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Geometrical deduction of semiregular from regular
polytopes and space fillings

BY

Mrs. A. BOOLE STOTT.

Introduction.

1. The object of this memoir is to give a method by which
bodies having a certain kind of semiregularity may be derived from
regular bodies in an Euclidean space of any number of dimensions;
and space fillings of the former from space fillings of the latter.

These space fillings or nets for threedimensional space have been
given in a paper entitled ,,Sulle reti di poliedri regolari e semire-
golari e sulle corrispondenti reti correlative” by Mr. A. ANDREINT 1),
who deduced them by means of the angles of the different poly-
hedra. Photographs prepared for the stereoscope, taken from that
paper, representing the various semiregular space fillings were sent
to me by Prof. Scroute to whom I desire to record here my thanks
for the generous help he has given me during the whole course
of this investigation. Thesc photographs suggested a method by
which at once the semiregular bodies and the manner in which
they combine to fill fourdimensional space could be derived from
regular polytopes and nets in that space. It will be seen that this
method can be applied to spaces of any other number of dimensions.

The semiregularity considered here is that in which there is
one kind of vertex and one length of edge 2), and the symbols used

') Memorie della Societd italiana della Scienze (detta dei XL), serie 3a, tomo XIV.
*) So the greater part of the forms called semiregular here will have a degree of
regularity less than } in the scale of Mr. E. L. ErTe.
A 1%
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for the polyhedra of this description, almost the same as those
given by ANDREINI, are as follows:

T, C, 0, D, I indicate the five regular polyhedra, using the
initial letters of their ordinary names Tetrahedron, Cube, Octahe-
dron, Dodecahedron, Icosahedron; and if p, indicates a regular
polygon with # vertices we have

tI'=truncated 7'......... ..ccovivennennns limited b, 4p; and 4p;,
= » C.ooenre i e ” " 6pg v  8py,
0= » Ocuissnimipsmsnpinsnissuwins " " 8p, n  6pg,
th= Do s v s g wow 3 0 13 8.5 0w g g g " v 12p  n 20ps,
tr= » i 5 555 0 o Bt Bk % B o oo " v 20p, v 12p;,
CO=2C and O in equilibrium............... " " 6p, n  8p,
ID=I v D » P e " v 12pg n 20pg,
RCO = combination of rhombic D, Cand O .... v 18p, »  Sps,
RID = " ” v Ir2)I v D .... u n 12ps, 80p, » 20pg,
tCO=truncated 2) CO.................cou.. " n 6p, 12p, »  8pg,
tID=  » D sy s msmsmimsmpmsmrmansa " n 12pyo, 30p, » 20pg.

Moreover we want:

Pg, P,,... for threedimensional triangular prisms, square prisms
(cubes), etc.

P, P,,... for fourdimensional prisms on a cube, an octahedron,...
as base,

P (3;3) or simply (3;3) for a prismotope 3) with two groups
of threedimensional prismns P; as limiting bodies,

P (6;8) or simply (6;8) for a prismotope having for limiting
bodies six octagonal and eight hexagonal prisms, etc.

2. The transformation of the regular into the semiregular bodies
and space fillings can be carried out by means of two inverse ope-
rations which may be called ezpansion and contraction.

In order to deiine these operations conveniently, the vertices,
edges, faces, limiting bodies,... of a regular polytope are called

') By Tr we indicate the solid limited by 30 lozenges in planes through the edges
of [ or D normal to the lines joining the centre to the midpoint of each edge.

') According to custom the word “trnncated” is used here, though this body and the
next one cannot be derived from the CO and the ID by truncation.

®) This body is also a ,simplotope” as the describing polygons (placed here in planes
perfectly normal to each other) are triangles (compare Scuoute’s ,Mehrdimensionale
Geometrie”, vol. II, p. 128).

In general a prismotope is generated in the following way:

Let Sp and Sg be two spaces of p and g dimensions having only one point in com-
mon; let P be a polytope in Sp, Q a polytope in S;. Now move Sp with P in it
parallel to itself, so as to make any vertex of P describe all the points of Q. Then
P generates the prismotope. Here we have to deal only with the case of two planes
(p=q=2); by the symbol (6;8) we will indicate the polytope limited by eight
hexagonal and six octagonal prisms obtained in the indicated manner if we start from
a hexagon and an octagon situated in two planes perfectly normal to each other.
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its limits (/) and are denoted respectively by the symbols /,, /.
by, I5. ..

I. The operations of expansion and contraction.

Definition of expansion.

8. Let O be the centre of a regular polytope and M,, M,, M,..
the centres of its limits /, Z,, /;... The operation of expansion
e, consists in moving the limits /, to equal distances away from O
each in the direction of the line O M, which joins O to its centre,
the limits /. remaining parallel to their original positions, retaining
their original size, and being moved over such a distance that the
two new positions of any vertex, which was common to two adjacent
edges in the original polytope, shall be separated by a length equal
to an edge. _

The polytope determined by the new positions of the limits /,
will have the kind of semiregularity described above. The limits
/, are said to be the subject of expansion or briefly the subject;
and the new polytope is denoted by the symbol of the original
regular polytope preceded by the symbol e,.

A few particular cases, in 2, 3 and 4 dimensions, will now be
examined.

Lixamples of the e, expansion.

4. Here the edges (/) are the subject.

It is evident that this operation applied to any regular polygon
changes it into a regular polygon having the same length of edge
and twice as many sides. In Fig. la a square is changed into an
octagon by the application of the e, expansion ?).

Fig. 16 shews the ¢, expansion of a cube. The real movement
of any edge 4B is in the direction of the line O3/, but that move-
ment may be resolved into two. Thus instead of moving 4B
directly to the position 4, B, it might have been moved to A'B
or to 4°B" and then to 4,B,. If the movements of all the edges
be thus resolved the result is the same as if the faces 4C, 4D...
(Fig. 1¢) of the original cube had been first transformed into octa-
gons by an e, expansion of each in its own plane, and then moved

') In these drawings the thick lines represent edges of regular polytopes in their
original or in new positions, the thin lines edges introduced by expansion.
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away from the centre O until the edges 4'B’ and A4"B”’, which
correspond to an edge 4B of the cube, are coincident and become
the common edge of two octagons (transformed squares). It is to
be noticed that as each vertex of a cube is common to three edges
(three members of the subject) it takes three new positions, which,
owing to the regularity of the cube, are the three vertices of an
equilateral triangle. Thus the faces of the cube have been expan-
ded into octagons and the vertices into triangles.

