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Abstract

In a 2009 article, Barnett and Broughan considered the set of prime-index primes.
If the prime numbers are listed in increasing order (2, 3, 5, 7, 11, 13, 17, . . .), then
the prime-index primes are those which occur in a prime-numbered position in the
list (3, 5, 11, 17, . . .). Barnett and Broughan established a prime-indexed prime
number theorem analogous to the standard prime number theorem and gave an
asymptotic for the size of the n-th prime-indexed prime.

We give explicit upper and lower bounds for π2(x), the number of prime-indexed
primes up to x, as well as upper and lower bounds on the n-th prime-indexed
prime, all improvements on the bounds from 2009. We also prove analogous results
for higher iterates of the sequence of primes. We present empirical results on large
gaps between prime-index primes, the sum of inverses of the prime-index primes,
and an analog of Goldbach’s conjecture for prime-index primes.

1. Introduction

Many of the classes of primes typically studied by number theorists concern prop-
erties of primes dictated by the positive integers. Twin primes, for example, are
consecutive primes with an absolute difference of 2. It is interesting, however, to
consider a sequence of primes whose members are determined by the primes them-
selves.
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In this work, we consider the set of prime-indexed-primes (or PIPs), which are
prime numbers whose index in the increasing list of all primes is itself prime. In
particular we have:

Definition 1.1. Let P be the sequence of primes written in increasing order
{pi}i≥1. The sequence of prime-indexed-primes, or PIPs, is the subsequence of
P where the index i is itself prime. Specifically, the sequence of prime-indexed
primes is given by {qi} where qi = ppi for all i ≥ 1.

Prime-indexed-primes seem to have been first considered in 1965 by Jordan [1],
who also considered primes indexed by other arithmetic sequences. They were again
studied in 1975 by Dressler and Parker [2], who showed that every positive integer
greater than 96 is representable by the sum of distinct PIPs. Later, Sándor [3]
built on Jordan’s work of considering the general question of primes indexed by an
arithmetic sequence by studying reciprocal sums of such primes and limit points of
the difference of two consecutive primes. Some of these results can be found in [4,
p. 248-249].

The direct inspiration of this work is the recent work of Broughan and Barnett [5],
who have demonstrated many properties of PIPs, giving bounds on the n-th PIP, a
PIP counting function (analogous to the prime number theorem), and some results
on small gaps between consecutive PIPs.

We follow Broughan and Barnett by explaining PIPs via example. In the follow-
ing list of primes up to 109, all those with prime index (the PIPs) are in bold type:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97, 101, 103, 107, 109.

We note also the equivalent definition of PIPs, which may be of some use. If we
let, as usual, π(x) be the number of primes not greater than x, then an integer p is
a PIP if both p and π(p) are prime.

2. Preliminary Lemmas

In this section we state a few lemmas which will be helpful in the proofs of the
theorems in the remaining sections of this paper. The proofs consist of technical
details, and contain no insight of direct relevance to the rest of the paper, so we defer
their proofs to Section 10. First, we give a pair of bounds comparing combinations
of n and log n to log log n.

Lemma 2.1. For n ≥ 3,

log (log (n log n)) < log log n +
log log n

log n
.
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Lemma 2.2. For n ≥ 3,

log log (n log (n log n)) <

�
1 +

1
log n

+
1

log2
n

�
log log n.

We will also need two lemmas bounding the reciprocal of log π(x), one for explicit
bounds and one for asymptotic bounds.

Lemma 2.3. For all x ≥ 33,

1
log x

�
1 +

log log x

log x

�
<

1
log π(x)

<
1

log x

�
1 +

log log x

log x
+

(log log x)2

log2
x

+ · · ·
�

.

Lemma 2.4. For all k ≥ 1, we have

1
logk

π(x)
=

1
logk

x

�
1 +

k log log x

log x
+ Ok

�
(log log x)2

log2
x

��

and

log log π(x)
log π(x)

=
log log x

log x
+ O

�
(log log x)2

log2
x

�
.

3. Bounds on PIPs

Broughan and Barnett were the first to put upper and lower bounds on qn, the n-th
PIP. In particular, they show

qn < n(log n + 2 loglog n)(log n + loglog n)− n log n + O(n loglog n),
qn > n(log n + 2 loglog n)(log n + loglog n)− 3n log n + O(n log log n).

By using some theorems of Dusart [6], we show that these bounds can both be
improved and made explicit.

Theorem 3.1. For all n ≥ 3, we have

qn > n (log n + log log n− 1) (log n + 2 log log n− 1) ,

and for all n ≥ 71, we have

qn < n

�
log n + log log n− 1

2

��
log n + 2 log log n +

3 log log n

log n
− 1

2

�
.

