
VERHANDELINGEN 

DER 

KONINKLIJKE AKADEMIE 

VAN 

WETENSCHAPPEN 

EERSTE SECTIE 

(Wiskunde - Natuurkunde - Scheikunde - Kristallenleer - Sterrenkunde -
Weerkunde e.n Ingenieurswetenschappen.) 

DEEL XI 

Met 7 platen en één kaart. 

AMSTERDAM - JOHANNES MÜLLER 

Juni 1913. 



Gedrukt bij JOH. ENSCHBDÉ EN ZONEN. - Haarlem. 



INH()UD. 

J. Miss A. BOOLE STo'rT. Geometrical deduction of semiregular from 

regular polytopes and space fillings (With 3 plates). 

2. M. H. VAN BERESTEYN. Getijconstanten voor plaatsen langs de kusten. 

en benedenrivieren in Nederland, berekend uit de waterstanden van 

het jaar 1906. (Met één kaart). 

3. P. H. SCHOUTE, Analytical treatment of the polytopel! regularly 

derived from the regular polytopes. (Section I). (With one plate). 

4. H. DUTILH. Theoretische en experimenteele onderzoekingen over par­

tieele racemie. (Met één plaat). 

5. P. H. SCHOUTE. Analytical treatment of the polytopes regularly derived 

from the regular polytopes. (Sections Il, UI, IV). l With one plate). 

6. RP. MOORS. Etude sur les formules (spécialement de aa1U8) servant 

à calculer des valeurs approximatives d'une illtégrale définie. (Avec 

une planche). 





ER RATA. 

Page 5, line 12 from top replace "edges" hy "limits Ik" 

" 
14, 

" 
8 

" " " 
7a 

" 
7e 

" " , " 9 
" " " 7b " 

7a 

" 
16, 

" 
15 

" " " 8" " 8n - 1 

" 
20, 

" 
1 

" " " 
19{Z 

" 19" 

" 
21, 8 " " " 22y, 22/3 " 22"",22y 



Geometrieal deduetion of semiregular 
from regular polytopes and spaee fillings 

BY 

MRS. A. BOOLE STOTT. 

Verbandelingen der Koninklij~c Akademie van Welensebappen te Amsterdam. 

(EERSTE SECTIE.) 

DEEL XI. N°. 1. 

(Wlth 3 plates). 

AliSTERDAM , 

JOHANNES MÛLLER. 

Hno. 





Geomelrical deduction of semiregular from regular 
polytopes and space fillings 

BY 

MRS. A. BOOLE STOTT. 

Introduction. 

1. 'l'he object of this memoir is to give a method by which 
bodies having a certain kinJ. of semiregularity may be derived from 
regular bodies in an Euclidean space of any number of diQ1ensions; 
and space fillings of the formel' from space fillings of the latter . 

'fhcse space fillings or nets for threedimensional space have been 
given in a paper entitlcd "Sulle reti di poliedri JegoJari e semire­
goJari e sulle corrispondenti reti correJative" by Mr. A. ANDREINI 1), 

who deduced them by means of the angles of the different poly­
hedra. Photographs prepared for the stereoscope , taken from that 
paper, representillg the various semiregular space fillings were sent 
to me by Prof. SCHOUTE to whom I desire to record here my thanks 
fol' the generous help he has given me during the whole course 
of this investigation. These photographs suggested a mcthod by 
which at once the semiregular bodies and the manner in which 
they combine to fill fourdimensional space could be derived from 
reglIlar polytopes and nets in that space. It will be seen that this 
method can be appiied to spaces of any other number of dimensions. 

'fhe semiregularity congidered here is that in which there is 
olie kind of vertex and one length of edge 2), and the symbols used 

') Memorie del la Società italiana della Scienze (detta dei XL), serie Sa, tomo XIV. 
a) 80 tbe greater part of tbe forms called 8emiregular here '\ViII have a degree of 

regularity le8s than l in the scale of Mr. E. L. ELTE. 
A 1* 



4 GEOMETRICAL DEDUaI'rON OF SEMIREGULAR ETC. 

for tbe polyhedra of this description, almost tbe same as those 
given by AtoiDREINI, are as follows: 

T, C, 0, D, I indicate the five regular polyhedra, using tbe 
initial letters of their ordinary names Tetmhedron, Cu be , Octahe­
dron , Dodecahedl'on, Icosahedron; and if p" indicates a reglliar 
polygon with 11 vertices we have 

tT = truncated T . . .. .... . . ..• .. ... . .. . .... limited by 4Pa and 4ps, 
tO= 11 0 . . ... . .. . ... .. .. . ....... . . " 6Pa 11 SPa. 
tO= 11 0 .... . ... .. ..... . .. . . . .. .. . " " Rpll 11 6p,. 
tD= " D .. . . . ...... ... . . . ... .. .. . " " 12PIIJ 11 20Ps. 
tI= 11 I . . ...... . ..... . .. . .... .. . . " " 20Ps " 12P •• 

00= 0 an(l 0 in equilibrium . .. . . .. .. ..... . " " 6p, 11 SPa. 
ID = I " D" " ..... . . . . .. . .. . " " 12p6 " 20Ps. 

ROO = combination of rhombic D. 0 aml 0 .. . . " " lSp, 11 Sps. 
RID= " " " Trl).I ,; D ... . " " 12P6' SOp, 11 2°Ps. 
tOa = truncated 2) 00 . .. .. .. .. . .. . . . . . .... . . " " 6p ... 12P4 " SPa. 
tID=" ID .. .. . . . ........ .. .. . .. . " " 12PIO.30p, " 20ps' 

Moreover we want: 
PS' P",... for threedimensional tria.ngula.r prIsms, square prIsms 

(cu bes) , etc. 
Pc, Po, ... for fourdimensional pnsms on a cube, an octahedron, .. . 

as base, 
P (3; 3) or simply (3; 3) for a prismotope s) with two groups 

of threedimensionnl prisms Ps as limiting bodies, 
P (6 ; 8) or simply (6; 8) for a prismotope having for limiting 

bodies six octagonal nnd eight hexagonnl prisms, etc. 
2. The transfol'mation of the reglliar into tbe semiregular bodies 

and space fillings can be carried out by means of two inverse ope­
rations which may be called eil1JlanBion I\nd contraction. 

In order to deRne these operations cOllveniently, the vertices, 
edges, faces, limiting bodies, .. . of a regular polytope are called 

') By TI' we iodicate tbe solid limited by 30 lozeoges in plaoes tbrougb tbe edges 
of [ or Doormal to the lioes joining the centre to the midpoint of each edge. 

') Accordiog to cnstom the word "trnncated" is Dsed here, thoogh this body aDd the 
next one caD not he deri ved from the CO and the 1 D by troncation. 

') This body is also a "simplotope" as tbe describlng polygoDs (placed here in ]llanes 
perfectly normal to each other) are triangles (compare SCIIOUTE'S nMebrdimensionale 
Geometrie", vol. 1I, p. 128). 

In general a prismotope is geDerated in the followiDg way: 
Let Sp and Sq be two spaces of pand q dimeDsions haviDg oDly one point in com­

mon; let P be a polytope iD Sp, Q a polytope iD Sq. Now move Sp with P in it 
parallel to itself, so as to make any vertex of P descrihe all tbe poiDts of Q. Then 
P generates tbe prismotope. Here we have to deal only with the case of two planes 
(p = q = 2); by tbe symbol (6; 8) we wiJl indicate the polytope limited by eight 
bexagonal and six octagoDal prisms obtained in the indicated manDer if we start from 
a hexagon and an octagon sitnated in two planes perfectly normal to each other. 
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its limits (I) and are denoted respectively by tbe symbols 10 , 11 , 

12 , Is'" 

1. Tbe operations of expansion and contraetion. 

IJejinition of er.cpanaion. 

