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Abstract. In this paper we collected problems, which was either
proposed or follow directly from results in our papers.

1 Introduction

In this paper, which is based on a talk delivered at the Winter School on Ex-
plicit Methods in Number Theory, Debrecen, January 29, 2009 we collected
problems, which we proposed and/or tried to solve. The problems are dealing
with perfect powers in linear recursive sequences, solutions of parametrized
families of Thue equations, patterns in the set of solutions of norm form equa-
tions and generalized radix representations.

In each case we give a short description of the background information, cite
some relevant paper, especially papers, where the problem appeared at the
first time. Sometime we present our feeling about the hardness of the problem
and how one could solve it. The collection is subjective.

2 Powers in linear recursive sequences

To find perfect powers and polynomial values in linear recursive sequences is
one of my favorite topics. A long standing problem was to prove that 0, 1, 8
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and 144 are the only powers in the Fibonacci sequence. This was proved finally
by Bugeaud, Mignotte and Siksek in 2006 [9].

In 1996 at The Seventh International Research Conference on Fibonacci
Numbers and Their Applications I proposed the following [17]

Problem 1 The sequence of tribonacci numbers is defined by T0 = T1 =

0, T2 = 1 and Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0. Are the only squares
T0 = T1 = 0, T2 = T3 = 1, T5 = 4, T10 = 81, T16 = 3136 = 562 and T18 =

10609 = 1032 among the numbers Tn?

By using the sieve method from [16] with the moduli 3, 7, 11, 13, 29, 41, 43, 53,

79, 101, 103, 131, 239, 97, 421, 911, 1021 and 1123 one can show that this is true
for n ≤ 2·106, but known methods do not seem to be applicable for its solution.

The problem is still unsolved, although in the edited version of the second
part of that talk [18] combining results of Shorey and Stewart [23] with that
of Corvaja and Zannier [10] I proved

Theorem 1 Let Gn be a third order LRS. For the roots αi, i = 1, 2, 3 of the
characteristic polynomial of Gn assume that |α1| > |α2| ≥ |α3| and non of them
is a root of unity. Then there are only finitely many perfect powers in Gn.

As the characteristic polynomial of the tribonacci sequence x3−x2−x−1 is
irreducible with one dominating real root ≈ 1.839286755 it follows that there
exist finitely many perfect powers in it. Unfortunately the proof of Theorem 1
is only partially effective. We have an effective bound for the exponent of the
possible perfect powers, but no effective bound for the size of a fixed power,
e.g., for squares.

I think that Theorem 1 can be generalized at least in the following form:

Problem 2 Let Gn be an LRS such that its characteristic polynomial is ir-
reducible and has a dominating root, then there is only finitely many perfect
powers in it.

By a result of Shorey and Stewart [23] the exponent of perfect powers can
be bounded effectively. The problem is to handle the powers with bounded
exponent. Combining this with the result of Corvaja and Zannier [10] and
with the combinatorics of the roots, like in Pethő [18], one can probably settle
this conjecture.

Like the Fibonacci sequence, we can continue the tribonacci sequence in
”negative direction”, and get T−n = −T−n+1 − T−n+2 + T−n+3 with initial
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terms T0 = 0, T−1 = 1, T−2 = −1. We call this sequence n-tribonacci. One
can ask again, which are the perfect powers in this sequence. After a simple
search we find: T0 = T−3 = T−16 = 0, T−1 = T−6 = −T−2 = 1, T−7 = 22, T−8 =

(−2)3, T−13 = 32, T−29 = 34, T−32 = 562, T−33 = 1032 and T−62 = 68152. It is
interesting to observe that T10 = T−29, T16 = T−32 and T18 = T−33.

Problem 3 Are all perfect powers of the n-tribonacci sequence listed above?
Are there only finitely many perfect powers in the n-tribonacci sequence?

The answer seems to be very difficult, because the characteristic polynomial
of the n-tribonacci sequence has two conjugate complex roots of the same
absolute value and its real root is less than one. Thus the result of Shorey and
Stewart is not applicable.

Let a, b ∈ Z and δ ∈ {1,−1} such that a2 − 4(b − 2δ) 6= 0, bδ 6= 2 and if
δ = 1 then b 6= 2a − 2. Let further the sequence Gn = Gn(a, b, δ), n ≥ 0

defined by the initial terms G0 = 0, G1 = 1, G2 = a, G3 = a2 − b − δ and by
the recursion

Gn+4 = aGn+3 − bGn+2 + δaGn+1 − Gn, n ≥ 0. (1)

I proved in [19] that these are divisibility sequences, i.e., Gn|Gm, whenever
n|m. More precisely, the roots of the characteristic polynomial of Gn can be
numbered so that they are η, δ

η
, ϑ, δ

ϑ
and

Gn =
ηn − ϑn

η − ϑ

1 −
(

δ
ηϑ

)n

1 − δ
ηϑ

Here we ask again to prove

Problem 4 For fixed a, b there are only finitely many perfect powers in Gn.