Fig. 2a shews the e, expansion of a tetrahedron. Each face is
changed into a hexagon, each vertex into a triangle. Here again
a vertex of the tetrahedron is common to three members of the sub-
ject; the result is a /7'

Fig. 26 shows the same expansion of an octahedron. Each face
is changed into a hexagon; but each vertex into a square because
in an octahedron each vertex belongs to four edges (four members
of the subject); the result is a 20.

From these examples it is easy to find the e, expansion of an
icosahedron and of a dodecahedron.

5. This investigation leads to the determination of the e, expan-
sion applied to the fourdimensional polytopes. For instance in the
Gy each cube is transformed (in its own space) by the e, expansion
and becomes a /C (Figs. 16 and 2¢). These transformed cubes must
be so adjusted that an edge which was in the C; common to
three cubes 1) is, in its new position, common to three transformed
cubes. Again each vertex in a (; is common to four edges and
must take four new positions which are the four vertices of a
regular tetrahedron. Thus the vertex of the Cy is expanded into
a tetrahedron, which is said to be of vertex mpors. This tetra-
hedron might have been determined in another way; for four cubes
meet in a vertex of a C; and in each the vertex is changed into
a triangle; therefore a vertex of C; is replaced by a body limited
by four triangles i. e. a tetrahedron.

The two kinds of limiting body of the new polytope e, C; are
shewn in Fig. 2¢; in Fig. 24 are shewn the limiting bodies of ¢, C.

In C,, where six edges meet in a vertex, the e, expansion
changes each tetrahedron into a #7" (Fig. 24) and each vertex into
an octahedron (of vertex import) whose vertices are the six new
positions of a vertex of the C,.

Again in G, eight edges meet in a vertex, so that the e, expan-

') In order to facilitate the application of the operation of expansion it is desirable
to have at hand a table of incidences; this is provided on Table III.
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sion here changes each octahedron into a #0 (Fig. 26) and each
vertex into a cube (of vertex import) whose vertices are the eight
new positions taken by a vertex of C,,.

In a similar manner the ¢, expansions of C4, and Cyy, may
be determined.

6. Rule. These examples lead to the general rule for the ¢,
expansion of a regular fourdimensional polytope P. The limiting
bodies of P are transformed by the ¢, expansion and the vertices
expanded into regular polyhedra each having as many vertices as
there are edges meeting in a vertex of P.

Ezamples of the e, expansion.

7. As the faces are the subject in this expansion there can be
no application to a single polygon in twodimensional space.

The e, expansion of a cube, an RCO, is shewn in figure 3a;
there are three groups of faces:

1% : squares corresponding to the faces  of the original cube
gnd, ” » s edges ' ’
8™ . triangles ”» ., » vertices , ,, ”» "
In this expansion of any regular polyhedron the faces of the

first group are like those of the original polyhedron; the faces of
the second group are always squares, since they are determined by
the two new positions of an edge of the original polyhedron; those
of the third group are triangles, squares or pentagons according
as a vertex of the original polyhedron belongs to three, four or
five faces.

As the cube and the octahedron are reciprocal bodies, the num-
ber of vertices lying in a face of one being equal to the number
of faces meeting in a vertex of the other, it follows that the e,
expansion of the octahedron is also an RCO (Fig. 34).

Again the tetrahedron is self reciprocal, the number of vertices
lying in a face being equal to the number of faces meeting in a
vertex; so in the e, expansion the faces of vertex import are,
like the faces of the tetrahedron, equilateral triangles (Fig. 4).

The e, expansion of the icosahedron and dodecahedron, which
are reciprocal bodies, is an R/D.

8. The e, expansion of the C; transforms each cube into an
RCO and, as in the C; each f_ace-is common to two cubes, so
those faces in the RCO which are faces of the cubes in new posi-
tions must now be common to two RCO. In the C; each edge
belongs to three faces, so in the new polytope each edge takes
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three new positions which are the three parallel edges of a right
prism on an equilateral triangular base.

This manner of determining the prism (expanded edge) bears the
most direct relation to the particular expansion under consideration,
namely that in which the faces are the subject; but it could have
been determined otherwise. Thus in a C; three cubes meet in an
edge and as each is changed into an RCO, its edges are changed
into squares, so that instead of three coincident edges there are
now three squares, the side faces of a right prism.

Again in the C; each vertex belongs to six faces and therefore
must assume six positions. From this it is evident that the body
taking the place in the new polytope of the vertex in the C; has
six vertices and it remains to determine its faces.

In figure 5 are represented, in their true relative positions as
far as threedimensional space will allow, two of the four RCO
and two of the four P; which have taken the place of the four
cubes and the four edges meeting in a vertex of the Cj;. Itshews
that each RCO supplies a triangular face and each prism a trian-
gular face — all equilateral — to the body that takes the place
of the vertex of the (. This body therefore is a regular octa-
hedron, four of whose faces are in contact with RCO and four
with Pg.

The new polytope then, e, C;, is limited by 8 RECO, 32 Pg of
edge import, 16 O of vertex import.

9. Rule. The rule for the e, expansion of a regular fourdimen-
sional polytope P may be stated thus:

The limiting bodies of P are transformed by the e, expansion.
The edges are expanded into prisms each having as many edges
parallel to the axis as there are faces meeting in an edge of P.
The vertices are expanded into bodies having two groups of faces,
one kind of edge, and as many vertices as there are faces meeting
in a vertex of P. One group of faces is supplied by the bases of
the prisms of edge import and of these the number is equal to
the number of edges meeting in a vertex of P; the other is supplied
by the expanded vertices of the transformed limiting bodies, of
which the number is equal to the number of limiting bodies meeting
in a vertex of P.

Lxamples of the eg expansion.

10. Here the limiting bodies are the subject; and it is at once
evident that this expansion applied to reciprocal fourdimensional
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bodies, e. g. to C; and (g, also to Cpy and Gy, must produce
the same result; while applied to a self veciprocal form it pro-
duces a polytope whose limiting bodies of vertex import are like
the original limiting bodies and of the same number, and whose
limiting bodies of face import are of the same number and kind
as those of edge import.

