaries
we suppose that the points are as given in Theorems 2 and 3 and Figure 2.
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Figure 3: Vertical star of David.

Corollary 9. Let Gt be one of the following polynomials: Fibonacci, Lucas, Jacobsthal,
Jacobsthal-Lucas, Chebyshev first kind polynomials, Pell-Lucas, and both Morgan-Voyce poly-
nomials, for every t ∈ N. If Gm+1Gn−2, GmGn, and Gm+2Gn−1 are the points in a triangle
of the star of David and GmGn−1, Gm+2Gn−2, and Gm+1Gn are the points in the second
triangle of the star of David, then

gcd(Gm+1Gn−2, GmGn, Gm+2Gn−1) = gcd(GmGn−1, Gm+2Gn−2, Gm+1Gn).

Corollary 10. Suppose that Fm+1Fn−2, FmFn, and Fm+2Fn−1 are the points in a triangle of
the star of David and FmFn−1, Fm+2Fn−2, and Fm+1Fn are the points in the second triangle
of the star of David. If n = 2k1 and m = 2k2 where k1, k2 ∈ N, then the these hold

(1) if n ≥ 0 and Fn is a Pell polynomial or a Chebyshev polynomial of the second kind with
k1k2 6≡ 0 (mod 4) and k1 6≡ k2 (mod 2), then

gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) = gcd(FmFn−1,Fm+2Fn−2,Fm+1Fn).

(2) If n ≥ 0 and Fn is a Fermat polynomial with k1k2 6≡ 0 (mod 9) and k1 6≡ 2k2 (mod 3),
then

gcd(Fm+1Fn−2,FmFn,Fm+2Fn−1) = gcd(FmFn−1,Fm+2Fn−2,Fm+1Fn).

Corollary 11. Suppose that Lm+1Ln−2, LmLn, and Lm+2Ln−1 are the points in a triangle
of the star of David and LmLn−1, Lm+2Ln−2, and Lm+1Ln are the points in the second
triangle of the star of David. If m,n ≥ 0, Lt is a Fermat-Lucas polynomial for t ≥ 0, and
LmLn 6= L0L0, then

gcd(Lm+1Ln−2,LmLn,Lm+2Ln−1) = gcd(LmLn−1,Lm+2Ln−2,Lm+1Ln).

4 The geometry of some identities

The aim of this section is to give geometric interpretations of some polynomial identities
that are known for the Fibonacci numbers. The novelty of this section is that we extend
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some well-known numerical identities to {Fk} and to {Lk} sequences and provide geometric
proofs for these identities instead of the classical mathematical induction proofs.

Hosoya-type triangles (polynomial and numeric) are good tools to discover, prove, or
represent theorems geometrically. Some properties that have been found and proved alge-
braically are easy to understand when interpreted geometrically using these triangles.

4.1 Identities in the Hosoya polynomial triangle

Lemma 12. If i, j, k, and r are nonnegative integers with k + j ≤ r, then in the Hosoya
polynomial triangle this holds

H(r + 2i, k + j + i)−H(r + 2i, k + i) = (−1)ig(H(r, k + j)−H(r, k)).

The proof of the Lemma 12 follows using induction and the rectangle property which
states that H(n,m) = dH(n− 1,m) + gH(n− 2,m) (see Figure 4).

H(r,k+j)H(r,k)

H(r+2i,k+i) H(r+2i,k+j+i)

 2
i R

ow
s

j columns

Figure 4: Property of Rectangle.