We can again bound the exponent by the result of Shorey and Stewart [23],
but can not treat the equation Gn = xq for fixed q > 1. Especially complicated
seems the case q = 2, because the greatest common divisor of the algebraic

numbers ηn−ϑn

η−ϑ
and

1−
(

δ
ηϑ

)n

1− δ
ηϑ

can be arbitrary large.
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3 Thue equations

After the work of E. Thomas [24] several paper appeared about the solutions of
parametrized families of Thue equations. With Halter-Koch, Lettl and Tichy
we proved [13] the following:

Theorem 2 Let n ≥ 3, a1 = 0, a2, . . . , an−1 be distinct integers and an = a

an integral parameter. Let α = α(a) be a zero of P(x) =
∏n

i=1(x−ai)−d with
d = ±1 and suppose that the index I of 〈α−a1, . . . , α−an−1〉 in UO, the group
of units of O, is bounded by a constant J = J(a1, . . . , an−1, n) for every a from
some subset Ω ⊂ Z. Assume further that the Lang-Waldschmidt conjecture is
true. Then for all but finitely many values a ∈ Ω the diophantine equation

n∏

i=1

(x − aiy) − dyn = ±1 (2)

only has trivial solutions, except when n = 3 and |a2| = 1, or when n = 4 and
(a2, a3) ∈ {(1,−1), (±1,±2)}, in which cases (2) has exactly one more general
solution.

The assumption on the index I is technical, the essential assumption is the
Lang-Waldschmidt conjecture. In the cited paper we formulated:

Problem 5 The last theorem is true for all large enough parameter value
without further assumptions.

A weaker version of this conjecture was formulated by E. Thomas [25]. He
assumed that ai = pi(a), i = 2, . . . , n − 1 and 0 < deg p2 < · · · < deg pn−1,
where pi denotes monic polynomial with integer coefficients. This weaker
conjecture was proved by C. Heuberger [14] under some technical conditions
on the degree of the polynomials.

4 Progressions in the set of solutions of norm form

equations

Let K be an algebraic number field of degree k, and let α1, . . . , αn be linearly
independent elements of ZK over Q. Let m be a non-zero integer and consider
the norm form equation

NK/Q(x1α1 + . . . + xnαn) = m (3)
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in integer vectors (x1, . . . , xn). Let H denote the solution set of (3) and |H|

the size of H. Note that if the Z-module generated by α1, . . . , αn contains a
submodule, which is a full module in a subfield of Q(α1, . . . , αn) different from
the imaginary quadratic fields and Q, then equation (3) can have infinitely
many solutions (see e.g. Schmidt [22]).

Arranging the elements of H in an |H|×n array H, one may ask at least two
natural questions about arithmetical progressions appearing in H. The ”hori-
zontal” one: do there exist infinitely many rows of H, which form arithmetic
progressions; and the ”vertical” one: do there exist arbitrary long arithmetic
progressions in some column of H? Note that the first question is meaningful
only if n > 2.

We are now presenting an example. Let K := Q(α) with α5 = 3. Then

NK/Q(x1 + x2α + · · · + x5α4) = 9x5
3 + 81x5

5 + x5
1 + 27x5

4 + 3x5
2 − 135x3

5x4x1 +

+45x5x2
4x2

1 + 135x2x2
4x2

5 − 45x2x3
4x1 + 45x2

5x3x2
1 − 45x2x3

3x4 +

+135x2
3x2

5x4 + 45x1x2
5x2

2 − 45x4x3
2x5 + 45x2

4x2
2x3 + 45x2

4x1x2
3 −

−15x4x3
1x3 + 15x4x2

1x2
2 + 15x2x2

3x2
1 + 45x5x2

2x2
3 − 15x5x3

1x2 −

−135x5x3x3
4 − 135x2x3

5x3 − 45x5x3
3x1 − 15x3

2x3x1 − 45x2x5x3x4x1.

The next table contains a finite portion of the set of solutions of the equation

NK/Q(x1 + x2α + · · · + x5α
4) = 1.

x1 x2 x3 x4 x5

4 -5 4 -2 0
1 2 -1 -1 0
4 2 0 0 1
1 1 0 1 0
1 5 1 2 2

-17 1 -6 3 8

7 6 5 4 3

-2 -1 1 1 0
-11 -5 5 6 0
-2 0 1 -1 1
-8 -8 1 6 2
28 16 4 3 8
10 12 12 4 9
. . . . . . . . . . . . . . .
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The bold face numbers form a five term horizontal AP and a seven terms
vertical AP. The ”horizontal” problem was treated by Bérczes and Pethő [7] by
proving that if αi = αi−1 (i = 1, . . . , n) then in general H contains only finitely
many effectively computable ”horizontal” AP’s and they were able to localize
the possible exceptional cases. The following question remains unanswered:

Problem 6 Does there exist infinitely many quartic algebraic integers α such
that 4α4

α4−1
− α

α−1
is a quadratic algebraic number.