Thus as in the C; each face belongs to two, each edge to three,
and each vertex to four cubes, it follows that in the expansmn
each face takes two, each edge three, and each vertex four posi-
tions. The e¢; C; is therefore limited by 8 cubes of body import
(cubes of the original C;), 24 P, of face import, 32 P of edge
import, and 16 tetrahedra of vertex import (Fig. 64). In the Cj4
each face belongs to two, each edge to four, each vertex to eight
tetrahedra, so in the expansion each face takes two, each edge
four, and each vertex eight positions and the ¢; C4 is limited by
16 tetrahedra of body import, 82 P, of face import, 24 P, of
edge import, and 8 cubes of vertex import (Fig. 68). These two
polytopes are alike except that the mporfs are reciprocal.

11. Generally there are four groups of limiting bodies:

1%: polyhedra of body import like the limiting bodies of the
original cell,

2": prisms of face import defined by their bases (two positions
of each face of the original cell),

8": prisms of edge import defined by their edges parallel to
the axis (as many positions of an edge as there are bodies meeting
in an edge of the original cell),

4": polyhedra of vertex import having as many vertices as there
are bodies meeting in a vertex of the original cell.

So in ey Cy there are 10 7, 20 Pg; in C,, there are 48 0, 192 Pg.

This expansion of a (5, and a G, (reciprocal cells) can easily
be determined.

12. Rule. The rule for the e; expansion of a regular polytope
P of fourdimensional space is as follows:

The limiting bodies of P are moved apart (untransformed).

The faces are replaced by prisms whose bases are parallel posi-
tions of a face of P. 'The edges are replaced by prisms each having
as many edges parallel to the axis as there are limiting bodies
meeting in an edge of P. Each vertex is replaced by a regular
polyhedron, the number of whose vertices is equal to the number
of limiting bodies meeting in a vertex of P.
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Generalization.

18. The foregoing result may be generalized thus. If any set
of limits e, be the subject of expansion in a regular polytope P,
in a space of » dimensions the polytope P, detined by the new
positions of the members of the subject has for its limits /', _,:

1**: a group consisting of the limits /,_, of P, transformed by
the e. expansion (e, Z,_,),

2": a group of vertex import, each member of the group being
determined by its vertices, the number of which is equal to the
number of limits /. meeting in a vertex of P, and bhaving one
kind of edge. This polytope is regular in the ¢, and the e,_, expan-
sions. These two groups are the principle ones.

8. there are besides various kinds of prisms. Those of edge
import (1-import) are determined by the new positions of an edge
of P, and the number of these positions is equal to the number
of limits /, meeting in an edge of P,. The prisms of face import
(2-import) are determined each by the new positions of a face of
P,, and the number of these is equal to the number of limits /.
meeting in a face of P, and so on. The whole series of prisms
is as follows: l-import, 2-import, ....r—1-import.

Combination of operations.

14. The expansions described above have been applied to regular
bodies according to the definition given on page 5, transforming
them into bodies possessing a particular kind of semiregularity.

The question now arises: can these semiregular bodies be trans-
formed by the application of any further expansion without having
lost the kind of semiregularity defined above?

It is evident in the first place that a movement of all the edges
or of all the faces would produce bodies with edges of different
lenghts. But an inspection of the transformed bodies in three-
dimensional space (Figs. 14, 2« and 2 4) shows that in each of
the polyhedra ¢C, ¢7" und 7O there are two groups of faces, each
of which taken alone defines the polyhedron: one group corres-
ponds to the faces (expanded), the other to the vertices (expanded)
of the original polyhedron, and thes¢ two groups differ as to a
particular characteristic.

The members of the first group are in contact with members of
the same group; the members of the second are separated by at
least the length of an edge from members of their own group. As
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the operation of expansion applied to a set of limits has the effect
of separating any two adjacent members, it follows that the first
group can, the second group cannot, be made the subject of ex-
pansion.

For instance in ¢ C (Fig. 7a) the triangles cannot be moved
away from the centre without increasing the length of the edges
joining them, but the octagons may be moved away from the centre
until the edge 4B common to two has assumed two new positions
A'B, A"B" which are the opposite sides of a square. The new
positions of the octagons define a polyhedron having the required
kind of semiregularity. !)

15. This double operation may be denoted by the symbol e, ¢, C
where it is understood that the faces forming the subject of
the e, expansion are only those which have taken the place of
faces in the original cube. Similarly the interpretation of the sym-
bol e, e, C is that the e, expansion is applied to a cube and that
the subject of further expansion is composed of those faces which
have taken the place of edges in the original cube. This is shewn
in Fig. 76 where the group of 12 squares (corresponding to the
edges of the original cube) form the subject of expansion. 'These
two figures 72 and 76 show that

e, 60 C=ey¢, C = tCO

and it is evident that the order in which the operations are applied
to any regular polyhedron is indifferent, for the two operations
could have been carried out simultaneously.

In Fig. 7c is shewn the result of the double operation e,e, O
applied to an octahedron. This is also a #CO.

If the double operation be applied to a 7 and .an D the result
in both cases will be a ¢/D. -

This body and the ¢CO are incapable of further expansion.

16. Thus it appears that three expansions can be applied to
the cube, octahedron, dodecahedron, icosahedron, namely ¢, ¢,
e, e,. But more can be done with the tetrahedron owing to the
fact that it is self reciprocal.

Fig. 7d and Te show respectively the result of the e,e, and
the e, e, expansion applied to a tetrahedron, and the result in both
cases is a #0 which can be further expanded into a #CO (Fig. 7c).
Thus the self reciprocity of the tetrahedron allows an expansion
which cannot be carried out in the other four polyhedra. The

') Here the group of octagons may be called the ,independent” variable, while the
triangles, which are transformed into hexagons, are the ,dependent’’ ones.
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combination of operations may be applied in the same way to the
cells of fourdimensional space as one or two examples will show.

17. Case e e, C;. — The e, operation applied to a C; produces
a polytope limited by 8 RCO, 32 P,, 16 O (Fig. 5). The symbol
e, e, Gy directs that the new subject of expansion comprising those
limiting bodies in e, C; which correspond to edges of (i, i. e. the
82 P,, shall, themselves unchanged, be carried away from the
centre (of the e, ().