S. Let 0 be the eentre of a regular polytope and MI' M 2, Ms" 
tbe centres of its limits /1' 12 , Is'" The operation of expansion 
el' eonsists in moving tbe limits l,c to equal distances away from 0 
eaeh in the direetion of tbe line 0 M k wbieh joins 0 to its centre, 
the Iilllits Ik remaining parallel to their original positions, retaining 
tbeir original size, and heing llloved over such a distance that the 
two new positions of any vertex, whieh was eommon to two adjacent 
edges in the original polytope, shall be separated by a length equal 
to an edge. 

~'he polytope determineà by tbe new positions of tbe limits Ik 
will have tbe kind of semiregularity deseribed above. The Iimits 
Ik are said to be the subject of expansion or briefly tbe 8ubject; 
and the new polytope is denoted by tbe symbol of the original 
regular polytope preceded by the symbol ek ' 

A few pA.!'ticular cases, in 2, a and 4 dimensions, will now be 
examined. 

hxa11lple8 of the el e:rpanaion. 

4. Here the edges (11) are tbc subject. 
It is evident that this operation applied to any regular polygon 

changes it into a regltlar polygon having the same lellgtb of edge 
and twice as many side~. In Fig. la a square is ehanged into an 
oetagon by the application of tbe el expansion 1). 

Fig. lb shews tbe e] expansioll of a cube. 'rbe real movement 
of any edge AB is in the direction of tbe line OM] but that move­
ment may be resolved into two. Thus instead of moving AB 
directly to the position Al B] it might have been moved to A' B' 
or to A" B" and then to Al BI' IC the movements of all tbe edges 
be thus resolved the result is the same as if tbe faces AC, AlJ... 
(Fig. Ic) of the original eube had been first transformed into octa­
gons by an el expansion of eaeh in its own plane, and tben moved 

') In these drawings the thick lines represent edges of regnlar polytopes in their 
original or in new positions, the th in lines edges introduced by expansion. 
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away from the cent re 0 until the edges A'B' and AW B", which 
corl'espond to an edge AB of the cube, are coincident arul become 
the commOll edge of two octagons (t!'allsformed squares). 1t is to 
be noticed that as each vertex of a cube is common to three edges 
(thl'ee members of the subject) it takes three new positions, which, 
owing to the regularity of the cube, are the three vertices of an 
equilateml triangle. Thus the faces of the cube have been expan­
ded into octagons and the vertices into triangles. 

Fig. 2a shews the el expansion of a tetrahedrOlI. Each face is 
changed into a hexagon, each vertex into a triangle. Here again 
a vertex of the tetm.hedron is common to three members of the sub­
ject; the result is a tT. 

Fig. 26 shows the same expansion of an octahedron. Each face 
is changed into a hexagon; hut each vertex into a square because 
in all octahedron each vertex belongs to four edges (four members 
of the subject); the l'esuJt is a tO. 

From these examples it is easy to find the el expansion of an 
icosahedron and of a doderahedron. 

5. rrhis investigation leads to tbe determination of tbe et expan­
sion applied to the fourdimensional polytopes. For instance in the 
Cs each cube is transformed (in its OWll space) by the el expansion 
and becomes a tC tFigs. 16 and 2c). rrhese transformedcubes must 
be so adjusted that au edge which was in the Cs córnmon to 
th ree cubes 1) is, in its new position, cornmon to three transformed 
cubes. Again each vertex in a Cs is comrnon to four edges and 
must take four new positions which are the four vertices of a 
regular tetrahedron. rrhllS thevertex of the Cs is expanded into 
a tetrahedron, which is said to he of vertex import. This tetra­
hedron might have been determined in 8110ther way; for four cubes 
meet in a vertex of a Cs Illld in each the vertex is changed into 
a triangle; therefore a vertex of Cs is repJaced by a body Jimited 
by four triangles i. e. a tetrahedron. 

The two kinds of limiting body of the new polytope el Cs are 
shewn in Fig. 2c; in Fig. 2d are shewn the limiting bodies of el C5• 

In CI6 , where six edges meet in a vertex, the et expansion 
changes each tetrahedron into a tT (Fig. 2a) and each vertex into 
an octahedron (of vertex import) whose vertices are the six new 
positions of a vertex of the c;6' 

Again in C24 eight edges meet in a vertex, 80 th at the el ex pan-

') In order to facilitate the application of the operation of expansion it is desirabIe 
to have at hand a table of incidences; this is provided on Table lIl. 
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sion here chauges each octahedron into 8 tO (Fig. 2b) and each 
vertex into a cube (of vertex import) whose vertices are the eight 
new positions taken by a vertex of 024 , 

In a similar mamIer the el expansions of C120 and 0600 may 
be determined. 

6. Rule. These examples lead to the general rule for the el 

expansion of 8 regular fourdimensional polytope P. The limiting 
bodies of Pare transformed by the el expallsion and tbe vertices 
expanded into regular polyhedra each having as many vertices as 
there are edges meeting in a vertex of P. 

EflJamplea ol the e2 eflJpantJion. 

7. As the faces are the subject in this expansion there ean be 
no applieation to a single polygon in twodimensional space. 

'fhe e2 expnn8ion of a cube, an ROO, is shewn in figure 3a; 
there are three groups of faces: 

1 st : squares correspondillg to the faces of the origillal cube 

2
nd ~" " "" edges "" " " 

3 rd : triangles " "" vertices"" " " 
In this expallsion of any regular polyhedron the faces of the 

first group are like those of tbe original polyhedron; the faces of 
the second group are always squares, since tbey are determined by 
the two new positions of an edge of tbe original polyhedron; those 
of the third group are triangles, squares or pentagons according 
as a vertex of the original polybedron belongs to three, four or 
live faces. 

As the cu be and the octahedron are reciprocal bodies, the num­
bel' of vertices lying in a face of one being equal to the number 
of facesmeeting in a vertex of the other, it follows that the e2 
expansioll of the octahedron is also an ROO (Fig. 3b). 

Again the tetrahedron is self reciprocal, the number of vertices 
lying in a face being equal to the numher of faces meeting in a 
vertex; so in the e2 expansion the faces of vertex import are, 
like the faces of the tetrahedron, equilateral triangles (l1'ig. 4). 

The e2 expansion of the icosahedron and dodeeahedron, wbich 
are reciprocal bodies, is an RIn. 

S. 'rhe e2 expansion of the Os transforms each cube into an 
ROO and, as in the Os each face is common to two cubes, so 
those faces in the ROO which are fa ces of the cubes in new posi­
tions must I10W he commOll to two ROO. 111 the Os each edge 
helongs to three faces, so .in the new polytope each edge takes 
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three new positions which are the tbree parallel edges of a right 
prism on an equilateral triangular base. 

This manner of determining the prism (expanded edge) bears the 
most direct relation to the particular expansion under consideration , 
namely that in wbich t.he faces Ilre tbe subject; but it could have 
been determined othel'wise. Thus in a Os th ree cu bes meet in an 
edge and as each is changed into an RCO, its edges are changed 
into squares, so that instead of three coincident edges th ere are 
now three squares, thc side faces of a right pt·ism. 

Again in the Cs each vertex belongs to six faces and therefore 
must assume six positions. }'rom th is it is evident that the body 
taking the place in the uew polytope of the vertex in the Cs has 
six vertices and it remains to detel'mine its faces. 

In figure 5 nre repl'esented, in their tl'Ue relnti ve positions as 
far as threedimensional space will allow, two of the four RCO 
Ilnd two of the four Ps which have taken the place of the four 
cubes and the four edges meeting in a vertex of the Cs. It shews 
that each RCO supplies a trianglliar face and each prisl11 a trian­
gular face - all equilateral - to the body that takes the place 
of the vertex of the Os. rrhis body therefore is ft regular octa­
hedron, four of whose faces are in contact with RCO nnd four 
with Ps' 

rrhe new polytope then, e2 Cs' is limited by 8 RCO, 32 Ps of 
edge import, 16 0 of vertex import. 