Proof. We begin with the lower bound. Using the result of Dusart [6] that

pn > n (log n + log log n− 1)
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for all n ≥ 2, we have for all n ≥ 3 that

qn > n (log n + log log n− 1)
�

log (n (log n + log log n− 1))

+ log log (n (log n + log log n− 1))− 1
�

.

Now, using the fact that

log (n log n + n log log n− n) > log n + log log n,

we may bound

qn > n (log n + log log n− 1) (log n + log log n + log (log n + log log n)− 1)
> n (log n + log log n− 1) (log n + 2 log log n− 1) .

Turning to the upper bound, we use a result of Rosser and Schoenfeld [7], that:

pn < n

�
log n + log log n− 1

2

�

for n ≥ 20. To simplify the notation here, let

N = n

�
log n + log log n− 1

2

�
. (3.1)

This gives that for n ≥ 71,

qn < N

�
log N + log log N − 1

2

�
. (3.2)

Now, Lemma 2.1 gives that

log N < log n + log log n +
log log n

log n
.

Also, by Lemma 2.2,

log log N <

�
1 +

1
log n

+
1

log2
n

�
log log n < log log n +

2 log log n

log n
.

Putting these into (3.2), we can bound

qn < n

�
log n + log log n− 1

2

��
log n + 2 log log n +

3 log log n

log n
− 1

2

�
,

which is the bound in the theorem.
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In fact, using an upper bound on pn due to Robin [8], namely

pn < n (log n + log log n− 0.9385) for n ≥ 7022,

we are able to prove the somewhat stronger upper bound

qn < n (log n + log log n− 0.9385)
�

log n + 2 log log n +
2 log log n

log n
− 0.9191

�

for all n ≥ 70919.

4. Bounds for the Number of Prime-Indexed-Primes

Define π2(x) to be the number of PIPs not greater than x. Note that it follows
immediately from the definition that π2(x) = π(π(x)). Broughan and Barnett show
that

π
2(x) ∼ x

log2
x

,

and also give the slightly more sophisticated

π
2(x) ∼ x

log2
x

+ O

�
x log log x

log3
x

�
.

With respect to the classical prime number theorem, a study of the error term
has driven much research in number theory. Among the known results [6, page 16]
is

π(x) =
x

log x

�
1 +

1
log x

+
2

log2
x

+ O

�
1

log3
x

��
. (4.1)

We also have a number of known explicit bounds on π(x), including [6, page 2]

x

log x

�
1 +

1
log x

�
≤ π(x) ≤ x

log x

�
1 +

1.2762
log x

�
, (4.2)

where the lower bound holds for x ≥ 599 and the upper bound holds for x > 1.
Based on this work, we are able to prove the following theorem.

Theorem 4.1. For all x ≥ 3, we have

π
2(x) <

x

log2
x

�
1 +

1.5
log x

�2 �
1 +

log log x

log x
+

1.5(log log x)2

log2
x

�
,

while, for all x ≥ 179,

π
2(x) >

x

log2
x

�
1 +

1
log x

�2 �
1 +

log log x

log x

�
.
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Proof. We begin with the upper bound. First, note that

∞�

i=2

�
log log x

log x

�i

=

�
log log x

log x

�2

1−
�

log log x
log x

� < 1.5
�

log log x

log x

�2

(4.3)

for x ≥ 179. We may bound π2(x) with bounds on π(π(x)), using Lemma 2.3 and
(4.3) to see that

π
2(x) ≤ π(x)

log π(x)

�
1 +

1.2762
log π(x)

�

<
x

log2
x

�
1 +

1.2762
log x

��
1 +

1.2762
log π(x)

��
1 +

log log x

log x
+

1.5(log log x)2

log2
x

�
.

Now, to complete the upper bound’s proof, we need only show
�

1 +
1.2762
log x

��
1 +

1.2762
log π(x)

�
<

�
1 +

1.5
log x

�2

. (4.4)

By Lemma 2.3 and (4.3),

1.2762
log π(x)

≤ 1.2762
log x

�
1 +

log log x

log x
+

1.5(log log x)2

log2
x

�
<

1.7238
log x

,

for x ≥ 3030. Then,
�

1 +
1.2762
log x

��
1 +

1.7238
log x

�
≤ 1 +

3
log x

+
2.22

log2
x

<

�
1 +

1.5
log x

�2

,

which establishes (4.4) and thus the upper bound in the theorem for x ≥ 3030.
Finally, a computer check verifies the upper bound for 3 ≤ x ≤ 3030.

