17

Copyright © 1977 by The Institute of Electrical and Electronics Engineers, Inc.
Reprinted, with permission, from IEEE Trans. Comput. C-26:948-957 (1977)

A Compact High-Speed Parallel Multiplication Scheme

WILLIAM J. STENZEL, WILLIAM J. KUBITZ, MEMBER, 1EEE, AND GILLES H. GARCIA

INTRODUCTION

CHEMES for parallel multiplication are roughly
divisible into two classes—iterative arrays of cells
[Fairchild 9344 and Advanced Micro Devices 25S05],
[1]-{4], and generation of a matrix of partial-product terms
with subsequent reduction of the matrix by means of
pseudoadders [5]-[10]. Array schemes are attractive for
their compactness and use of one basic circuit type, but
their speed of operation increases linearly with operand
length and is slow for large words [6). Matrix generation-
reduction schemes are much faster for larger operands
since their speed of operation increases with the log of the
operand length [11]. Traditional forms of the matrix gen-
eration-reduction scheme employ AND gates as 1-by-1-bit
multipliers in forming the partial-product matrix and use
full adders to reduce the matrix; this form is not nearly as
compact as the array scheme. Integrated circuits now exist
which can form partial products for operands larger than
1 bit [Texas Instruments 74S274] or reduce larger portions
of the matrices than is possible with full adders [12], [Texas
Instruments 74S275]. This allows the fabrication of gen-
eration-reduction-type multipliers which rival array-type
multipliers in compactness.

This paper deals with a compact form of generation-
reduction-type multiplier. The consequences of employing
larger partial-product generation circuits and more general
reduction circuits are considered; possible implementa-
tions of these circuits are discussed. An algorithm for the
design of multipliers using these circuits is presented and
is used to obtain measures of merit for several multipli-
cation schemes. Finally, the fabrication of a prototype 24
X 24-bit multiplier employing such circuits is described
and its performance is evaluated. All schemes described
are for unsigned (i.e., sign-magnitude) multiplication. If
2’s complement multiplication is desired, the algorithms
presented in [11] and [13] may be used to generate addi-
tional partial-product terms that will produce a 2’s com-
plement result when either added to the unsigned product
or incorporated into the matrix and reduced along with the
rest of the terms.

GENERAL CONSIDERATIONS

Fig. 1 shows diagrammatically the process of multiplying

two 6-bit unsigned numbers. The dot representation used
in Fig. 1 is a convenient means of depicting the multipli-
cation process and will be used throughout this discussion.
The product terms shown are most often generated by
means of AND gates (1 X 1 multipliers) and, using the ap-
proach of Wallace and Dadda [9], 5], full adders are used
to reduce the partial-product matrix by summing the
columns. The complete reduction is shown in Fig. 2 for this
example. A carry look-ahead adder is normally used to
reduce the final two rows. Note that for the 1 X 1 multiplier
case the matrix height is given by

hi=i+1, fori=0,:--,n—-1

hi=2n—-1-4, fori=n,---,2n —2
where h; is the height of the column of weight 2¢ and n is
the word length.

This scheme may be improved by using m X m rather
than 1 X 1 multipliers for the product-term generation.
The 256 X 8 read-only memories (ROM’s) may be pro-
grammed with the multiplication tables for pairs of 4-bit
operands. The two 4-bit operands are input as an 8-bit
address and their 8-bit product is the output. These
ROM'’s may be used as 4 X 4 multipliers to generate partial
products. The height of the columns of the matrix for m
> 2 is given by

;'=2|."1—J+1,
m

hi=2 [(Zn -ml ~ 1)

fori =0,...

I+1, fori=n,..-2n -1

where h; and n are the same as before [14].!

