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Fig. 1: Exemplary motions generated by our PRO-Motion system. Different from con-
ventional models trained on paired text-motion data, our PRO-Motion can generate
3D human motion with global body translation and rotation from open-vocabulary text
prompts, such as “Jump on one foot” and “Experiencing a profound sense of joy”. Fur-
thermore, our approach is the first to address the common issue with previous methods
in similar formulations [33,45,83], which is their inability to generate global body trans-
lation and rotation. This limitation often leads to unrealistic in-place motions.

Abstract. Conventional text-to-motion generation methods are usually
trained on limited text-motion pairs, making them hard to generalize to
open-vocabulary scenarios. Some works use the CLIP model to align
the motion space and the text space, aiming to enable motion genera-
tion from natural language motion descriptions. However, they are still
constrained to generate limited and unrealistic in-place motions. To ad-
dress these issues, we present a divide-and-conquer framework named
PRO-Motion1, which consists of three modules as motion planner,
posture-denoiser and go-denoiser. The motion planner instructs Large
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Language Models (LLMs) to generate a sequence of scripts describ-
ing the key postures in the target motion. Differing from natural lan-
guages, the scripts can describe all possible postures following very sim-
ple text templates. This significantly reduces the complexity of posture-
denoiser, which transforms a script to a posture, paving the way for
open-vocabulary text-to-motion generation. Finally, the go-denoiser, im-
plemented as another diffusion model, not only increases the motion
frames but also estimates the whole-body translations and rotations for
all postures, resulting in more dynamic motions. Experimental results
have shown the superiority of our method with other counterparts, and
demonstrated its capability of generating diverse and realistic motions
from complex open-vocabulary prompts such as “Feel free to dance”.

Keywords: Open-vocabulary · Text-to-Motion · Motion Generation

1 Introduction

The conditioned 3D generation has attracted rapidly increasing attention [1,14,
42, 62, 84, 87, 95, 96, 102] due to its important roles in many applications such
as virtual reality, video games, and the film industry. The prior models usually
train GANs [1,46], VAEs [4,27,61,62] and Diffusion Models [11,15,16,75,84,93,
97, 98] from paired text-motion data and have achieved reasonable generation
results when the text prompts are similar to those in the training set. Fig. 2 (a)
illustrates this paradigm. However, they struggle to handle open-vocabulary text
prompts beyond the existing datasets and can only generate limited “toy-like”
motions. This situation includes not only body descriptions like “Raise arms” but
also human emotion descriptions like “Experiencing a profound sense of joy”.

Some recent work [33,45,83] propose to enhance their model’s ability to han-
dle natural language motion descriptions beyond the training data. To that end,
they leverage the pre-trained vision-language model CLIP [67] to align the poses
in the training motions with the motion descriptions, hoping to generate poses
from natural languages. This is depicted in Fig. 2 (b). However, the text space
of CLIP, which is learned in natural languages about image content, is largely
different from motion descriptions, making it ineffective to connect natural lan-
guages and motions. As a result, these methods are still constrained to generate
motions from limited text prompts. Besides, due to the lack of temporal priors in
CLIP, these methods have difficulty in generating motions with correct chrono-
logical order. As a result, they can only generate unrealistic in-place motions.

In this paper, we present a divide-and-conquer framework named PRO-
Motion, which consists of three steps as Plan, postuRe, and Go for open-
vocabulary text-to-Motion generation, as shown in Fig. 2 (c). In the first “plan”
stage, we introduce a motion planner that translates complex natural language
motion descriptions into a sequence of posture scripts that describe body part
relationships following a simple template, such as “The man is standing upright,
his torso is vertical. His left foot is slightly above the ground. His arms are
relaxed at his sides”. This is realized by leveraging the motion commonsense in
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Fig. 2: Comparison of different paradigms for text-to-motion generation. (a)
Most existing models leverage the generative models [23, 31, 40] to construct the rela-
tionship between text and motion based on text-motion pairs. (b) Some methods render
3D poses to images and employ the image space of CLIP to align text with poses. Then
they reconstruct the motion in the local dimension based on the poses. (c) Conversely,
we decompose motion descriptions into structured pose descriptions. Then we generate
poses based on corresponding pose descriptions. Finally, we reconstruct the motion in
local and global dimensions. “Gen.”, “Decomp.”, “Desc.”, “Rec.” stand for “Generative
model”, “Decompose”, “Pose Description” and “Reconstruction” respectively.

