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Abstract

The Mittag–Leffler function is universally acclaimed as the Queen func-
tion of fractional calculus. The aim of this work is to survey the key results
and applications emerging from the three-parameter generalization of this
function, known as the Prabhakar function. Specifically, after reviewing
key historical events that led to the discovery and modern development of
this peculiar function, we discuss how the latter allows one to introduce an
enhanced scheme for fractional calculus. Then, we summarize the progress
in the application of this new general framework to physics and renewal pro-
cesses. We also provide a collection of results on the numerical evaluation
of the Prabhakar function.
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1. Introduction and outline

Fractional calculus and the theory of special functions have managed to
attract an increasing attention from the mathematical and physical com-
munity, especially in the last fifty years. In particular, the strict connection
between these two research topics has been acting as the driving force for
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the latest developments in the literature on these subjects. The aim of this
work is to build on these premises, collecting and summarizing the main
works and results on the emerging Prabhakar’s approach to fractional cal-
culus. In this spirit, in the following we provide the reader, who already
has a general understanding of the basics of fractional calculus, with a
comprehensive practical guide to the main aspects of Prabhakar calculus.
In other words, the target audience for this review consists of researchers
with an elementary background in fractional calculus who need a quick and
hands-on training in order to start working on this compelling topic.

The review is therefore organized as follows: First, in Section 2 we sum-
marize the key historical events that have led to the discovery and modern
developments on the Mittag–Leffler function, its generalizations, and the
extension of fractional calculus based on these exotic objects. In Section
3 we provide some physical motivations for the need of this new modeling
scheme. In Section 4 we then recap the main mathematical features and
properties of the Prabhakar function. In Section 5 we use the discussion
in Section 4 as a springboard for the rigorous description of the theory of
fractional calculus based on the Prabhakar function. In Section 6 we profit
of the preliminary mathematical sections in order to frame some anomalous
physical phenomena, mentioned in Section 3, within this generalized theory
of calculus. In Section 7 we analyze the implications that these operators
bring onto the theory of probability, with particular attention for renewal
processes. In Section 8 we provide a bird’s-eye view on the numerical meth-
ods for evaluating the Prabhakar function. Finally, in Section 9 we provide
some concluding remarks and an overview on some open problems.

2. History of the Mittag–Leffler function and its generalizations

In the beginning of the twentieth century the Swedish mathematician
Magnus Gösta Mittag–Leffler, while working on summation methods for
divergent series, defined a new special function which soon became known
as the Mittag–Leffler (ML) function. Originally proposed in [107, 108],
the ML function was then analyzed in a systematic fashion by A. Buhl
in [8] around twenty years from its original formulation. Most notably,
this function turns out to be a one-parameter version of a more general
(two-parameter) function promoted by A. Wiman in [156], just a few years
after the seminal works of M. G. Mittag–Leffler. Later on, in 1948, Pollard
[125] investigated the complete monotonicity of the (one-parameter) ML
function, while other efforts aimed at a deeper understanding of the main
features of this function and its two-parameter generalization were made by
P. Humbert, et al. in 1953 [73, 75, 74]. Then, the first extensive collection
of results on ML functions, with one and two parameters, appeared in 1955
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in the third volume of the Bateman Manuscript Project [30]. This project,
aimed at redacting an encyclopedia on special functions, was started by
Harry Bateman. However, the English mathematician passed away before
the completion of this endeavor, which was ultimately brought to its end
by A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. At that
time the role of the ML function and its generalizations was yet to be
recognized in the literature. For this reason these functions only appear
in the Bateman series as a miscellaneous topic. The current notoriety of
the ML function and its generalization can however be traced back to the
1930s, specifically to the work of E. Hille and J. D. Tamarkin [72], when the
connection between these objects and the solution of weakly singular linear
Volterra integral equations with power law kernels was drawn for the first
time. Along these lines, in 1954 J. H. Barrett employed the ML function
to express the solution of some linear differential equations of non-integer
order [2], thus identifying the fundamental role of this function in fractional
calculus.

The increasing interest in the theory of differential equations of non-
integer order thus motivated the mathematical community to investigate
at a deeper level the properties and features of the ML function and its
generalization, as it is clearly highlighted by several Era-defining mono-
graphs (see, e.g. [28, 81, 96, 106, 120]) and fundamental works (see, e.g.
[98, 82, 89, 62]). Nonetheless, the first and only consistent and comprehen-
sive monograph [47] dedicated solely to this important topic was published
in 2014 as the result of a joint endeavor of R. Gorenflo, A. A. Kilbas, F.
Mainardi, and S. Rogosin.

Aside from the (mostly) mathematical interest in the ML function, in
the early days of fractional calculus, it is worth remarking that this subject
had also a significant impact in the physics literature. This is particularly
highlighted by the early works of K. S. Cole on the electrical conductance
of biological systems [17] (see also [25]) and by the fundamental contribu-
tions of B. Gross to the study of dielectric and mechanical relaxation, see
e.g. [54, 55, 59]. Afterwards, M. Caputo and F. Mainardi gave their crucial
contributions to fractional viscoelasticity [14, 13] by showing that the ML
function always appears in the material functions of a system described by
a fractional-order constitutive equation. It is also worth noting that [14]
contains the very first plot of the ML function appeared in the literature.
These are just a few early studies on the implications of the ML function
in applied sciences that served as the backbone for all the subsequent de-
velopments in fractional calculus. Indeed, in light of the striking relevance
of this function for the mathematical modeling of several phenomena, in
2007 the ML function was named the Queen function of fractional calculus
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[99] by F. Mainardi and R. Gorenflo. Since we do not have the pretense
of providing a full and complete picture of the history and implications of
this topic, we refer the interested reader to [47] by R. Gorenflo, et al.

The clear impact of the ML function and its two-parameter version
on both the physical and mathematical community has then stimulated
the quest for the generalization of these objects beyond two parameters.
Among the many attempts we wish to commend the early contributions
of V. Kiryakova and Y. Luchko on the so-called multi-index Mittag–Leffler
functions [83], [95], [84], [85]. If not for a few exceptions, among which
we find the works of V. Kiryakova mentioned above, most of the proposed
generalizations were just curiosity-driven and in general do not carry any
relevance for physics or real-world applications. Contrarily, another special
praise is due to the three-parameter extension of the ML function intro-
duced by the Indian mathematician Tilak Raj Prabhakar in [126], dat-
ing back to 1971. Although this function was originally analyzed within
the framework of weakly singular Volterra integral equations from a pure
mathematical perspective, it turns out that it plays an important role in
the description of anomalous dielectric relaxation. An example of the ef-
fectiveness of the Prabhakar function in this context is provided by the
Havriliak–Negami empirical law [64, 65, 66]. Notably, despite the short
time-span between the original proposal of T. R. Prabhakar and the em-
pirical studies of S. Havriliak and S. Negami, the connection between these
works was drawn not longer than a decade ago, with the works of A. Hanyga
and M. Seredyńska [61] together with the study of E. Capelas De Oliveira,
et al. [12]. Nonetheless, it is worth mentioning that several authors had
previously investigated the time-domain representation of the Havriliak–
Negami model without highlighting (explicitly) its relation with the Prab-
hakar function (see, e.g. [112, 69, 68, 150, 155, 111, 147, 113]).

The first contribution aimed at providing a fractional interpretation for
weakly singular Volterra operators involving the Prabhakar function was
first developed in 2002 by A. A. Kilbas, M. Saigo, and R. K. Saxena in
[79]. Specifically, in this paper the notion of the Prabhakar fractional in-
tegral was first identified as an independent entity worth of investigation.
Besides, in [80] one of the left-inverse operators of the Prabhakar fractional
integral, which will later become known as Prabhakar fractional deriva-
tive (of the Riemann-Liouville type), was found. Over a decade later, in
2013, M. D’Ovidio and F. Polito [29] provided a regularization of the Prab-
hakar fractional derivative and named it after the Indian mathematician,
thus originating the current terminology on the subject. These preliminary
analyses then inspired the seminal work by R. Garra, et al. [33] where
the features of the Prabhakar derivatives and some of their applications
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are discussed in depth. This work, in particular, contributed to kick-start
a series of studies concerning applications of these operators to different
fields of research (see, e.g. [16, 142, 11, 10, 138, 148]). A particular praise
is due to the work of L. Beghin and E. Orsingher who first derived the
connection between the Prabhakar and Wright functions [5]. Furthermore,
it is of paramount importance to mention the contribution of R. B. Paris
[117] in the study of the asymptotic behavior of the Fox–Wright functions,
of which the Prabhakar function represents a special case, which has then
led to specific results on the Prabhakar function [32, 118].

Finally, we conclude this bird’s-eye view on the history of this subject
by mentioning some recent results carrying some more practical implica-
tions. First, the conditions for the complete monotonicity of the Prab-
hakar function have been extensively analyzed throughout the last decade
in [12, 97, 149] by several authors. Using these studies A. Giusti [42] has
then laid down a connection between the so called Prabhakar fractional
calculus and Kochubei’s general fractional calculus [87]. Lastly, it is worth
recalling that a discussion of the numerical aspects of the Prabhakar func-
tion has been carried out by R. Garrappa in [35], who also designed a
Matlab code for computing the Prabhakar function [34]. Note that, as of
today, this is the sole code (freely available on the Mathwork website) for
the computation of the Prabhakar function.

3. Anomalous physics: a cry for help

In this section we provide some physical examples showing the need for
an extension of ordinary calculus based on the Prabhakar function. In this
regard, the most telling framework is provided by the so called anomalous
phenomena emerging in several physical settings.