The savings obtained for generation lead one to seek
similar savings for reduction. Accordingly, we note that 1K
X 4-bit ROM’s may be programmed to treat the 10 address
lines as two adjacent columns of 5 bits each and perform
a table lookup on the sum. A ROM so programmed can be
used to reduce a matrix in a fashion similar to that of full
adders. Note that the maximum sum is 15, which requires
exactly 4 bits for its binary representation. This provides

A};IE” is the largest integer less than or equal to x; the “floor” of x asin

133

P

Fig. 1. Diagramatic representation of 6 X 6 multiplication.

complete utilization of the 10-bit address field and the
4-bit output field. This tool may be applied to a 12 X 12-bit
multiplication with the result shown in Fig. 3. The first
level in the figure corresponds to the full matrix resulting
from the use of 4 X 4 multiplier modules. The full n2 ex-
pansion would be 12 bits high and contain twice as many
terms. The second row shows the two-row matrix resulting
from the use of ROM’s for reduction.

GENERALIZED COUNTERS

Dadda [5] has introduced the notion of a (c,d) counter
as a combinatorial network which receives ¢ bits of equal
weight as input and produces a d-bit word corresponding
to their sum as output. A full adder, for example, would be
termed a (3,2) counter. The value of the output is

c—1
v= 3 b
i=0
where b; denotes the binary value of bit i of the input col-
umn and v denotes the value of the d-bit output. The
number of output bits must be sufficient to represent all
possible sums of ¢ bits, and hence

24 -1 2e¢

This class of counters may be extended to include
counters which receive several successively weighted input
columns and produce their sum, taking the weighting into
account. We denote counters of this type as

(Ck-l.ck-z. cer ﬁc():d)

counters, where k is the number of input columns, ¢; is the
number of input bits in the column of weight 2¢, and d is
the number of bits in the output word. The value of the
output is

k=1 cj-
v=% & b2

i=0 j=0

fond
. LEVEL 1
h— J
._.l LEVEL 2
. LEVEL 3
* .
CLA LEVEL
PRODUCT

Fig. 2. Wallace tree reduction fo; : X 6 multiplication. Boxes indicate
adders.

where b;; denotes the value of bit j in column . Againd is
subject to the constraint that

k-1
24 —12 Z ci2t

i=0
Examples of several counters are shown in Fig. 4. The en-
closed dots represent the configuration of the input bits,
and are followed by the resultant output bits. The counters
shown (with the exception of the (3,3,3.3,6)) all have
complete utilization. Complete utilization is not necessary
but it is desirable. There are many underutilized ar-
rangements and, although useful in certain applications,
they will not be discussed here.

The effect of a series of counters acting on adjacent sets
of input columns is shown in Fig. 6. The inputs to the
counters are shown first, followed by an equivalent rep-
resentation of the output. Let us refer to the number of
resulting output rows as s. We see, then, that a series of
(7,3) counters can reduce a matrix 7 rows high to a matrix
3 rows high (s = 3), or a series of (5,5,4) counters can reduce
5 rows to 2 rows (s = 2). A string of (2,2,2,3,5) counters can
reduce 3 rows to 2 rows by virtue of the fact that an extra
input bit is consumed in the low order position, compen-
sating for the carry out of the previous counter.

Let us further restrict ourselves to counters with input

134

Fig. 3. 12 X 12-bit partial product reduction using (5,5,4) counters.
Partial products are generated by 4 X 4 multipliers.

B

(3,2) (1,3

(2,2,2,3,5)

(5,5,4)

(3,3,3,3,6)

Fig. 4. Some generalized counters.

columns of equal height. Equal column counters are not
the only ones of interest, but are a convenient.tool for re-
ducing the regular portions of a matrix and are thus more
useful. The regularity of these counters permits us to make
the following observations, which are not necessarily true
of unequal column counters.

Equal column counters consume a rectangular matrix
segment of k columns by r rows, where

F = Che] = Chmg = +os =20y

As Fig. 5 shows, a string of counters produces d-bit outputs
at intervals of k bits. The outputs align themselves such

that no more than [d/k] outputs contribute to a given
column.? Hence, the number of rows, s, of the output ma-

| k l.