For the lower bound, we can use (4.2) to see that

π
2(x) ≥ π(x)

log π(x)

�
1 +

1
log π(x)

�

≥ π(x)
log π(x)

�
1 +

1
log x

�

≥ x

log x

�
1 +

1
log x

�2

· 1
log π(x)

≥ x

log2
x

�
1 +

1
log x

�2 �
1 +

log log x

log x

�

by Lemma 2.3, for all x ≥ 4397. A computer check shows that the bound also holds
for all 179 ≤ x ≤ 4397, completing the proof of the theorem.
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n π(10n) π2(10n) π3(10n)
1 4 2 1
2 25 9 4
3 168 39 12
4 1229 201 46
5 9592 1184 194
6 78498 7702 977
7 664579 53911 5492
8 5761455 397557 33666
9 50847534 3048955 220068

10 455052511 24106415 1513371
11 4118054813 195296943 10833076
12 37607912018 1613846646 80104927
13 346065536839 13556756261 608455060
14 3204941750802 115465507935 4726881850
15 29844570422669 995112599484 37431015268
16 279238341033925 8663956207026 301327263751
17 2623557157654233 76105984161825 2460711566651
18 24739954287740860 673776962356604 20348625806080
19 234057667276344607 6006525919368810 170149286304116
20 2220819602560918840 53878729390812464 1436870802519360
21 21127269486018731928 485986685605473234 12241980697771924
22 201467286689315906290 4405654516157364292 105136072207222852
23 1925320391606803968923 40121204955640303216 909475787902559408
24 18435599767349200867866 366893555203205479291 7919305232077304848

Table 1: Values of π2(x) and of π3(x) for small powers of 10

Small improvements can be made to the bounds in Theorem 4.1, at the expense
of the relative simplicity in the statement. However, the lower bound is much closer
to the truth. Using a stronger version of (4.2) and a finer version of Lemma 2.3 it
is possible to prove the following theorem.

Theorem 4.2. We have

π
2(x) =

x

log2
x

�
1 +

log log x

log x
+

2
log x

�
+ O

�
x(log log x)2

log4
x

�
.

Table 4 gives the values of π(x) and π2(x) for powers of 10 up to 1024. The table
also gives values of π3(x), the number of PIPs of prime index up to x (see a definition
and further generalization in Section 7). The values of π(x) up to 1023, as well as
all values of π2(x) and of π3(x), were computed using an implementation of the
Lagarias-Miller-Odlyzko algorithm [9] described in [10]. The value of π

�
1024

�
was

computed in 2010 by Buethe, Franke, Jost, and Kleinjung [11] using a conditional
(on the Riemann hypothesis) analytic method, and latter confirmed in 2012 by
Platt [12] using an unconditional analytic method.
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5. Twin PIPs

Twin primes are pairs of primes which are as close together as possible – namely,
they are consecutive odd numbers which are both prime. We will define twin prime-

indexed primes, or twin PIPs, with a similar motivation, that is, they are PIPs
which are as close together as possible. Since two consecutive indices cannot be
prime, there must always be at least one prime between consecutive PIPs (except
for the trivial case q2 = 3, q3 = 5). Futhermore, we know that p, p + 2, and p + 4
cannot be simulatenously prime, since 3 always divides one of them, and thus the
smallest distance between consecutive PIPs is 6. To this end, we make the following
definition.

Definition 5.1. Let p and q be PIPs. We say that they are twin PIPs if p− q = 6.

The twin prime conjecture states that there are infinitely many twin primes, and
Broughan and Barnett conjecture that there are infinitely many consecutive PIPs
with a difference of 6 (and indeed they conjecture that all gaps of even size at least
6 appear infinitely often). However, the Twin Prime Conjecture has a strong form,
which states that where π2(x) is the number of twin primes not greater than x,

π2(x) ∼ 2Ctwin

� x

0

dt

log2
t
∼ 2Ctwin

x

log2
x

,

where
Ctwin =

�

p≥3

p(p− 2)
(p− 1)2

≈ 0.6601618158

is the twin prime constant. One of the reasons that number theorists have faith
in the twin prime conjecture is that the strong form of the conjecture seems to
be very accurate. Experimentally we see that the data conform to this conjecture
remarkably closely. The twin prime conjecture predicts that the number of primes
up to 4× 1018 is about

2Ctwin

� 4×1018

0

dx

log2
x
≈ 3023463139207178.4.