Let us start off with the classical theory of dielectrics [76]. A dielectric
material is a poor conductor of electricity whose main feature is that its
internal electric charges are not allowed to flow freely under the effect of
an external electric field. On the contrary, they will mostly tend to shift a
little from their equilibrium position. This will result in a very low electric
current, since some charges will still be able to move through the material,
and a dielectric polarization of the system. Experimentally it is observed
that once the external stress is turned off a dielectric material will tend to
lose its acquired polarization over time. This time lag, known in physics
as dielectric relaxation, is due to the fact that the atomic and/or molecular
polarization in response to a changing electric field is not an instantaneous
process (see e.g. [78]). A key quantity in the study of electromagnetism in
matter is given by the polarization density P , or simply polarization, which
is defined as the average dipole moment of the material per unit volume and
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it accounts for the contribution of the “bound charges” that are responsible
for the dielectric polarization. This picture allows us to split the electric
charge density appearing in Gauss’ law into two contributions, namely the
one given by the charges which are free to move through the material and
a second piece due to bound charges. This suggests the introduction of a
new entity

D = ε0E + P ,

known as the electric displacement, where E is the electric field and ε0
denotes the vacuum permittivity, whose divergence depends solely on the
free charge.

For a linear dielectric one has that the polarization density is propor-
tional to the electric field, namely

P = ε0 χE , (3.1)

which leads to

D = εE = ε0 εrE = ε0 (1 + χ)E , (3.2)

with χ the electric susceptibility of the material, εr = 1 + χ the relative
permittivity, and ε = ε0 εr the permittivity of the system. On the other
hand, it is well known that not all dielectrics display this very simple be-
havior, hence the polarization density can be, in general, a complicated
function of the electric field. Nonetheless, if one wishes to keep the relation
between P and E linear while introducing a non-instantaneous response to
a time-varying electric field, then a straightforward generalization of (3.1)
is obtained via a Fourier convolution. In detail, given two sufficiently reg-
ular functions f(t) and g(t) the convolution of these two functions, in the
Fourier sense, is defined as

(f ∗ g)(t) :=
∫ ∞

−∞
f(t− τ) g(τ) dτ . (3.3)

Hence, if we now denote by χ(t) a time dependent electric susceptibility
such that χ(t) = 0 for t < 0, then (3.1) can be generalized as

P (t) = ε0 (χ ∗E) (t) ≡ ε0

∫ t

−∞
χ(t− τ)E(τ) dτ , (3.4)

or, in the frequency domain

P̂ (ω) = ε0 χ̂(ω) Ê(ω) , (3.5)

where the hat denotes the Fourier transform, i.e.

f̂(ω) ≡ F[f(t) ; ω] := ∫ ∞

−∞
exp (−i ω t) f(t) dt .
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Eq. (3.4) is particularly instructive since it highlights the role of χ(t) as
a measure of the response of the material to a sudden variation in the elec-
tric field E(t). In other words, the time dependent electric susceptibility
acts as a “response function” of the dielectric which, in this scenario, is pic-
tured as a passive linear system (see e.g. [37, 151], and references therein).
More precisely, the response function of the dielectric can be defined, in
the frequency domain, as

φ̂(ω) :=
χ̂(ω)

χ̂(0)
. (3.6)

Now, since we are considering a causal linear system and we are only
interested in the history of the system from a certain time t = 0 (at which
we have applied the external perturbation) up to the time t > 0, Eq. (3.6)
can be recast as [37]

φ̃(s) = φ̂(ω)
∣∣
s=iω

, (3.7)

where the tilde denotes the Laplace transform, i.e.

f̃(s) ≡ L[f(t) ; s] := ∫ ∞

0
exp (−s t) f(t) dt .

Alongside with the response function one can also introduce another
quantity, known as relaxation function, which is defined as

Ψ(t) := 1−
∫ t

0
φ(τ) dτ , t ≥ 0 , (3.8)

from which one can also infer that φ(t) = −Ψ′(t), where the prime denotes
the derivative with respect to time.

The standard lore on dielectrics is described by the Debye model [26, 71]
according to which an ideal dielectric is schematically represented as a series
of non-interacting dipoles. Such a model then leads to a (normalized)
complex susceptibility given by

χ̂D(ω) =
1

1 + iω τD
, (3.9)

which yields [37, 71]

φD(t) =
exp(−t/τD)

τD
, ΨD(t) = exp(−t/τD) , (3.10)

with τD denoting the relaxation time.
While this very simple and powerful model provides a satisfactory de-

scription of the features of a wide class of standard dielectrics, there are
several experimental evidences [78, 77, 110] that show large deviations from
the exponential relaxation for many materials. An example of these anoma-
lous dielectrics is provided by the Cole–Cole relaxation [18, 19] displayed
by certain biological tissues [91, 129]. The key feature of these systems
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is a fractional-power law fall-off shown by the complex susceptibility, at
high frequencies, which leads to a stretched relaxation over a wider range
of frequencies. In detail, the Cole–Cole relaxation is modeled in terms of a
complex susceptibility that reads

χ̂CC(ω) =
1

1 + (iω τ�)α
, 0 < α ≤ 1 (3.11)

that yields

φCC(t) =
1

τ�

(
t

τ�

)α−1

Eα,α

[
−
(
t

τ�

)α]
(3.12)

and

ΨCC(t) = Eα,1

[
−
(
t

τ�

)α]
, (3.13)

where τ� represents a typical relaxation timescale for the system.
Note that, although the Cole–Cole model breaks the standard expo-

nential relaxation replacing it with fractional-power law tails, it can still
be framed within the conventional picture of fractional calculus based on
Caputo derivatives. This is, however, not the case for several other em-
pirical laws for anomalous dielectrics such as the Davidson–Cole [24] and
Havriliak–Negami [63] models, described by [37]

χ̂DC(ω) =
1

(1 + iω τ�)γ
, 0 < γ ≤ 1 (3.14)

and [97, 37, 67]

χ̂HN(ω) =
1

[1 + (iω τ�)α]γ
, 0 < α ≤ 1 , 0 < αγ ≤ 1 (3.15)

respectively, for which the dielectric decay is inherently related to the Prab-
hakar function [37, 97, 36, 12, 50, 49], as we shall discuss in detail in Section
6.

Although anomalous dielectric relaxation is probably the most apparent
exemplification of the need for a fractional theory of calculus based on the
Prabhakar function, there exist also several other different physical systems
in which this formalism naturally emerges. For instance, this scenario comes
up when dealing with certain kind of anomalous diffusion processes [132,
133, 134, 139, 136, 135, 141, 131], and when employing the formal duality
between dielectric materials and viscoelastic systems [43, 23, 41]. More on
these physical cases can be found in Section 6.

4. Mathematical preliminaries on the Prabhakar function

The Prabhakar function (also known as the three-parameter Mittag-
Leffler function, see e.g. [47]), introduced by T. R. Prabhakar in 1971



A PRACTICAL GUIDE TO PRABHAKAR . . . 17

[126], is defined as

Eγ
α,β(z) =

∞∑
k=0

(γ)k z
k

k!Γ(αk + β)
, α, β, γ ∈ C, Re(α) > 0, z ∈ C , (4.1)

where (γ)k ≡ Γ(γ + k)/Γ(γ) is the Pochhammer symbol and Γ(·) denotes
the Euler gamma function. Note that Eγ

α,β(z) is an entire function of order

ρ = 1/Re(α) and type σ = 1 [47].
Although the three parameters α, β and γ are allowed to assume val-

ues in C, and several of the properties we are going to present hold with
complex parameters, in this work we will restrict our attention just to real
parameters. The reason for this choice is that real parameters turn out to
be of particular interest in physics, as we shall discuss later on. Therefore,
for the remainder of this work we will implicitly assume

α, β, γ ∈ R, α > 0.

In view of the increasing relevance of the Prabhakar function in current
literature, in the following we summarize the most relevant results and open
problems on this compelling research topic.

4.1. Main properties and relations with other functions. The Prab-
hakar function has important connections with the standard ML function,
its two-parameter generalization, and other special functions. Since for
k ≥ 1 one has

(γ)k =
Γ(γ + k)

Γ(γ)
= γ(γ + 1) · · · (γ + k − 1) ,

then for γ = 0 we clearly have

E0
α,β(z) =

1

Γ(β)
,

whereas, for γ = 1 we recover the widely known two-parameter ML func-
tion, i.e.

E1
α,β(z) = Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
.

Hence, if one sets α = β = γ = 1 the classical exponential function
E1

1,1(z) = ez is retrieved.
Being the Prabhakar function distinguished from the two-parameter

ML function just for the presence of a third parameter γ, one is compelled
to focus on properties related to this additional parameter.

A first formula, already present in the original work by Prabhakar [126],
enables one to operate the reduction of the third parameter, i.e.

Eγ+1
α,β (z) =

Eγ
α,β−1(z) + (1− β + αγ)Eγ

α,β(z)

αγ
, (4.2)
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and a further reduction formula was later derived in [32] and reads

Eγ+1
α,β (z) =

Eγ
α,β−α−1(z) + (1− β + α)Eγ

α,β−α(z)

αγz
, z �= 0. (4.3)

Both these formulas can be used to lower the value of the third (addi-
tional) parameter, nonetheless these results can probably be better appre-
ciated when γ is an integer. Specifically, let γ = k ∈ N, then

Ek+1
α,β (z) =

1

αkk!

k∑
j=0

d
(k)
j Eα,β−j(z) , (4.4)

and

Ek+1
α,β (z) =

1

αkzkk!

k∑
j=0

d
(k)
j Eα,β−αk−j(z) , z �= 0 , (4.5)

which means that one can explicitly express Ek+1
α,β as a combination of two-

parameter ML functions. The coefficients d
(k)
j appearing in both (4.4) and

(4.5) are given by the recursive expression

d
(k)
j =

⎧⎪⎨⎪⎩
(1− β + α)d

(k−1)
0 j = 0,

d
(k−1)
j−1 + (1− β + α+ j)d

(k−1)
j j = 1, . . . , k − 1,

1 j = k.