The height of the resulting output matrix is determined
by the number of input and output columns, subject to the
constraint that the sum of the r input rows is representable

2 [x] is the smallest integer greater than or equal to x; the “ceiling” as
in APL

135

(1,3)

(3,2)

(5,5,4)

......

.....

.............

.....

..........

........

(3,3,3,3,6)

......

......

Fig. 5. Effect of a series of adjacent counters.

in d bits. The number of resultant output rows has a direct
bearing on the number of stages of counters needed tore-
duce a large matrix, so it is desirable that the number of
output rows be small. If we let

=2k —1
denote the maximum possible value of a single input row
and
v, =29—-1

denote the maximum representable output value, the
constraint on the number of input rows may be expressed

as
Uy = TV,
or
d
rsg--z !
v, 2k-1

If d is not divisible by k, the output matrix will be
somewhat sparse (e.g., the output of a string of (3,3,3,3,6)
counters consists of alternate 2-bit segments of height 1
and height 2). This may be used to advantage in certain
situations, such as the reduction of a 6 row matrix by
means of (3,3,3,3,6) counters [14]. Normally, it is advan-
tageous to produce a matrix of uniform height since it can
be reduced by a single counter type.

These considerations lead us to the notion of a maxi-
mally efficient counter as one which produces a uniform
output matrix while consuming the largest possible regular

136

portion of the input matrix; i.e., it should have equal col-
umns with the largest possible number of rows. Disre-
garding cases where strings of counters may be stacked and
skewed, as in the case previously mentioned, this means
that the number of output columns should be a multiple
of the number of input columns, or

d = sk.

The counter will consume the largest possible portion of
the matrix when

Vo = I,
or
vy _20-1_2%k—1

= = = 96~k 4 26—k 4 ... 4 1.
o 2¢-1 2Fk-—-1

r=

Maximally efficient equal column counters are given in
Table I for the first few values of k and s. The only cur-
rently implementable ones are the (3,2), the (7,3), the
(5,5,4), and possibly the (15,4) counters. The number of

input rows increases rapidly with both the number of input .

columns and output rows, hence any implementation of
counters with a larger k or s than those previously men-
tioned would probably be less than maximally efficient.

NUMBER OF LEVELS FOR REDUCTION

A matrix r bits high can be reduced to one s bits high
through the use of one level of counters. We now consider |
the number of levels of counters required to reduce a ma- |

i
]
1
.

TABLE 1
Maximally Efficient Counters with Equal Columns

INPUT

REQUIRED ROM
SIZE

OUTPUT

Columns Rows

k

7

Columns

Words x Bits

w n w |

17
33

7
21

—_ B W N

73
2713
15

—_ e W N

85
585
31

N e W N

341

8x 2
1024 x 4

22 x 6

68

2" x 8

2185 ¢ 10

128 x 3

242

219

x 6

2 x 9
21092y,
,15

2170

x 4
x 8
21755 x 12
231 x 5
2582 x 10

-4
G s e e W W W W NN NN R e

10

* Denotes currently realizable counters.

trix more than r bits in height to one of s bits. Denote the
maximum height of the matrix that may be reduced to s
bits using j levels of counters as [;. Note that lo =s and {;
= r. Knowing /; we may determine /;;; by observing that
the I; bits represents the output of a stack of | [;/s | counters
at level j + 1 plus a residue of (I;) mod s bits which were
not reduced by counters (Fig. 6). The | /;/s] counters each
consume r bits, so

liy1= [%J + (};) mod s.

For a (5,5,4) counter the maximum reduction height se-
quence is

2,5,11,26,65, - - -
and for a (7,3) counter it is
3,7,15,35,79, « - «.

A rough approximation of the first few terms of the se-

quence is
r r\ 2 ry\3
S, 8,8 7)»S{7) "
s s s

Hence, the number of levels of counters required to reduce
a matrix h bits high to s rows is roughly log/) (h) lev-
els.

