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Chapter 1: Introduction 

There are numerous well-known formulas for  , including  
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 from [6, p. 127 formula 14], 
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from [2, p. 225 formula 16.27]. 

 Another notable formula is  
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 , 

credited to David Bailey, Peter Borwein, and Simon Plouffe in 1995  It is often called the 

BBP-formula.  They wrote “On the Rapid Computation of Various Polylogarithmic 

Constants”, in which the formula was first mentioned, [5, p. 1]. 

The formula is significant as it permits the computation of the nth hexadecimal digit 

of   without calculation the preceding 1n  digits.  The algorithm is explained in [5, 
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section 3 p.6-8], [2, p.129], and [4, p.123].  Since its discovery, formulas of similar form have 

been discovered and have become known as BBP-type formulas.  The general BBP-type 

formula has the form  
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where   is a constant, p  and q  are polynomials with integer coefficients, deg( ) deg( )p q , 

( ) / ( )p k q k is nonsingular for nonnegative k , and b  is an integer, [3, p. 2]. 

 Many nice BBP-type formulas can be written 
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where  is a well-known constant, naaa ,,, 21   are constants (usually integers), and 

1nx
b

 .  We call n  the base of the BBP form.  This is the only form I considered in this 

project.   

A few examples of BBP-type formulas are the following: 
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which is known as the Leibniz formula, 
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from [5, p. 6]. 

The following are not formulas of BBP-type: 
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 from [9, p. 617 formula 15]
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  from [2, p. 229 (16.79)]. 

The objective of this project was to verify and discover BBP-type formulas for scaled 

values of  .  In chapter 2, I begin by verifying previously discovered BBP-type formulas 

using their relationship to definite integrals.  The chapter begins by explaining the method 

used, followed by two examples, and then a table containing the BBP-type formulas 

verified.  The chapter ends with a verification of two formulas conjectured in [3, p. 18 

formulas 72 & 73].   Next, chapter 3 shows how to search for BBP-type formulas.  An 

algorithm is given and a detailed example of its use is provided.  The next section, chapter 

4, provides a search of the simplest cases where the base is 2, 3, or 4.  The searches for base 

6 and base 8 formulas are presented in chapters 5 and 6 respectively.  The next chapter is 

the conclusion with a description of strengths, limitations, and future work related to this 

project.  The paper ends with two appendixes.  The first contains a table summarizing 

chapters 4, 5, and 6, while the second includes a copy from Mathematica’s output for 

integrating the non-alternating base 6 case. 
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Chapter 2: Unified Method to Verify 

 A technique was used to verify various BBP-type formulas.  This chapter will 

provide a detail explanation of the technique’s steps.  Also provided is a table of formulas 

from the literature I have verified by this method. 

Recall, in this project, I am interested in formulas of the type  
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  , 

where  is a well-known constant, 1 2, , , na a a  are constants (usually integers), and x  is a 

constant.  The key formulas are presented in Theorem 1 and Theorem 2. 

Theorem 1: If 0 1x  or if 1x  and 0
1
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Proof:  The series is a power series with radius of convergence 1.  If 1x , we can 

integrate and differentiate as stated in [1, p. 173 Theorem 6.5.7].  When 1x  and  

0
1
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i

ia , the resulting sum will converge by the limit comparison test with 
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We only verify the case when 1x  below. 
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We break this into n  summations,  
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 .  By taking the derivative we get,  

    1 1

1 1

1

0 0

( ) 1

1

nk

nk

k k

d x f x a nk x
a x

dx nk

  

 

   
 


  . 

This is a geometric series which can be summed, 
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.  By the Fundamental 

Theorem of Calculus, 1
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a geometric series that sums to 
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Finally, using the substitution 
x

t
u   we obtain  
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Therefore, verifying  
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is equivalent to verifying  
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We were also interested in the alternating case of the form, 
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We have:  

Theorem 2:  If 0 1x   or 1x  , then 
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Proof:  Again, we only give a proof in the case where 0 1x  .  
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The proof is entirely analogous to that of Theorem 1 except that the geometric series 

is  
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so adding gives (after the same change of variables in the integral) 
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From here, we will focus mostly on  c , where c is an algebraic constant.  It 

should be mentioned that this algorithm works for other constants that involve arctangents 

and logarithms. 