LLMs which is further enhanced by in-context demonstrations. It is important to
understand that although the scripts are simple and limited to a small space, they
are expressive enough to cover all possible postures due to their compositional
nature. The motion planner bridges the gap between natural languages and pose
descriptions and effectively addresses out-of-distribution problems.

Benefiting from the merits above, during the second “posture” stage, we can
train a generative model to achieve script-to-posture generation only using a
relatively small labeled dataset. We conjecture and demonstrate that the model
has strong generalization capability and can cover extensive postures and scripts,
considering that a novel posture or script can be decomposed into multiple fa-
miliar body parts. In the implementation, we developed a diffusion-based model
called posture-denoiser, which perceives the connection between structured pose
descriptions and body parts leading to diverse and realistic postures. It is de-
signed to predict the sample rather than the noise. This facilitates the utilization
of established losses of the poses. Then we further utilize a posture planning mod-
ule to select key poses, taking into account the consistency of adjacent poses and
the semantic alignment between text and poses.

Furthermore, in the last “go” stage, we have observed that we can predict
both translation and rotation by analyzing multiple consecutive body postures.
For example, in a sequence where the initial pose depicts a standing pose followed
by a left-foot step in the second pose and a right-foot step in the third pose, we



4 J. Liu et al.

can estimate a forward translation. Additionally, learning interpolation between
adjacent key poses is straightforward and requires only a small amount of motion
data to capture such priors effectively. Accordingly, a transformer-based [86] go-
denoiser module is designed to capture the inner connection between key poses.

To verify the effectiveness of our PRO-Motion, we conduct experiments on a
variety of datasets. Both quantitative and qualitative results have shown the ad-
vantage of our method compared with the state-of-the-art approaches for open-
vocabulary text-to-motion generation and demonstrated its capability of gener-
ating diverse and realistic motions from complex prompts such as “Jump on one
foot” and “Experiencing a profound sense of joy”. Pro-Motion possesses several
distinctive properties and accordingly has the following contributions:

1. We propose a novel paradigm transferring motion generation into pose and
script alignment (see Fig. 2). Infinite numbers of motions can be decomposed
into articulated poses. And poses are limited to a low-dimensional mani-
fold [20]. The property makes poses very suitable for text-to-poses-to-motion
generation. It avoids the challenge of collecting large-scale text-motion train-
ing data, which is prohibitively expensive.

2. We introduce the posture-denoiser module to transform scripts into poses
and the posture planning module to select key poses from the above poses,
paving the way for open-vocabulary text-to-motion generation.

3. We propose a diffusion-based generative model go-denoiser to address recon-
struction tasks that reconstruct translation, rotation and poses.