Not all counters give a reduction to 2 rows. The (7,3)
counters give a reduction to only 3 rows and the final re-
duction to 2 rows must be accomplished by means of an
additional stage of counters. Other sequences may be ob-
tained by combining two or more types of counters. For
example, if the final level of a series of (5,5,4) counters is
followed by an additional level of (3,2) counters, the final
reduction height and hence the first term of the sequence
for the (5,5,4) counters becomes 3 rather than 2. The se-
quence for the (3,2) level is 2, 3 and for the (5,5,4) levels is

3,6, 15, 36,90, - - -, giving an overall sequence of 2, 3, 6, 15,
36, - - - . Thus, if we wish to employ (5,5,4) counters for the
reduction of a matrix that is initially 15 bits high to 2 rows,
we may use either 3 levels of (5,5,4) counters or 2 levels of
(5,5,4) counters followed by one level of (3,2) counters.
Assuming that (3,2) counters have a shorter propagation
delay than (5,5,4) counters, the second approach will be
slightly faster than the first. Hence, we can tailor a se-
quence to fit the requirements of a particular matrix by
mixing various counter types.

REDUCTION ALGORITHM

The heuristic rule for the reduction of a matrix with (3,2)
counters as presented by Dadda [5] is directly applicable
to reduction by generalized counters. Dadda’s rule was to
find the largest term [; in the counter’s sequence which is
less than the original matrix height and to reduce the
matrix only to height l;. Each successive level of counters
then reduces the matrix to the height given by the next
smaller term in the series; i.e., [j,lj—1, - - < ,lo. In the more
general situation the sequence may be characteristic of
more than one type of counter, as in the example of the
previous section.

The actual placement of the counters at a given reduc-
tion level is determined by traversing the matrix from right
to left, inserting counters as needed to reduce columns to
the targeted reduction height. The entire process may be
stated algorithmically as follows.

Denote the desired word length as n, the multi-
plier module size as m, and the counters at a given
level as (cx-1,++-,c0,d) as before, where k is the
number of input columns, d is the number of output
columns, and s = [d/k] is the number of output
rows. Further, let h; fori =0, - - - ,2n — 1 denote the
current height of column i of the matrix and let the

137

(7,3) sequence

Fig. 6. Examples of multilevel reduction by (5,5,4) and (7,3) coun-
ters.

variables H and T denote the matrix height before
and after the reduction, respectively.

1) Initialize h; and H as follows.

a)Ifm=1
hi=i+1, fori=0,---,n—1
hi=2n-1-4, fori=n,.--,2n -2
H=n,
b) Ifm=2

fori=0,.-,n—1

h;=2[LJ+1,
m

h;=2[(—22_—1_-—QJ+1, fori=n,---,2n -1
m

2n

==-1.

m

2) Set T to the largest term in the reduction series which
is less than H;i.e.,

T=1l, forjsuchthatl; <H andlj;; 2 H.

3) If H = 2, then terminate the algorithm; otherwise
perform step 3a) fori = 0,.--,2n — 1.

a) If h; < T, do nothing; otherwise insert a counter
at this point, adjust the column heights accordingly, and
repeat step 3a) for the new height of the same column i.
The rules for adjusting column heights are:

hi+j = max [T,(h,‘+i -cj+ 1)), forj=0,--- k-1
hivj=hiyj+ 1, forj=k,...,d-1.
4) Set H to T and T to the next smaller term in the re-

duction series. This term is given by
T=s l-T—‘J + (T) mod r
r

where the s and r values characterize the counters that will
be used at the next level.

5) Go to step 3.

This process is easily implemented on a computer.

An example of a reduction is shown in Fig. 7 for a 32 X
32-bit multiplication using 4 X 4-bit multipliers and (5,5,4)
counters. The height of the matrix is initially 15 and the
reduction sequence is 2, 5, 11, 26. In some cases, a (5,5,4)
counter has been underutilized so that the reduction
proceeds only to the desired height.