9. Ru/e. rrhe rule for the e2 expansion of a regular fourdimen­
siona} polytope P may he stated thus: 

The limiting bodies of Pare transformed by the e2 expansion. 
The edges are expanded into prisms each having as many edges 
parallel to the axis as thel'e are fnces meeting in an edge of P. 
The vertices are expanded into bodies having two groups of faces, 
one kind of edge, and as many vertices as there are faces meeting 
in a vertex of P. One group of faces is supplied hy the bases of 
the prisms of edge import nnd of these thc lIumber is equal to 
the number of edges meeting in a vertex of P; the other is supplicd 
hy the expanded vertices of the transformcd limiting bodies, of 
which the numbet· is equal to the number of limiting bodies meeting 
in a vertex of P. 

E'rcample8 ol the es eapanaion. 

10. Here the limiting bodies are the subject; nnd it is at once 
evident that th is expansioll applied to reciprocal fourdimensional 
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bodies, e. g. to Cs and l16' also to l120 and C600 ' must produce 
the same result; while applied to a self reeiproeal form it pro­
duces a polytope whose limiting bodies of vertex import are like 
the original limitillg hodies and of the same numher, and whose 
limiting bodies of face import are of the same- number and kind 
as those of edge import. 

rrhus as in the Cs eaeh face belongs to two, ench edge to three, 
and each vertex to four cubes, it follows that in the expansiol1 
e~ch face takes two, each edge three, and eaeh vertex four posi­
tions. The es Cs is therefore limited hy 8 cubes of body import 
(cubes of the origiual Cs), 24 P4 of face import, 32 Pa of edge 
import, and 16 tetrahedra of vertex import (Fig. (la). In the l16 

each face belongs to two, enrh edge to four, each vertex to eight 
tetrahedra, so in the expansion each face takes two, each edge 
four, and each vertex eight positiol18 and the es l16 is lirnited by 
16 tetrahedra of body import, 32 Ps of face import, 24 P4 of 
edge import, and 8 cuhes of vertex import (Fig. 6b). rrhese two 
polytopes are nlike except thnt the importa are reciprocal. 

11. Generally tbere are four groups of limiting hodies: 
}St: polyhedra of body import like the limiting hodies of the 

original cel!, 
2nd

: prisms of face import defined hy their bases (two positiollS 
of each face of tbe original ceH), 

3rd: prisms of edge import defined by their edges parallel to 
the axis (as many positions of an edge as there are bodies meeting 
in an edge of the original cell) , 

4 tb
: polyhedra of vertex import having as many vertices as there 

are ho dies meeting in a vertex of the original cell. 
80 in es C5 there are lOT, 20 Ps; in C24 tbere are 48 0, 192 Ps. 
'rhis expansion of a C120 and a C600 (reciprocal eells) can easily 

be determined. 
12. Rule. The rule for the es· expansioll of a regular polytope 

P of fourdimensional space is as follows: 
'l'he limiting bodies of Pare moved apart (untransformed). 
'l'he faces are replaced by prisms whose bases are parallel posi­

tions of a face of P. 'l'he edgcs are replaeed by prisms each having 
ns many edges parallel to the axis as there are limiting bodies 
meeting in an edge of P. Eaeh vertex is replaced by a regular 
polyhedron, the number of whose vertices is equnl to the number 
of limiting bodies meeting in a vertex of P. 
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Generalization. 

13. 'rhe foregoing result may be generalized thus. If any set 
of limits er be the subject of expansion in a regular polytope P n 

in ft. space of 11 dimensions the polytope P n' detined by the new 
positions of the members of the subject has for its limits t n-1: 

I st: a group consisting of the limits 1
11

_ 1 of P n transformed by 
the e,. expansion (er ln-1), 

2od
: a group of vertex import, each member of the group beilIg 

determined by its vertices, the number of which is equal to the 
Dllmber of limits Ir meeting in a vertex of Pil and having one 
kind of edge. 'rhis polytope is regular in the el and the ell-1 expan­
sions. 1'hese two groups are the principle ones. 

Srd: there are besides val'ious kinds of prisms. Those of edge 
import (I-import) are detcrmined by the new positions of nn edge 
of PIl and the number of these positions is equal to tbe mlmber 
of limits I,. meeting in an edge of P n' The prisms of face import 
(2-import) are determined each by the new positions of a. face ' of 
P,P and the number of these is equal to the nurnber of limits Ir 
meeting in a face of p .. and so on. 'rhe whole series of prisms 
is as follows: I-import, 2-import, .... 1·-I-irnport. 

Combination 0/ operation8. 

14. The expansions described above have been applied to regular 
bodies nccording to the definition given on pnge 5 I transforming 
them into bodies possessing a pnrticulnr kind of serniregularity, 

'rhe question 1I0W arises : can these semireglllar bodies be trans­
fornled by the applicatiou of any further expansion without having 
lost thc kind of scrniregularity defined aboyc? 

It is evident in the first place that a movcment of all the edges 
or of all the faces would produce bodics with edges of different 
lenghts. But an inspection of the trnnsformed bodies in three­
dimensional space (Figs. I b, 2 a and 2 b) shows that in each of 
the polyhedra te, tT und fO th ere are two groups of faces, each 
of which taken alone defines the polyhedron: one group corres­
ponds to the faces (expanded), the other to the vertices (expanded) 
of the original polyhedl'on, and these two groups differ as to á 

pnrticularchal'acteristic. 
The members of the first group are in contact with members of 

the same group; the mernbers of the second are separated by at 
least tbe length of an edge from members of their own group. As 
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the operation of expansion applied to a set of limits has the effect 
of separating any two adjacent members, it follows that the first 
group can, the second group cannot, be -made the subject of ex­
pansIOn. 

Fol' instnnce in el 0 (Fig. 7 a) the triangles cannot be moved 
aWlly fmm the centre without incrensing the length of the edges 
joilling them, but the oct8gons may he moved away from the centre 
until the edge AB common to two has assumed two new positions 
A' R', A" B" which are the opposite sides of n square. 'l'he new 
positions of the octagons define a polyhedron having the required 
kind of semiregularity. 1) 

15. ~'his double operation may be denoted by the syrnbol e2 el C 
where it is understood that the - faces forming the subject of 
the c2 -expansion are only those which have taken the plnce of 
faces in the original cube. Similarly the interpretation of the sym­
bol el e2 0 is that the e2 expansion is applied to a cube and that 
the subject of fnrther expansioll is composed of those faces which 
have taken the place of edges in the ol'igillal cube. 'l'his is shewn 
in l'ig. 7b where the group of 12 squares (corresponding to thc 
edg~s of the original cuhe) form the subject of expansion. 'l'hesc 
two fignres 7 a alld 7 b show that 

el e2 0= e2 el 0= toa 

and it is evident that tbe order in which the operations are applied 
to any regular polyhedron is indifferent, for tbe two operations 
could have been carried out simultaneously. 

In Fig. 7 e is shcwn the result of the double operation e2 el 0 
applied to an octahedron. 'l'his is also a tOO. 

If the double 0pCl·ation be applied to a I and -an ]) thc result 
in both cases will be a tID. 

This body and the tOa are incapable of fnrther expansion. 
16. 'l'hus it appears that three expansions cau be applied to 

thc cube, octahedron, dodecahedron, icosahedroll, namely el' c2, 

el e2· But more can be done with the tetrahedron owing to the 
fact that it is self reciprocal. 

Fig. 7 d and 7 e show respectively the result of the e2 el and 
the el e2 expansion Ilpplied to a tetrahedron, and the result in both 
cases is a tO which can be further expanded into a toa (Fig. 7e). 