As an example, we verify Leibniz’s formula  
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In this example 1x  , 1 24, 0a a  , 2n  , and the series is alternating.  Using Theorem 2, 

we get 
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This verifies 
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Here 
1

2
x  , 1 4 5 6 2 3 7 84, 2, 1, 1, 0a a a a a a a a           , 8n  , and it is non-

alternating.  To verify this formula is equivalent to verifying that 

3 4 5
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by Theorem 1.  Factoring the numerator and denominator, we cancel out common terms,  
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Using partial fractions, we get  
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two quadratic terms which can be integrated by hand.  We have  
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1 1 0
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As in the previous example, when verifying BBP-type formulas it is common that the 

rational polynomial’s numerator and denominator will have common factors that cancel 

out.  Also, the remaining rational polynomial usually has a nice partial fractions 

decomposition. 

For convenience, we use the notation  
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The following tables contain BBP-type formulas from the literature which I have 

verified.   
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Table 1- BBP-type formulas verified for the bases 4, 6, and 8. 

  BBP -Type Formula Partial Fractions Breakdown 

  
1

, 4, (2, 2, 1, 0)
2
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2 2u u 
 

32 3

9



 

1
, 6, (16, 8, 0, 2, 1, 0)

2
BBP  

 
 
  a

 
2

64

2 4u u 
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160 32 128( 1) 64( 2)
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u u

u u u u u u
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, 8, (0, 8, 4, 4, 0, 0, 1, 0)
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a-These formulas came from [3, p. 5 formula 6 and p.7 formula 16]. 

b-These formulas came from [11, formulas 11, 2, and 3]. 

c-This formula comes from a combination of formulas from [3, p.7 formula 16 minus p.16 

formula 59]. 

For example, for the fourth row, 



12 
 

0

2 3 4
1

60

1

20

1

2

0

1 1 20 6 1 3 1
, 6, (20, 6, 1, 3, 1, 0)

2 64 6 1 6 2 6 3 6 4 6 5

20 6 3

1
64

4 4 8( 10)
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The second table includes the formulas where the base is 12. 

Table 2- BBP-type formulas verified for base 12. 

   1 2, , ( , , , )nBBP x n a a a  Partial Fractions Breakdown
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1
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2
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a-These formulas came from [3, p. 14 formula 41 and p. 7 formula 15 respectively]. 

b-These formulas came from [11, formulas 13 and 14 respectively]. 
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We also verified two more complicated cases conjectured in the paper A Compendium of 

BBP-type Formulas for Mathematical Constants by David H. Bailey.  He conjectured that  

1. 
0

1 81 162 27 36 9 6 4 1
0

729 12 2 12 3 12 5 12 6 12 8 12 9 12 10 12 11

k

k k k k k k
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1 243 324 162 81 36 9 6 1
0

729 12 1 12 2 12 3 12 4 12 6 12 7 12 9 12 10

k

k k k k k k k k k





   
          

          
  

in [3, p. 18 formulas 72 & 73 respectively] 

In our notation, we wish to show 

1
, 12, (0, 81, 162, 0, 27, 36, 0, 9,6, 4, 1, 0)

3
BBP

 
  

   

and 

1
, 12, (243, 324, 162, 81, 0, 36, 9, 0,6, 1, 0, 0)

3
BBP

 
      

 
 

are both zero.

 

 

Using Theorem 1, 
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2 4 5 7 8 9 10
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3
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23

BBP

u u u u u u u
du
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u
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In fact, most of Bailey’s conjectures for degree one BBP-type formulas from [3, p. 16 

and 18] can be proven using Theorem 1 and formulas for combinations of arctangents.   
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Chapter 3: Searching and Discovering BBP-Type Formulas 

In the previous chapter we described how to verify previously found BBP-type 

formulas.  In this chapter we describe an algorithm for finding such formulas.  This 

algorithm is also based on Theorem 1 and Theorem 2.  Using Theorem 1, for example, we 

start with  

(3.1)  

1
1

1 21 2

0
0 1 2 1

n
nk n n

n n
k

a a a u a ua a
x du

nk nk nk n x u





     
    

    
 


 . 

We integrate the right hand side of (3.1) symbolically as a function of 1 2, , , ,na a a x

and look for values of the parameters that give a “nice” answer.  For small cases, this can be 

done by-hand, but for most cases, a software program, i.e. Mathematica, was used.  Once 

integrated, arctangents and logarithms of functions of x  appear.  We use one of the 

arctangents to give  (usually by setting its argument to be 
1

,1, 3
3

).  This typically fixes 

our value of x . 

Plugging in a “nice” x  value, we get a function in terms of 1 2, , , na a a .  We construct 

a system of linear equations involving 1 2, , , na a a , to eliminate non-  values.  Row-

reducing these equations in a matrix, we get a set of solutions that result in BBP-type 

formulas for a scaled values of  . 