(4.6)

originally derived by R. Garrappa and M. Popolizio in [40].

The Prabhakar function is also directly related to the Fox–Wright func-
tions [31, 157]. Specifically, the latter are defined as

pΨq(z) ≡ pΨq

[
(a1, ρ1), . . . , (ap, ρp)
(b1, σ1), . . . , (bq, σq)

; z

]
=

∞∑
k=0

∏p
r=1 Γ(ar + ρrk)∏q
s=1 Γ(bs + σsk)

zk

k!
,

(4.7)
where p and q are integers, ρr, ar, σr, br are real or complex parameters such
that ρrk + ar �= 0,−1,−2, . . .. Then, one can easily verify that Eγ

α,β(z) is

proportional to 1Ψ1(z) since

Eγ
α,β(z) =

1

Γ(γ)
1Ψ1

[
(γ, 1)
(β, α)

; z

]
. (4.8)

Moreover, if we recall the relation between the Fox–Wright functions
and the Fox H–function [102], i.e.

pΨq

[
(a1, ρ1), . . . , (ap, ρp)
(b1, σ1), . . . , (bq, σq)

; z
]

= H1,p
p,q+1

[
−z
∣∣∣∣ (1− a1, ρ1), (1− a2, ρ2), . . . , (1− ap, ρp)

(0, 1), (1− b1, σ1), . . . , (1− bq, σq)

]
,

(4.9)

then (4.8) can be rewritten in terms of the Fox H-function as (see [143])
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Eγ
α,β(z) =

1

Γ(γ)
H1,1

1,2

[
−z
∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
. (4.10)

Finally, it is worth mentioning that series in Prabhakar functions have
been studied by J. Paneva–Konovska in [114, 115, 116].

4.2. Derivatives and integrals. A term-by-term derivation of the series
expansion in (4.1) gives

dm

dzm
Eγ

α,β(z) = γ(γ + 1) · · · (γ +m− 1)Eγ+m
α,mα+β(z)

=
Γ(γ +m)

Γ(γ)
Eγ+m

α,mα+β(z) ,

with m ∈ N, that reduces to the known result for the repeated derivative
of the two-parameter ML function for γ = 1, i.e.

dm

dzm
Eα,β(z) = m!Em+1

α,mα+β(z) . (4.11)

This last expression turns out to be particularly useful when com-
bined with (4.4) or (4.5), since it allows to express derivatives of the two-
parameter ML function as combination of different instances of the same
function, a result widely exploited in [40] for numerical purposes.

Similarly, Dzhrbashyan’s formula [28, 47] for the derivative of the two-
parameter ML function can be generalized to the Prabhakar case as (see
[32])

d

dz
Eγ

α,β(z) =
Eγ

α,β−1(z) + (1− β)Eγ
α,β(z)

αz
, z �= 0 . (4.12)

Other important results concerning integrals and derivatives involv-
ing the Prabhakar function appear to be strictly related to the product
tβ−1Eγ

α,β(t
αz). In details, it is easy to see that the m-th derivative and the

integral of this particular combination read
dm

dtm
tβ−1Eγ

α,β(t
αz) = tβ−m−1Eγ

α,β−m(tαz) , m ∈ N

and ∫ t

0
τβ−1Eγ

α,β(τ
αz)dτ = tβEγ

α,β+1(t
αz) ,

respectively. Further, the m-th repeated integration of tβ−1Eγ
α,β(t

αz) gives

Jm
0

[
tβ−1Eγ

α,β(t
αz)
] ≡

∫ t

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τm−1

0
dτm τ

β−1
m Eγ

α,β(τ
α
mz)

=
1

(m− 1)!

∫ t

0
(t− τ)m−1τβ−1Eγ

α,β(τ
αz)dτ

= tβ+m−1Eγ
α,β+m(tαz) . (4.13)
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We conclude this section by collecting some formulas for fractional in-
tegrals and derivatives of the Prabhakar function. To this aim, we first
need to recall that for a function f ∈ L1[t0, T ] the Riemann-Liouville (RL)
fractional integral of order α > 0 is defined as [27, 81, 96, 106, 130]

Jα
t0f(t) =

1

Γ(α)

∫ t

t0

(t− u)α−1f(u) du . (4.14)

One of its left-inverse operators, known as the Riemann-Liouville frac-
tional derivative, then reads

RLDα
t0f(t) := DmJm−α

t0 f(t) =
1

Γ(m− α)

dm

dtm

∫ t

t0

(t− u)m−α−1f(u)du

(4.15)
withm = 	α
 (the smallest integer greater than α). A regularized version of
the RL derivative, which still acts as left-inverse of the RL integral, is given
by the Caputo fractional derivative. The latter is obtained by exchanging
the operations of integration and differentiation in (4.15) and applies to
functions f ∈ ACm[t0, T ] (the set of functions with absolutely continuous
derivatives of order m− 1), i.e.

CDα
t0f(t) := Jm−α

t0 Dmf(t) =
1

Γ(m− α)

∫ t

t0

(t− u)m−α−1f (m)(u) du . (4.16)

All that being said, it is straightforward to verify that (see e.g. [80, 47])

Jρ
0

[
tβ−1Eγ

α,β

(
tαλ
)]

= tβ+ρ−1Eγ
α,β+ρ

(
tαλ
)

RLDρ
0

[
tβ−1Eγ

α,β

(
tαλ
)]

= tβ−ρ−1Eγ
α,β−ρ

(
tαλ
)

CDρ
0

[
tβ−1Eγ

α,β

(
tαλ
)]

= tβ−ρ−1Eγ
α,β−ρ

(
tαλ
)
, β > 	ρ
 ,

with ρ > 0.

4.3. Integral transforms. Let us consider again, the product tβ−1Eγ
α,β(t

αλ).

Then it is not hard to show that (see e.g. [79])

L
[
tβ−1Eγ

α,β(t
αz) ; s

]
=

sαγ−β(
sα − z

)γ , Re(s) > 0 and |s| > |z| 1α . (4.17)

This result is particularly useful since it plays an important role in both
physical applications and numerical computations of the Prabhakar func-
tion. Alternatively, proceeding in a more general fashion one finds (see
[144, 138])

L
[
tρ−1Eγ

α,β(t
σz) ; s

]
=

s−ρ

Γ(γ)
2Ψ1

[
(ρ, σ), (γ, 1)

(β, α)
;
z

sσ

]
. (4.18)

Setting t = 1 in (4.17), one finds an integral representation of the
Prabhakar function, i.e.
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Eγ
α,β(z) =

1

2πi

∫
C
es

sαγ−β(
sα − z

)γ ds,

where C is understood as the Bromwich contour, for which all singularities
lay on the left-hand side of a certain Re(s) = ξ known as the abscissa of
convergence. Similarly, a particular spectral representation of tβ−1Eγ

α,β(t
αλ)

has been computed in [12, 97, 149], and it reads

tβ−1Eγ
α,β(−tα) =

∫ ∞

0
e−rtKγ

α,β(r)dr (4.19)

with

Kγ
α,β(r) =

rαγ−β sin
(
γθα(r) + (β − αγ)π

)
π
(
r2α + 2rα cos(απ) + 1

)γ/2 ,

θα(r) = arctan

(
rα sin(πα)

rα cos(πα) + 1

)
∈ [0, π] ,

where a very specific branch of arctan(z), treated as a multi-valued function,
has been chosen in order to have θα(r) ∈ [0, π] (see [97] for details). Further,
this representation plays a key role in the determination of the range of
parameters that yields a completely monotonic behavior of the Prabhakar
function. Besides, this last representation is also particularly useful when
studying estimates and bounds on the fractional Prabhakar integral, see
e.g. [124].

In the light of the strict relation between Fox–Wright functions and
the Prabhakar function, as shown in Eq. (4.8), one can easily derive the
Mellin–Barnes integral representation of the three-parameter ML function,
i.e.

Eγ
α,β(z) =

1

Γ(γ)

1

2πi

∫
C

Γ(s)Γ(γ − s)

Γ(β − αs)
(−z)−s ds, | arg z| < π , (4.20)

where C is defined as above. Along this line, denoting by

M
[
f(t) ; s

]
=

∫ ∞

0
f(t) ts−1 dt , (4.21)

the Mellin transform of f(t), then from (4.20) one can immediately infer
that

M
[
Eγ

α,β(−t) ; s
]
=

Γ(s)Γ(γ − s)

Γ(γ)Γ(β − αs)
. (4.22)

4.4. Complete monotonicity. A crucial role for the applications of spe-
cial functions in relaxation models and probability theory is played by the
notion of complete monotonicity. We recall that a function f : (0,+∞) → R

is completely monotonic (CM) if f has derivatives of all orders on (0,+∞)
and (−1)kf (k)(t) ≥ 0, for any k ∈ N ∪ {0} and t > 0.
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The complete monotonicity of the Prabhakar function has been studied
in several works [12, 97, 149] and the current most general result states
that the product tβ−1Eγ

α,β(−tα) is CM if the three parameters satisfy the

conditions

0 < α ≤ 1, 0 < αγ ≤ β ≤ 1 (4.23)

which are obtained by combining the representation in (4.19) and the Bern-
stein theorem. The latter, in particular, states that a function is CM if its
spectral function is non-negative. Thus, the restrictions in (4.23) are ob-
tained by inspecting the conditions according to which Kγ

α,β(r) ≥ 0 for all

r ≥ 0. This result is particularly relevant since tβ−1Eγ
α,β(−tα) comes up

very often in the study of anomalous dielectrics, as we shall discuss in more
details in Section 6.