2 Related Work

Text-to-Motion Generation. Based on labeled motion capture datasets [26,
27,38,44,51,64,65,76,82], existing works have explored various generative models
for text-driven motion generation, such as GANs [1, 46], VAEs [4, 27, 61, 62, 83]
and Diffusion Models [11, 15, 75, 84, 93, 97, 98]. However, these methods are con-
strained by the heavy reliance on limited text-motion paired datasets. To tackle
this problem, some works [33, 45] try to leverage the current powerful large-
scale pre-trained models, i.e., CLIP [67], to overcome the data limitation and
achieve open-vocabulary motion generation. AvatarCLIP [33] generates motions
for given textual descriptions through online matching and optimization. Nev-
ertheless, matching is unable to generate out-of-distribution candidate poses,
which limits the ability to generate complex motions, and online optimization is
time-consuming and unstable. OOHMG [45] uses CLIP image features to gener-
ate candidate poses and performs motion generation via mask learning. However,
this method cannot capture the chronological order of actions due to the lack of
temporal priors in CLIP, leading to inaccurate or even completely opposite mo-
tion. Our approach takes a different step to probe the powerful prior knowledge
of human body pose and motion in LLMs to enhance text-motion alignment
capability and enable open-vocabulary motion generation.
Keyframe-based Motion Generation. Given that motion can be viewed
as a composition of a sequence of poses, keyframe-based motion generation has
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attracted lots of interest. Motion prediction involves generating unrestricted mo-
tion continuation when provided with one or more keyframes of animation as
context. Early efforts [5,12,22,24,25,37,52,60] employed RNNs to model human
motion sequence, motivated by the powerful capability in capturing temporal
dynamics. Besides RNNs, other network architectures like CNNs [47, 59] and
GCNs [17] are proposed to enhance the modeling of temporal and movement
relationships. The emergence of Transformers [3, 9] has further facilitated the
modeling of long-range dependencies within a motion sequence. Close to our
method is motion in-betweening, which is constrained by both past and future
keyframes. Early methods include physically-based approaches [54, 73, 89] that
involve solving optimization problems, as well as statistical models [10, 53, 88].
More recently, some neural network-based methods such as RNNs [29, 81, 100],
CNNs [30, 39, 104], and Transformers [19, 53, 66] have gained dominance in this
field. Unlike motion in-betweening methods that explicitly provide translation
and rotation, we achieve the prediction of translation and rotation, as well as
pose interpolation, by having the model learn priors between adjacent key poses.
LLM aided Visual Content Generation. In recent years, large language
models (LLMs) [7, 8, 56, 85, 94, 99] have attracted substantial interest in the
field of natural language processing (NLP) and artificial general intelligence
(AGI) owing to their remarkable proficiency in tasks such as language gener-
ation, reasoning, world knowledge, and in-context learning. [6,28] combine large
language models with diffusion-based generative models [31, 71] aimed at gen-
erating prompts for higher-quality image generation. [34, 43] leverage large lan-
guage models to plan the generation of visual content and identify the pivotal ac-
tions, enabling complex dynamic video generation. Another line of works, includ-
ing [41,48,77,90,92], have proposed to integrate visual APIs with language mod-
els to facilitate decision-making or planning based on visual information, which
further connects vision and language models. Close to our method are works
that utilize LLMs as a planner for embodied agents [2, 35, 36, 50, 78, 80, 91, 101]
to generate executable plans in real-world environments. Unlike works focus on
robots, we introduce LLMs to manipulate the generation of key poses of motion,
enabling fine-granularity control over motion.

3 Method

Based on two key findings: (1) despite an infinite number of potential motions,
the underlying postures are limited to a smaller space [20]; (2) mapping between
this small space and natural language can be achieved with current dataset [18].
We divide the task into three steps and leverage LLMs to implement open-
vocabulary generation. Specifically, PRO-Motion first instructs LLMs to gener-
ate a sequence of scripts describing the key postures in the target motion. The
scripts follow simple patterns that focus on the relationships of body parts, al-
lowing the generation of postures from scripts using a simple diffusion model.
Finally, with key postures as conditions, we train another diffusion model to
estimate whole-body translations and rotations for all postures.
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Fig. 3: Illustration of our framework for open-vocabulary text-to-motion
generation. Specifically, we employ large language models (LLMs) as the Motion
Planner to generate a sequence of scripts describing the key postures. Then, our
Posture-Denoiser module receives discrete pose scripts and generates corresponding
poses to construct a candidate posture base. Posture planning module is utilized to
select reasonable pose sequences from the candidate posture base. Finally, the Go-
Denoiser module increases the motion frames and infers the translation and rotation.

