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Abstract

We define here simple natural generalizations of Collatz Problem, stating some
corresponding conjectures and showing some first interesting computations. We
also address the conceptual importance of this kind of problems and the expected
diffi culties into solving them.

1 Why Generalize an Apparently Intractable Prob-
lem?

The Collatz Conjecture or 3x + 1 Conjecture, an elusive two-line algorithm simple to
state and awfully hard to solve, is perhaps one of the most perplexing unsolved mathe-
matical problems, challenging equally mathematicians, logicians and even philosophers.
One of its generalizations is even undecidable (cf. [3], more on this below).
Lothar Collatz (1910-1990)1 proposed the problem in 1928, originally stated as

follows: consider the function which inputs a non-zero integer x and outputs 3x+ 1 if
x is odd, and x/2 if x is even. The 3x + 1 Conjecture asserts that, starting from any
positive integer x, repeated iteration of this function eventually produces the value 1.
In a more appropriate notation, the conjecture is usually rephrased by considering the
function:

T2(x) =


x
2 if x ≡ 0 (mod 2),
3x+1
2 if x ≡ 1 (mod 2).

The (rephrased) conjecture states that every trajectory starting from a non-zero
integer will end in an element of one of the four cycles:
(1, 2);
(−1);
(−5,−7,−10);
(−17,−25,−37,−55,−82,−41,−61,−91,−136,−68,−34).

Of course, the cycle is unique, i.e., (1, 2), if inputs are restricted to positive integers x.
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1See [13] for a tribute to Lothar Collatz.

207



208 Generalizations of the Collatz Problem

There is an extensive literature on the many attempts to settle the conjecture, as
well as related questions, touching from number theory to Markov chains (see specially
[4]) and dynamical systems, and there is a 47-page annotated bibliography in [10] and
an excellent survey up to 1985 (cf. [9])
The problem is also known as the Syracuse problem, Kakutani’s problem, Hasse’s

algorithm, Ulam’s problem, Thwaites’s problem and Hailstone Algorithm, and it is
not known whether it is provable in Peano Arithmetic. But even if it is intractable,
Lagarias in [9] offers a good reason to keep trying: “No problem is so intractable that
something interesting cannot be said about it.”
I present in the next section what I consider to be some of the most natural gener-

alizations of Collatz Problem.

2 On Two Natural Generalizations

One of the most natural reasons why the original Collatz algorithm keeps running
smoothly (whether or not it stops is another matter) is that it establishes a parity
equilibrium in the sense that x/2 reaches 1 (in which case it enters a cycle) or reaches
an odd number greater than 1, in which case 3x + 1 is even again. The present gen-
eralization simply widens the scope of such parity equilibrium to general congruences
and explore its consequences.
Define a mapping Td : Z 7→ Z by:

Td(x) =


x
d if x ≡ 0 (mod d),
(d+1)x+d−i

d if x ≡ i (mod d), 1 ≤ i ≤ d− 1.

It is easy to prove that x ≡ i (mod d) implies Td(x) ≡ 0 (mod d), thus the mapping
Td(x) is well-defined over Z. For instance, d = 2 gives the original 3x + 1 mapping in
the form T2(n) above.
The first conjecture on the behavior of cycles is the following:

CONJECTURE 1 (The mapping Td(x) has finitely many finite cycles). The se-
quence of iterates

x, Td(x), Td
2(x), ..., Td

k(x), ...

for each d always eventually enters a cycle, for finite k, and there are only finitely many
such cycles.

2.1 Some Interesting Cycles

It is easy to prove2 that (i) Td(x) = x for x = −1, ...,−(d− 1) and that (ii) 1, 2, ..., d is
always a cycle; those are called elementary cycles (respectively, positive and negative.
There are many non-elementary cycles, as for instance (for the first values of d and
x ≤ 50, 000):

2This observation is due to Keith R. Matthews, personal communication.
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• For d = 3:
(7, 10, 14, 19, 26, 35, 47, 63, 21) (cycle length 9)

(−22,−29,−38,−50,−66) (cycle length 5)