These P, in their new positions define the polytope sought. This
movement changes the RCO and the 0. Each RCO was derived
from a cube by the e, expansion; the new expansion e, carries
out the group of 12 squares (corresponding to the edges of the
cube), thereby producing a €O (Fig. 76). In order to determine
the change in the octahedron of vertex import it is only necessary
to observe that four of its faces (those in contact with bases of
P,) are still in contact with them and are only changed in position,
while the other four (those which were in contact with RCO) are
changed into hexagons in contact with 2C0. Thus the octahedron
is changed into a ¢7' The effect on a single octahedron is the
same as if its alternate faces had been made the subject of expan-
sion (Fig. 8).

18. Case eye; C;. — The result of applying the e; operation
to a C; is a polytope limited by cubes (original cubes of the (),
P, of face import, P; of edge import, and tetrahedra of vertex
import (Fig. 6a). The symbol e, directs that the square prisms of
face import shall be moved away from the centre of e; C;, they them-
selves remaining unchanged except in position. These in their new
positions define the new polytope and it only remains to determine
in what manner their movement has modified the remaining limi-
ting bodies of the e; C;. This can be seen at once in a drawing.
In figure 92 are shewn seven limiting bodies of the e; Cg; one is a
cube of the original Cj, after having been separated by the e
movement from the adjacent cubes; three are cubes of face import
interposed by the same movement between the cubes of the Cj;
three are P; of edge import, their bases being faces of a tetra-
hedron of vertex import. The symbol e, directs that the cubes of
face import are to be moved out. The result is shewn in figure 94; the
original cube is changed into an RCO, the P into a Py and the 7'
into a #7. Tt is necessary to bear in mind that only one limiting
body of any polytope can be in threedimensional space at a time,
and in representing several at once in it there must be either distortion
of the limiting bodies or separation of faces and edges which ac-
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tually coincide. Moreover the direction of the real movement cannot
be represented; but valid conclusions may be drawn from diagrams
such as these, if the mind always distinguishes between the actual
and the apparent relation of parts.

These two examples suffice to show how the result of the com-
bination of operations may be applied to the fourdimensional cells.
There are seven expansions of each:

€, €, €, 0, €6, 6, €&,
but owing to the reciprocity of some of the figures these are not all
different.

Thus it appears that in any expansion a set of limits, which
define the body and which is such that each member is in contact
with other members of the same set, may be made the subject of

expansion.
Definition of contraction.

19. In each of the expansions ¢, €,, ¢;... the resulting semi-
regular polytope may be reduced to the regular one from which
it was derived, by an inverse operation which may be called con-
traction.

Here the limits which formed the subject of the expansion are
moved towards the centre and brought back to their original positions.

The direct operation separates the members of the subject; the
inverse operation brings them again into contact, annihilating the
edges introduced by expansion. In both positions they define the
polytope of which they are the limits.

The conditions necessary to the inverse operation -are: 1%, the
limits forming the subject must define the polytope; 2!, no two
members of the subject can be in contact before contraction.

The polytopes of vertex import always satisfy these conditions
and can be made the subject of contraction. The symbol ¢ is
used to denote contraction. The import of the limits forming the
subject is shown by means of subscripts, as in expansion.

Examples of contraction.

20. The inverse operation will be made clear by one or two
examples. :

In figure 10 the square 4 B C D has been expanded by the
e, operation; the edges of vertex import in the resulting octagon
have been made the subject of the inverse operation, that is, they
have been moved nearer to the centre so far that the edges of
the: original square are annihilated, and the final result is the square
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E F G H, denoted by the symbol c e, § where § is the square
4 B C D.

In figure 1054 is shown a cube transformmed by the ¢, operation,
i. e. an ¢ C; the triangles of vertex import are brought nearer to
the centre by the ¢, operation and the result is a CO whose sym-
bol is now ¢ye, C.

Again, the /CO may be considered in two ways. It may be
deduced from. either the octahedron or the cube (compare Figs. 7a
and 78), so it may be denoted by e e, C or e e, O. Though the
identity of these results may be expressed in the form of an
equation: ¢, ¢, C =¢, ¢, 0, it must still be borne in mind that the
imports - are different. Let each of these symbols be preceded by c,.
What are the results? If the #CO has been derived from the cube,
the hexagons are of vertex import; if, on the other hand, it has
been derived from the octahedron, the octagons are of vertex import.
Thus the symbol ¢,e, e, C indicates that the hexagons, and the
symbol cye, e, O that the octagons, are the subject of the inverse
operation whence ¢, e, e, C = t0 (Fig. Tc), cye, e, O = ¢C (Fig. 7a).
But the octagons correspond to the faces of the cube and the
hexagons to the faces of the octahedron, so that ¢ye, e, C = c,¢,¢, O,
ce e, 0=cyee,C.

21. An example will show the combination of inverse operations.
The #CO derived from a cube (Fig. 1la) may be reduced to an
octahedron by moving the squares and the hexagons nearer to the
centre; the #CO derived from an octahedron (Fig. 11) may be
reduced to a cube by moving the squares and the octagons nearer
to the centre.

These operations are denoted respectively by the equations

ccree,C=0 , ¢eee0=C

22. In figure 5 are shown, the limiting bodies of an e, G. If
the octahedra of vertex import be made the subject of the inverse
operation, the following changes will take place: each P;, sepa-
rating two neighbouring octahedra, is reduced to two coincident
triangles. This annihilates the edges of the prism parallel to the axis.
But these are the edges of the original G in the new positions due to
expansion and if these be annihilated each RCO will be reduced
to an octahedron. Thus the new body is a G, eight of whose
limiting bodies are compressed RCO, while sixteen are of vertex
import in the expansion e, C;.

As in the enumeration of the polytopes and the nets given in
the three Tables only the c, appears, ¢, has been replaced by c.
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Partial operations.

28. It has been seen that in both expansion and contraction
it is a necessary condition that the subject of operation shall define
the polytope both before and after the movement.

In expansion, each member of the subject must be in contact
with other members. In contraction, each member must be separated
from the other members by at least the length of an edge.