Finally, in [51] it was shown that Eγ
α,β(−t) is CM if 0 < α < 1 and

0 < αγ ≤ β, namely without the restriction β ≤ 1. For similar results on
another Mittag-Leffler type function with 3 parameters, the so-called “Le
Roy type” function, see [52].

4.5. Asymptotic behavior. The asymptotic behavior of the Prabhakar
function, in the whole complex plane, is a non-trivial topic due to the
dependence of the coefficients in the asymptotic expansions on the three
parameters α, β and γ (see e.g. [32] and references therein). On the
other hand, rewriting the Prabhakar function as a Fox–Wright function,
as in (4.8), allows one to take profit of the well-established results on the
asymptotic behavior of this more general class of functions, see e.g. [7, 117,
118, 157, 159, 158].

It turns out that the behavior of Eγ
α,β(z) for large values of |z| varies

from exponential to algebraical depending on the sector of the complex
plane where z lies. Furthermore, it is found that the parameter α is
the one that (most prominently) controls the asymptotic properties of the
Prabhakar function. Specifically, the lines arg z = ±απ/2 are anti-Stokes
lines, where the function changes its behavior from increasing to decreas-
ing. Whereas, arg z = ±απ are the Stokes lines, where the exponential
term quickly decays leaving just a predominant algebraic term [118]. This
behavior is depicted in Figure 1 for 0 < α < 1 (the acronyms “E.S.”, “E.L.”
and “Alg.” stand for “exponentially small”, “exponentially large”, and “al-
gebraic”, respectively). When 1 < α < 2 the Stokes lines arg z = ±απ
collapse onto the negative real axis and there are no more regions in which
the Prabhakar function presents a significant algebraic expansion.

The explicit form of the exponential and algebraic terms, together with
an algorithm for the evaluation of their coefficients, were described in [117,
118]. In particular the algebraic expansion is
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−
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π
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−
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π
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E.S. + Alg.

Figure 1. Asymptotic behavior of Eγ
α,β(z) in different re-

gions of the complex plane for 0 < α < 1. E.S.: exponen-
tially small, E.L.: exponentially large and Alg.: algebraic

Aγ
α,β(z) =

z−γ

Γ(γ)

∞∑
k=0

(−1)kΓ(k + γ)

k!Γ(β − α(k + γ))
z−k

while the exponential expansion reads

Eγ
α,β(z) =

1

Γ(γ)
ez

1/α
z

γ−β
α

1

αγ

∞∑
k=0

ckz
− k

α ,

where ck are obtained from the inverse factorial expansion of

F γ
α,β(s) :=

Γ(γ + s)Γ(αs + ψ)

Γ(s+ 1)Γ(αs + β)
= α1−γ

⎛⎝1 + ∞∑
j=1

cj
(αs + ψ)j

⎞⎠ (4.24)

for |s| → ∞ in | arg(s)| ≤ π − ε and any arbitrarily small ε > 0. As usual,
(x)j denotes the Pochhammer symbol and ψ = 1− γ + β.

One can now summarize the asymptotic behavior of the Prabhakar
function, for |z| → ∞, as follows (see [118]):

0 < α ≤ 1 :

Eγ
α,β(z) ∼

⎧⎪⎨⎪⎩
Eγ
α,β(z) +Aγ

α,β(ze
∓πi) | arg z| < 1

2απ

Aγ
α,β(ze

∓πi) + Eγ
α,β(z)

1
2απ < | arg z| < απ

Aγ
α,β(ze

∓πi) απ < | arg z| ≤ π,

1 < α < 2 :

Eγ
α,β(z) ∼

{
Eγ
α,β(z) +Aγ

α,β(ze
∓πi) | arg z| < 1

2απ

Aγ
α,β(ze

∓πi) + Eγ
α,β(z) + Eγ

α,β(ze
∓2πi) 1

2απ < | arg z| < π,
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where the sign in e∓πi and e∓2πi is negative when z lies in the upper complex
half-plane and positive otherwise. Note that some of the cases discussed
above differ just by the order in which Eγ

α,β(z) and Aγ
α,β(ze

∓πi) appear. The

reason for this choice comes from the fact that, for the sake of clarity, we
prefer to give priority in the expression to the dominant term. The term
Eγ
α,β(ze

∓2πi) can be usually neglected, except when arg z is close to π since

in this case it becomes comparable to Eγ
α,β(z).

To complete the analysis we consider the case α ≥ 2. In detail, one
finds

α ≥ 2 : Eγ
α,β(z) ∼

P∑
r=−P

Eγ
α,β(ze

2πir) +Aγ
α,β(ze

∓πi) , | arg z| ≤ π ,

where P is an integer number such that 2P + 1 is the smallest odd integer
satisfying 2P +1 > 1/α. For the latter it is found that the anti-Stokes lines
collapse onto the negative real axis, thus implying that the asymptotic
behavior is always exponentially large. Indeed, we included the algebraic
term just for the sake of completeness, though it turns out to be always
negligible.

Providing an explicit formulation of the coefficients ck in the exponen-
tial expansion Eγ

α,β(z) is not an easy task and a sophisticated algorithm

is discussed in [117]. The first few values of the ck’s have however been
explicitly computed in [32] and [118]:

c0 = 1

c1 =
(γ − 1)

2
(αγ + γ − 2β)

c2 =
(γ − 1)(γ − 2)

24

[
3(α+ 1)2γ2 − (α+ 1)(α + 12β + 5)γ + 12β(1 + β)

]
c3 =

(γ − 1)(γ − 2)(γ − 3)

48

[
γ3(1 + α)3 − γ2(1 + α)2(5 + α+ 6β)

+ 2γ(1 + α)(3 + α(1 + β) + 11β + 6β2)− 8β(1 + β)(2 + β)
]
.

Showing a longer list of these coefficients is not particularly instructive,
hence we just refer again to the algorithm provided in [117].

Specific results for the asymptotic expansion along the negative real
semi-axis, which is of most interest for the study of relaxation phenomena,
have been provided, for instance, in [97]. In this case, focusing just on the
leading term of the expansion, one can infer that

Eγ
α,β(−tα) ∼

{
1

Γ(β−αγ) t
−αγ β �= αγ

− γ
Γ(−α) t

−αγ−α β = αγ
(4.25)

as t → +∞.
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5. Prabhakar fractional calculus

After an extensive review of the main properties of the Prabhakar func-
tion, we are now ready to introduce and discuss a generalization of frac-
tional calculus based on this special function, that we shall call Prabhakar
fractional calculus.

One of the main contribution of T. R. Prabhakar [126] consisted in
the formulation of a new class of weakly-singular linear Volterra operators
based on the function

eγα,β(t;λ) = tβ−1Eγ
α,β (λt

α) , α > 0 , (5.1)

known in the literature as the Prabhakar kernel, with λ being a real (or
complex) number. Most notably, one finds that for γ = 0 or λ = 0 this
kernel reduces to

e0α,β(t;λ) = eγα,β(t; 0) =
tβ−1

Γ(β)
. (5.2)

Let f ∈ L1[t0, T ], then the integral operator originally proposed in
[126], which is nowadays universally recognized as the Prabhakar fractional
integral, reads

J γ
α,β,λ;t0

f(t) :=
(
eγα,β( · ;λ) ∗ f

)
=

∫ t

t0

(t− u)β−1Eγ
α,β [λ(t− u)α] f(u)du, α, β > 0,

(5.3)

where the condition α > 0 is necessary for the convergence of the series
expansion (4.1), whereas the restriction β > 0 is imposed in order to guar-
antee the convergence of the integral. In view of (5.2), we have that the
Prabhakar kernel in (5.3) reduces to the Gel’fand–Shilov distribution [42],
which implies that

J 0
α,β,λ;t0f(t) = J γ

α,β,0;t0
f(t) = Jβ

t0f(t) , (5.4)

i.e. (5.3) reduces to the RL integral for γ = 0 or λ = 0. Besides, another
interesting relation between the RL and Prabhakar integrals is related to the
series representation of the latter. Indeed, let f ∈ L1[t0, T ] and α, β > 0,
then it is easy to see that (see [41])

J γ
α,β,λ;t0

f(t) =
∞∑
k=0

(γ)kλ
k

k!
Jαk+β
t0

f(t) . (5.5)

Additionally, a property that finds several applications when dealing
with Prabhakar’s theory is given by

J γ
α,β,λ;t0

[
(t− t0)

μ−1Eσ
α,μ

(
λ(t− t0)

α
)]

= (t− t0)
β+μ−1

×Eγ+σ
α,β+μ

(
λ(t− t0)

α
)
(5.6)
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or, in other terms,

J γ
α,β,λ;t0

[
eσα,μ(t− t0 ;λ)

]
= eγ+σ

α,β+μ(t− t0 ;λ) . (5.7)

The Prabhakar fractional integral has been extensively studied in [80],
where it was shown that J γ

α,β,λ;t0
: L1[t0, T ] → L1[t0, T ] is a bounded

operator (see [80, Theorem 4]). Most importantly, in [80] a family of left-
inverse operators of the Prabhakar fractional integral was identified, i.e.

Dγ
α,β,λ;t0

f(t) = RLDμ
t0J −γ

α,μ−β,λ;t0
f(t) ∀μ ∈ R with μ > β (5.8)

with f ∈ L1[t0, T ]. The presence of the fractional-order RL derivative
in (5.8) makes this family of operators too convoluted for most practical
applications. Hence, in most of the subsequent works (e.g., see [33, 37, 124])
the special case μ = m = 	β
 is usually preferred. This then leads to what
is now commonly known as the Prabhakar derivative of RL type, i.e.