The third author has calculated this value precisely [13], and found

π2(4× 1018) = 3023463123235320,

which impressively agree in the first eight digits.
The basic idea behind the strong form of the twin prime conjecture is that the

events “p is prime” and “p + 2 is prime” are not independent events (details can
be found in, say, [14, pp. 14–16]). Similar reasoning applies to twin PIPs. In
particular, we consider the following question: if q is a PIP, what is the probability
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that q + 6 is also a PIP? We must have either that q, q + 2, q + 6 are all prime, or
that q, q + 4, q + 6 are all prime. But it is not enough for q + 6 to be prime; it must
also be a PIP. Combining these ideas, we find the following

Theorem 5.2. If a prime q with index n is the first of a pair of twin PIPs, then

one of two cases hold. Either: The triple (q, q+2, q+6) are all prime, or the triple

(q, q + 4, q + 6) are all prime. Furthermore, the index of q and q + 6 must each be

prime.

From this theorem we can construct a heuristic bound on the density of twin
PIPs.

Conjecture 5.3. The number of twin PIPs up to x, π2
2(x), is asymptotically

�

p>3

p3(p− 2)(p− 3)
(p− 1)5

·
� x

2

dt

log3
t(log t− log log t)2

.

Argument. Hardy and Little established conjectures on the density of prime constel-
lations a century ago [15], and though unproven they are widely accepted, and enjoy
considerable empirical support. Their conjectured density of either triple given in
Theorem 5.2 is asymptotically

Px(q, q + 2, q + 6) ∼
�

p>3

p2(p− 3)
(p− 1)3

·
� x

2

dt

log3
t
.

We expect, as we have throughout this paper, that we can treat the primality of
the index of a prime q as independent of q. Let n be the index of q. Then n + 2 is
the index of the prime q + 6. The probability of both n and n + 2 being prime is
heuristically

�

p>2

p(p− 2)
(p− 1)2

· 1
log2

n
=

�

p>2

p(p− 2)
(p− 1)2

· 1
log2(q/ log q)

.

If we simply multiply our earlier heuristic by the probability of this additional
restriction, we find an expected density of twin PIPs to be

L(x) =
�

p>3

�
p2(p− 3)
(p− 1)3

��
p(p− 2)
(p− 1)2

�� x

2

dt

log3
t

1
log2(t/ log t)

=
�

p>3

p3(p− 2)(p− 3)
(p− 1)5

� x

2

dt

log3
t(log t− loglog t)2

.

Evaluating the product gives

L(x) ≈ 7.5476417
� x

2

dt

log3
t(log t− loglog t)2

.

This heuristic seems to describe the distribution of twin PIPs quite well. The
following table gives the predicted number and actual number of twin PIPs up to
various powers of 10, together with the absolute and relative error at each stage.
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i π2
2(10i) L(10i) L(10i)− π2

2(10i) (L(10i)− π2
2(10i))/

�
π2

2(10i)
1 1 19.5 18.5 18.5348
2 2 22.7 20.71 14.6437
3 3 24.6 21.6 12.4549
4 3 27.7 24.6 14.2297
5 7 35.8 28.8 10.8928
6 32 64.4 32.4 5.7360
7 149 184.5 35.5 2.9117
8 733 756.8 23.8 0.8774
9 3783 3754.2 -28.8 -0.4676

10 20498 20650.7 152.7 1.0664
11 119901 121621.9 1720.9 4.9700
12 750092 754446.3 4354.23 5.0276
13 4864965 4880705.2 15740.2 7.1363
14 32618201 32699568.8 81367.8 14.2470
15 225217352 225689240.9 471888.9 31.4441

Table 2: Actual counts, predicted values, absolute and relative errors for π2
2(x) at

small powers of 10.

6. The Sum of the Reciprocals of the PIPs

The asymptotic density of the PIPs is O(x/ log2
x), from which it follows that the

sum of the reciprocals of the PIPs converges (as noted first in [1]). Reciprocal
sums have some interest in themselves; bounding Brun’s constant, the sum of the
reciprocals of the twin primes, has been a goal of many mathematicians since at
least 1974 [16, 17, 18, 19, 20]. However, the accuracy of bounds on reciprocal
sums also measures in an important way how much we understand a particular
class of numbers. Bounding a reciprocal sum well requires two things: first, a
computationally determined bound on small integers from the class; and second,
good explicit bounds on the density of large integers from the class.

By this measure, twin primes are understood much better than, say, amicable
numbers. Let B be the sum of the reciprocals of the twin primes. Then B has been
shown to satisfy [14]

1.83 < B < 2.347,

and in fact [20]
1.83 < B < 2.15,

assuming the Extended Riemann Hypothesis. By contrast, let P be the Pomerance
Constant – the sum of the reciprocals of the amicable numbers. Then the best
known bounds on P [21] are the fairly weak

0.01198 < P < 6.56× 108
.
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Comparing the size of these intervals shows that, in a measurable way, current
mathematical knowledge about twin primes is better than that of amicable numbers.
With this is mind, we are interested in determining the accuracy to which we can
bound the sum of the reciprocals of the PIPs.