It sometimes happens that one of these conditions is satisfied by a
group consisting of the alternate members of a set of limits. Such
a group may then be made the subject of expansion or contraction.
If the members be in contact, they may be made the subject
of expansion; if they be not in contact, they may be made the
subject of contraction.

24. Thus, an octahedron is defined by a group of four alter-
nate triangles, but each of these triangles is in contact with the
other three, so that these four may be made the subject of expan-
sion. This partial operation, which changes the octahedron into a
truncated tetrahedron, is denoted by the symbol 1 ¢, 0. So } e, 0 = ¢T.

Again, a CO whose symbol is ¢y¢; C is defined by a group of
four alternate triangles. Each of these is separated from the
others by the length of an edge. This group may therefore
be made the subject of the ¢ operation, which changes the CO
into a 7. So 4eyche, C=T.

It may be remarked that the partial contraction }e, can never
take place without a previous complete contraction c,.

25. The corresponding case in fourdimensional space is expressed
by the symbol }c¢ycoe; G This indicates that first, the edges of
the C, are made the subject of expansion; second, the sixteen
tetrahedra of vertex import are made the subject of contraction;
third, a group of eight alternate tetrahedra are made the subject
of still further contraction. This last partial movement changes
the cubes of the C; into tetrahedra and annihilates eight of the
tetrahedra of vertex import, thus changing the Cjinto a Cy, eight.
of whose limiting tetrahedra are derived from the limiting cubes
of the C;, the remaining eight being of vertex import. So
$ecoe, G = G

These examples suffice to show in what manner and under what
conditions the partial operations may be applied.
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II. Application to space fillings.
Lzpansion applied to the nets.

26. A space filling or net in any space &, may be considered
as a polylope with an infinite number of limiting spaces of » dimen-
sions in a space §,,, of one dimension higher.!) According to this
view the operations of expansion and contraction and their com-
binations may be applied to nets; but the fact that the net is a
particular case of a polytope modifies the manner in which the
operation is to be applied.

Expansion has been defined as a movement of any set of limits
away from the centre of a polytope. This movement in general
separates the members of the subject.

In a polytope in 8, with an infinite number of z—1-dimensional
limits (a net) the centre is at an infinite distance in a direction
normal to the space §, of the net and no movement away from
the centre can separate the limits forming the subject, in other
words can expand the net. Now it has been shewn that the real
movement taking place in an expansion may be resolved into two,
one of which transforms the liinits each in its own space and the
other adjusts those transformed limits. In this way the operation
can be applied to the special case under consideration. Thus if the
e, expansion be applied to a net of squares (Fig. 12) they ure
transformed into overlapping octagons and then the octagons must
be moved apart until an edge which was common to two squares
becomes common to two octagons.

This adjustment leaves a gap 4, A4, 4; 4, (vertex gap) between
the octagons corresponding to the vertex 4 common to four squares.
Thus the transformed net of squaresis composed of two constituents,
octagons corresponding to the squares, and squares corresponding to
vertices of the original net.

27. Inthreedimensional space there is only one regular space filling
i. e. the net NC of cubes. The net N(O,7) of octahedra and
tetrahedra is semiregular.

If the e, expansion be applied to a net of cubes each cube is trans-
formed into a #C. These will overlap and must be moved apart
until an edge which was common to four cubes becomes common
to four #C (Fig. 18) By this adjustment octahedral gaps (vertex gaps)
are left at the vertices. So the net e, NC is formed of ¢C and O.

In order to determine the octahedra it is necessary to observe
that as a vertex of the original net belongs to six edges, i. e.

') See the quoted paper of ANDREinI, art. 47.
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six members of the subject, each vertex takes six new positions,
forming the six vertices of an octahedron (see rule, art. 6) whose
eight faces are supplied by the expanded vertices of the eight cubes
meeting in a vertex of the original net.

28. The application to fourdimensional space is simple.

For instance if the e, expansion be applied to a net of C; each
G is changed into an e, G (Fig. 2¢), two adjacent ones having a
{C in common. As a vertex in the net C; belongs to eight edges
(eight members of the subject) each vertex takes eight new posi-
tions which are the eight vertices of a Ci.

The limiting bodies of this C,; may be identified as follows.
In the net G each vertex is surrounded by 16 members. Each
vertex of a G is changed by expansion into a tetrahedron, so that
the vertex gap in the net is surrounded by 16 tetrahedra, the
limiting bodies of a Cj. 'Thus by the e, expansion a net of Cq
has been converted into a net e, NC; of two constituents, ¢, Cy and
Cis, in which two adjacent ¢, C; have a #/C in common, while an
e, Gy and a Cjg have a tetrahedron in common.

29. Again the e, expansion may be applied to a plane net.
In this case the constituents of the net are moved apart until an
edge assumes two positions, the opposite sides of a square, and
the vertex gap is a polygon with as many vertices as there were
constituents meeting in a point in the original net; figure 14 (@ and 8)
shews this with regard to a net of triangles.

If the e, operation be applied to a net of squares, it moves
apart the squares and the result is again a net of squares; but
they are not all of the same kind, some being the squares of the
original net, some of edge import, others of vertex import
(Fig. 15). From this simple example it may be seen that the e,
expansion applied to a net of measure polytopes in z-dimensional
space produces again a net of measure polytopes; but the latter is
composed of constituents with different imports, and the subject
of any further expansion must be suitably chosen. For instance if
the e, e, expansion be applied to a net of squares the subject of
the e, expansion comprises only those squares of edge import intro-
duced by the e, expansion in a net of squares (Fig. 154). The
result is that the squares of the subject remain unchanged except
in position. Those of vertex import and those corresponding to
the squares of the original net are changed into octagons of
different imports. The corresponding double expansion of the net
of triangles is shewn in figure 14e.

80. If the e, expansion be applied to a net of cubes each cube

Verhand. Kon. Acad. v. Wetensch. (1¢ Sectie) DI. XI. A2
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is changed into an RCO. Four of these are shewn in Fig. 16
after having been adjusted so that a face which was common to
two cubes becomes common to two RCO.

This adjustment leaves edge gaps and vertex gaps.