RLDγ
α,β,λ;t0

f(t) := DmJ −γ
α,m−β,λ;t0

f(t)

=
dm

dtm

∫ t

t0

(t− u)m−β−1E−γ
α,m−β [λ(t− u)α] f(u)du .

(5.9)

In analogy with the classical theory of fractional differential operators,
one can introduce a regularized version of the Prabhakar derivative (5.9).
This is achieved by exchanging the order according to which the operations
of integration and differentiation appear in (5.9). This procedure is known
as the Caputo-like regularization of the fractional Prabhakar derivative and
it was first performed by M. D’Ovidio and F. Polito in [29]. Then, let
f ∈ ACm[t0, T ], the regularized Prabhakar derivative is defined as

CDγ
α,β,λ;t0

f(t) := J −γ
α,m−β,λ;t0

Dmf(t)

=

∫ t

t0

(t− u)m−β−1E−γ
α,m−β (λ(t− u)α) f (m)(u) du.

(5.10)

This operator turns out to act as another left-inverse of the Prabhakar
fractional integral, as shown in [42].

One reason why (5.10) is understood as a regularization of (5.9) is
due to the fact that this procedure makes the solutions to the eigenvalue
problem associated to (5.10) non-singular at t = t0. Property which is
not shared by the solutions to the eigenvalue problem associated to the
(RL-type) Prabhakar derivative. Furthermore, again differently from the
RL-type case, one can set up a well-posed Cauchy problem for the regular-
ized Prabhakar derivative with initial conditions involving solely ordinary
derivatives of the unknown function at t = t0. Besides, one also has that

CDγ
α,β,λ;t0

tk = 0, k = 0, 1, . . . ,m− 1, m = 	β
 .
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It is now easy to see that for γ = 0 or λ = 0 (5.9) and (5.10) re-
duce to the standard RL and Caputo derivatives, namely (4.15) and (4.16).
Moreover, it turns out that (5.9) and (5.10) satisfy

CDγ
α,β,λ;t0

f(t) = RLDγ
α,β,λ;t0

[
f(t)−

m−1∑
k=0

(t− t0)
k

k!
f (k)(t+0 )

]
, (5.11)

further strengthening their similarity to canonical fractional derivatives.
Furthermore, using this last property A. Giusti [42] was then able to frame
(to some extent) Prabhakar’s theory within the scheme of Kochubei’s gen-
eral fractional calculus [87]. Note that, to this regard, some preliminary
analysis had been carried out in [53] for a very specific problem.

Before concluding this general summary of the main definitions and
properties of the Prabhakar fractional integral and derivatives, it is worth
stressing that a similar result to the series expansion in (5.5) can be trivially
computed also for the operators (5.9) and (5.10).

5.1. Laplace domain. It is now of paramount importance to recall a few
results concerning the effects of integral transforms on Prabhakar operators.

First, let us consider the Laplace transform of the Prabhakar fractional
integral, with t0 = 0. Since (5.3) is a convolution-type integral, in the
Laplace sense, it is easy to see that

L
[
J γ

α,β,λ;0f(t) ; s
]
= L
[
eγα,β(t ;λ) ; s

]
f̃(s) =

sαγ−β(
sα − λ

)γ f̃(s) , (5.12)

where in the last step we used the result in (4.17), with Re(s) > 0 and

|s| > |λ| 1α . Similarly, for the Prabhakar derivative (5.9) one finds

L
[
RLDγ

α,β,λ;0f(t) ; s
]

= sβ−αγ(sα − λ)γ f̃(s)

−
m−1∑
k=0

sm−k−1
(
J −γ

α,m−β−k,λ;0f
)
(0+) , (5.13)

with m = 	β
, whose proof is simply based on the LT of the integer-order
derivative, the result in (4.17), and that (see [80])

RLDσ
t0J γ

α,β,λ;t0
f(t) = J γ

α,β−σ,λ;t0
f(t) ,

for f ∈ L1[t0, T ], σ > 0 and β > σ, and in particular DkJ γ
α,β,λ;t0

f(t) =

J γ
α,β−k,λ;t0

f(t) with k being an integer. For the sake of completeness, one

also has that (see [80])

Jσ
t0J γ

α,β,λ;t0
f(t) = J γ

α,β+σ,λ;t0
f(t) = J γ

α,β,λ;t0

[
Jσ
t0f(t)

]
,

for f ∈ L1[t0, T ] and σ > 0.

Analogously, one also finds
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L
[
CDγ

α,β,λ;0f(t) ; s
]
= sβ−αγ(sα − λ)γ

[
f̃(s)−

m−1∑
k=0

s−k−1 f (k)(0+)

]
,

where m = 	β
, as usual.

5.2. Eigenvalue problem. Let us consider the Cauchy problem{
CDγ

α,β,λ;0y(t) = Ay(t) ,

y(0+) = ξ0 , y
′(0+) = ξ1 , . . . , y

(m−1)(0+) = ξm−1 ,
(5.14)

with α, β > 0, m = 	β
, and A, ξ0, . . . , ξm−1 ∈ R.
The Cauchy problem in (5.14) is well-posed and one can compute its

solution by means of the Laplace transform method. Specifically, one finds

y(t) =

m−1∑
j=0

∞∑
k=0

Aktβk+jEγk
α,βk+j+1(λt

α)ξj (5.15)

which thus gives the eigenfunction of CDγ
α,β,λ;0 corresponding to the eigen-

value A. Note that, if γ = 0 or λ = 0, then

y(t) =

m−1∑
j=0

∞∑
k=0

Aktβk+j

Γ(βk + j + 1)
ξj =

m−1∑
j=0

tjEβ,j+1(At
β) ξj , (5.16)

which is indeed the eigenfuction of the Caputo derivative CDβ
0 corresponding

to the eigenvalue A (see [47]), as expected.

Moving on to the eigenvalue problem for the (RL-type) Prabhakar de-
rivative, let us consider the Cauchy problem{

RLDγ
α,β,λ;0y(t) = Ay(t)(

J −γ
α,m−β−j,λ;0y

)
(0+) = ξj, j = 0, 1, . . . ,m− 1 .

(5.17)

Following a procedure akin to the one presented above we find that the
solution to this problem reads

y(t) =

m−1∑
j=0

∞∑
k=0

Aktβk+β−j−1E
γ(k+1)
α,βk+β−j(λ t

α) ξj (5.18)

and hence the functions
∞∑
k=0

Aktβk+β−j−1E
γ(k+1)
α,βk+β−j(λ t

α), j = 0, 1, . . . , 	β
 − 1,

are eigenfunctions of RLDγ
α,β,λ;0. Besides, for γ = 0 or λ = 0, in light of

(5.2) we have that Eq. (5.18) becomes
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y(t) =

m−1∑
j=0

∞∑
k=0

Aktβk+β−j−1

Γ(βk + β − j)
ξj =

m−1∑
j=0

tβ−j−1Eβ,β−j(At
β) ξj ,

thus yielding the known eigenfunctions tβ−j−1Eβ,β−j(At
β), j = 0, 1, . . . , 	β
−

1 of the RL fractional derivative RLDβ
0 [47]. In particular, note that for

j = m − 1 one has that tβ−j−1 = tβ−�β� which carries a weakly singular
behavior if β /∈ N since in this case β − 	β
 < 0.

5.3. Operators of Grünwald-Letnikov type. It is now worth mention-
ing that a Grünwald–Letnikov (GL) type formulation of the Prabhakar op-
erators was proposed by R. Garrappa in [36]. Originally, this interpretation
of the theory was conceived for the particular case β = αγ that turns out to
be involved in the time-domain representation of the Havriliak–Negami re-
laxation. Its generalization to β > 0 is however immediate and is achieved
by following the same steps illustrated in [36] and by taking profit of Lu-
bich’s theory [92, 93, 94] of generalized convolution quadratures. Indeed,
one can find that, under suitable conditions, the Prabhakar integral (5.3)
is equivalent to the GL integral

J̄ γ
α,β,λ;t0f(t) = lim

h→0

hβ

(1− hαλ)γ

⌊
t−t0
h

⌋∑
j=0

W
(−)
n−jf(t− jh), (5.19)

where the coefficients W
(−)
n depend on α, β, γ, λ and h. For γ �= 0, W

(−)
n

can be evaluated recursively as

W
(−)
0 = 1, W

(−)
k =

k∑
j=1

(
(1− γ)j

k
− 1

)
ω̄jW

(−)
k−j,

with

ω̄j =
ω
(β/γ)
j − hαλω

(β/γ−α)
j

1− hαλ
,

while the ω
(α)
j are related to the classical binomial coefficients according to

ω
(α)
j = (−1)j

(
α

j

)
= (−1)j

Γ(α+ 1)

Γ(j + 1)Γ(α − j + 1)
.

Clearly, the GL–Prabhakar integral in (5.19) generalizes the classical
GL operator corresponding to the RL integral (4.14). The RL integral is
instead recovered from (5.19) by setting λ = 0 since, in this case, one has

W
(−)
j = ω

(−β)
j .

In a similar fashion, a GL operator corresponding to Prabhakar deriv-
ative RLDγ

α,β,λ;t0
can also be obtained as
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RLD̄γ
α,β,λ;t0f(t) = lim

h→0

(1− hαλ)γ

hβ

⌊
t−t0
h

⌋∑
j=0

W
(+)
n−jf(t− jh),

with

W
(+)
0 = 1, W

(+)
k =

k∑
j=1

(
(1 + γ)j

k
− 1

)
ω̄jW

(+)
k−j,

where the coefficients ω̄j are the same as the one introduced above. It is
worth noting, again, that the classical GL derivative, equivalent to the RL
derivative (4.15), is recovered for λ = 0.

Finally, in light of (5.11) a GL operator related to the regularized Prab-
hakar derivative CDγ

α,β,λ;t0
can be easily obtained. The importance of these

operators lies in their peculiar proneness toward their use as numerical ap-
proximation of the Prabhakar operators, once the step-size h > 0 has been
fixed.