It is well known that the Catalan identity is a generalization of the Cassini identity.
Johnson [12], gives another numerical generalization of the Cassini and Catalan identities,
called the Johnson identity. It states that for the Fibonacci number sequence {Fn},

FaFb − FcFd = (−1)r (Fa−rFb−r − Fc−rFd−r)

where a, b, c, d, and r are arbitrary integers with a+ b = c+ d.
The example in Figure 5 gives a geometric representation of the numeric identities (the

same representation holds for polynomials). To represent the Cassini identity we take two
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consecutive points in the Hosoya triangle along a horizontal line such that one point is
located in the central column of the triangle, see Figure 5. We then pick two other arbitrary
consecutive points P1 and P2 such that they form a vertical rectangle along with the first
pair of points. The subtraction of the horizontal points P1 and P2 gives ±1. Since the entries
of the triangle are products of Fibonacci numbers, we obtain the Cassini identity.

The second example in Figure 5 represents the Catalan identity. In this case we take any
two horizontal points Q1 and Q2 where Q1 is located (arbitrarily) in the central column of
the triangle. We then pick other two arbitrary points P1 and P2 which form a rectangle with
Q1 and Q2. The subtraction of the horizontal points P1 and P2 gives ±(Q1 −Q2). Since the
entries of the triangle are products of Fibonacci numbers, we obtain the Catalan identity.
Note that if we eliminate the condition that Q1 must be in the central column, we obtain
the Johnson identity.

1

1 1

2 1 2

3 2 2 3

5 3 4 3 5

8 5 6 6 5 8

13 8 10 9 10 8 13

21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34

55 34 42 39 40 40 39 42 34 55

89 55 68 63 65 64 65 63 68 55 89

144 89 110 102 105 104 104 105 102 110 89 144

233 144 178 165 170 168 169 168 170 165 178 144 233

377 233 288 267 275 272 273 273 272 275 267 288 233 377

610 377 466 432 445 440 442 441 442 440 445 432 466 377 610

987 610 754 699 720 712 715 714 714 715 712 720 699 754 610 987

1597 987 1220 1131 1165 1152 1157 1155 1156 1155 1157 1152 1165 1131 1220 987 1597

2584 1597 1974 1830 1885 1864 1872 1869 1870 1870 1869 1872 1864 1885 1830 1974 1597 2584

 Catalan identity

 Cassini identity

Figure 5: Cassini and Catalan identities in the Hosoya Triangle.

Theorem 13. Let a, b, c, d and t be nonnegative integers with min{a, b, c, d}−t non-negative.
Suppose that Gk is either Fk or Lk for all k ≥ 0. If a+ b = c+ d, then

∣

∣

∣

∣

Ga Gc

Gd Gb

∣

∣

∣

∣

= (−1)tgt
∣

∣

∣

∣

Ga−t Gc−t

Gd−t Gb−t

∣

∣

∣

∣

.

Proof. Let i, j, k, and r be nonnegative integers such that a = k + j + i, b = r + i− k − j,
c = k + i, d = r + i− k, and t = i. Therefore, by Lemma 12 and Proposition 1 the equality
holds.

Theorem 13 is a generalization of Johnson identity [12] and Falcón and Plaza identity
[1]. As a consequence of Theorem 13 we state Corollary 14 — this generalizes the Catalan
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identity to Fk and Lk. If in Corollary 14 we take r = 1, then we obtain a generalization of
Cassini identity.

Corollary 14 (Catalan identity). Suppose that m, r are non-negative integers. If Gk is
either Fk or Lk for all k ≥ 0, then

∣

∣

∣

∣

Gm Gm+r

Gm−r Gm

∣

∣

∣

∣

= (−1)m−rgm−r

∣

∣

∣

∣

Gr G2r

G0 Gr

∣

∣

∣

∣

.

Proof. The proof is straightforward when the appropriate values of m and r are substituted
in Theorem 13 (see Figure 5). If we evaluate both determinants in Theorem 13 we obtain
four summands that are four points in the Hosoya polynomial triangle. Note that these four
points are the vertices of a rectangle in the Hosoya triangle.

R3

R1

R2

R4

0

0

0

0

Figure 6: Geometric interpretation of Theorem 15.