Previously, it was mentioned that a reduction from 15
rows to 2 rows could be accomplished by using 2 levels of
(5,5,4) counters and one level of (3,2) counters. This is
shown in Fig. 8. The sequence is 2, 3, 6, 15. If there is a need
to economize on the number of large counters, a slight
improvement can be obtained by using smaller counters
to replace underutilized large counters wherever possi-
ble.

COMPARISON OF SEVERAL SCHEMES

The algorithm for partitioning multipliers has been used
to generate partitions for multipliers using various com-
binations of counters and multiplier modules. The coun-
ters and multiplier modules considered are all currently
available. Hence we may use the characteristics of the in-
dividual components (TTL in this case) in conjunction
with the component counts produced by the respective
multiplier generating programs to obtain realistic measures
of speed, power consumption, relative circuit board area,
and cost.

Four schemes are compared here.

1) Generate partial products with 4 X 4 multiply mod-
ules and reduce with both (5,5,4) and (3,2) counters, using
the (3,2) counters wherever possible.

2) Generate matrix with 4 X 4 multiply modules and
reduce with both (7,3) and (3,2) counters, using the (3,2)
counters wherever possible.

3) Generate matrix with 4 X 4 multiply modules and
reduce with (3,2) counters exclusively.

4) Generate matrix with 1 X 1 multiply modules and
reduce with (3,2) counters exclusively.

The components involved are implemented in several
versions of T'TL, so for purposes of normalization their
propagation delays are characterized in terms of equivalent
logic levels, with each logic level having a standard gate
delay of 10 ns. An attempt has also been made to normalize |
the power consumption to that characteristic of a standard
TTL implementation of the IC’s. It is assumed that the }
circuits are packaged in standard dual in-line packages 1
(DIP’s) and that several components of the same type are
housed in a single DIP when possible. This permits us to
obtain a figure for the total area occupied by the IC’s
themselves; a good indication of the total area of a circuit 4
board for a given multiplier relative to other multipliers.

138

..

Fig. 7. 32 X 32-bit multiplication using only (5,5,4) counters.

........

Fig. 8. 32 X 32-bit multiplication using (5,5,4) counters with (3,2)
counters in last stage.

TABLE 11
Characteristics of Some Multipliers and Counters
Counter or Logic ¥ Per Pin Package Power
Multiplier Levels Pkg. Count Area in m.w.
(3,2) 3 2 14 .21 220
(7.3) 6 1 16 .24 650
15,5,4) 6 1 16 .24 850
1x 1 2 4 14 .21 113
4 x4 6 1 20 .30 850

The characteristics of the various IC’s are given in Table
I1. The cost data are not presented here since they fluc-
tuate rapidly, but at the time of the comparison, in order
of increasing cost, the rank was 3,1,2,4 independent of word
length. Similarly, the rank, in order of increasing area, is
1,2,3,4 and, in order of increasing power dissipation, 3,1,2,4
independent of word length. Fig. 9 shows the result for
propagation delay, for which the rank order does depend
on word length.

IMPLEMENTATION OF MULTIPLIERS AND COUNTERS

Multipliers and counters may be implemented directly
by means of gates or by using read only memory. Direct

implementation is feasible in counters only when the
height of the input columns is small. Small units could be
used as functional modules in constructing larger units by
means of either LSI or hybrid techniques. This approach
may also be applied to large multipliers [15].

Table lookup schemes are practical for. m X m multi-
pliers and larger counters. In its simplest form this type
of scheme utilizes a standard ROM with one address bit
corresponding to each input bit of the counter or multiplier
and every input configuration addressing a distinct word
in memory. This requires 2! X j bits of memory. Standard
ROM'’s are attractive because the time and expense of
designing and developing a new chip are avoided.

139

DELAY
(nsec.)

koo -

300 1+

200 -1+

100 +-

1 I } 1 ! 4 } { l 1 { ! { { ! > n
| Li 1 Ll LJ] T ¥ L T 1 Ll L] L] el
12 24 36 L8 60

Fig.9. Plot of propagation delay versus word size.