By generating all PIPs up to 1015 using the obvious expedient of employing two
segmented Erathosthenes sieves [22], one to check the primality of each odd n in
that interval and another to check the primality of π(n), and by accumulating the
sum of the inverses of the PIPs using a 192-bits fractional part, it we find that

�

q≤1015

1
q
≈ 1.01243131879802898253. (6.1)

When u and v are not PIPs, the sum

T (u, v) =
�

u<q<v

1
q

=
� v

u

dπ
�
π(x)

�

x

can be reasonably well approximated by replacing π(x) by li(x) =
� x
0

dt
log t . This

yields

T (u, v) ≈ T̂ (u, v) =
� v

u

dx

x log x log li(x)
=

� log v

log u

dx

x log li(ex)
.

Due to potential arithmetic overflow problems when x is large, in this last integral
log li(ex) should be evaluated by replacing it by its asymptotic expansion

li(ex) ≈ x− log x + log

�
N�

k=0

k!
xk

�
;

N = �x� delivers an approximation with relative error close to
√

2πx e−x. This is
not enough to evaluate T̂ (1015,∞) directly with an absolute error smaller that 5×
10−21, so T̂ (1015, 10100) can be numerically integrated without using the asymptotic
expansion, and then T̂ (10100,∞) can be numerically integrated using the asymptotic
expansion. Both Mathematica and pari-gp agree that

T̂ (1015
,∞) = 0.03077020549198786752.

It follows that �

q

1
q
≈ 1.04320152429001685005. (6.2)

Comparing T (k×1014, (k+1)×1014) with T̂ (k×1014, (k+1)×1014) for k = 1, . . . , 10
suggests that the absolute value of the relative error of the latter is, with high
probability, smaller in 10−6. The error of our estimate of

�
q

1
q is therefore expected

to be of order 10−8.



INTEGERS: 13 (2013) 12

Another approach to finding the sum of the reciprocals of the PIPs is to use the
explicit upper and lower bounds on π2(x) from Theorem 4.1, our calculations to
1015, and partial summation to bound the sum. Let us label the upper bound on
π2(x) as π2

u(x), and the lower bound as π2
l (x). Then we have

�

q

1
q

<

�

q≤1015

1
q
−

π2
�
1015

�

1015
+

� ∞

1015

π2
u(t)
t2

dt,

and
�

q

1
q

>

�

q≤1015

1
q
−

π2
�
1015

�

1015
+

� ∞

1015

π2
l (t)
t2

dt.

In fact, these functions π2
u(x) and π2

l (x) do a fairly good job bounding π2(x) past
1015, as determined by the difference in the integrals above. Numerical calculation
with Mathematica gives the following:

� ∞

1015

π2
l (t)
t2

dt ≈ 0.0315569;
� ∞

1015

π2
u(t)
t2

dt ≈ 0.0322135.

Combining these values with the calculation in (6.1), we can show that the sum
of the reciprocals of the PIPs satisfies

1.04299 <

�

q

1
q

< 1.04365,

in good agreement with (6.2).

7. The Generalized Prime Number Theorem

It is natural to consider a further generalization of prime-index primes. If the set
of primes is listed in order, the subsequence of prime-index primes could be called
2-primes. Similarly, if the set of 2-primes is listed in increasing order, we may call
the subsequence with prime index 3-primes. Let a k-prime be a member of the k-th
iteration of this process. One may ask for the analogous results on the n-th k-prime
and the number of k-primes up to x.

As noted in Broughan and Barnett [5], it is not hard to establish an analog to
the Prime Number Theorem. Namely, defining πk(x) as the number of k-primes
less than or equal to x, it is easy to show that

π
k(x) =

x

logk
x

+ O

�
x log log x

logk
x

�
.

In fact, it can be shown that πk(x) ∼ Lik(x) as x → ∞. The proof of this state-
ment is not difficult, but is also not very enlightening. The theorem we prove here
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is slightly weaker, but shows more of the shape of the three main terms in this
asymptotic.

Theorem 7.1. For all k ≥ 1,

π
k(x) =

x

logk
x

�
1 +

(k − 1) log log x

log x
+

k

log x

�
+ Ok

�
x(log log x)2

logk+2
x

�
.