Thus the self reciprocity of the tetrahedron aHows an expansion 
which cannot be carried out in the other four polyhedra. 'l'he 

1) Here the group of octagons may be called the nindependent" variabie, wbile the 
triaugles, which are traosf'ormed into hexagoos, are the ndependent" ones. 
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combination of operations may be applied in the same way to thc 
cclls of fourdimensional space as one or two examples will show. 

17. Ca8e el e2 CS' - 'fhe e2 operation applied to a Cs produces 
a polytope limited by 8 RCO, 32 Ps' 16 0 (~'ig. 5). Thesymbol 
el e2 Cs directs that the new subject of expansion comprising those 
limiting bodies in e2 Cs which correspond to edges of Cs' i. e. the 
32 Ps' shall, themselves unchanged, be rarried away from the 
centre (of the e2 Cs), 

'l'hese Ps in their new positions define the polytope sought. 1'his 
movement changes the RCO and thc O. Each RCO was derived 
fl'om a cube by the e2 expansion; the new expansion el caJTies 
out the group of 12 squares' (~orrcsponding to tbe edges of the 
cube), thereby producing u. tCO (Fig. 7 b). In order to determine 
the change in the octahedron of vertex import it is only nccessary 
to observe th at four of its fa ces (tbose in contact with bases of 
Pa) are still in contnct with them and are only changed in position, 
while the other four (those which were in contact with RCO) are 
changed into hexagons in contact with tCO. 'rhus the octahedron 
is cballged into a tT. rrhe effect on a single octahedron is the 
same as if its alternate faces had heen made the subject of expan~ 
sion (Fig. 8). 

18. Ca8e e2 es Cs' - 'fhe result of applying tbe es operation 
to a Cs is a polytope limited by cubes (ol'iginal cubes of the Cs), 
P4 of face import, Ps of edge import, and tetrahedl'a of vertex 
import (l"ig. 6a). 'l'he symbol e2 directs tbat tbe square prisms of 
face import shall be moved nway from the centre of es Cs' they them­
selves remaining unchanged ex cept in position. 'l'hese in tbeir new 
positions define the new polytope and it only remaills to determine 
in what manner theÏt' movemcnt has modified the remaining limi­
ting hodies of the es Cs' This can be seen at once in a drawing. 
In figure 9a are shewn seven limiting bodies of the es Cs; olie is ft 

cube of the original Cs' af ter having been separated hy the es 
movement from the adjacent cubes; three are cubes of face import 
interposed by the same move ment between the cubes of the Cs; 
three are Ps of edge import, their bases being faces of a tetra­
hedron of vertex import. 'l'he symbol e2 directs that the cubes of 
face import are to be moved out. The result is shewn in figure 9b; tbe 
origimtl cube is changed into an RCO, tbe Ps into a Ps and tbe l' 
into a tT. It is necessary to bear in mind that only one limiting 
body of any polytope can be in threedimensional space at a time, 
and in representing several at once in it tbere must be either distortion 
of tbe limiting bodies or separation of faces nnd edges whicb ac-
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tually coincide. Moreover tbe direction of tbe rea1 movement cannot 
he representcd; but valid conclusions may be drawn from diagrams 
sucb as tbese, if tbe mind alwnys distinguisbes between tbe actual 
and the apparent relation of parts. 

'rbese two examples sllffice to show how the resnlt of tbe com­
bination of operations may be applied to tbe fourdimensional ceHs. 
'fhere are seven expansions of each: 

el ' e2 ' es ' el C2 , el es ' e2 es ' el e2 es' 

but owing to tbe reciprocity of some of tbe figures these are not all 
different. 

'fhus it appears that in any expansion a set of limits, which 
define the body nnd wbich is such that each member is in contact 
with other members of the same set, may be made the subject of 
expansion. 

IJejinition of contraction. 

19. In each of tbe expausions Cl' e2 , es'" the resulting semi­
l'egular polytope may be reduced to the regulal' one from which 
it was derived, by an inverse operatioll wbich may he called con­
traction. 

Here the limits whicb formed the subject of the expansion are 
moved towards the celltre nnd brought back to their original positions. 

Tbe direct operation separates the members of tbe subject; tbe 
inverse operatioll brings tbem again into contact, allnihilating tbe 
edges introduced hy expansion. In botb positions tbey define tbe 
polytope of which they are tbe limits. 

Tbe conditions llecessnry to tbc inverse operationare: pt, tbe 
limits forming the subject must define the polytope; 20<1, no two 
members of tbe subject can be in contact befOl'e contraction. 

Tbe polytopes of vertex import always satisfy these conditions 
nnd can be made the subject of contraction. 'fbe symbol c is 
used to denote contraction. The import of tbe limits formillg the 
subject is shown hy means of subscripts , as in expansIOn. 

Examplea of contraction. 

20. Tbe inverse operation wiJl be made clear by one or two 
examples. 

In figure 10 tbe square ABC D bas been expanded hy tbe 
el operatioll; tbe edges of vertex import in the resulting oetagon 
have been made the subject of tbe inverse operation, tbat is, tbcy 
have been moved nearer to the centre so far that tbe edges of 
thc original square are annihilated, and thc final result is the square 
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E .F G H, denoted by the symbol Co el 8 where 8 is the square 
ABC J). 

In figure lOb is shown a cube transformed by the el operation , 
i. e. an el C; the triangles of vertex import are brought nearer to 
the centre hy the Co operation alld the result is a CO whose sym­
bol is now Co el C. 

Again, the tCO may be considered in two ways. It may be 
deduced froni. either tbe octahedron Ol' the cube (compare l<'igs. 7a 
and 7 b), so it may be denoted by el e2 C or el e2 O. Though the 
identity of these results may be expressed in the form of an 
equation: el e2 C = el C2 0, it must still be borne in mind that the 
imports . arc different. Let each of these symbols be precedcd by co. 
What are the results? lf the tGO has been derived from the cube, 
the hexagous are of vertex import; if, ou the other hand, it has 
been derived from the octahcdron, the octagons are of vertex import. 
'l'hus the symbol Co el e2 C indicates that . the hexagons, and the 
symbol Co el e2 0 that the octagons, are the subject of the inverse 
operation whence Co et e2 C = tO (Fig. 7 c), Co et e2 0 = tC (Fig. 7 a). 
But the octagons correspond to the faces of the cube and the 
hexagons to the faces of the octahedron, 80 that Co et e2 C = C2 et e'1. 0, 
Co el e~ 0 =C'1.et e"l C. 

21. An example wilt show the combination of inverse operations. 
'l'he tCO derived from a cube (Fig. lla) may be reduced to an 
octahedroll by moving the squares and the hexagons nearer to the 
centre; the tCO derived from an octahedron (Fig. 11b) may be 
reduced to a cube by moving the squares and the octagons nearer 
to the centre. 

These operations al'e denoted respectively by the equations 

22. In figure 5 are. shown, the limiting bodies of all e2 Cs. If 
tbe octahedra of vertex import be mad~ the subject of the inverse 
operation, the following changes will take place: each Ps, sepa­
rating two neighbouring octahedra, is reduced to two coincident 
triangles. This annihilates the edges of the prism parallel to the axis. 
But these are the edges of the original Cs in the new positions due to 
expansion and if these be allnihilated each RCO wilt be reduced 
to an octahedron. Thus the new body is a C24 , eight of whose 
limiting bodies are compressed RCO, while sixteen are of vertex 
import in the expansion e2 Cl!' 

As in the enumeration of thepolytopes and the nets given in 
the three 'l'ables only the Co appears, Co has been replaced by c. 



GEOMEI'RICAL DEDUarION OF SEMIREGULAR l!."TC. 16 

Padial operationa. 

23. It has been seen that in both expansion and contraction 
it is a necessary condition that the subject of operation shall define 
the polytope both before and af ter the movement. 

In expansion, each member of the subject must be in contact 
with other mem bers. In contraction , each mem ber must be separated 
from the other mem bers by at least the length of an edg~. 