EE s ' i BN R N N

140

Fig. 11.

The (intellectual) drawback of the standard ROM ap-
proach is the high degree of redundancy in the stored in-
formation. A reduction in the amount of storage required
can be achieved if the input configurations are mapped
into classes such that each member of a class references the
same memory location. A scheme for such a mapping which
incorporates residue threshold functions has been pro-
posed by Ho and Chen [16].

The standard ROM implementation of a (5,5,4) counter
requires 10 address bits and 4 output bits for a total of 4096
bits of memory. By removing the redundancies in the
stored words the complete (5,5,4) counter can be pro-
grammed using 108 bits [14]. This represents a savings by

-a factor of nearly 40 over the 4096 bits required for direct
implementation at the expense of one extra logic level in
decoding. This type of implementation bears great simi-
larity to programmed logic arrays (PLA’s). In spite of the
apparent economies of this approach, the ROM imple-
mentation may be more practical since large ROM’s may
always be more available than large PLA structures due
to their greater generality.

PROTOTYPE MULTIPLIER

A prototype 24 X 24-bit multiplier incorporating ROM
implemented 4 X 4 multipliers and (5,5,4) counters as well
as standard (2,2,2,3,5) counters was fabricated as a portion
of a floating-point arithmetic unit {17]. The multiplier
circuit was hand optimized to reduce the number of (5,5,4)
counters and to minimize the propagation delay. The de-
sign is shown in Fig. 10. The carries from the (2,2,2,3,5)
counters are propagated horizontally in some cases (indi-
cated by arrows).

Fabrication limitations restricted us to two-sided boards
with maximum dimensions of 15 X 18 in. The multiplier
circuit contains 90 IC’s, allowing three square inches of
board area per package. Schottky T'TL integrated circuits
were used.

The layout of the board was done entirely by hand, the
package placement being settled upon after several in-
creasingly successful iterations. The board consists of a
horseshoe-type arrangement of integrated circuits with the
input lines running up the center of the horseshoe and the
output lines running down the outside, as shown in Fig. 11.

Photograph of multiplier prototype.

The thirty-six 4 X 4 multiplier ROM’s immediately sur-
round the input lines and are fed by horizontal connections
on the back side of the board. The packages for the first
level of reduction surround the 4 X 4 multiplier ROM’s and
are in turn surrounded by the second level and the carry
look-ahead adders with their associated carry propagate
units.

Both static and dynamic testing of the multiplier was
performed. The ROM multipliers and counters were
checked exhaustively and the overall multiplier was
checked on numerous inputs.

For the dynamic tests the inputs and outputs were
buffered through D-type registers. The propagation delay
of the multiplier was measured by clearing the input reg-
ister, clocking the data into the input register and, after
a variable interval, clocking the output register. The
variable interval was reduced until the outputs were no
longer correct. Thus the input, output, and cable delays
are included in the measured propagation delay. The
measured propagation delay was 200 ns. The worst case
calculated delay was 260 ns and the typical value was 190
ns.

SUMMARY

The partial-product matrix generation-reduction
schemes of Wallace and Dadda may be enhanced through
the use of multiplier modules larger than 1 X 1 bit and
counters larger and more general than (3,2) counters. The
larger multiplier modules permit the generation of a par-
tial-product matrix containing fewer total bits and having
a maximum height less than that generated by 1 X 1 mul-
tipliers and, with current implementations, require fewer
I1C packages to do so. Larger, more complex counters per-
mit reduction of matrices in fewer stages of counters with
fewer IC packages than the simpler (3,2) counters while
maintaining a similar number of total logiclevels. The net
result is a multiplier with the speed of Dadda’s scheme and
the compactness of current implementations of array
multipliers [Advanced Micro Devices 25505, Fairchild
9344].