We observe that if we have a Hosoya triangle where the entries are products of two
polynomial of {Fk}, then we can draw rectangles with two vertices in the central line (the
perpendicular bisector) of the triangle and a third vertex on the edge of the triangle (see
Figure 6). For a fixed i ∈ N let Ri be a rectangle with the extra condition that the upper
vertex points are multiplied by g, then Lemma 12 guarantees that the sum of the two top
vertices of Ri is equal to the sum of the remaining vertices of Ri. Since the points in the
edge of this triangle are equal to zero, one of the vertices of Ri is equal to zero. The other
vertex in the same vertical line is a polynomial Fi multiplied by one. This geometry gives
rise to Theorem 15.

For the next result we introduce the following function. We recall that g is as defined in
(1).

I(n) =

{

g, if n is even;

1, if n is odd.
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Theorem 15. If n and k are positive integers, then

2n+1
∑

j=2

I(j)F2
j =

n
∑

j=1

F4j+1

and
2n+1
∑

j=2

(−1)j+1I2(j)F2
2j = d

n
∑

j=1

F8j+2.

Proof. First of all we recall that F1 = 1. We prove the first identity.

2n+1
∑

j=2

I(j)F2
j =

n
∑

j=1

(F2
2j+1 + gF2

2j) =
n

∑

j=1

(F4j+1F1 + F0F4j)

=
n

∑

j=1

F4j+1.

We now prove the second identity. Let S :=
∑2n+1

j=2 (−1)j+1I2(j)F2
2j. Lemma 12 implies

that

S =
n

∑

j=1

(F2
4j+2 − g2F2

4j)

=
n

∑

j=1

((

F2
4j+2 + gF2

4j+1

)

− g
(

F2
4j+1 + gF2

4j

))

.

Since F1 = 1, we have

S =
n

∑

j=1

((

F8j+3 + gF8j+1F0

)

− g
(

F8j+1 + gF8j−1F0

))

= F1

n
∑

j=1

(

F8j+3 − gF8j+1

)

= d

n
∑

j=1

F8j+2.

This completes the proof.

Corollary 16 provides a closed formula for special cases of Theorem 15. We use Figure
7 to give a geometric interpretation of Corollary 16. For brevity we only give an algebraic
proof of Part (1), the algebraic proof of Part (2) is similar, therefore it is omitted, and instead
we provide a geometric proof of Part (2). This gives us the geometric behavior of a zigzag
pattern of points. Thus, Corollary 16 Part (2) states that the sum of all points that are in
the intersection of a finite zigzag configuration and the central line of the triangle is the last
point of the zigzag configuration (see Figure 7).
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Corollary 16. Suppose that g is as defined in (1). Then these hold

(1)
n

∑

j=1

g2n−jF4j−3 =
F2n−1F2n

d
.

(2) If (in particular) the sequence {Fk} satisfies that g = 1, then

2n−1
∑

j=1

F2
j =

F2n−1F2n

d
.

Figure 7: Geometric interpretation of Corollary 16.

Proof. Since H(2n, n) = F2
n, we have that gnH(1, 1) +

∑n

j=1 dg
n−jF2

j is equal to

n
∑

j=1

dgn−jH(2j, j) = gn−1(gH(1, 1) + dH(2, 1)) +
n

∑

j=2

dgn−jF2
j

= gn−1H(3, 1) + dgn−2H(4, 2) +
n

∑

j=3

dgn−jF2
j

= gn−2H(5, 3) +
n

∑

j=3

dgn−jF2
j

= gn−2F3F2 +
n

∑

j=3

dgn−jF2
j .
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Similarly, we find that

n
∑

j=1

dgn−jF2
j = H(2n+ 1, n+ 1) = Fn+1Fn − gnF1F0. (9)

Note that

2n+1
∑

j=2

g2n+1−jF2
j =

n
∑

j=1

g2n−j(F2
2j+1 + gF2

2j)

=
n

∑

j=1

g2n−j(F4j+1F1 + F0F4j)

=
n

∑

j=1

g2n−jF4j+1.