We were able to found only one example with defining polynomial x4+2x3+

5x2 + 4x + 2 such that the corresponding element is a real quadratic number.
It is a root of x2−4x+2. Allowing however α not to be integral we can obtain
a lot of examples.

The investigation of the ”vertical” AP’s is much more difficult. In this
direction Bérczes, Hajdu and Pethő [6] proved

Theorem 3 Let (x
(j)

1 , . . . , x
(j)
n ) (j = 1, . . . , t) be a sequence of distinct elements

in H such that x
(j)

i is a non-zero arithmetic progression for some i ∈ {1, . . . , n}.
Then we have t ≤ c1, where c1 = c1(k, m) is an explicitly computable constant.

It is interesting to note that c1 depends only on the degree of the norm form
and not on its coefficients. One can probably strengthen this result such that
the upper bound for the length of the AP’s depend not on m, but only on the
number of its prime divisors. It is even possible that the bound depends only
on k.

Earlier Pethő and Ziegler [21] as well as Dujella, Pethő and Tadić [11] inves-
tigated the AP’s on Pell equations, which are quadratic norm form equations.
We proved that for all but one non-constant AP of integers of length four
y1, y2, y3, y4 there exist infinitely many integers d, m for which x2

i − dy2
i =

m, i = 1, 2, 3, 4 with some integers xi = xi(d, m, y1, . . . , y4), i = 1, 2, 3, 4. In
contrast, five term AP’s are lying on only finitely many Pell equations.

Problem 7 Prove analogous result for norm form equations over cubic num-
ber fields. More specifically: let y(i), i = 1, . . . , 5 an AP of integers. Then there
exist infinitely many m ∈ Z and Q-independent algebraic integers α1, α2, α3

such that K = Q(α2, α3) has degree three and (3) holds for (x
(i)

1 , x
(i)

2 , y(i)), i =

1, . . . , 5 with some x
(i)

1 , x
(i)

2 ∈ Z. Can 5 be replaced with a larger number?
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In the above mentioned papers we worked out a systematic method to find
Pell equations having long AP’s. For example the AP −7,−5,−3,−1, 1, 3, 5, 7

is lying on the equation x2−570570y2 = 4406791 and −461,−295,−129, 37, 203,

369, 535 on x2 + 1245y2 = 375701326.

Problem 8 Find a systematic method to construct cubic norm form equations
with long AP. Do the same for higher degree norm form equations.

Problem 9 Prove analogous results for geometric progressions.

5 Polynomials

Problem 10 Let K be a algebraically closed field of characteristic zero. Char-
acterize all P(X) ∈ K[X], Q(Y) ∈ K[Y], R(X, Y) ∈ K[X, Y] such that the set of
zeroes of P(X) and Q(Y) coincide, provided R(X, Y) = 0.

The case R(X, Y) = Y − A(X) was solved completely by Fuchs, Pethő and
Tichy [12]. They proved

Theorem 4 Assume that P(X) has k different zeroes. Then there exist a, b, c ∈
K, a, c 6= 0 such that:
if k = 1 then

P(X) = a(X − b)deg P and A(X) = c(X − b)deg A + b;

if k ≥ 2 then either A(X) = X or A(X) = aX + b, a 6= 1 and in this case

P(X) = c

(

X +
b

a − 1

)s r∏

i=1

ℓ−1∏

j=0

(

X − ajxi − b
aj − 1

a − 1

)

,

where x1, . . . , xr are all different and ℓ is the multiplicative order of a.

6 Shift radix systems

For (r1, . . . , rd) = r ∈ Rd and a = (a1, . . . , ad) ∈ Zd let
τr(a) = (a2, . . . , ad, −⌊ra⌋)T, where ra denotes the scalar product. This
nearly linear mapping was introduced by Akiyama, Borbély, Brunotte,
Thuswaldner and myself [1]. We proved that it can be considered as a common
generalization of canonical number systems (CNS) and β-expansions.
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We also defined the sets

Dd = {r : {τk
r
(a)}∞k=0 is bounded for all a ∈ Zd},

D0
d = {r : {τk

r
(a)}∞k=0 is ultimately zero for all a ∈ Zd}

and Ed, which is the set of real monic polynomials, whose roots lie in the
closed unit disc. We proved in the same paper that if r ∈ Dd then R(X) =

Xd+ rdXd−1+ · · ·+ r2X+ r1 ∈ Ed and if R(X) is lying in the interior of Ed then
r ∈ Dd.