6. Physical applications

The aim of this section is to briefly summarize the main results and
physical implications of Prabhakar calculus. Of course, the literature on
this subject is rather vast and, at time, dispersive, hence our plan is to
offer a general overview of the key physical features of these models that
fall in the realm of anomalous phenomena. Specifically, we will start off
by describing how this new framework can describe dielectric relaxation
processes such as the one in the Davidson–Cole and the Havriliak–Negami
models. Then, we will show how the electro-mechanical correspondence
theorized by B. Gross and R. M. Fuoss paves the way to a brand new class
of viscoelastic models. Finally, we summarize the main results concerning
the role of the Prabhakar function (and the corresponding operators) in the
theory of anomalous diffusion on complex media.

6.1. Anomalous Relaxation in Dielectrics. It is fairly well known in
the literature [18, 19, 24, 151, 71, 152, 153] that materials that display glass-
liquid transitions or amorphous polymers tend to deviate substantially from
the standard Debye relaxation model. Setting aside for the moment the
Cole–Cole relaxation, that can be described in terms of standard fractional
calculus [12, 37, 49], let us focus on the Havriliak–Negami model. First,
recalling that we are dealing with a causal linear system, we can recast
Eq. (3.15) in the Laplace domain, thus the response function will read
[12, 37, 50]

φ̃HN(s) = χ̃HN(s) =
1

[1 + (s τ�)α]γ
, 0 < α ≤ 1 , γ > 0 , (6.1)
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then, taking profit of Eq. (4.17), one gets [37]

φHN(t) =
1

τ�

(
t

τ�

)αγ−1

Eγ
α,αγ

[
−
(
t

τ�

)α]
, (6.2)

that, in view of Eq. (3.8), leads to the relaxation function [37]

ΨHN(t) = 1−
(
t

τ�

)αγ

Eγ
α,αγ+1

[
−
(
t

τ�

)α]
. (6.3)

A few comments are now in order. First of all, it is worth mentioning
the asymptotic behaviors of ΨHN(t), namely

ΨHN(t) ∼

⎧⎪⎪⎨⎪⎪⎩
1− (t/τ�)

αγ

Γ(1 + αγ)
, for t� τ� ,

γ(t/τ�)
−α

Γ(1− α)
, for t� τ� .

(6.4)

Besides, it is also straightforward to prove that the relaxation equation for
the Havriliak-Negami model is given by

CDγ

α,αγ,τ−α
� ; 0

ΨHN(t) = − 1

ταγ�
, ΨHN(0) = 1 , (6.5)

highlighting the strict connection between this model and Prabhakar cal-
culus.

Finally, one can easily infer that the Davidson–Cole and the Cole–Cole
models are particular realizations of the Havriliak–Negami relaxation. In-
deed, the Davidson–Cole dielectric response is obtained from the Havriliak–
Negami one by setting α = 1 in Eq. (3.15), leading to a relaxation function
that reads [37]

ΨDC(t) = 1−
(
t

τ�

)γ

Eγ
1,γ+1

(
− t

τ�

)
=

Γ(γ, t/τ�)

Γ(γ)
, (6.6)

with Γ(a, z) =
∫∞
z ua−1 e−u du denoting the incomplete gamma function,

and a relaxation equation

CDγ

1,γ,τ−1
� ; 0

ΨDC(t) = − 1

τγ�
, ΨDC(0) = 1 . (6.7)

Analogously, it is easy to see that the Cole–Cole model can be derived from
Eq. (3.15) by setting γ = 1. This, in turn, leads the relaxation function in
Eq. (3.13) that corresponds to an evolution equation governed by Caputo
derivatives [37, 49], i.e.

CDα
0ΨCC(t) = − 1

τα�
ΨCC(t) , ΨCC(0) = 1 , (6.8)

which is indeed the canonical fractionalization of the standard relaxation
problem, namely Ψ′(t) = −(1/τ)Ψ(t) with Ψ(0) = 1.
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Before concluding this Section we wish to stress that the models dis-
cussed here clearly do not exhaust the full realm of theoretical set-ups that
have been proposed, over the years, to describe the features of anomalous
dielectrics. In this work we simply report the most known modifications of
Debye’s theory that display a strict connection with the Prabhakar function
and calculus. For a more detailed analysis of the literature on anomalous
dielectric relaxation and its relation to the notion of complete monotonicity,
we refer the interested reader to [12, 97, 37].

6.2. Linear Viscoelasticity. It is rather well known in the literature (see
e.g. [14, 13, 128, 44, 20, 21] and references therein) that fractional calculus
and the theory of completely monotone functions play a pivotal role and lie
at heart of the modern mathematical formulation of linear viscoelasticity.
To this regard, we refer the readers to [96, 101, 119, 60, 22] for a detailed
description of both ordinary and fractional viscoelasticity.

Beside the clear effectiveness of Prabhakar calculus in serving as a
fundamental tool for modeling anomalous dielectrics, this novel mathe-
matical structure plays an interesting role also in fractional viscoelasticity.
As discussed in [43], if one recalls the formal duality between viscoelastic
models and electrical systems, originally introduced by Gross and Fuoss in
[58, 57, 56] and then revisited in [45], it is easy to see that the anomalous
relaxation processes highlighted in Section 6.1 have an analogous represen-
tation in linear viscoelasticity. It is therefore natural to wonder about what
might happen if one writes the constitutive equation for a certain material
in terms of Prabhakar derivatives.

Let us begin with a brief recap of the basics of the linear theory of vis-
coelasticity. Denoting by HN the Heaviside class, namely the set of causal
functions f(t) such that f ∈ CN (R+) with N ∈ N, then we denote by
σ ∈ HN and ε ∈ HN the uniaxial stress and strain functions for a given
material, respectively. The key physical information about the system are
then stored in the stress-strain relation, which is known as the constitutive
equation for the material, and it can be represented equivalently in differ-
ential form or as an integral equation. In particular, the distinctive feature
of the integral form is that it relates the stress and the strain through ei-
ther the creep compliance J(t) or the relaxation modulus G(t). In detail,
if one considers a quiescent viscoelastic body for t < 0 and assumes some
sufficiently well behaved causal histories, then the general integral form of
the constitutive equation reads

ε(t) = J(0+)σ(t) +

∫ t

0
J(t− τ)σ′(τ) dτ , (6.9)

or equivalently,
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σ(t) = G(0+) ε(t) +

∫ t

0
G(t− τ) ε′(τ) dτ . (6.10)

Since the latter are convolution-type equations, they can be easily ma-
nipulated via the standard Laplace transform method. Specifically, these
equations can be recast, in the Laplace domain, as

ε̃(s) = s J̃(s) σ̃(s) , σ̃(s) = s G̃(s) ε̃(s) , (6.11)

from which one can infer the so called reciprocity relation

s J̃(s) =
1

s G̃(s)
. (6.12)

Furthermore, it is useful to recall that the creep compliance is a non-
negative and non-decreasing function of time on t ≥ 0, whereas the re-
laxation modulus is a non-negative and non-increasing function of time on
the same domain.

All that being said, in [43] it was proposed a model representing a
straightforward generalization of the renowned Maxwell model of linear vis-
coelasticity, where the ordinary derivatives were replaced with Prabhakar’s
one. In detail, this new proposal is customarily referred to as Maxwell–
Prabhakar model (or, alternatively, as the Giusti–Colombaro model) of lin-
ear viscoelasticity and it is described by the constitutive equation

σ(t) + a CDγ
α,β,λ; 0σ(t) = b CDγ

α,β,λ; 0ε(t) (6.13)

where α > 0, 0 < β < 1 and γ, λ ∈ R, in general. Besides, since [σ] = Force·
Area−1 and [ε] = 1, one has that [a] = timeβ, [b] = Force · Area−1 · timeβ,
and [λ] = time−α. Bringing Eq. (6.13) to the Laplace domain one gets

s J̃(s) =
a

b
+

1

b sβ(1− λ s−α)γ
=

1

s G̃(s)
(6.14)

which, in turn, yields

J(t) =
a

b
+
tβ

b
Eγ

α,β+1(λ t
α) , (6.15)

and

G(t) =
b

a

∞∑
n=0

(
− t

β

a

)n

Eγn
α,βn+1(λ t

α) , (6.16)

where the last series is absolutely convergent on t > 0 for the whole domain
of parameters considered here.

It is also worth mentioning that this model is able to reproduce, as par-
ticular cases, the Maxwell, Voigt, and Zener models in both their fractional
and ordinary realizations. For details and constraints on the parameter
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space see [43]. Furthermore, a thorough study of the processes of storage
and dissipation of energy in materials described by (6.13) has been carried
out by I. Colombaro, A. Giusti, and S. Vitali in [23].

6.3. Stochastic Processes and Diffusion. It is now worth discussing
the implications of Prabhakar operators for stochastic processes, and their
relation with anomalous diffusion phenomena. For a detailed review on this
topic we refer the interested reader to [145, 137, 140].

It is well-known that the probability density function (PDF) for the
location x at time t of a Brownian particle satisfies the classical heat equa-
tion. In this case, the mean squared displacement (MSD) is linear in time.
Different alternative non-Brownian models have been studied in the litera-
ture in order to describe anomalous diffusions in complex media. A widely
used and general scheme is given by the Continuous-Time Random Walk
(CTRW) approach, first introduced in [109]. The structure of this stochas-
tic jump process is described by specifying the distributions of independent
random jump lengths and waiting times (see e.g. [86]).