It sometimes happens that one of these conditions is satisfied by a 
group consisting of the alternate membel's of a set of limits. Such 
a gl"OUp may th en be made the subject of expansion or contraction. 
If the members be in contact, they may be made the subject 
of expallsion; if they be not in contact, they may be made the 
subject of contraction. 

24. Thus, an octahedroll is defined by a group of four alter­
nate triangles, but each of these triangles is in contact with the 
other thl'ee, so that these four may be made the subject of ex pan­
sion. This partial operation , which changes the octahedron into a 
trllllcated tetrahedron, is denoted by the symbol t e2 O. So! e'}. 0 = tT. 

Agail1, a CO whose symbol is cOei C is defined hy a group of 
four alternate tl'iangles. Each of these is separated from the 
others by the length of all edge. '11his group may therefore 
be made the subject of the C operation, which changes the CO 
into a T. So t Co Co ei C = 11

• 

lt may be remal'ked th at the partial contractioll ~ Co can never 
take place without a previous complete coutraction CO' 

25. 'rhe corresponding case in fourdimensional space is expressed 
by the symbol ~- cOcOei~' 'fhis indicates that first, the edges of 
the O~ are made the subject of expansiol1; second, the sixteel1 
tetrahedra of vertex import are made the subject of contl'8.ction; 
third, a group of eight alternate tetrahedra are made the subject 
of still further contJ.:action . . 'fhis last partial move ment changes 
the cubes of the ~ into tetrahedra and anl1ihilates eight of the 
tetrahedra of vertex import, thus cJIanging the Cs into a ~6, eight. 
of whose limiting tetrahedl'a are derived from the limiting cubcs 
of the Cs, the remaining cight being of vertex import. So 
t Co Co ei C8 = G't6' 

These examples suffice to show in what manner and under what 
conditions the partial öperations may be applied. 
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II. Application to space fillings. 

h'a:pansion applied to the net8. 

26. A space filling or net iu any space 8 1l may he considered 
as a polytope with an infinite numher of limiting spaces of n dimcn­
sious in a space 8"+1 of one dimension higher. 1) According to this 
view the operations of ex pan sion and contraction and their com­
binatioDs may he applied to nets; but thc fa ct that tbe net is a 
particular case of a polytope modifies the manner in which the 
operation is to he applied. 

ExpansioD has been defined as a movement of any set of limits 
away from the centre of a polytopc. 'fhis movement in general 
separates the mem hers of the subject. 

In a polytope in 8
'l 

with an infillite numher of n-l-dimensioual 
limits (a net) tbe centre is at an infinite distance in a direction 
normal tp the space 8 1l of the net and no movement away from 
the centre can separate the limits forIlling the subject, in other 
words can expand tbe net. Now it has heen shewn that tbe real 
movement taking plaee in an expansion may he resolved into two, 
one of which tl"8.nsforms the limits each in its own space and thc 
other adjusts those transformed liniits. 11) this way tbe operation 
can be applied to .the special case under considemtion. 'l.'hus if the 
et expansioll be applied to a net of squares (Fig. 12) they ure 
transformed into overlapping octagons and then the octagous must 
be moved apart until an edge which was common to two squares 
hecomes common to two oetagons. 

This adjnstment leavcs a gap Ai A2 As A4 (vertex gap) bet ween 
the octagons corresponding to the vertex A common to four squares. 
'l'hus the trallsfol'med net of squares is eomposcd of two eonstituents, 
oetagons corresponding to the squares, and squares corresponding to 
vertices of the original net. 

27. In thl'eedimensional space thel'e is only one regular space fillil1g 
i. e. the net NO of cuhes. The net N(O, T) of octahedra and 
tctrahedra is semiregular. 

If the el expansioll he appli~d to a net of cubes each cube is trans­
formed into a tOe These will overlap and must be moved apart 
until an edge which was common to four cubes becomes comrnon 
to four tO (Fig. 13) By this adjustment octahedral gaps (vertex gaps) 
are left at the vertices. 80 the net ei NO is formed of tO and O. 

In order to determine the octahedra it is necessary to ohserve 
that as a vertex of the original net helongs to six edges, i. e. 

') See the quoted paper of ANDRE/NI, art. 47. 
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six members of tbe subject, each vertex takes six new positions, 
forrning tbe six vertices of an octllhedron (see rule, nrt. 6) whose 
eight faces are supplied by the expanded vertices of the eight cubes 
meeting in a vertex of the original net. 

28. 'fhe application to fourdimensional space is simpIe. 
For 111stance if the ei expansion be Hpplied to a net of Os each 

~ is changed into an et ~ (Fig. 2c), two adjacent ones hnving a 
tO in cornmon. As a vertex in tbe net Cd helongs to eight edges 
(eight members of tbe subject) each vertex takes eight new posi­
tions which are the eigbt vertices of a Ct6• 

'fhe lirniting bodies of this ~6 rnay be identified as foJlows. 
In tbe net ~ each vertex is surroullded by 16 members. Each 
vert.ex of a ~ is changed by expansion into a tetrahedron, so that 
the vertex gap in the net is surrounded by 16 tetrahedra, the 
lirniting bodies of n Ct6' 'fhus by the ei expansion a net of Os 
has been converted into a net et NOs of two constituents, et Cs and 
Ct6' in which two adjacent ei ~ have a tC in common, while an 
ei ~ and a Ct6 have a tetrahedron in commOl1. 

29. Again the ez expansion may be applied to a plane net. 
In this case the constituents of thc net are moved apart until an 
edge assumes two positions, the opposite sides of a square, and 
the vertex gap is a polygon with as many vertices as th ere were 
constituents meeting in a point in the original net; figure ] 4 (a and b) 
snews this with regard to a n~t of triangles. 

If the e-}. operatioJl be applied to a net of squares, it moves 
apart the squares and the reslll~ is again a net of squares; but 
they are not all of the same kind, sorne beilIg the squares of the 
origillal net, some of eJge import, others of vertex import 
(Fig. 15). From this simple example it rnay be seen that the en 

expansion applied to a net of meaSUl'e polytopes in n-dimensional 
space produces again a net of measure polytopes; but the latter is 
composed of constituents with different imports, and the subject 
of any further expansion must be suitably chosen. For instanee if 
the et e2 expansion be applied to a net of squares the subject of 
the el expansion cOlnprises only those squares of edge import intro­
duced hy the e2 expansion in a net of squares (Fig. 15b). 1'he 
result is that the squares of the subject remain unchanged ex cept 
in position. Those of vertex import and those corresponding to 
the squares of the origillal net are changed into octagons of 
different imports. The corresponding double expansion of the net 
of triangles is shewn in figure 14c. 

80. If the e2 expansion be applied to a net of cubes each cube 
Verhand. Kon. Acad. v. Wetenseh. (t< Sectie) DI. XI. A 2 



18 GEOMETRICAL DEDUCTIO~ OF SEMIREGULAR ETC. 

is chnnged into an RCO. FOl1r of these are shewn in l!'ig. 16 
after having been adjusted so that a face which was common to 
two cllbes becOlnes common to two RCO. 

This adjustment leaves edge gaps and vertex gaps. 
As an edge belOllgs to four and a vertex to twelve faces (mem­

hers of the subject) the edge gap is defined by four newparallel 
positions of an edge and the vertex gap by twelve new positions 
of a vertex. 'fherefore the th'st is filled by a square prism (a cube) 
and the second hy a CO. In the CO the triangles arc supl'lied by 
tl'iangular faces of the eight RCO (expanded cuhes) and the squares 
hy the bases of the six prisms (expanded edges) surrounding the 
gap. 'rhus the net of cubes is changed hy the e2 transformntion into 
n net e"}. NO with the three constituents RCU, C and CO (A. 20) 1) . 