Proof. The proof proceeds by induction on k. The case k = 1 is given in (4.1), so
we assume the statement holds up to k. Then,

π
k+1(x) = π

k (π(x))

=
π(x)

logk
π(x)

�
1 +

(k − 1) log log π(x)
log π(x)

+
k

log π(x)

�

+ Ok

�
π(x)(log log π(x))2

logk+2
π(x)

�

by the induction hypothesis. Now, Lemma 2.4 gives that

1
logk

π(x)

�
1 +

(k − 1) log log π(x)
log π(x)

+
k

log π(x)

�

is equivalent to

1
logk

x

�
1 +

k log log x

log x
+

k

log x
+ Ok

�
(log log x)2

log2
x

��
.

Putting this together with (4.1) gives that

π
k+1(x) =

π(x)
logk

x

�
1 +

k log log x

log x
+

k

log x
+ Ok

�
(log log x)2

log2
x

��

=
x

logk+1
x

�
1 +

k log log x

log x
+

k + 1
log x

�
+ Ok

�
x(log log x)2

log2
x

�
,

completing the theorem’s proof.

Using Theorem 4.1 as the base case and Lemma 2.3 for the inductive step, we
can prove the following theorem giving explicit bounds on πk(x).

Theorem 7.2. For all k ≥ 2, there exists a computable x0(k) such that

π
k(x) <

x

logk
x

�
1 +

1.5
log x

�k �
1 +

1.5 log log x

log x

�k−1

and

π
k(x) >

x

logk
x

�
1 +

1
log x

�k �
1 +

log log x

log x

�k−1

for all x ≥ x0(k).
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Note that from the proof of Lemma 2.3 and Theorem 4.1 we may choose any
x0(k) satisfying

π
k (x0(k)) ≥ 13,

as π2(179) = 13.
It is also not difficult to adapt an argument from [5] to prove a proposition on

πk(x) for all k ≥ 1.

Proposition 7.3. The following inequalities are true for every integer n > 1 and

k ≥ 1 and for all sufficiently large real numbers x, y:

(a) πk(nx) < nπk(x),

(b) πk(x + y) ≤ πk(x) + 2kπk(y), and

(c) πk(x + y)− πk(x)�k
y

logk y
.

Proof. Each of the statements in this theorem have been shown for k = 2 in [5] and
for k = 1 elsewhere ((a) in [23], (b) and (c) in [24]). We assume these base cases
and follow the argument in [5] to complete the induction for each statement.

(a) From Panaitopol [23], we have π(nx) < nπ(x) for sufficiently large x. The
induction hypothesis, followed by an application of Panaitopol’s result gives

π
k+1(nx) < π

�
nπ

k(x)
�

< nπ
k+1(x)

for sufficiently large x.

(b) Using Montgomery and Vaughan’s [24] bound π(x+y) ≤ π(x)+2π(y) together
with the induction hypothesis, we have

π
k+1(x + y) ≤ π

�
π

k(x) + 2k
π(y)

�
≤ π

k+1(x) + 2k+1
π(y)

for sufficiently large x and y.

(c) This follows from part (b) and Theorem 7.1.

Note that these bounds are certainly not the best possible. Inequality (b) in
particular seems rather weak. Proving a stronger general theorem, however, seems
difficult.

8. Gaps Between PIPs

Our consideration in Section 5 of twin PIPs, or consecutive PIPs with difference
6, is just a special case of a more general question about gaps between consecutive
PIPs. In this section we consider some computational data on other gap sizes. Let

q(h) = min
qi+1−qi=h

qi
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be the first occurrence of a gap of size h between PIPs (or infinity if no such gap
exists), let

Q(x;h) =
�

qi≤x
qi+1−qi=h

1

be the number of gaps of h between PIPs up to x, and let

F (h) =
�

p>2
p|h

p− 1
p− 2

be the corresponding Hardy-Littlewood correction factor. As expected due to
the prime k-tuples conjecture, it was found that the graph of Q(1015;h) exhib-
ited a rapid “oscillation” (cf., for example, [25]), which disappeared in a graph of
Q(1015;h)/F (h). Contrary to what happens with the graphs of smoothed counts
of prime gaps (i.e., counts divided by F (h)), the graphs of smoothed counts of PIP
gaps first increase, then attain a maximum at an absissa which grows with the
count limit x, and only then start to decrease exponentially (this behavior can be
observed in figure 1 of [5]).