This, Equation (9), and F0 = 0 complete the proof of Part (1).
Proof of Part (2). From the hypothesis of Part (2), g = 1, we see that the sequence {Fn}

defined in (1) satisfies that g = 1 and that H(0, k) = H(k, 0) = 0 for every k. This and the
definition of the Hosoya polynomial sequence (page 5), imply that

H(r, k) = dH(r − 1, k) +H(r − 2, k) and H(r, k) = dH(r − 1, k − 1) +H(r − 2, k − 2).

Therefore the points depicted in Figure 7 have the properties described in Table 6.

p0 = 0, p2 = dp1 + p0, p4 = dp3 + p2 p6 = dp5 + p4
p8 = dp7 + p6, p10 = dp9 + p8, . . . p4n = dp4n−1 + p4n−2.

Table 6: Properties of points in the Zigzag Figure 7.

Since g = 1, we have that I(j) = 1 for all j. Therefore,
∑2n+1

j=1 I(j)F2
j =

∑2n+1
j=1 F2

j is
actually the sum of all points that are in the intersection of the zigzag diagram with central
line of the triangle (see Figure 7). Thus,

d

2n+1
∑

j=1

F2
j = p0 + dp1 + dp3 + dp5 + dp7 + · · ·+ dp4n−1.

The sum of the first two terms in the right side is equal to the third point of the zigzag
diagram (see Table 6 and Figure 7). Therefore, substituting them with p2 we have

d

2n+1
∑

j=1

F2
j = p2 + dp3 + dp5 + dp7 + · · ·+ dp4n−1.
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Now the sum of the first two terms of the right side of the previous equation is equal to the
fifth point, p4, of the zigzag diagram (see Table 6 and Figure 7). Therefore, substituting
them with p4 we have

d
2n+1
∑

j=1

F2
j = p4 + dp5 + dp7 + · · ·+ dp4n−1.

Similarly, we substitute p4 + dp5 with the seventh point of the zigzag diagram. Thus,

d

2n+1
∑

j=1

F2
j = p6 + dp7 + · · ·+ dp4n−1.

Continuing this process, systematically substituting the terms, we obtain

d
2n+1
∑

j=1

F2
j = p4n = F2n−1F2n.

This completes the geometric proof of Part (2).

4.2 Integration in the Hosoya triangle

We now discuss some examples on how the geometry of the triangle can be used to represent
identities. The examples given in the following discussion are only for the case in which the
Hosoya triangle (denoted by HF ) has products of Fibonacci polynomials as entries. With
this triangle in mind we introduce a notation that will be used in following examples. We
define an n-initial triangle as the finite triangular arrangement formed by the first n-rows of
HF with non-zero entries. Note that the initial triangle is the equilateral sub-triangle of the
Hosoya triangle as in Table 3 on page 6 without the entries containing the factor G0. For
instance, Table 5 on page 7 represents the 5-initial triangle of HF .

If F ′
n(x) represents the derivative of the Fibonacci polynomial Fn(x), then F ′

n(x) =
∑n−1

k=1 Fk(x)Fn−k(x) (see [1, 14]). The geometric representation of this property in an n-
initial triangle is as follows: the derivative of the first entry of the last row of a given
n-initial triangle is equal to the sum of all points of the penultimate row of this triangle (see
Table 5 on page 7). We have observed that this property implies that the integral of all
points of the first n− 1 rows of a given n-initial triangle is equal to the sum of all points of
one edge of this triangle, where the constant of integration is ⌈n/2⌉. This result is stated
formally in Proposition 17. Similar results can be obtained using Table 7.

Proposition 17. Let n be a positive number, then

(1)

H(n, 1) =
n−1
∑

k=1

∫

H(n− 1, k).
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Equivalently,

Fn(x) =
n−1
∑

k=1

∫

Fk(x)Fn−k(x),

where the constant of integration is C = 1 if n is odd and zero otherwise.