• For d = 4: (23, 29, 37, 47, 59, 74, 93, 117, 147, 184, 46, 58, 73, 92) (cycle-length 14)
(−18,−22,−27,−33,−41,−51,−63,−78,−97,−121,−151,−188,−47,−58,−72)
(cycle-length 15)

• For d = 5:
(−57,−68,−81,−97,−116,−139,−166,−199,−238,−285) (cycle length 10)

• For d = 6:
(23, 27, 32, 38, 45, 53, 62, 73, 86, 101, 118, 138) (cycle length 12)

(88, 103, 121, 142, 166, 194, 227, 265, 310, 362, 423, 494, 577, 674, 787, 919, 1073,

1252, 1461, 1705, 1990, 2322, 387, 452, 528) (cycle-length 25)

The first d for which apparently there are no cycles other than the elementary ones
is d = 7; the same holds for d = 14, d = 18 and d = 21. An interesting point is that,
differently from the original Collatz problem, several positive cycles arise. See Table 1
for more details.
A webpage and a CALC number theory program related to the present conjecture,

developed by Keith Matthews, can be found at [6, 7]. The here explained notion of
“balancing parity” has been used by Keith Matthews to generalize a mapping of Lu
Pei (cf. [8]). The generalized Lu Pei’s mapping is defined as follows:

Ld(x) =


x
d if x ≡ 0 (mod d),
(d+1)x−i

d if x ≡ i (mod d), −d
2 ≤ i ≤

d
2 , i 6= 0.

This also generalizes the 3x + 1 mapping, which corresponds to d = 3 in Peis
formulation. Notice that trajectories starting from nonzero x appear to meet 1 or −1,
according as x is positive or negative. Notice also the trivial cycles Ld(n) = n, for
d/2 < n ≤ d/2 (see Table 2).
It should be noticed that the above mappings Td(x) and Ld(x) coincide with some

particular cases of [11], which by its turn relates the 3x+1 problem to 2-adic analysis.
This suggests a more intimate connection between Td(x) and Ld(x) and p-adic analysis,
still to be clarified.
Some information on cycles with d ≤ 150 and x ≤ 50, 000 provided by Keith

Matthews can be found in Table 1. It is notorious in the studied cases that cycles are
getting bigger and rarer, which itself suggests an obvious conjecture on the distribution
of cycles and gaps on cycle lengths.
The corresponding conjecture is:

CONJECTURE 2 (Lower bounds for cycles). For each M there is a d such that
the minimal cycle length of the mapping Td(x) is greater than M .
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Another, more subtle, generalization of the 3x+1mapping concerns a two-parameter
extension of Td which enjoys some surprising properties. Define, for each k ≥ 3 and
d ≥ 2, a mapping Tk,d : Z 7→ Z as follows:

Tk,d(x) =


x
d if x ≡ 0 (mod d),
kx+r(d−i)

d if x ≡ i (mod d), 1 ≤ i ≤ d− 1
and k ≡ r (mod d), 1 ≤ r ≤ d− 1.

For k = d+ 1, Td+1,d gives the above defined mapping Td, and of course T3,2 gives
the original Collatz mapping.
It is easy to see that d divides (kx + r(di)) as x ≡ i(mod d) and k ≡ r(mod d) so

Tk,d(x) is an integer (Tk,d(x) is not defined for multiples of d, since k ≡ r(mod d)) for
1 ≤ r ≤ d). An expected conjecture about Tk,d(x), analogous to Conjecture 2, would
be that the sequence of iterates

x, Tk,d(x), Tk,d
2(x), ..., Tk,d

k(x), ...

for each k and d always eventually enters a cycle, and that there are only finitely many
such cycles.
Nothing is known, however, about this new hierarchy of generalizations of Collatz

mapping, besides elementary facts, as for instance, that the next mapping in the hier-
archy after T3,2(x) (the 3x+ 1 mapping), namely, T5,2(x), has a non-elementary cycle
at x = 13. Things get more chaotic with Tk,d(x), as the noteworthy case of T6,4(x)
illustrates. Consider k = 6, d = 4 and r = 2 and gcd(k, d) > 1:

Tk,d(x) =



x
4 if x ≡ 0 (mod4),
6x+6
4 if x ≡ 1 (mod4),

6x+4
4 if x ≡ 2 (mod4),

6x+2
4 if x ≡ 3 (mod4).