3.1 Motion Planner

As depicted in Fig. 3, when presented with a user prompt, such as “Feel free to
dance”, we exploit GPT-3.5 [56] to create a plan for describing key poses based
on the prior knowledge about body parts that are involved in the motion. To
ensure that GPT-3.5 generates descriptions for these key poses while maintain-
ing consistency throughout the motion, we provide GPT-3.5 with a user prompt
indicating the expected motion and a task description that guarantees the tem-
poral consistency and control over various motion attributes like frames per
second (FPS) and the number of frames. Beyond governing the overall motion,
we have established five fundamental rules to guide GPT-3.5 in describing key
poses: (1) Characterize the degree of bending of body parts, e.g ., “left elbow”
using descriptors like “completely bent”, “slightly bent”, “straight”. (2) Classify
the relative distances between different body parts, e.g ., two hands, as “close”,
“shoulder width apart”, “spread” or “wide” apart. (3) Describe the relative po-
sitions of different body parts, e.g ., “left hip” and “left knee”, using terms like
“behind”, “below” or “at the right of”. (4) Determine whether a body part is ori-
ented “vertical” or “horizontal”, e.g ., “right knee”. (5) Identify whether a body
part is in contact with the ground, such as “left knee” and “right foot”. Further-
more, we offer GPT-3.5 some reference pose descriptions to guide its generation
process. Through this rule-based approach, we can guide the LLM to generate
precise key pose descriptions, achieving fine-grained control over poses. For more
details about the prompt design, please refer to the supplementary materials.

3.2 Posture-Denoiser

In this section, we present our Posture-Denoiser module, which aims to gener-
ate key poses that align with the localized body part descriptions provided by
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Fig. 4: Illustration of our Dual-Diffusion model. (a) Posture-Denoiser module is
designed to predict the original pose conditioned by the pose description. The model
consists of N identical layers, with each layer featuring a residual block for incorporating
time step information and a cross-modal transformer block for integrating the condition
text. (b) Go-Denoiser module serves the function of obtaining motion with translation
and rotation from discrete key poses without global information. In this module, the key
poses obtained from Sec. 3.2 are regarded as independent tokens. We perform attention
[86] between these tokens and noised motion independently, which can significantly
improve the perception ability between every condition pose and the motion sequence.

the Motion Planner in Sec. 3.1. As shown in Fig. 4 (a), we utilize a denois-
ing diffusion model, which is composed of a stack of N identical layers. Each
layer has two sub-blocks. The first is a residual block, which incorporates the
time embedding generated by passing the sinusoidal time embedding through a
two-layer feed-forward network. The second is a cross-modal transformer block,
which integrates the conditioning signal, i.e., text, via a standard cross-attention
mechanism [86]. The intermediate residual pose feature serves as the query vec-
tor, while the text embeddings extracted from the frozen DistillBERT [74] act as
the key and value vectors. Furthermore, we randomly mask the text embeddings
for classifier-free learning. This module enables us to generate key poses that
align with the pose descriptions precisely.

Posture Planning Due to the sampling diversity of DDPMs [31,55,68,79], the
Posture-Denoiser module can generate multiple plausible poses corresponding
to each pose description, we introduce our Posture Planning module, aiming
to select the most reasonable key poses from the candidate poses. We propose
two objectives: (1) minimizing differences between poses in adjacent frames and
(2) maximizing the similarity between poses and corresponding descriptions.
To achieve the objectives, we design two encoders: a text encoder Φ composed
of a single layer of bi-GRU [13], and a pose encoder Θ that uses the VPoser
encoder [58]. The encoders produce the L2-normed embeddings for computing
similarity. We employ the Viterbi algorithm [21] to search for reasonable paths.
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Specifically, suppose we have a set of F pose descriptions denoted as {di}Fi=1,
and for each pose description di, we have a collection of L generated candidate
poses represented as {pij}Lj=1, serving as pose observations at each frame. The
transition probability matrix Ai for the i-th (i > 1) frame is for the first objec-
tive, where the selection of poses for adjacent frames should preferably consider
pairs with higher similarity as follows:

Ai
jk =

exp
(
Θ(pi−1

j )
T
Θ(pik)

)
∑L

l=1 exp
(
Θ(pi−1

j )
T
Θ(pil)

) . (1)

The emission probability matrix Ei for the i-th (i ≥ 1) frame is to satisfy the
second objective, where the selection of the current frame’s key pose should
preferably consider poses with a higher matching degree to the description:

Ei
j =

exp
(
Φ(di)

T
Θ(pij)