We called τr a shift radix system (SRS), if r ∈ D0
d and gave an algorithm,

which decides whether r ∈ Qd is a SRS. However this algorithm is exponential,
moreover we are not able to give a polynomial time verification for r /∈ D0

d∩Qd.
We found points r ∈ Q2 such that r /∈ D0

2, but the cycles proving this can
be arbitrary long. Computational experiments, see e.g. [1, 15] support the
following :

Problem 11 Prove that the SRS problem can not be solved by a polynomial
time algorithm. Stronger statement is that it does not belong to the NP com-
plexity class.

The structure of D0
d, especially near to its boundary, is very complicated, see

[2] for d = 2. On the other hand we know [1], that the closure of Dd is Ed. How-
ever the investigation of the boundary points of Ed leads to interesting and hard
problems. The case d = 2 was studied by Akiyama et al. in [2]. They proved
that D2 is equal to the closed triangle with vertices (−1, 0), (1,−2), (1, 2), but
without the points (1,−2), (1, 2), the line segment {(x, −x − 1) : 0 < x < 1}

and, possibly, some points of the line segment {(1, λ) : −2 < λ < 2}. Write
in the last case λ = 2 cos α and ω = cos α + i sin α. It is easy to see, that if
λ = 0,±1 (i.e., α = 0,±π/2) then (1, λ) belongs to D2 and we conjectured in
[2] that this is true for all points of this line segment. In [4] the conjecture

was proved for the golden mean, i.e., for λ = 1+
√

5
2

and in [5] for those ω,
which are quadratic algebraic numbers. The conjecture has the following nice
arithmetical form:

Problem 12 Let |λ| < 2 be a real number. If the sequence of integers {an}

satisfies the relation

0 ≤ an−1 + λan + an+1 < 1

then it is periodic.
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If ω, defined above, is a root of unity then the problem may be easier as in
the general case. On the other hand from the point of view of arithmetic the
cases, when λ is a rational number, e.g., λ = 1

2
seems simpler.

If the point r belongs to the boundary of Ed then either r ∈ Dd or r /∈ Dd.
With other words this means that the sequence {τr(a)} is ultimately periodic
for all a ∈ Zd as well as there exists a ∈ Zd for which {τr(a)} is divergent.
However we do not know any general method to distinguish between these
cases. Recently I gave an algorithm [20] in the special case, when ±1,±i is a
simple root of Xd + rdXd−1 + · · · + r2X + r1.

Problem 13 Is it algorithmically decidable for r ∈ Ed ∩ Qd whether r ∈ Dd?

I am not sure that the answer is affirmative. The problem is open even for
d = 2. In this case, by the results of [2], the status only points of the line
segment {(1, y) : −2 < y < 2} is questionable. If the answer to Problem 9 is
affirmative, which I strongly believe, then d = 2 would be completely solved.
A related, probably easier problem is:

Problem 14 Prove that there are no elements of D0
d on the boundary of Ed.

This is true for d = 2 [2], but open for d ≥ 3.

For each d ∈ N, d ≥ 1 define the set

Bd = {(b1, . . . , bd) ∈ Zd : Xd−b1X
d−1−· · ·−bd is a Pisot or Salem polynomial}.

Further for M ∈ N>0 set

Bd(M) =
{

(b2, . . . , bd) ∈ Zd−1 : (M, b2, . . . , bd) ∈ Bd

}
. (4)

It is clear that Bd(M) is a finite set. In [3] we proved

Theorem 5 Let d ≥ 2. We have
∣

∣

∣

∣

|Bd(M)|

Md−1
− λd−1(Dd−1)

∣

∣

∣

∣

= O(M−1/(d−1)), (5)

where λd−1 denotes the (d − 1)-dimensional Lebesgue measure.

To fix the coefficient of the term Xd−1 of a d-th degree monic polynomial is
unusual. Generally the height, i.e., the maximum of the absolute values of its
coefficients is used to measure polynomials. Having this in mind we define

B̂d(M) =
{

(b1, b2, . . . , bd) ∈ Zd ∩ Bd : max{|b1|, |b2|, . . . , |bd|} ≤ M
}

.

and propose our last problem.
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Problem 15 Does there exist a constant c, such that

lim
M→∞

|B̂d(M)|

Md
= c?
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ture on certain integer sequences, Periodica Mathematica Hungarica, 52

(2006), 1–17.

[5] S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Periodicity of certain
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[18] A. Pethő, Diophantine properties of linear recursive sequences. II., Acta.
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