It can be proved, by elementary congruence class arguments, that:

1. The trajectory starting with x = 1 is divergent.

2. The only non-zero cycles are −1, −2 and −3.

3. Trajectories which start in the congruence classes 4N and 4N + 2 (but not at
x = 2) eventually end up in the union of the congruence classes 4N + 1 and
4N + 3, where they remain, and unless they hit the fixed points −1 or −3, they
then diverge.

Hence the expected conjecture fails, albeit it can be easily modified to a second con-
jecture on the behavior of cycles, as follows:

CONJECTURE 3 (Tk,d(x)with finitely many finite cycles). The sequence of iterates

x, Tk,d(x), Tk,d
2(x), ..., Tk,d

k(x), ...
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for infinitely many k and d eventually enters a cycle, and in each case there are only
finitely many such cycles.
When gcd(k, d) = 1, the generalized mapping Tk,d(x) coincides with the mappings

defined in [11], and some particular conjectures therein will apply to Tk,d(x). This is
the case, for instance, when k = d+ 1.
This kind of problem is of course still harder than any of the previous generaliza-

tions of the Collatz problems, and are naturally connected with the ergodic theory on
the padic integers and with Markov chains. In [5] Markov chain models for iterating
generalized Collatz mappings and some heuristics are investigated, and it is patent that
understanding some cases, even on a conjectural level, is a hard task. In our case, the
mappings Tk,d(x) satisfy the Condition C of [5] which makes them a potentially fruitful
area for further research under a Markovian approach.

3 On Expected Diffi culties: Final Remarks

It has been shown by Kurtz and Simon in [3] that a certain generalization of the Collatz
problem is undecidable, building on previous work by J.H. Conway in [2]. It is easy
to see that the definition of Collatz function given by Conway (definition 1.2. of [3]
is a restriction of the functions Td(x) defined above: indeed, a function g is called a
Collatz function if there is an integer n together with rational numbers {ai : i < n},
{bi : i < n} such that if x ≡ i (mod p), then g(x) = aix+ bi is an integer.
The above mappings Td(x) define of course an infinite family of Collatz functions:

g(x) =
1

d
x+ 0 if x ≡ 0(mod d),

g(x) =
d+ 1

d
x+

d− i
d

if x ≡ i(mod d), 1 ≤ i ≤ d− 1,

{ai : i < n} =
{
1

d
,
d+ 1

d

}
and {bi : i < n} =

{
0,
d− 1
d

, ...,
1

d

}
.

Conway had proved in [2], and the results is simplified in [3] (Theorem 1.4) that
given a Collatz function g, it is undecidable whether or not for all integers x there
exists an k such that g(j)(x) = 1.
The undecidability result does not affect (at least directly) neither Collatz original

problem nor our generalized problems concerning Td(x) or Tk,d(x), but of course it
gives a hint on the expected diffi culties. It is encouraging, however, that such general
problems may have many positive cycles, and they would not necessarily fall under
intractable even if such undecidability result could be enhanced to values other than 1.
From a more philosophical standpoint, let me point out here that I completely dis-

agree from van Bendegen [12] when he says at page 10 (albeit recognizing the conceptual
importance and interest of Collatz Conjecture) that:

Firstly, it is quite easy to “invent”similar problems, so why should this
particular case attract our attention?
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Not only it is not easy to “invent’suffi ciently attractive problems to further research,
but also beauty is an important fuel in many sciences, and especially in Mathematics.
Erdős is reported to have offered US$ 500 for a solution of the original Collatz Conjec-
ture, but he certainly was underestimating the problem, let alone its generalizations.
Indeed, I would venture a bold meta-conjecture about such problems: mankind will
disappear first than being able to solve all of them, and their diffi culty will be part of
human heritage.
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4 Appendix: Cycles for Td(x) and Ld(x), 2 ≤ d ≤ 150
and x ≤ 50, 000

In this section, we present two tables: Table 1 and Table 2.

Table 1: d : 2 ≤ d ≤ 150 with extra cycles for Td
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Table 2: d : 2 ≤ d ≤ 150 with extra cycles for Ld