. 1'hc e~ expansion may be npplied to n net N(0,1~ of 0 and 
T hy taking either the gl"OUp of 0 or the group of l' as inde­
pendent variahle, and the faces of that gl"Oup as suhject. Whichever 
gl"OUp i,> ch08cn, its faces in t.heir original position define the net 
lV( 0,1'), in their finnl position the new net. 1'hus if the e2 expansion 
be applied to the U each 0 is changed into an RCO (Fig. Sb) whose 
triallgulnr faces are in contact with the untransformed tetrahedra. 
'rhe vertices of each 0 are now changed into squares (Fig. 3b) 
and as six octahedra meet in n vertex of N(0,1~ the vertex gap 
is a cube. l'hus the llew net e2 N( U,n has three constituents 
RCO, C, l' (Fig. 17) (A. 19). -

In figure 18 is shewn theresulteJ .. iV(0,T)=eJ N(0,1')oftheet 

expansion applied either to the octahedra Ol' to the tetrahedra of 
the net (0,1'). 

31. In fourdimensional space an cxample is given of the e2 

expansion e2 NC2". Each C2\ is changed into an e2 CH Iimitcd hy 
24 RCO, 96 Pa, 24 CO (see ruIe, art. 9 and :Fig. 197r).2) 

1'he RCU are lransformed octahedra, t.hc Pa are expanded edges, 
anel the CO expanded vertices. When the transformed C2~ are 
ndjusted so that an octahedrolJ which in the rcgulal' net is common 
to two C2\ is changed into an RCO common to two e2 ~~, there 
are edge gaps and vertex gaps. 

In order to facilitate the dctermination of these gaps it will he 
weIl to state clearly the mallller iJl which the th ree kinds of limi­
ting bodies are mutually arranged in the e2~' 

') This means Fig. 20 in ANDREINI'S memoir qnoted in art. 1. In order tofacilitate 
comparison a lable of threedimensional nets is given on plate lIl. 

I) Here and in the following figures 'lI' means "principal" constituent, while 111, (3, etc. 
ttnn" for tbc polytopes filling the vertex gap, the edge gap, etc. 
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A shaded face AlBi Oi common to two ROO (in Fig. 19) is the 
new position of a face ABO common to two octahedra in ~; 
AiRh A2R'J.' AsBs lire three new positions of Itn edge AB of thc 
~~, and the two positions AiB1' A2B2 in the RGO are identical 
with the two position"s AlRl' A2B"}. in the prism. Again, the vertices 
of the GO are thc 12 positions taken by a vertex A of the ~~ 
of which four .Ai A2 A,..A5 are identical with four Ai A2 A~ A5 In 

the ROO. 
In the net of O~ an edge is common to four and a vertex to 

32 faces (membel's of the subject), so that the edge gap is defined 
by foUL' positions of an edge and the vertex gap by 32 positions 
of a vertex. The limiting bodies surrounding these two gaps may 
be found in the following munner. Four ~ meet in an edge and 
eight in a vertex of thc net ~\' In each, the edge is changed 
into a Ps and the vertex into a 00. Thus among the limiting 
bodies surrounding the edge and vcrtex gaps therc must be four 
Ps in parallel positions in the former and 8 00 in the Iatter. 

Now in the origil1al net two adjacent 02~' let us say M & N, 
have a common octahedron, or it may be snid that two octahedra, 
limiting bodies of two adjacent O2\, coincide. So in the transformed 
net two adjacent e:}. 024 have an ROO (transformed octahedron) in 
common; or it may be said that two ROO, limiting bodies of two 
adjacent e2 02~' M & N, coincide. 

Thus the ROO (Fig. 1971") represents two coincident limiting 
bodies , one bel on ging to Mand the other to N. In each the face 
(Al BI' A2 B2) is in contact with a Ps and these two Ps can have 110 
other point in common, or else the polytopes Mand N, ha ving 
al ready one commOJl limiting body, an RGO, would coincide. 

'fhus two adjacent Ps sUl'rounding the edge gap have a square 
face in common. It remains now to seek a polytope which satisfies 
the following conditions. It must be determined by four parallel 
positiol1s of an edge and have amongst its limiting bodies four 
parallel P.,j of which any adjacent two have a square face in common. 

A fourdimensional prism on a tetrahedral base is the only body 
which satisfies these conditions , so that the limiting bodies are 4 Ps, 
2 T (Fig. 19(3). 

Each of the tctrahedra is determined by its vertices i. e. four 
positions assumed by the end point of au edgc of the net 024 and 
is therefore of vertex import. 

As 16 edges meet in a vertex of the net 024 , there are 16 of these 
tetrahedrn sUL'l'ounding the vertex gap. 

'}lhe limiting bodies of the polytope which must fill the vertex 
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gap are therefore 16 tetrahedra and 8 CO (Fig. 1 'J(3). The reg u­
lar net of Clt,. has thus been tl'tll1sfol'med into one of th ree constituents: 

(I) e2 CJA (limited by RCO, Ps, CO), l!'ig. 191f 
(2) P 1', Fig. 19{3 
(3) c et Cs (limited by S CO, 16 T), }'ig. 19a:. 

In this net two polytopes (If) have an RCO, ft (If) and a ({3) 
have a Ps, a (If) and au (a:) have a CO, and all (a:) and a ({3) 
have a l' in commOll. 

The es eapanaion applied to a hloc/c of cubea. 

32. 'fhe figure 20 shews the result es Ne clearly. It has 
all'eady been remarked thnt this expansion leads to a block of cubes 
of different kinds, some having face import (a), sorne edge import 
(h), and some vertex import (c). 

In figure 21 is shewn the result of the opcration et ea NC; thc 
('uhes corresponding to those of the origillal 11ct are changed into 
tC; the cubes of edge import (subject of the second operation 
et) remain cubes; those of face and vertex import are changed 
rcspectively into Ps and RCO (A. 22). 

The es expall8Ïon applied to a net of ~6' 

33. Ench CJ6 is expandcd according to the rnle and produces 
u polytopc limited by T, Ps, P", C (Fig. 221f). 

When these are adjusted, so that tetrahedra which were comwon 
to two Cl6 are commOJl to two es C16 , there are face, edge, and 
vertex gaps; these are defined respectively hy three parallel positiolls 
of a face, 12 parallel positions of an edge, anel 96 positions of a 
vertex; since in the N~6 a face is common to tlH'ce, an edge to ) 2, 
and a vertex to 96 tetrahedra (members of the subject). It remains 
only to detcrmine the limiting bodies surrounding these gaps. 

34. In OI'der to find those of the face gap the three ncw parallel 
positions of the face AB Care represented by the triangles A I BI Cl' 
AlB2 C~, A3Rs Ga (Fig. 23). 

It follows from the definition of expullsion that the lines At A-}., 
A2 Aa, A3 At. . . .. are normal to the face ABC and equnl to an 
edge. Thus the face gap is SU1Toullded hy two groups of thrce 
Ps; one group consists of the Ps: At BI Cl A2 B 2 C2 , A-}.B2 C],A3 B 3 Ga, 
AsBs GaAt Bt ~ of face import and the other of AIA2AaBtB-}.Ba, 
Bt B 2 B3 Ct C2 Ga, C. C2 Ga At A2 As of edge import. 
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'fhe members of each group are in triangular contact with mem­
bers of the same anu in square contact with membel's of the OthCl' 
group. 

This polytope, called n simplotope, is a special case of a gl"OUp 
of polytopes ('aUed prismotopes 1). 

1'wo kinds of limiting bodies sUl"founding the edge gap have 
now been found, i. e. square prisllls due to the transformed ~6 
(Fig. 22'1') and Ps due to the expanded face (Fig. 2213); there are 
six of the former and eight of the latter , since six Ot6 and eight 
faces meet in an cdge of NQ6' As the axes of these 14 prisms 
are parallel, the body must be n fOUl'dimensional prism w hose base 
is a 00 of vertex import (sinee its vertices are the 12 positions 
taken by the end point of an edge). 