)
∑L

l=1 exp
(
Φ(di)

T
Θ(pil)

) . (2)

The overall objective of the algorithm is to generate a pose path G = {gi}Fi=1

that maximizes the joint probability:

argmax
G

P (G) =

F∏
i=1

P (gi|gi−1) = E1
g1

F∏
i=2

Ei
giA

i
gi−1gi . (3)

3.3 Go-Denoiser

To interpolate and predict global information such as translation and rotation
for the key poses obtained in Sec. 3.2, we introduce our Go-Denoiser module Ψ
in this section. Our module is based on a diffusion model, as illustrated in Fig. 4
(b). As transformer [86] structure has been proved efficient in the field of motion
generation [61–63, 84], we adopt it with the transformer encoder architecture
in our implementation. The module is fed a noised motion sequence x1:N

t in a
time step t, as well as t itself and the condition, i.e., key poses {pigi}

F
i=1. To en-

hance the modeling of relationships between key poses and better capture global
information, we treat them as discrete tokens rather than a unified feature. In
practice, the key poses are projected and then randomly masked for classifier-free
learning. The noised input x1:N

t is projected and integrates positional informa-
tion. The transformer encoder output is projected back to the original motion
dimension, yielding the predicted motion sequence x̂1:N

0 . This module enables us
to interpolate the key poses smoothly and assign global properties to motions.

We do the sampling step from p(x0|G) in an iterative manner according to
[31, 84]. The target of the reverse step is to predict the clean sample x1:N

0 =
Ψ(x1:N

t , t, G) and noise it back to x1:N
t−1. It is repeated from t = T until x0 is

achieved. Go-Denoiser is trained using classifier-free guidance [32]:

Ψ(x1:N
t , t, G) = Ψ(x1:N

t , t, ∅) + s ∗ (Ψ(x1:N
t , t, G)− Ψ(x1:N

t , t, ∅)) (4)
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4 Experiments

4.1 Datasets and Motion Representation

Dataset. In our experiments, we utilize the pose data, motion data, and texts
sourced from AMASS [51], PoseScript [18], Motion-X [44], and HumanML3D [26].
AMASS unifies various optical marker-based mocap datasets, offering over 40
hours of motion data without textual descriptions. PoseScript consists of static
3D human poses extracted from AMASS, together with fine-grained semantic
human-written annotated descriptions (PoseScript-H) and automatically gener-
ated captions (PoseScript-A). HumanML3D is a widely used motion language
dataset that provides captions for motion data sourced from AMASS. Motion-X
is a large-scale 3D expressive whole-body motion dataset with detailed descrip-
tions. When training and test sets are of high similarity, models that overfit
the training set can exhibit impressive performance. To ensure the fairness of
comparisons between surprised-learning method [83, 84] and open-vocabulary
methods [33, 45, 83], we select two subsets from Motion-X as the testing set.
In the open-vocabulary setting, all the methods are trained using the data of
AMASS and HumanML3D. Specifically, we employ sentence transformers [69,70]
to compute the similarity between the text in IDEA-400 [44] (a high-quality mo-
tion language subset within Motion-X) and the text in HumanML3D. We filter
out pairs with similarity greater than a specified threshold α, e.g ., 0.45, yielding
a dataset comprising 368 text-motion pairs as our first test dataset. Moreover,
we choose the kungfu subset of Motion-X as our second test dataset.

Motion Representation. We follow the motion representation of TEMOS [62]
and construct the feature vector for SMPL data. It consists of three parts, includ-
ing “Translation”, “Root Orientation” and “SMPL local rotations”. “Translation”
consists of two parts. The first part is the velocity of the root joint in the global
coordinate system. The second part is the position of the root joint for the Z
axis. Root Orientation contains one rotation, and we utilize the 6D continuous
representation [103] to store it. Pose Body is from the SMPL-H [49,72] version of
AMASS. Because we focus on the movement of the human body, we removed all
rotations on the hands, resulting in 21 rotations). The same as root orientation,
we utilize the 6D continuous representation [103]. The translation of neighbor-
ing poses is subtracted and represented by the instantaneous velocity as the
translation attribute of the current frame.