Several large counters and multiplier modules have been
realized as T'TL integrated circuits and are also feasible
as ECL circuits. The feasibility of their use in multiplica-

141

tion schemes has been demonstrated by the fabrication of
a 200-ns 24 X 24-bit prototype. Advances in LSI and hy-
brid technology should make possible still larger counters
and multiplier modules.

The algorithm for the logic design of multipliers incor-
porating generalized counters and multiplier modules is
extremely straightforward. The physical implementation
and maintenance of such multipliers is enhanced by their
compactness and hence should require less time and ex-
pense than comparable multipliers employing Dadda’s
scheme, especially for large (e.g., 64 bits) words. This type
of multiplier is attractive for a variety of applications,
ranging from fast floating-point mini- and midicomputers
to large scientific machines.

ACKNOWLEDGMENT

The authors wish to thank Dr. M. L. Graham and Prof.
D. L. Slotnick for their suggestions and support during this
work.

REFERENCES

[1] T.J. Chung and S. D. Bedrosian, “‘Fast digital multiplier based on
iterative cellular arrays of ROMS,” unpublished correspondence.

[2] 1. D. Deegan, “Cellular multiplier for signed binary numbers,”
Electron. Lett., vol. 7, pp. 436-437, July 29, 1971.

[3] d.C. Majithia and R. Kitai, ““An iterative array for multiplication
of signed binary numbers,” IEEE Trans. Comput., vol. C-20, pp.
214-216. Feb. 1971.

{4] S. D. Pezaris, “A 40 ns 17-bit array multiplier,” IEEE Trans.
Comput., vol. C-20, pp. 442-447, Apr. 1971.

[5] L. Dadda, “Some schemes for parallel multipliers,” Alta Freq., vol.
19, pp. 349-356, May 1965.

{6] A.Habibiand P.A. Wintz, “Fast multipliers,” IEEE Trans. Com-
put., vol. C-19, pp. 163-157, Feb. 1970,

[{7] S. Singh and R. Waxman, “Multiple operand addition and multi-
plication,” IEEE Trans. Comput., vol. C-22, pp. 113-120, Feb.
1973.

[8] A.Svoboda, *Adder with distributed control,” JEEE Trans. Com-
put., vol. C-19, pp. 749-751, Aug. 1970.

[9] C. S. Wallace, “A suggestion for a fast multiplier,” /[EEE Trans.
Electron. Comput., vol. EC-13, pp. 14-17, Feb. 1964,

[10] A. R. Meo, “Arithmetic networks and their minimization using a
new line of elementary units,” IEEE Trans. Comput., vol. Cx24, pp.
258-280, Mar. 1975.

[11} J. A. Gibson and R. W. Gibbard, “Synthesis and comparison of two's
complement parallel multipliers,” IEEE Trans. Comput., vol. C-24,
pp. 1020-1027, Oct. 1975,

[12] N.G. Kingshury, “High speed binary multiplier,” Electron. Lett.,
vol. 7, pp. 277-278, May 20, 1971.

[13] C. R. Baugh and B. A. Wooley, “Two's complement parallel array
multiplication algorithm,” IEEE Trans. Comput., vol. €-22, pp.
1045--1047, Dec. 1973.

[14] W. J. Stenzel, “A class of compact high speed paraltel multiplication
schemes,” Univ. of Illinois at Urbana-Champaign, Dep. Comput.
Sci., Rep. UIUCDCS-R-75-756.

[15) D.R Breuer, “A high speed monolithic 8 X 8 multiplier,” unpub-
lished correspondence.

[16] 1. T. Ho and T. C. Chen, “Multiple addition by residue threshold
functions and their representation by array logic,” IEEE Trans.
Comput., vol. C-22, pp. 762-767, Aug. 1973,

[17] M. L. Graham and D. L. Slotnick, “An array computer for the class
of problems typified by the general circulation model of the atmo-
sphere,” Univ. of Illinois at Urbana-Champaign, Dep. Comput. Sci.
Rep. UIUCDCS-R-75-761.

142