Thc vertex gap is surrounded by cubes (71"') nIld 00 «(3), and 
thel'e are 24 of cach since 24 016 alld 24 euges meet in a vertex 
of NOI6• 

'fhus th ere are four constituents in the new net es NOw: eJ C16 ' 

prismotope (3; 3), P co; and Il polytope e~ ~6 limited by 24 0, 24 00. 
'l'he manner in which these different bodies are in contact is 

indicnted by the imports in thc drawings and by the verticallines. 
35. 'fwo examples are _ giveu in orde)' to show how a second 

operation may be applied to the result of n single expansion 
(Figs. 24 & 25). 

Let it be desired to apply the el expansion to the net obtained 
above. Here those constituents taking the place of edge8 in the 
origiunl N~6 are the subject and must be moved unchanged into 
new positions. Thus the edge gap in the ncw net is like that in 
the es . cxpansioll (compareFigs. 22{3 & 24(3). 

Moreover those limiting bodies of edge import in the transformcd 
016 and in the prismotope (face gap) must also remain unchanged 
(compore the parts 71'" and 'I' of Fig. 22 and 1!'ig. 24). 

'l'he tetrahedra (Fig. 2271"') are transformed by the et expansion 
into tT (Fig. 2471"'). 

A careful cxamination of the manner in which the Ps of face 
import and the cubc of vertex import in the same polytope (71"') are 
in contact with the tetrnhed)'a will show in what manner they must 
be changed (see :Fig. 2471"'). From these may be traced the changes 
in the face gap ('I') anel vertex gap (<<). 

36. IC it be desired to apply the e']. expansion to es N~6 the 

') Compare the foot note ') in art. 1. 
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face gap remains unchanged (Figs 22')' and 25')'), as well as the 
limiting body of face import in the es ~6 (7T'); 

'llhe tetl'ahedron (Fig. 227i) is changed by the e'}. expansion into 
a 00 (Fig. 257T') and again the manner in which the other Iimiting 
bodies of this polytope are affected by the change can be traeed 
hy an examination of the ma11l1er in which they are connected 
with the tetrahedra. 

'rhe changes in the edge and vertex gaps can also be traced 
(compnre }'ig,;. 22 and 25). 

The polyt()pe of vertex impOl't in l~ig. 25 is remarkable, as it is 
limited by 4~ semiregulul' polyhedra of the 8a11le 1cind. 

The e" eapan8ioll. 

37.1'he e" expansion applied to a net of Os, q6 Ol' Ol4 sepa­
rates the adjacent constituents by a distance equal to an edge. 
Thus two neighboUl'ing melllbers of a block are sepurated by a 
fourdimensional prism ",hose two opposite ba!'es are the two limi­
ting bodies tbat coincided in the l'egulnr net. rrhe net of Oi so 
treated results in anothel' net of Cs of different imports. 

rl'he net of ~6 transformed by the e" expansion leads to the 
following result. rrhe 0,6 are separated, so that instead of two 
having a tetrahedron in common they are separated by a distance 
equal to an edge. 

In other words the tetrahedron common to two AdjAcent ~6 
has assumed two parallel positions, the bases of a fOUl'dimensional 
prislll (Fig. 26J). 

The si de limiting hodies of this fourdimensional prism RJ'e four 
Ps (of face import). As three 0.6 meet in a face in the net of 
OJ6 ench face must assume thrce positions which define a prismo­
tope (3 ; 3) (Fig. 26')'). 

Again six 016 meet ill all edge of the net, therefore each edge 
takes six positiolJs, i. e. the new pOSÏiiOIlS are the side edges of 
a fourdimellsional pl'ism on an octnhedral base ({3). Tt may be seen 
hy (7T'), (J), (')') and «(3) that only one of these four polytopes pos­
sesses a limiting body with vertex import, i. e. the one filling the 
edge gap «(3), so thnt t.be vertex gap is !mrrouuded by octahedra, 
and .as in the net of 016 there are 24 edge.s meeting in a vertex 
it follows that 24 octahedra sUl'l'ound the vertex gap; that is, it 
is a 024 , This new net evidently mayalso be obtained hy 
applying the el} expansion to the net NO"l\' 
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38. 'fhe foregoing investigation leads to the following conclusion 
a..q to the nets of fomdimensional space. 

If the edges are the subject thcre are only vertex gaps. 
If the faces are the subject th ere are edge and vertex gaps. 
If the limiting bodies are the subject there are face, edge, and 

vertex gaps. 
If the constituents are the subject thcre are body, face, edge, 

anel vertex gaps. 
'rhe vel·tex gaps are filled by polytopes determined by their 

vertices. 'fheir limiting bodies nre regular or semiregular polyhedm. 
'rhe edge gaps are filled by fourdimensional prisms determined 

by edges parallel to their axes. 'l'heir bases are either regular or 
scmiregular polyhedra and their other limiting bodies are prisms. 

'fhe face gaps are fil1ed by prismotopes determined by parallel 
positions of a fnce and are limitcd by two grollps of prisms. 

The body gaps are filled by fourdimensionnl prisms determined 
by two parallel positions of a regular or semireglIlar polyhedl'on. 

Contraction applied to the nets. 

3û. One or two examples will suffice to shew the application 
of th is process to the nets. 

If in the net el N( O,T) (Fig. 18) (A. 24) the CO corresponding 
to the vertices of the original octahedra be made the subject of 
contraction, the tO are redllCed to CO, the 11' to 0, while the 
CO remaiu llnchnngcd. 'rh us cef NC 0, J.') denotes a net composed 
of 0 and CO (A. 18). 

40. In the net e2 NC24 (Fig. 1 ü) the polytopes filling the vertex 
gap (a:) may he made the subject of contrnction, when tbe following 
changes take pInce. The polytope a: remnins unchnnged except in 
position; the prism {3 is reduced to a tetrabedron common to two 
of the polytopes a:; tbc CO of 7r remain unchnnged while the Rca 
are reduced to cubes. 'fhus the net of three constitnents is re­
dnced to one of two constituents, one limited hy S CO and 16 T, 
the other hy 24 C and 24 CO. 

Tab/ea. 

41. The chief results of this memoir are tabulated in the 
'fables land Il. 

Table I gives the 48 polytopes of expansion (the regular polytopes 
included) and the 42 polytopes of contraction. 'rhe first set has 
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been numbered from 1 to 48; if p stands for any numbcl', p' of 
the second set is obtailled by application of the operation c (= co) 
to p of tbe first set. The first set consists of 39 different polytopes; 
the second set contains only eight new ones. 

Table II gives the 48 nets of expansion (tbe regular nets included) 
and of the nets of contraction only the seven new ones, so altogether 
39 + 7 i. e. 46 foul'dimensional nets. 

'fabie 111 gives tbe nets of threedimensional space and a table 
of in cid en ces. 
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32 

2' 
3' 
4' 
5' 
6' I 
7' 
8' 

26' 
27' 
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32' 

11 LimitinoO" boelies &; import I Symbol of . 

I body I face I edge I yertex : 
expansion 

c­
e l 0: 
e20S 
es 05 

el ez 05 
e l es 05 
e2es 05 

el e2eS 05 

cel 05 I 

ce2 0S I 
ces 0. 

cel e2 05 
cel e3 05 I 
ce2es 05 
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cele2 C24 
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cel e2 es 02 4 
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tO 

24 

° 00 

o 
tO 

RCO 
tO 

tOD 

T ABLE OF POL YTOPES IN 84, 

= 7 
= 6 

= 21 

= 31 
=:30 

= 3' 
- 2' 
- 1 

- 3 
= 2 
= 5 

= 19 
= 19 
= 25 

= 27 
= 26 
= 29 
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16 
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35' 
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37' 
38' 
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40' 

Symbol of 
expansion 

°120 
el C120 
ez 0120 
es 0120 

el ez 0120 
el e3 0lZO 

e2eS 0120 
el e2eg q 20 

cel Os 
ce2Us 
ce30d 

cel ez Os 
cel es OB 
cezes °d 

cel ez es Os 

cel 0120 
ce2 q,20 

ce301 20 
cel e2 0120 
cel e3 0120 
cezes q,20 

cel e2e3 q,20 
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I I I 
ver--! 