(2)

H(n+ 1, 1) +H(n, 1)− 1 = x
n

∑

r=1

r−1
∑

k=1

∫

H(r − 1, k).

Equivalently,

Fn+1(x) + Fn(x)− 1 = x
n

∑

r=1

r−1
∑

k=1

∫

Fk(x)Fr−k(x),

where the constant of integration is C = ⌈n/2⌉.

Proof. The proof of Part (1) is straightforward using the geometric interpretation of F ′
n(x).

We prove Part (2). From Part (1) and from the geometry of the (n−1)-initial triangle we
have

∑n

r=1 H(k, 1) =
∑n−1

r=1

∑r−1
k=1

∫

H(r − 1, k). From Koshy [14, Theorem 37.1] we know
that Fn+1(x)+Fn(x)−1 = x

∑n

i=1 Fi(x). This and the fact that H(t, 1) = Ft(x) for all t ≥ 1
completes the proof.

Derivative

F ′
n(x) =

∑n−1
k=1 Fk(x)Fn−k(x)

P ′
n(x) = 2

∑n−1
k=1 Pk(x)Pn−k(x)

Φ′
n(x) = 3

∑n−1
k=1 Φk(x)Φn−k(x)

U ′
n(x) = 2

∑n−1
k=1 Pk(x)Pn−k(x)

B′
n(x) =

∑n−1
k=1 Bk(x)Bn−k(x)

Table 7: Derivatives of Fibonacci-type polynomials.

5 Appendix. Numerical types of Hosoya triangle

In this section we study some connections of the Hosoya polynomial triangles with some
numeric sequences that may be found in [20]. We show that when we evaluate the entries
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of a Hosoya polynomial triangle at x = 1 they give a triangle that is in http://oeis.org/.
The first Hosoya triangle is the classic Hosoya triangle formerly called the Fibonacci triangle.

We now introduce some notation that is used in Table 8. Recall that HF is the Hosoya
triangle with products of Fibonacci polynomials as entries. Similarly we define the notation
for the Hosoya polynomial triangle of the other types — Chebyshev polynomials, Morgan-
Voyce polynomials, Lucas polynomials, Pell polynomials, Fermat polynomials, Jacobsthal
polynomials. The star of David property holds obviously for all these numeric triangles.

Triangle type Notation Entries Sloane
Fibonacci HF (1) Fk(1)Fr−k(1) A058071
Lucas HD(1) Dk(1)Dr−k(1) A284115
Pell HP (1) Pk(1)Pr−k(1) A284127
Pell-Lucas HQ(1) Qk(1)Qr−k(1) A284126
Fermat HΦ(1) Φk(1)Φr−k(1) A143088
Fermat-Lucas Hϑ(1) ϑk(1)ϑr−k(1) A284128
Jacobsthal HJ(1) Jk(1)Jr−k(1) A284130
Jacobsthal-Lucas Hj(1) jk(1)jr−k(1) A284129
Morgan-Voyce HB(1) Bk(1)Br−k(1) A284131
Morgan-Voyce HC(1) Ck(1)Cr−k(1) A141678

Table 8: Numerical Hosoya triangles present in Sloane [20].

We also observe some curious numerical patterns when we compute the gcd of the co-
efficients of polynomials discussed in this paper. In particular, the gcd of the coefficients
of Φn(x), the nth Fermat polynomial, is 3an where an is the nth element of A168570. The
gcd of the coefficients of ϑn(x), the nth Fermat-Lucas polynomial, is 3an where an is the
nth element of A284413. We also found that the gcd of the coefficients of the P2n(x), the
2nth Pell polynomial, is 2an where an is the nth element of A001511. Finally, the gcd of the
coefficients of the Un(x), the nth Chebyshev polynomial of second kind, is 2an where an is
the nth element of A007814.
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