4.2 Open-vocabulary Motion Generation

In this section, we first introduce the supervised learning baseline [83,84], open-
vocabulary baselines [33, 45, 83], and the evaluation metrics [26, 61]. Then we
discuss the comparative experimental results with these baselines.
MDM Baseline: MDM [84] employs a supervised learning approach utilizing
the diffusion model. However, its performance often degenerates when applied
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Table 1: Comparison of our method with previous methods on the subsets of the
IDEA-400 [44] dataset, i.e., ood368 and kungfu. We achieve superior performance on
R precision, FID, and the MultiModal Dist. MDM [84] is for supervised learning.
MotionCLIP [83], Codebook+Interpolation [33], Avatarclip [33] and OOHMG [45] are
designed for open vocabulary text-to-motion generation.

Text-motion
R@10 ↑ R@20 ↑ R@30 ↑ MedR ↓ FID ↓ MM Dist. ↓ Smooth

“test on ood368 subset"
MDM [84] 17.81 34.06 48.75 31.20 3.5005 2.6136 0.0114
MotionCLIP [83] 16.25 35.62 52.81 28.90 2.2275 2.2889 0.0073
Codebook+Interpolation [33] 15.62 31.25 46.56 32.80 4.0847 2.5160 0.0146
AvatarCLIP [33] 15.31 31.56 47.19 32.60 4.1819 2.4496 0.0156
OOHMG [45] 15.62 34.06 48.75 29.80 3.9827 2.1492 0.0758
Ours 20.25 36.56 53.14 26.10 1.4886 1.5345 0.1312
“test on kungfu subset"
MDM [84] 12.50 29.69 42.19 37.50 12.0601 3.7254 0.0735
MotionCLIP [83] 15.62 29.69 46.88 32.50 17.4147 4.2978 0.0123
Codebook+Interpolation [33] 10.94 20.31 29.69 37.50 2.5216 2.7641 0.0138
AvatarCLIP [33] 15.62 31.25 46.88 32.50 1.9667 2.4976 0.0171
OOHMG [45] 14.06 32.81 48.44 32.50 4.9048 2.4716 0.0847
Ours 20.31 34.38 50.00 31.00 4.1242 2.3743 0.1559

to a new setting, i.e., open-vocabulary motion generation. We trained it on the
SMPL-H [49,57,72] version data of AMASS with HumanML3D annotation.
MotionCLIP Baseline: MotionCLIP [83] is a supervised open-vocabulary
method which trained on AMASS data with BABEL [65] annotation. We use
the pre-trained model provided by the authors and test the model’s performance
in the open-vocabulary setting.
Codebook+Interpolation Baseline: In the pose generation stage, we utilize
VPoserCodebook [57] as the pose generator and select the most similar pose
in the pose generation stage. For the motion generation stage, we just use the
interpolation method to generate the motion.
AvatarCLIP Baseline: AvatarCLIP [33] is an optimizer-based method. It also
includes the first text-to-pose stage via matching between text and poses. Then
it uses the matched poses to search the most related motion in the latent space
of a motion VAE [40] trained on the AMASS dataset.
Evaluation Metrics is adopted from [26,61], which includes R precision, Frechet
Inception Distance(FID), and MultiModal Distance. For quantitative evalua-
tion, a motion feature extractor and a text feature extractor are trained using
contrastive loss to produce geometrically close feature vectors for matched text-
motion pairs. For more details about the above metrics as well as the design of the
text and motion feature extractor, please refer to the supplementary materials.
Consider R precision: for each generated motion, its ground-truth text descrip-
tion and n-1 randomly selected mismatched descriptions from the test dataset
form a description pool, followed by calculating and ranking the Euclidean dis-
tances between the motion feature and the text feature of each description in
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Fig. 5: Comparation of our methods with previous text-to-motion generation methods.