, body face edge tex I 
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11 Trans-! Gaps I .... I 11 Trans- I Gaps I .... Trans- I Gaps .... 
formed '" formed '" Symbol of fO,r~ed '" Symbolof ,0 Symbo~ of original I 

,0 ,0 

S 8 I , ongmal I 8 original 
:::s expansIOn t' I 

body I face I I 
:::s 

I 
expansIOn consti- I I I 

edge I :::s expansion consti-
body I face I edge \ I z cons 1- Z Z tuent edge vertex tnent body face vertex 

I tuent vortex 

Expansion. Expansion. E xpansion. 

1 NC. C. - - I - - I 17 NC,. c,. 1 -- - I - - I 33 NC,. C,. - I -
\ 

- -, 
2 e,NC. e,C. - - - C16 18 e,NC,. e, C16 - - - eH 34 e,NC,. e,C,. - - - C. 

3 e,NC. e,C. - - Po CH 19 e,NC,. e,C .. - - Pc e, C,. 35 e,NC,. e,C,. - - P T ce,C. 

4 e3NC. e,C. - (4 ; 4) Pco ce, C. 20 e3NC, . eaC16 - (3; 3) Pco e,C,. 36 e3NCH e3C,. - (3; 3) Po CH 

5 e.NC. C. P c (4 ; 4) P c C. 21 e.NC, . C,. PT (3 j 3) Po C,. = 37 37 e.NC .. C,. Po (3; 3) P T C,. =21 

6 e,e,NC. e,e,C. - - Po e, C,. 22 e, e,NC16 eJezCJG - - Pc e, e, C,. 38 e,e,NC,. e,e,C .. - - P T e, C. 

7 e, e3NC. e'''3 C• - (4 j 8) Pco e, C,. 23 e, e3NC,. e,e3C,. - (3 j 6) Pco e,C,. 39 e,e3NC,. e,e3 C,. - (3 j 6) Po e,C. 

8 e,e.NC. e, C. P tC (4 j 8) Pc e3C. =11 24 e,e.NC16 e,C,. PtT (3; 6) Po e3C .. = 43 40 e,e.NC .. el C,. PlO (3; 6) P T e.C. =27 

9 e,e3NC. e,e3 C. - (4; 4) PlO ce,e, C. 25 e,e3 NC,. e2 e3 C16 - (3; 3) P tC ce,e,C,. 41 e,e,NC,. e,e,C,. - (3; 3) PtT ce,e,C. 

10 e,e. NC. e,C. P RCO (4; 4) P RCO e, C. 26 e,e.NC,. ez Cj8 Peo (3 j 3) P RCO ez,C,,1t = 42 42 e,e. NC,. e,C,. P RCO (3 j 3) Pco e,C18 =26 

11 e3e.NC. e,C. Pc (8 j 4) P tC e, C. - 8 27 e3e.NC,. e3 eIG - (6 j 3) PtO e,e,C,. = 40 43 e3e.NC,. e3C,. Po (6 ; 3) PtT e,C16 =24 

12 e, e,e3 NC. e, e,e, C. - (4; 8) PlO e,C .. 28 e,e,e3NC,. el e2 e3 Cu P T (3 ; 6) P tC e, e, C •• 44 e,e,e,NC,. e1 e,eaCz4 - (3 ; 6) PtT e,e,C. 

13 e,e,e.NC. e,e, C. PtCO (4; 8) P RCO e,e3C. =15 29 e,e,e.NC,. e,e,C .. PtO (3 j 6) P RCO eleaCJff 45 e,e,e.NC,. \ ej e2,Gzlt PtCO (3; 6) PCO e,e.C. =31 

14 e,e3e.NC. e, e.C. P tC (8 j 8) P tC e,e.C. 30 e,e3e.NC16 el e3 Cu PtT (6 j 6) PlO e,e3C,. = 46 46 e,e,e.NC,. e, e,C,. PtO (6; 6) PtT e,e,C. =30 

15 e,e3e.NC. e.e3C. P RCO (8 ;4) PtCO e,e,C. =13 31 e,e3e.NC,. e2 e3 CJ8 Peo (6; 3) PtCO e,e,C,. = 45 47 e,e.e.NC,. e,e,C,. P RCO (6 ; 3) PlO e,e,C,. 

16 e, e,e,e.IYC. 11 e,e,e,C. I PtCO 1(8; 8) PtCo I e, e,e, C. 32 e,e,e,e.Nc, .II e,e,e3C,. ;10 1(6; 6) PtCO I e,e,e,C,. = 48 481 e,e,e3e.NC,. e,e,e3c,. l p tCo (6;6) PtO e.e,e,C16 I =32 

Contraction. 
I I 

Contraction. 

49 ce,NC. I ce, C, - - - C16 51 i ce, NC,. I ce,Cu - - - e,C,. 

50 ce,e,NC. ce,e,C. - - - e, C .. 52 ce,e, NC •• ce,e, C .. - - - e,e, C,. 

53 ce,e.NC,. cel e3 CIS - (3 j 3) - e,C .. 

54 ce,e,NC,. ce,e3C,. - - - ce,e,C,. 

55 ce,e,e3NC,. ce,e,e,c'· 1 - (3; 3) - Cl ez C11t 
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~ mi 
I 

I~ mi Gaps I 1·= ~ ~ ] j _ I G'I" I ~ 
.... '" ..., >= ~ 9 - >= .... '" .... '" ~ ~ ~ 

~ S "'.D Symbol Symbol ~ eD'- "=:9 

I 
1.2 . ;:n.~ I I I "0 ;:J 00._ ~ '"' ;:J ~ .i:; 11 face :;J >= ~ 5 ~ I face edge vertex :;J >= o:l 0 0 I edge I vertex 

H g I 18 ~ 

Nu ll U 12 N ( O,T) 0,'1' I 
I I 

17 ej NO tG ° 24 e1N(0,T) tO,tT 00 

21J e2 NO JWO P4 ua 19 e2 N ( r.l.,'1') IWO, '1' U 

eg NO 0 P4 P4 U 23 el e~N(Q,T) tr!O,t1' te 

21 ele2 NO toa P4 tG 14 el e2N(0,!) tO,tO tO 

22 el e;,NU to Ps P4 JWO 15 !e2 N(Q, T) LT,'}' '1' 

22 e2es NU RUO P4 Ps to 

24bis e]e2egNO toa Ps Ps toa 

18 
I 

cel NO 00 0 I 
I I 

T ABLE OF INCIDENCES. 

Single polytopes Nets 

I 
I 

I 0241 0120 1 °600 
I 

I 0 Cs 
i 

U16 Cs 
I 

°16 C24 5 

I I I 

Cells meeting in ft bocly .. 2 2 2 

1/ 1/ 1/ 1/ face . . . 4 3 3 

1/ 1/ 1/ an edge . . 8 6 4 

" " " a vertex .. 16 2+ 8 

Bodies " " 11 face . . . 2 2 2 2 2 2 4- 3 3 

11 11 " an edge .. 3 3 4 3 3 5 12 12 6 

1/ 11 11 a vertex. 4 4 8 6 4 20 32 96 24 

Faces fI 11 au edge . 3 3 4 3 3 5 fi 8 4 

11 11 11 a vertex . . 6 6 12 12 fi 30 24 96 32 

Edges 11 11 11 11 .. 4 4 6 8 4 l 2 8 24 16 
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