As an edge belongs to four and a vertex to twelve faces (mem-
bers of the subject) the edge gap is dcfined by four new parallel
positions of an edge and the vertex gap by twelve new positions
of a vertex. 'Therefore the first is filled by a square prism (a cube)
and the second by a CO. In the CO the triangles are supplied by
triangular faces of the eight RCO (expanded cubes) and the squares
by the bases of the six prisms (expanded edges) surrounding the
gap. Thus the net of cubes is changed by the ¢, transformation into
a uet e, VC with the three constituents ZCO, Cand CO (A. 20) 1).

" The e, expansion may be applied to a net N(O,7) of O and
T by taking either the group of O or the group of 7' as inde-
pendent variable, and the faces of that group as subject. Whichever
group is chosen, its faces in their original position define the net
MO,T), in their final position the new net. Thus if the e, expansion
be applied to the O each O ischanged into an RCO (Fig. 35) whose
triangular faces are in contact with the untransformed tetrahedra.
The vertices of each O are now changed into squares (Fig. 34)
and as six octahedra meet in a vertex of N(0,7") the vertex gap
is a cube. Thus the new net e, M(0O,7) has three constituents
RCO, C, T (Fig. 17) (A. 19). -

In figure 18 is shewn the result ¢, MO0,7) = ¢, M0,1)) of the e,
expansion applied either to the octahedra or to the tetrahedra of
the net (0,7").

31. In fourdimensional space an example is given of the e,
expansion ¢, NC,,. Each C,, is changed into an e, C,, limited by
24 RCO, 96 P,, 24 CO (see rule, art. 9 and Fig. 197).2)

The RCO are iransformed octahedra, the P, are expanded edges,
and the CO expanded vertices. When the transformed C,, are
adjusted so that an octahedron which in the regular net is common
to two C,, is changed into an RCO common to two e, G, there
are edge gaps and vertex gaps.

In order to facilitate the determination of these gaps it will be
well to state clearly the manner in which the three kinds of limi-
ting bodies are mutually arranged in the e, Cy.

'} This means Fig. 20 in ANDREINI'S memoir quoted in art. 1. In order tofacilitate
comparison a table of threedimensional nets is given on plate III.

*) Here and in the following figures = means “principal”’ constituent, while «, 8, etc.
ctand for the polytopes filling the vertex gap, the edge gap, etc.
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A shaded face 4,B,C, common to two RCO (in Fig. 19) is the
new position of a face 4BC common to two octahedra in Cy;
A\B,, A4,B,, A4;B; dre three new positions of an edge 4B of the
Cy, and the two positions 4,B,, 4,B, in the RCO are identical
with the two positions 4, B,, A4,B, in the prism. Again, the vertices
of the CO are the 12 positions taken by a vertex 4 of the Gy
of which four A, A, A, A; are identical with four 4, 4, 4, 4; in
the RCO.

In the net of C, an edge is common to four and a vertex to
32 faces (members of the subject), so that the edge gap is defined
by four positions of an edge and the vertex gap by 32 positions
of a vertex. The limiting bodies surrounding these two gaps may
be found in the following manner. Four C,, meet in an edge and
eight in a vertex of the net C,. In each, the edge is changed
into a P; and the vertex into a CO. Thus among the limiting
bodies surrounding the edge and vertex gaps there must be four
Py in parallel positions in the former and 8 CO in the latter.

Now in the original net two adjacent Cy, let us say M & NV,
have a common octahedron, or it may be said that two octahedra,
limiting bodies of two adjacent C,,, coincide. So in the transformed
net two adjacent e, Cy have an RCO (transformed octahedron) in
common; or it may be said that two RCO, limiting bodies of two
adjacent e, Gy, M & N, coincide.

Thus the RCO (Fig. 197) represents two coincident limiting
bodies, one belonging to M and the other to V. In each the face
(4, B,, 4, B,) is in contact with a P, and these two 7’5 can have no
other point in common, or else the polytopes M and N, having
already one common limiting body, an RCO, would coincide.

Thus two adjacent P; surrounding the edge gap have a square
face in common. It remains now to seek a polytope which satisfies
the following conditions. It must be determined by four parallel
positions of an edge and have amongst its limiting bodies four
parallel P; of which any adjacent two have a square face in common.

A fourdimensional prism on a tetrahedral base is the only body
which satisfies these conditions, so that the limiting bodies are 4 P,
2T (Fig. 19p).

Each of the tetrahedra is determined by its vertices i. e. four
positions assumed by the end point of an edge of the net Gy and
18 therefore of vertex imp01t

As 16 edges meet in a vertex of the net C,,, there are 16 of these
tetrahedra surrounding the vertex gap.

The limiting bodles of the polytope which must fill the vertex
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gap are therefore 16 tetrahedra and 8 CO (Fig. 198). The regu-
lar net of C,, has thus been transformed into one of three constituents:

(1) e, Cy (limited by RCO, P;, CO), Fig. 197

(2) P,, Fig. 198

(8) ce Gy (limited by 8 CO, 16 7), Fig. 19a.

In this net two polytopes (7) have an RCO, a (7) and a ()

have a P;, a (7) and an («) have a CO, and an («) and a (8)
have a 7' in common.

The e3 expansion applied to a block of cubes.

32. The figure 20 shews the result e; VC clearly. It has
already been remarked that this expansion leads to a block of cubes
of different kinds, some having face import (z), some edge import
(b), and some vertex import (c).

In figure 21 is shewn the result of the operation ¢ e, NC; the
cubes corresponding to those of the original net are changed into
tC; the cubes of edge import (subject of the second operation
¢) remain cubes; those of face and vertex import are changed
respectively into Pg and RCO (A. 22).

The e expansion applied to a net of Ci.

83. Each C is expanded according to the rule and produces
a polytope limited by 7', P;, P,, C (Fig. 227).

When these are adjusted, so that tetrahedra which were common
to two C,; are common to two ey Cjg, there are face, edge, and
vertex gaps; these are defined respectively by three parallel positions
of a face, 12 parallel positions of an edge, and 96 positions of a
vertex; since in the NCj a face is common to three, an edge to 12,
and a vertex to 96 tetrahedra (members of the subject). It remains
only to determine the limiting bodies surrounding these gaps.

34. In order to find those of the face gap the three new parallel
positions of the face 4BC are represented by the triangles 4, B, C,,
4,B,C,, A3 B;C (Fig. 23).