Fig. 6: (a) The guy is imitating a singing star. (b) Experiencing a profound sense of
joy. (c) Jump on one foot. (d) Failure case: Lift left leg and walk forward. Best viewed
in Adobe Reader where (a)-(d) should play as videos. They are also included in Supp.

the pool. Meanwhile, MultiModal distance is computed as the average Euclidean
distance between the motion feature of each generated motion and the text fea-
ture of its corresponding description in the test dataset. Pose-based methods
may precipitate a lack of cohesion between poses. So we have devised such a
metric. smooth = 1

n−1

∑n
2 ||pi − pi−1||2. A diminutive smooth does not neces-

sarily signify optimal model performance. If the value is excessively minimal, it
implies that the alteration in the movement is not substantial.

As shown in Fig. 5, for the motion description “bury one’s head and cry,
and finally crouched down”, methods such as MDM [84] based on the super-
vised learning paradigm often fail in similar cases and cannot generate un-seen
motion. Moreover, due to the gap between motion description and image de-
scription, matching text and motion via the language space of CLIP [67] is not
effective. MotionCLIP [83], AvatarCLIP [33] and OOHMG [45] struggle to deal
with detailed and precise motion descriptions. We also show more visualization
results in the form of gifs, as shown in Fig. 6. (a) and (b) show that our model can
deal with descriptions that include emotions or other abstract situations rather
than specific body movements. (c) shows our model can generate some atypical
motion. While (d) is a failure case, foot sliding occurs since the representation
in our method didn’t deal well with foot contact information. In Tab. 1, quan-
titative metrics demonstrate the superiority of our model over other methods in
terms of semantic consistency and motion rationality.
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Table 2: Comparison of our method with PoseScript [18]. We follow the settings in
PoseScript and compare the results on the datasets of PoseScript-A and PoseScript-H.

FID↓ mRecall mRecall
(R/G)↑ (G/R)↑

evaluation on automatic captions (PoseScript-A)
PoseScript [18] 0.48±0.01 29.37±1.84 48.97±4.39

Ours 0.24±0.02 36.16±2.41 59.13±2.62

evaluation on human captions (PoseScript-H)
PoseScript [18] 0.48±0.01 18.23±1.72 28.27±1.53

Ours 0.31±0.01 24.40±2.73 30.94±3.95

4.3 Ablation Study

Posture-Denoiser In comparison to the zero-shot open-vocabulary text-to-
pose generation methods [33, 45], we first utilize LLMs to translate the pose
description into localized body part description, which is fed to our pose gen-
erator in Sec. 3.2 to generate pose precisely. As shown in Fig. 7, the Matching
method demonstrates superior pose generation results compared to Optimize and
VPoserOptimize, which suggests that directly using CLIP for matching is more
effective than optimization through the complex pipeline. However, “Matching”
fails to generate more precise poses for diverse texts, exhibiting a limitation in
preserving textual information in the generated poses. For instance, in cases like
“cry” and “pray”, “Matching" generates identical poses for texts with distinct
meanings. When generating poses that require more precise control over body
parts, such as “dance the waltz” or “kick soccer”, both OOHMG and “Matching”
fail to achieve satisfactory results. In contrast, by employing LLMs to precisely
describe the expected pose, we achieve accurate control over pose generation,
enabling more effective open-vocabulary text-based pose synthesis.

To evaluate the effects of our posture-denoiser quantitatively, we follow the
setting of PoseScript [18] and test the effects in PoseScript-A and PoseScript-H.
As shown in Tab. 2, our method achieved state-of-the-art results both on the
FID, mRecall (R/G) and mRecall (G/R). Text-to-pose retrieval is evaluated by
ranking the whole set of poses for each of the query texts. We then compute
the recall@K (R@K), which is the proportion of query texts for which the cor-
responding pose is ranked in the top-K retrieved poses. We proceed similarly to
evaluate poseto-text retrieval. We use K = 1, 5, 10 and report the mean recall
(mRecall) as the average overall recall@K values from both retrieval directions.