In [133], a general class of integro-differential diffusion-type equations
given by

∂

∂t
W (t, x) =

∂

∂t

∫ t

0
η(t− t′)

∂2

∂x2
W (t′, x) dt′ , (6.17)

is considered. Here, W (t, x) is the PDF relative to the location of a CTRW
admitting jumps of finite variance and waiting times with a specific distri-
bution. In particular, the memory kernel η(t) in (6.17) is connected to the
PDF ψ(t) of the random waiting times through their Laplace transforms
according to

ψ̃(s) =
η̃(s)

1 + η̃(s)
. (6.18)

Summarizing, Eq. (6.17) is the governing equation of a family of CTRWs,
given some suitable constraints on the memory kernel η(t).

One of the interesting cases considered in [137] is based on the applica-
tion of the Prabhakar integral. In this respect, let us consider, for instance,
the case of the tempered time-fractional diffusion equation with η(t) such
that η̃(s) = (sγ̃(s))−1, where

γ(t) = e−bt t−α

Γ(1− α)
, (6.19)

with 0 < α < 1 and b > 0 denoting the truncation parameter. The corre-
sponding memory kernel then reads

η(t) = tα−1Eα−1
1,α

(− bt
)
, (6.20)

leading to



A PRACTICAL GUIDE TO PRABHAKAR . . . 35

∂

∂t
W (t, x) = RLD1−α

1,1−α,−b;0

[
∂2

∂x2
W (t, x)

]
. (6.21)

The MSD turns out to be 2tαEα−1
1,α+1(−bt), from which one can immediately

infer the emergence of a crossover from subdiffusion to normal diffusion.
If instead we reverse the problem by considering the case with

η(t) = e−bt t−α

Γ(1− α)
, (6.22)

then one finds

CDα
1,α,−b;0W (t, x) =

∂2

∂x2
W (t, x). (6.23)

Correspondingly, the related MSD becomes 2tαEα+1
1,α+1(−bt), implying a

crossover from subdiffusion to a constant behavior.
Working in the framework of the theory of CTRWs, it was also shown

[135] that one can build models aimed at characterizing the transition
among anomalous diffusion scenarios based on the Prabhakar function and
its derivative operators.

Finally, it is also worth mentioning that a study of the generalized
Langevin Equation with both the Prabhakar and tempered Prabhakar ker-
nels as memory kernels has been carried out by T. Sandev in [131].

7. Applications in renewal processes

Generalizations of renewal processes based on the applications of time-
fractional differential operators, or special functions related to fractional
calculus, have recently attracted much attention. Different (non equiva-
lent) approaches to build fractional counting processes have been devel-
oped in the literature. The motivation for the increasing interest on this
topic is obviously related to the pervasive applications of classical counting
processes, like the Poisson process, in real-world models.

The Mittag–Leffler function appeared as residual waiting time between
events in renewal processes already in the 1960s, namely processes with
properly scaled thinning out the sequence of events in a power law re-
newal process (see [46] and [100]). A renewal process with Mittag–Leffler–
distributed waiting times is in essence a fractional Poisson process.

Hilfer and Anton [70] were the first to introduce the Mittag–Leffler
waiting-time density

fμ(t) = − d

dt
Eμ(−tμ) = tμ−1Eμ,μ(−tμ) (7.1)
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in the context of continuous time random walk. Specifically, they were
able to show that such a waiting time density is required in order for the
evolution of the sojourn density to be governed by a fractional Kolmogorov–
Feller equation. In other words, they time-changed a random walk with an
independent fractional Poisson process. Systematic studies of both analytic
and probabilistic aspects of this topic were then triggered, to the best of
our knowledge, in 2000 by the work of O. N. Repin and A. I. Saichev [127].
Many (mostly independent) contributions investigated the feature of this
new renewal process following the path paved by the previously mentioned
pivotal works, see e.g. [4, 3, 90, 122, 103] and references therein. To this
regard, it is worth stressing that the Prabhakar function naturally arises in
the context of fractional Poisson processes. Indeed, the state probabilities
of a time-fractional Poisson process can be expressed in terms of Prabhakar
functions, see e.g. [4, 90] for details.

Recently, several generalizations of the Poisson process based on the
Prabhakar function have appeared in the literature. These extensions
clearly offer more flexibility when attempting to capture the main fea-
tures of real-world renewal processes, also including as special cases the
time-fractional and the classical Poisson processes. Essentially, the gener-
alization of the standard Poisson process can be achieved in two different
ways: i) deriving the state probabilities of the generalized counting pro-
cess by solving an infinite system of time-fractional difference-differential
equations involving regularized Prabhakar derivatives; ii) considering a re-
newal process with inter-event time density function involving a Prabhakar
function. The first approach was originally developed by R. Garra, et al.
in [33], whereas the second one was first proposed by D. O. Cahoy and F.
Polito in [9] (see also [105, 104]). Further, an alternative proposal by T. K.
Pogány and Ž. Tomovski was provided in [121], where the generalization
was obtained in the sense of weighted Poisson distributions.

Let us now analyze the first approach, namely the one based on the
replacement of the first-order derivative with the regularized Prabhakar
derivative. In other words, this procedure has to be implemented onto
the infinite system of difference–differential equations governing the state
probability of the Poisson process, i.e.⎧⎪⎨⎪⎩

CDγ
ρ,μ,−φpk(t) = −λpk(t) + λpk−1(t), k ≥ 0, t > 0, λ > 0,

pk(0) =

{
1, k = 0,

0, k ≥ 1,

(7.2)

where φ > 0, γ ≥ 0, 0 < ρ ≤ 1, and 0 < μ ≤ 1. If γ �= 0 one also has
that 0 < μ	γ
/γ − rρ < 1, ∀ r = 0, . . . , 	γ
. These constraints on the
parameters are required in order to ensure non-negativity of the solution.
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Multiplying both terms of (7.2) by vk, with v denoting an auxiliary variable
such that |v| ≤ 1, and summing over all k, we obtain the fractional Cauchy
problem for the probability generating function G(v, t) =

∑∞
k=0 v

kpk(t) of
the counting number N(t), t ≥ 0,{

CDγ
ρ,μ,−φG(v, t) = −λ(1− v)G(v, t), |v| ≤ 1,

G(v, 0) = 1,
(7.3)

whose solution reads (see [33] for details)

G(v, t) =
∞∑
k=0

(−λtμ)k(1− v)kEγk
ρ,μk+1(−φtρ), |v| ≤ 1. (7.4)

It is easy to see that, for γ = 0, the latter reduces to

G(v, t) =

∞∑
k=0

(−λtμ)k(1− v)k

Γ(μk + 1)
= E1

μ,1(−λ(1− v)tμ), (7.5)

that coincides with the probability generating function of the (standard)
fractional Poisson process, see e.g. [90].

From the probability generating function (7.4) it is possible to infer
the probability distribution at fixed time t ≥ 0 of N(t), governed by the
evolution equation (7.2). Indeed, a simple binomial expansion leads to

G(v, t) =

∞∑
k=0

vk
∞∑
r=k

(−1)r−k

(
r

k

)
(λtμ)rEγr

ρ,μr+1(−φtρ) , (7.6)

that implies

pk(t) =

∞∑
r=k

(−1)r−k

(
r

k

)
(λtμ)rEγr

ρ,μr+1(−φtρ), k ≥ 0, t ≥ 0. (7.7)

From (7.2), one can also infer the mean value of N(t). To this aim, it
suffices to differentiate Eq. (7.3) with respect to v and set v = 1, this leads
to {

CDγ
ρ,μ,−φEN(t) = λ, t > 0,

EN(t)
∣∣
t=0

= 0,
(7.8)

whose solution is simply given by

EN(t) = λtμEγ
ρ,1+μ(−φtρ), t ≥ 0 . (7.9)

It is also possible to prove that the generalized fractional Poisson process
N(t) described so far can be constructed as a renewal process with specific
waiting times. Indeed, consider k independent and identically distributed
(i.i.d.) random variables Tj , j = 1, . . . , k, representing the inter-event wait-
ing times, with probability density functions
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fTj(tj) = λtμ−1
j

∞∑
r=0

(−λtμj )rEγr+γ
ρ,μr+μ(−φtρj ), t ≥ 0, μ ∈ (0, 1) . (7.10)

The probability distribution Pr(N(t) = k), k ≥ 0, can then be obtained by
making the renewal structure explicit and comparing the Laplace transform
of the state probabilities obtained from the two approaches (see [33] for
details).

Lastly, it is worth remarking that the generalized fractional Poisson
process N(t), similarly to the classical fractional Poisson process, can be
represented as a time-changed Poisson process in which the random change
of time is given by a suitable independent stochastic process with increasing
paths. See Section 5.3.1 of [33] for details.

The second approach, based on the construction of a renewal process
with inter-event time density function involving a Prabhakar function, was
originally proposed in [9]. In this case the generalized Poisson process
Nν,δ(t) denotes a renewal process with i.i.d. random waiting times dis-
tributed as

f ν,δ(t) = λδtνδ−1Eδ
ν,δν(−λtν), λ > 0, δ ∈ R, ν ∈ (0, 1]. (7.11)

Clearly, the latter is a generalization of the (canonical) time-fractional Pois-
son process, recovered for δ = 1, and of the classical Poisson process, which
is instead reproduced when setting δ = ν = 1. Then, by means of the
Laplace transform method, it is possible to prove that the state probabili-

ties pν,δk (t) = Pr(Nν,δ(t) = k) read

pν,δk (t) = λδktνδkEδk
ν,νδk+1(−λtν)−λδ(k+1)tνδ(k+1)E

δ(k+1)
ν,νδ(k+1)+1(−λtν) (7.12)

and satisfy the Volterra equation

pν,δk (t) = λδ
(
J δ

ν,νδ,−λ;0+p
ν,δ
k−1

)
(t) (7.13)

involving the Prabhakar fractional integral.
Finally, we briefly recall that a further proposal for the construction of

a generalized Prabhakar-Poisson distribution, based on the Poisson distri-
bution approach, was developed in [121]. The probability mass function of
a weighted Poisson process is of the form (we adopt the notation in [1] and
references therein)

P{Nw(t) = n} =
w(n)p(n, x)

E[w(N)]
, n ≥ 0, (7.14)

where N is a random variable with a Poisson distribution p(n, x) = (xn/n!)
e−x, w(·) is a non-negative weight function with non-zero finite expected
value, i.e.
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0 < E[w(N)] =
∞∑
n=0

w(n)p(n, x) <∞. (7.15)

Therefore, it is possible to build a Prabhakar-based generalization of the
Poisson distribution by choosing the weights as w(n, γ, α, β) = Γ(n +
γ)/[Γ(γ)Γ(αn+β)]. This procedure provides a generalization of the Poisson
distribution, but it does not represent a renewal process unlike the other
approaches. On the other hand, this last generalization can be useful in
the context of sub- or super-Poissonian distribution applications.