It follows from the definition of expansion that the lines 4, 4,,
Ay Ay, A3 4. .. .. are normal to the face 4BC and equal to an
edge. Thus the face gap is surrounded by two groups of three
Py; one group consists of the Pg: 4, B, C, 4, B, C,, A, B, Cy Ay B, G,
Ay By Gy Ay By Gy of face import and the other of 4,.4,4,B,B,B,,
BB, B, C,C, G, C C,C Ay A, A3 of edge import.
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The members of each group are in triangular contact with mem-
bers of the same and in square contact with members of the other
group.

This polytope, called a simplotope, is a special case of a group
of polytopes called prismotopes !).

Two kinds of limiting bodies surrounding the edge gap have
now been found, i. e. square prisms due to the transformed C
(Fig. 224) and P; due to the expanded face (Fig. 22/3); there are
six of the former and eight of the latter, since six Cj; and eight
faces meet in an edge of NVC,; As the axes of these 14 prisms
are parallel, the body must be a fourdimensional prism whose base
is a CO of vertex import (since its vertices are the 12 positions
taken by the end point of an edge).

The vertex gap is surrounded by cubes (7) and CO (8), and
there are 24 of each since 24 C; and 24 edges meet in a vertex
of NC.

Thus there are four constituents in the new net e; NCi4: e; Cig,
prismotope (3; 3), Pco; and a polytope e, Cy¢ limited by 24 C, 24 CO.

The manner in which these different bodies are in contact is
indicated by the imports in the drawings and by the vertical lines.

35. Two examples are_given in order to show how a second
operation may be applied to the result of a single expansion
(Figs. 24 & 25).

Let it be desired to apply the e, expansion to the net obtained
above. Here those constituents taking the place of edges in the
original NC,, are the subject and must be moved unchanged into
new positions. Thus the edge gap in the new net is like that in
the e; expansion (compare Figs. 228 & 24p8).

Moreover those limiting bodies of edge import in the transformed
Cis and in the prismotope (face gap) must also remain unchanged
(compare the parts 7 and 7 of Fig. 22 and Fig. 24).

The tetrahedra (Fig. 227) are transformed by the e, expansion
into ¢7" (Fig. 247).

A careful examination of the manner in which the P; of face
import and the cube of vertex import in the same polytope (7) are
in contact with the tetrahedra will show in what manner they must
be changed (see IFig. 247). From these may be traced the changes
in the face gap (y) and vertex gap ().

36. If it be desired to apply the e, expansion to e¢; NCy the

') Compare the foot note ®) in art. 1.
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face gap remains unchanged (Figs 22y and 257), as well as the
limiting body of face import in the e; Gy (7).

The tetrahedron (Fig. 227) is changed by the e, expansion into
a CO (Fig. 257) and again the manner in which the other limiting
bodies of this polytope are affected by the change can be traced
by an examination of the manner in which they are connected
with the tetrahedra.

The changes in the edge and vertex gaps can also be traced
(compare Figs. 22 and 25).

The polytope of vertex import in Fig. 25 is remarkable, as it is
limited by 4% semiregular polyhedra of the same kind.

The e, expansion.

37. The e, expansion applied to a net of G;, Cg or C, sepa-
rates the adjacent constituents by a distance equal to an cdge.
Thus two neighbouring members of a block are separated by a
fourdimensional prism whose two opposite bases are the two limi-
ting bodies that coincided in the regular net. The net of C; so
treated results in another net of C; of different imports.

The net of C transformed by the ¢, expansion leads to the
following result. The Cg are separated, so that instead of two
having a tetrahedron in common they are separated by a distance
equal to an edge.

In other words the tetrahedron common to two adjacent C
has assumed two parallel positions, the bases of a fourdimensional
prism (Fig. 26J).

The side limiting bodies of this fourdimensional prism are four
P, (of face import). As three Cg meet in a face in the net of
Ci; each face must assume three positions which define a prismo-
tope (3 ;3) (I'ig. 206y).

Again six G meet in an edge of the net, therefore cach edge
takes six positions, i. e. the new positions are the side edges of
a fourdimensional prism on an octahedral base (@). It may be seen
by (7), (), (y) and (8) that only one of these four polytopes pos-
sesses a limiting body with vertex import, i. e. the one filling the
edge gap (£), so that the vertex gap is surrounded by octahedra,
and .as in the net of Cj; there are 24 edges meeting in a vertex
it follows that 24 octahedra surround the vertex gap; that is, it
is a Cy. This new net evidently may also be obtained by
applying the e, expansion to the net N,
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38. The foregoing investigation leads to the following conclusion
as to the nets of fourdimensional space.

If the edges are the subject there are only vertex gaps.

If the faces are the subject there are cdge and vertex gaps.

If the limiting bodies are the subject there are face, edge, and
vertex gaps.

If the constituents are the subject there are body, face, edge,
and vertex gaps.

The vertex gaps are filled by polytopes determined by their
vertices. Their limiting bodies are regular or semiregular polyhedra.

The edge gaps are filled by fourdimensional prisms determined
by edges parallel to their axes. 'Their bases are either regular or
semiregular polyhedra and their other limiting bodies are prisms.

The face gaps are filled by prismotopes determined by parallel
positions of a face and are limited by two groups of prisms.

The body gaps are filled by fourdimensional prisms determined
by two parallel positions of a regular or semiregular polyhedron.

Contraction applied to the nets.

39. One or two examples will suffice to shew the application
of this process to the nets.

If in the net e, M O,7) (Fig. 18) (A. 24) the CO corresponding
to the vertices of the original octahedra be made the subject of
contraction, the /O are reduced to CO, the ¢7' to O, while the
CO remain unchanged. Thus ce; N(0,7") denotes a net composed
of O and CO (A. 18).

40. In the net e, NC,, (Fig. 19) the polytopes filling the vertex
gap («) way be made the subject of contraction, when the following
changes take place. The polytope « remains unchanged except in
position; the prism 2 is reduced to a tetrahedron common to two
of the polytopes «; the CO of 7 remain unchanged while the CO
are reduced to cubes. Thus the net of three constituents is re-
duced to one of two constituents, one limited by S CO and 167,
the other by 24 C and 24 CO.

Tables.