For example, suppose we wish to find a nice formula of type 1 2 3( ,3,( , , ))ABPP x a a a .  

We have   

 3 31 2
1 2 3

0

2
1

1 2 3

3 30

( ,3, ( , , ))
3 1 3 2 3 3

.
1

k

k

aa a
ABPP x a a a x

k k k

a a u a u
du

x u
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from Theorem 2.  Using Mathematica to perform the integral,  





1 2
1 2 3 1 222

2 2 2

1 2 3 1 2 3

( ) 1 1 2
( ,3, ( , , )) 2 3 ( )arctan

66 3 3

2( 2 ) ln(1 ) ( 2 ) ln(1 ) .

a x a x
ABPP x a a a x a x a

xx

a x a x a x a x a x a x x

   
     

 

         

 

We can get an expression involving   using either 1 2

2

( )

6 3

a x a

x

 
 or 

1 2
arctan

3

x 
 
 

.  When 

using 1 2

2

( )

6 3

a x a

x

 
, we need to eliminate other terms.  The arctangent term can only be 

eliminated by setting 
1

2
x  , (since we cannot use 1 2( )a x a  or our   value would be 

eliminated also).  We have  

    1 2 3 1 2 1 2 3 3

1 1
,3,( , , ) 3 2 3 3 6 48 ln3 72 ln 2

2 9
ABPP a a a a a a a a a

 
      

 
. 

Thus, we need 1 2 33 6 48 0a a a    and 372 0a  .  Row reducing 

3 6 48 0

0 0 72 0

 
 

   

we get  

1 2 0 0

0 0 1 0

 
 
 

, 

implying 1 22a a  and 3 0a  , resulting in the BBP-type formula  

(3.2)          
0

1 1 2 1 4 3
,3,(2,1,0)

2 8 3 1 3 2 9

k

k

ABBP
k k





     
        

      
 . 

Alternatively, when 1x ,  
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63

1
arctan

3

21
arctan










 








  x
. 

This results in 

   1 2 3 1 2 1 2 3

1
1,3,( , , ) ( ) 3 3( ) ln 2

9
ABPP a a a a a a a a     . 

Thus, we need 1 2 3 0a a a   .  There are two degrees of freedom, which implies two BBP-

type formulas.  Letting 3 0a   we get  

(3.3)              
0

1 1 2 3
1,3,(1,1,0) 1

3 1 3 2 9

k

k

ABBP
k k





 
    

  
 . 

If 
2 0a  , then we get  

(3.4)               
0

1 1 3
1,3,(1,0, 1) 1

3 1 3 3 9

k

k

ABBP
k k





 
     

  
 . 

Hence, up to linear combinations of (3.2), (3.3) and (3.4), we have found three BBP-type 

formulas for the case 1 2 3( ,3,( , , ))ABPP x a a a .  There are certainly more formulas if you allow 

more exotic x  values. 

 In many cases, I had to simplify Mathematica’s output by hand.  The output in this 

paper is not the exact output from Mathematica.  See Appendix 2 for an example of the 

actual Mathematica printout for the non-alternating base 6 case.  Simplification was 

needed for a general x  value and when searching for a system of linear equations to 

eliminate the non-  values.  The simplified version is shown throughout this paper. 
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Chapter 4: Examining Cases Where the Base is 2, 3, or 4 

 Using the algorithm described in the last section, we searched for BBP-type 

formulas for non-alternating and alternating bases 2, 3, 4, 6, and 8.  In this chapter, we 

present the results for the simplest cases, bases 2, 3, and 4.  The simplest case of all is the 

alternating base 2 case. 

 From Theorem 2 we have 

 

   2 1 2
1 2

0

1
1 2

2 20

, 2, ( , )
2 1 2 2

.
1

k

k

a a
ABBP x a a x

k k

a a u
du

x u





 
   

  










 

After integrating, we get  

   2

1 2 1 22

1
, 2, ( , ) 2 arctan( ) ln(1 )

2
ABBP x a a a x x a x

x
   . 

From this equation we look for “nice” x -values.  The criteria for x  to be “nice” are 

that 
nx  needs to be rational and its use allows for the evaluate or eliminate an arctangent.  

In order to eliminate an arctangent, we need   to be a result of the integral which does not 

always occur. 

In the above example, the two values 
1

3
x   or 1x   lead to interesting formulas 

since 
63

1
arctan











 and  

4
1arctan


 .  When 

1

3
x  ,  

1 2
1 2

31 4
, 2, ( , ) ln

2 33 2 3

a a
ABBP a a

   
    

  
. 
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Thus 
2 0a  , which results in the BBP-type formula  

(4.1)   
0

1 1 1 3
, 2, (1, 0)

3 2 1 63

k

k

ABBP
k





     
      

    
 . 