Table 8 presents the record gaps (also known as maximal gaps [26]) that were
observed up to 1015. Since a large gap between primes very likely corresponds to a
large gap between PIPs (having the large prime gap between their indices), the first
ten occurrences of each prime gap up to 4× 1018, obtained as a colateral result of
the third author’s extensive verification of the Goldbach conjecture [?], were used
to locate large gaps between PIPs. This was done as follows:

1. given an index i (the first prime of a large prime gap), an approximation
p̂i of pi was found by solving |π̂(p̂i) − i| < 10, where π̂(x) is the Riemann’s
formula for π(x), truncated to the first one million complex conjugate zeros
on the critical line, and with lower order terms replaced by simpler asymptotic
approximations;

2. using the algorithm described in [10], π(p̂i) was computed (this was by far the
most time consuming step);

3. using a segmented sieve and using p̂i as a starting point, going backwards if
necessary, pi, which is by construction a PIP, was located;

4. since the gap between indices was known a priori, the next PIP was also
located, and the difference between the two was computed.

The maximal gap candidates above 1015 that resulted from this effort are presented
in Table 8; below 1015, the results of Table 8 were reproduced exactly. Based on
the data from these two tables, it appears that h/ log3

q(h) is bounded.
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h q(h) h q(h) h q(h)
2 3 1380 3733111 7524 49868272577
6 5 1500 5188297 7648 57757941919
14 17 1766 5336477 7884 60381716303
18 41 1784 7244099 8994 93033321509
26 83 1800 9026123 9208 104673577891
30 127 1852 12818959 9328 215587773169
36 241 1998 21330371 10254 271208089553
48 283 2200 21459517 10702 521584527307
92 617 2280 24931771 12388 655650146791
112 1297 2628 32637571 13436 1139727488171
114 1913 2992 79689091 13826 3565879112657
122 2099 3000 182395973 13898 5144378650811
150 3761 3770 315619631 14570 8549998218191
168 5869 4406 390002363 15102 8724860034481
190 9103 4506 2199880757 15218 12118597117331
348 10909 4872 2515605941 16006 13479163888087
372 46751 4938 3443579963 16814 31885486594523
384 104827 5214 3994122787 17010 36971628663863
458 114089 5256 4043156627 18312 40798355884309
474 152953 5844 6111419117 19680 60418125851197
498 177791 5974 8440859467 21820 81040555147807
642 219931 6486 9568037147 22804 229922915352703
738 293123 6864 21472440259 24658 452388122520163
1028 368153 7098 29861568733 25694 647593721749763
1244 2101553 7446 35005449181 26148 804920613659501

Table 3: Record gaps between PIPs up to 1015

h q(h) h q(h)
27324 1451492253702853 50932 1797828789776991187
27462 3031506479624729 51282 3367200144283080467
31184 3149270807374079 51496 5303163766511877793
33348 7759035095377103 54766 5948139313109849407
34428 19843157450989771 55438 8686480782592200319
34902 44370362884634417 56964 13131568510506112637
35560 48210577082615809 57744 14471372274538980343
35964 58458364312779077 60646 15209204300586561877
36276 63536060873650711 62244 18108618970703357989
45390 63775464504542041 65278 35376288156449516509
46910 770359508644782761 67136 63526302908206766003
46948 1186416917758809991 67236 146174033905511020897
47838 1263062213472998429 67356 170912819272488312527

Table 4: Potential record gaps between PIPs after 1015
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9. A Goldbach-Like Conjecture for PIPs

Let R(n) be the number of pairs (q, n − q) such that both q and n − q are PIPs.
Just like for the classical Goldbach conjecture [27], the identity

L�

n=1

R(n)x
n =

��
q≤L

x
q
�2

mod x
L+1

,

coupled with a fast polynomial multiplication algorithm based on the Fast Fourier
Transform, makes it possible to compute R(n) for all n ≤ L using only O(L1+�)
time and space. For L a positive even integer, let

Rlower(x;L) = min
x≤2n≤L

R(2n) and Rupper(x) = max
n≤x

R(n).

For n even, these two non-decreasing functions are useful lower and upper bounds
of the value of R(n). Figure 9 shows how these two functions behave (their points
of increase up to L = 109 were computed with the help of a simple matlab script).
Based on our empirical data, the following conjecture is almost certainly true.

Conjecture 9.1. All even integers larger than 80612 can be expressed as the sum
of two prime-indexed primes.
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Figure 1. Lower and upper bounds of the number of ways, offset
by one, of expressing an even number by an ordered sum of two
PIPs.

9. A Goldbach-like conjecture for PIPs

Let R(n) be the number of pairs (q, n− q) such that both q and n− q are PIPs.
Just like for the classical Goldbach conjecture [20], the identity

L�

n=1

R(n)xn =
��

q≤L
x
q
�2

mod x
L+1

,

coupled with a fast polynomial multiplication algorithm based on the Fast Fourier
Transform, makes it possible to compute R(n) for all n ≤ L using only O(L1+�)
time and space. For L a positive even integer, let

Rlower(x;L) = min
x≤2n≤L

R(2n)

and
Rupper(x) = max

n≤x
R(n).