41. The chief results of this memoir are tabulated in the
Tables T and II.

Table I gives the 48 polytopes of expansion (the regular polytopes
included) and the 42 polytopes of contraction. The first set has
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been numbered from 1 to 48; if p stands for any number, p' of
the second set is obtained by application of the operation ¢(=¢,)
to p of the first set. The first set consists of 39 different polytopes;
the second set contains only eight new ones.

Table II gives the 48 nets of expansion (the regular nets included)
and of the nets of contraction only the seven new ones, so altogether
39 4+ 7 i. e. 46 fourdimensional nets.

Table TII gives the nets of threedimensional space and a table
of incidences.
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5 e, NC, G| P |4;4)| Pg Cq 21 e,NC,, Co| Pp|(3;8) Py c,, | = 37|37 e,NC,, G| Py |(8;8)| Pp 6. | =21
6 e,e,NC, e,e,C, — — P, e,C¢ 22 e,e,NC,|| eeCe| —| — | Pg e,e,Cy, 38 e,e,NCG,, || eeC,| — | — | Pp e,Cy
7 e,e,NC, || e,,C, — [(4;8)] Pgo e,Cyq 23 e,e;NC,o|| ee | — |(8;8) Prp &t 39 e,e;NC,, || eeC,| — |(83;6)] Py G,
8 e,e,NC, eC | Py |(4:8)| Pg e,C, |=11]24 e,e,NC,, e,C| Pipi(356) Py e, C,, | = 48|40 e,e,NC,, e,C,| P,o |(3:6)] Pp e,Cy | =27
9 e,e,NC, | e,e,C, — |[(454)| Py ce,e,C, 25 e,e;NC,s|  e,0,C,s| — [(8:8)] Pyo | cese,Cy, 41 €,e,NC,,| e,e,C,,| — |(8;8)| Pyp| cee,C
10 e,e,NC, e,Cs | Preo | 454) | Preo e,C, 26 e,e,NC,, e,Cs| Ppo|(8338)| Preo e,C,, | = 42|42 e,e,NC,, 2,0, |Preol338)| Poo e,Cyq 26
11 e,e,NC, e,Co | Py [(8;4)| Py e,C, | = 8|27 e,e,NCy, e,Cis| — [(653)] Py | ee,C,|= 40|43 e,e,NG,, e,C,,| Py |(6358)| Py e,Cyq 24
12 | e,e,e,NC, ||e,e,¢,C, — |(4;8)| Py e, G, 28| e0,e,NC,.|| e,e,e,C,s| Py |(356)] Py | e,6,Cy, 44| eee,NC,, |le,eeC, | — ((356) Pup| e,6,C
13 | e,e,e,NC, ee,Cy | Pioo | (458)| Preo eeC | =15|29 | e,e,e,NC,|| e6,Csq|Pyp|(3;6) Preo| e6.Ci. 45 e,6e,NC,, || €6, |Pyo (856)[Prp| eeC 31
14 | eeeNC, || eeC, | Py |(8;8)| Py e,e,C, 80 | e6,eNC,|| ee,Cyq|Pp|(656) Py | ee,C,, | = 46{46| e,e.e,NC,, ‘1 ee;C,. | Py |(656)| Pop|  e,6,C, 30
15 | e,e,e, NG, || ee,C, | Ppeo [(854)| Pico eeC, |=13|31| eee,NC,| ee,C P'CO (6;3) Pioo | e,e,C,, | = 45|47 | e,ee,NC,, | e,e,C,. Pprcol633)| Pp| ee.Cie
16 |e,e,e,e,NC, || e,0,6,C, | Pyop | (858) | Pip | e1:6,C, 32 | e,e,6,e,NC,,| €,6,0,C,s Py |(656)] Pyo | €,e,6,C,, | = 48|48 | ¢,e,6,,NC,, | €,6,6,C,, | Py (65 6)| Pyl e,0,6,C | =382
Contraction. Contraction.
49 ce,NC, ce,C, — — — C. 51 ce,NC,, ce,Ce| — | — — e,Cq
50 ce,e,NC, || cee,C, — — — e, Ce 52 ce,e,NC,;|| cee,Ce| — | — — ee,C,
53 ce,e,NC,o|| cee,C,el — |(3;8) — 2,0
54 ce,e;NColl cee,Ce| — | — — ce,e,C,,
55 | ce,e,e,NC,qllce,e,e,C| — |(3;3)] — c,6,C,,




TABLE OF NETS IN &§;. I11.
& "2 | Symbol %E})g T T f—jg Symbol g:gn.:;j ] 4"“
f:‘: g § = §< face | edge |vertex é a E = § face | edge |vertex
NO| © 12 NOT)|| O,T
17 e NC| tC 0 | 24 | e NCOT)| tOLT 1500)
20 e, NC| RCO Py | €O 19 | NOT) RCOT %
aNC| ¢ | Py| Py | O | 23 |qgNOT 0O %
21 | eqNC| 100 P, | 10 | 14 |qgNc01) 10,00 10
22 | eNC| 0 | Py| P, |RCO| 15 |3gN(O,T)| (1T T
22 | eeNC| RCO | P, | Py | i€
94bis | e e, NC| 10O | Py | Py | 100
18 ce,NC| €O 0
TABLE OF INCIDENCES.
Single polytopes Nets
|
G | G } Gis | Cos | Croo | Gooo | Gs | Chg | Caa
l
Cells meeting in a body . . 2 ) 2
" " n n face... 4 3 3
" »n  # an edge .. 8 6 4
” " n a vertex.. 16 24 8
Bodies n n face... 2 2 2 2 2 2 4 3 3
" " » an edge .. 3 3 4 3 3 5 | 12 12 6
” " n a vertex . 4 4 8 6 4 20 | 32 96 24
Faces » » an edge. . 3 3 4 3 3 5 6 S 4
" " n a vertex.. 6 6 12 12 6 30 | 24 96 32
Edges » nowoon 4 4 6 8 4 12 8 24 | 16




M= 4 BOOLE, STOTT: “Geametrical deduction of semireqular from regular polytopes and space fillings”
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M=A4. BOOLE STOTT: “Geometrical deduction of semiregular from regular polytopes and space fillings.”
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M®5 4 BOOLE STOTT: “Geometrical deduction of semiregular from regular polytopes and space fillings”
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