8. Numerical aspects

The numerical evaluation of the Prabhakar function is a quite delicate
and involved topic that appears to have been loosely discussed in the current
literature, except in a couple of works in [35, 146].

The simplest way to numerically evaluate the Prabhakar function con-
sists in relaying on its definition (4.1). Namely, for such an approach it
would be sufficient to fix a sufficiently large, though finite, number K ∈ N

and approximate the function by the truncated series

Eγ
α,β(z) ≈

1

Γ(γ)

K∑
k=0

Γ(γ + k)zk

k!Γ(αk + β)
. (8.1)

However, some critical issues emerge when this simple scheme is imple-
mented. Indeed, the Gamma function grows very fast as its argument gets
larger. This means, from a numerical perspective, that a restriction on K
has to be imposed to avoid overflow, i.e. the generation of numbers exceed-
ing the range that can be represented with a given number of digits. In the
standard IEEE-754 double precision arithmetic of a commonly used com-
puter 1.8×10308 is approximately the largest floating-point number that can
be represented. Thus, since Γ(171.624) ≈ 1.8×10308, the maximum number
of terms in the truncated series (8.1) is bounded by K < (171.624 − β)/α.
This bound heavily restricts the applicability of this approach since the
series (4.1) converges very slowly for arguments with moderate or large
modulus. Furthermore, additional problems arise when trying to deal with
arguments outside the positive real axis, in particular when |z| > 1. In this
case, as the value of k increases the sum (8.1) has consecutive terms with
large modulus but opposite sign whose sum is extremely ill-conditioned in
the finite-precision arithmetic of computers. As a consequence, one often
incurs in catastrophic numerical cancellation. Summing up, the approxi-
mation (8.1) can be applied only for arguments with small, or just very
moderately large, modulus. Otherwise, this approach turns out to be unre-
liable. This is, after all, the same conclusion one reaches by carrying out a
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similar analysis for the Mittag–Leffer function and its derivatives (see e.g.
[48, 40]).

A viable strategy for the numerical evaluation of the Prabhakar function
for arguments with large modulus is to relay on some of the asymptotic
expansions presented in Section 4.5. Whereas, the remaining cases can be
addressed by working backward from the Laplace domain.

Regarding the method based on the Laplace transform, the very simple
expression given in (4.17) suggests to numerically compute the Prabhakar
function by means of the inversion of its Laplace transform. J. A. C. Wei-
deman and L. N. Trefethen paved the way for the current developments of
this approach, analyzing the case β = γ = 1 [154]. Later on, the analysis
was extended to any β and γ = 1 [39] and, successively, to any γ > 0 for
| arg z| > απ and 0 < α < 1 [35]. Then, these results were further extended
to more general arguments z, with γ ∈ N in [40].

To give just a general idea of this last technique, the starting point is
represented by the expression

Eγ
α,β(z) =

1

2πi

∫
C̄
esH(s; z) ds, H(s; z) =

sαγ−β

(sα − z)γ
, (8.2)

obtained from the formula for the inversion of the Laplace transform, where
the considered contour C̄ is a parabola that begins and ends in the left half-
plane, such that Re(s) → −∞ at each end. In this way, the integrand
in (8.2) rapidly decays as Re(s) → −∞, being forced by the exponential
factor. Moreover, the contour C̄ must encompass all the singularities of
H(s; z) (that would all be lying on the left-hand side of the vertex of C̄)
and the branch-cut imposed on the negative real semi axis to make H(s; z)
single-valued. All that being said, the trapezoidal quadrature rule can now
be profitably applied for the numerical evaluation of (8.2). However, this
procedure requires to accurately fix some parameters. Indeed, in order to
define the contour C̄ one parameter needs to be set, while the trapezoidal
rule requires fixing the number of nodes and the spacing between them. In
practice, if

w(u) = μ(iu+ 1)2, −∞ < u <∞,

describes the parabolic contour, h > 0 is a given step-size and the quadra-
ture nodes are defined as uk = kh for k = −N, . . . ,N , then the resulting
approximation to (8.2) reads

Ẽ[N,h](t) =
h

2πi

N∑
k=−N

ew(uk)H(w(uk); t)w
′(uk). (8.3)

To choose the optimal parameters N , h and μ a deep error analysis must
be carried out by requiring that the global error is proportional to the
required accuracy (usually something close to the machine precision to
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force the method to provide the highest possible accuracy). Specifically,
the influence of the parameters N , h and μ on the round-off, truncation,
and discretization errors have to be considered. Basically, this means that
one needs to find the most suitable contour C̄. Incidentally, such a contour,
roughly speaking, turns out to be the one whose branches are the farthest
from the singularities of the integrand. Now, once the required accuracy
is fixed, the algorithm finds the optimal parameters and then computes
(8.3). In particular, the value N is kept as small as possible and, since it
determines the computational cost of the procedure, the resulting algorithm
turns out to be fast and very accurate (see [35] for details).

If the singularities of H(s; t) turn out to be to scattered in the complex
plane and too far away from both the origin and the branch-cut imposed
on the negative real semi axis, it is essential to allow the contour to go over
some of the singularities and apply to (8.2) the residue subtraction formula

Eγ
α,β(z) =

∑
s�∈S�

C̄

Res
(
esH(s; z), s�

)
+

1

2πi

∫
C̄
esH(s; z)ds,

with S�
C̄ the set of the singularities of H(s; z) laying on the right-hand side

of the contour C̄. This correction can, however, be implemented just for
γ ∈ N, otherwise the more involved branch-cut due to the two real powers
in H(s, z) does not allow the contour to pass over any of the singulari-
ties. This is the reason for which the method described in [35], and corre-
sponding Matlab code [34], are restricted to 0 < α < 1 and | arg z| > απ,
whilst in [40] it is discussed the case γ ∈ N and a formula for the residues
Res
(
esH(s; z), s�

)
is given.

9. Discussion and outlook

And here is where this Hitchhiker’s Guide to the wonders of Prabhakar
fractional calculus comes to an end. In Section 2 we have offered a brief
recap of the main events that have led to the discovery of the Prabhakar
function and the associated fractional operators. In Section 3 we have
shown how this generalization was not just a mathematical curiosity, but
rather something that physics was begging for in order to explain some
peculiar phenomena. After that, in Section 4 we have provided an exten-
sive description of the mathematical features of the Prabhakar function.
Then, in Section 5 we combined the results in Section 4 with the general
wisdom of the standard (Riemann–Liouville and Caputo) approaches to
fractional calculus in order to reconstruct Prabhakar’s theory. In Section
6 we have then framed the physical problems raised in Section 3 within
this new scheme, thus summarizing the main physical application of this
general set-up. In Section 7 we summarized how Prabhakar’s theory can
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be applied in probability theory, with particular regard for the theory of
renewal processes. Finally, in Section 8 we have discussed the state of the
art of the research on the numerical evaluation of the Prabhakar function.

From a physical perspective, setting aside the many possible scenar-
ios in which Prabhakar’s theory might potentially emerge as a powerful
modeling tool, it is worth stressing that much of the fundamental physics
connected with the phenomena discussed in Section 6 is still uncharted ter-
ritory. First, while this mathematical framework seems to be the key for the
mathematical description of anomalous dielectrics of the Havriliak–Negami
type, a first-principle derivation of these physical behaviors is still missing.
Second, even though the study of viscoelastic applications of Prabhakar
calculus, initiated by A. Giusti and I. Colombaro with [43], has attracted
some attention in the literature, most physical aspects of this extension of
linear viscoelasticity are yet to be unveiled. These two research lines rep-
resent the main open questions concerning the applications of Prabhakar
fractional calculus to “real-world problems”.

From a probabilistic point of view, we can recall that in [105, 104]
the authors analyzed generalized fractional diffusion models on undirected
graphs and infinite lattices. This application, making use of Prabhakar ran-
dom variables and therefore of Prabhakar functions, seems to be a promis-
ing topic of research in the context of non-Markovian models on networks.
Moreover, further investigations on applications of Prabhakar integrals and
derivatives to more general or different point processes, such as birth-death
processes or point processes related to macroevolutionary models (see e.g.
[123]), are surely worth pursuing. Finally, according to [88], the appli-
cations of fractional renewal processes based on Prabhakar functions to
models for neural spiking events could represent compelling research sub-
jects.

From a numerical viewpoint, a further boost should be given toward
the development of methods for the computation of the Prabhakar func-
tion, in order to cover a larger range of parameters. Moreover, another
stimulating research topic, that supposedly will attract much attention in
the future, concerns the possibility of developing highly efficient methods
for solving differential equations with Prabhakar derivatives, particularly
for applications in computational electromagnetism (see e.g. [6, 15, 38]).
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