Go-Denoiser. While this is the first effort at predicting spatial information of
motion in a zero-shot local pose-driven manner to our best knowledge, we have
developed appropriate baseline methods to evaluate the translation and rotation
reconstruction and frame interpolation effects. Based on our observation, the
translation and rotation of the body could be estimated by analyzing the varia-
tions in body parts between adjacent poses. We treat the process of estimating
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Fig. 7: Comparison of our method with previous text-to-pose generation methods.

global information from the key poses as a reconstruction task. Thus, we design
several methods to evaluate the efforts. The model input is key poses and the
model output is motion. “Reg.” consists of two networks; one predicts rotation
and the other predicts translation. Each part is composed of LeakyReLU, Batch-
Norm1D, and three linear layers. The transformer structure has been proven cor-
rect in the motion generation filed [61, 62], thus we design the baseline method
by extracting pose sequence features utilizing TEMOS Motion Encoder [62] as
the condition to inject into the diffusion model. As shown in Fig. 8, from the
four images in the top left corner, it can be observed that a simple MLP net-
work is capable of predicting motion translation information to some extent.
As indicated in the bottom-left image, extracting pose sequences as features
using existing motion encoders may overlook the internal relationships within
the pose sequences, thereby leading to confusing details. In the top right image,
our method exhibits better fidelity in capturing fine details such as knee flexion.
Moreover, the four images in the bottom right corner reveal that when dealing
with similar adjacent poses, our model demonstrates a finer-grained perceptual
capability, thus imparting appropriate motion trends to digital avatars.

As shown in Tab. 3, our method achieved state-of-the-art results both on the
APE. and the AVE. of global trajectory, rotation and local pose joints.

APE[j] =
1

NF

∑
n∈N

∑
f∈F

∥∥∥Hf [j]− Ĥf [j]
∥∥∥
2
, AV E[j] =

1

N

∑
n∈N

∥∥∥δ [j]− δ̂ [j]
∥∥∥
2

(5)
The average positional error(APE.) and Average Variance Error (AVE.) are
adopted from [62]. APE. for a specific joint j is determined by computing the
mean of the L2 distances between the generated and ground truth joint positions
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Table 3: Comparison of our method with baseline methods on AMASS [51] dataset.
We achieve state-of-the-art performance on APE. and AVE. . Root joint, global traj.
and mean local metrics represent the performance of translation and rotation. Mean
global represents the performance of body joints and global translation.

Methods Average Positional Error ↓ Average Variance Error ↓
root joint global traj. mean local mean global root joint global traj. mean local mean global

Reg. 5.8786 5.5334 0.6422 5.9199 35.3873 35.3865 0.1476 35.4832
B/L [61] 0.3841 0.3733 0.1839 0.4693 0.1143 0.1138 0.0152 0.1260
Ours 0.3653 0.3546 0.1287 0.4182 0.1111 0.1108 0.0087 0.1183

Fig. 8: Comparison of different methods. Yellow color represents details that should
be paid attention to, and the red color represents inaccuracies.

across the frames (F) and samples (N). The AVE. quantifies the distinction in
variations. This metric is defined as the mean of the L2 distances between the
generated samples and ground truth samples’ variances for the joint j.

5 Conclusions and Discussions

In this paper, we introduce PRO-Motion, a model designed to tackle open-
vocabulary text-to-motion generation tasks. It consists of three modules: mo-
tion planner, posture-denoizer, and go-denoiser. The motion planner instructs
the large language models to generate a sequence of scripts describing the key
postures in the target motion. The posture-denoiser transforms a script into a
posture, paving the way for open-vocabulary generation. Finally, the go-denoiser,
estimates whole-body translations and rotations for all postures, resulting in di-
verse and realistic motions. Experimental results have shown the superiority of
our method compared to other counterparts.
Limitation 1) Dependent on LLMs’ stability. Although it is cost-effective, em-
ploying GPT-3.5 as the motion planner may generate a few unsatisfactory scripts.
This drawback may be addressed by employing more powerful LLMs or fine-
tuning a language model end-to-end. 2) Limited motion duration. Pro-Motion
generates a fixed number of frames in a motion sequence, similar to previous
open-vocabulary text-to-motion methods [33,45,83]. Our prompt is designed for
eight keyframes, but Pro-Motion can be generalized to a wider range of scenarios
by including different numbers of keyframes with flexible durations.
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