For n even, these two non-decreasing functions are useful lower and upper bounds
of the value of R(n). Figure 1 shows how these two functions behave (their points
of increase up to L = 109 were computed with the help of a simple matlab script).
Based on our empirical data, the following conjecture is almost certainly true.

Conjecture 9.1. All even integers larger than 80612 can be expressed as the sum
of two prime-indexed primes.

10. Proofs of lemmas

Proof of Lemma 2.1. First, note that

n log n = n
1+ log log n

log n .
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10. Proofs of Lemmas

Proof of Lemma 2.1. First, note that n log n = n
1+ log log n

log n . From this,

log (log (n log n)) = log
�
log n

1+ log log n
log n

�
= log

�
1 +

log log n

log n

�
+ log log n.

Since log (1 + x) < x for x > 0, we have log
�
1 + log log n

log n

�
<

log log n
log n , which com-

pletes the lemma’s proof.

Proof of Lemma 2.2. First, note that

n log (n log n) = n log
�
n

1+ log log n
log n

�
= (n log n)

�
1 +

log log n

log n

�
.

Now,

1 +
log log n

log n
= n

log(1+ log log n
log n )

log n < n
log log n

log2 n

because log (1 + x) < x for x > 0. Thus,

log log (n log (n log n)) = log log
�

(n log n)
�

1 +
log log n

log n

��

< log log n
1+ log log n

log n + log log n

log2 n

= log log n + log
�

1 +
log log n

log n
+

log log n

log2
n

�

< log log n +
log log n

log n
+

log log n

log2
n

,

where the last inequality comes from again using log (1 + x) < x. This proves the
lemma.

Proof of Lemma 2.3. We begin with the upper bound. From [7], we know that
π(x) ≥ x

log x for all x ≥ 17. Thus, in this range,

log π(x) ≥
�

1− log log x

log x

�
log x,

and so
1

log π(x)
<

1
log x

�
1

1− log log x
log x

�
. (10.1)

Writing the second factor as a geometric series proves the bound.
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Considering the lower bound, we use the upper bound on π(x) for x > 1 in (4.2)
to see that

log π(x) ≤ log
�

x

log x

�
1 +

1.2762
log x

��
= log

x

log x
+ log

�
1 +

1.2762
log x

�

=
�

1− log log x

log x

�
log x + log

�
1 +

1.2762
log x

�

<

�
1− log log x

log x

�
log x +

1.2762
log x

,

where the last inequality uses log(1 + x) < x for x > 0.
Taking the reciprocal of this inequality, we have

1
log π(x)

≥ 1
log x

�
1

1− log log x
log x + 1.2762

log2 x

�
.

Thus, to establish the lemma, we need to bound

1
1− log log x

log x + 1.2762
log2 x

≥ 1 +
log log x

log x
. (10.2)

This is indeed the case, as we may rewrite the fraction as the sum of a geometric
series. That is, we may write

1
1− log log x

log x + 1.2762
log2 x

= 1 +
∞�

k=1

�
log log x

log x
− 1.2762

log2
x

�k

.

Now, for x ≥ 33,

∞�

k=2

�
log log x

log x
− 1.2762

log2
x

�k

=

�
log log x

log x − 1.2762
log2 x

�2

1− log log x
log x + 1.2762

log2 x

>
1.2762
log2

x
,

establishing (10.2). This completes the lemma’s proof.

Proof of Lemma 2.4. Using Lemma 2.3, together with (4.1), we have

1
logk

π(x)
=

�
1

log x

�
1 +

log log x

log x
+ O

�
(log log x)2

log2
x

���k

=
1

logk
x

�
1 +

k log log x

log x
+ Ok

�
(log log x)2

log2
x

��
,

(10.3)

which establishes the first half of the lemma.
We know that

π(x) =
x

log x

�
1 +

1
log x

+ O

�
1

log2
x

��
,



INTEGERS: 13 (2013) 20

and so the same argument used in the proof of Lemma 2.2 gives that

log log π(x) = log log x + log
�

1− log log x

log x
+ O

�
(log log x)2

log2
x

��

= log log x + O

�
log log x

log x

�
.

Using this and (10.3), we see

log log π(x)
log π(x)

=
�

log log x + O

�
log log x

log x

��
·
�

1
log x

�
1 + O

�
log log x

log x

���

=
log log x

log x
+ O

�
(log log x)2

log2
x

�
,

completing the proof of the lemma.
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