 

 When 1x  ,  

  2
1 2 11, 2, ( , ) ln(2)

4 2

a
ABBP a a a


  . 

Thus 2 0a  , which gives  

(4.2)             
0

1
1, 2, (1, 0) 1

2 1 4

k

k

ABBP
k





 
   

 
 , 

the Leibniz formula again. 

 For non-alternating formulas with base 3n , from Theorem 1, we have  

 3 31 2
1 2 3

0

2
1

1 2 3

3 30

( ,3, ( , , ))
3 1 3 2 3 3

.
1

k

k

aa a
BPP x a a a x

k k k

a a u a u
du

x u





 
   

   

   








 

Using Mathematica to integrate, 





2 2

1 2 3 1 2 3 1 23

2 2 2 2

1 2 1 2 3 1 2 3

1
( ,3, ( , , )) ( )6 ( ) 3

18

1 2
6 3( )arctan 6( ) ln( 1) 3( 2 ) ln( 1) .

3

BPP x a a a a x a x a i a x a x
x

x
a x a x a x a x a x a x a x a x x
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The only “nice” x  value appears to be 1x  since we then have 
3

3arctan


 .  With 1x  

we have 

 1 2 3 1 2 3 1 2 1 2

1
(1,3,( , , )) ( )6 ( ) 3 3( ) ln3

18
BPP a a a a a a i a a a a        . 

This implies that 1 2 3 0a a a   and 
1 2 0a a  .  Row-reducing 

1 1 1 0

1 1 0 0

 
 
 

 

yields 

1 1 0 0

0 0 1 0

 
 
 

. 

Thus, 1 2a a   and 3 0a  , resulting in the BBP-type formula 

(4.3)       
0

1 1 3
(1,3, (1, 1,0))

3 1 3 2 9k

BPP
k k





 
    

  
 . 

 The alternating base 3 formulas were investigated in the previous chapter. 

 Next we will examine non-alternating base 4 formulas, 

 
2 3

1
1 2 3 4

1 2 3 4 4 40
, 4, ( , , , )

1

a a u a u a u
BBP x a a a a du

x u

  


 . 

Using Mathematica, 
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3 2 3

1 2 3 4 2 3 4 1 32 1

3 2 3 2 2 2

1 2 3 4 1 2 3 4 2 4

1
, 4, ( , , , ) ( ) 2( )arctan( )

4

( ) ln( 1) ( ) ln( 1) ( ) ln( 1) .

BBP x a a a a a x a x a x a i a x a x x
x

a x a x a x a x a x a x a x a x a x a x

     

            
 

The )arctan(x  term can be evaluated if 
1

3
x   or 1x  .  When 

1

3
x  , 

  

  

1 2 3 4 1 3 1 3

1 3 2 4 4

1 1 3
, 4, ( , , , ) ( 3 ) ( 3 ) 3 ln 3 3

4 33

( 3 ) 3 ln 3 3 ( 9 )3ln 2 18 ln3 .

BBP a a a a a a a a

a a a a a

 
     

 

     

 

We row-reduce 

1 0 3 0 0

0 1 0 9 0

0 0 0 1 0

 
 


 
  

, 

which gives 

1 0 3 0 0

0 1 0 0 0

0 0 0 1 0

 
 
 
  

. 

Thus 1 33a a   and 2 4 0a a  .  Therefore, the BBP-type formula is 

0

1 1 3 1 3
, 4, (3, 0, 1, 0)

9 4 1 4 3 23

k

k

BBP
k k





     
       

     
 , 

which is the same as 3 times the result in (4.1). 

With 1x  ,  1 2 3 41, 4, ( , , , )BBP a a a a  only converges if 1 2 3 4 0a a a a    .  Using 

this, 
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   1 2 3 4 1 3 1 3 4

1
1, 4, ( , , , ) ( ) ( 2 ) ln 2 .

4 2
BBP a a a a a a a a a


      

Hence, we row-reduce 

1 1 1 1 0

1 0 1 2 0

 
 

 
 

and get 

1 0 1 2 0

0 1 0 3 0

 
 
 

. 

This produces the BBP-type formulas 

 
0

1 1
1, 4, (1, 0, 1, 0)

4 1 4 3 4k

BBP
k k





 
    

  


 

which is (4.2) again, and 

 
0

2 3 1
1, 4, (2, 3, 0,1)

4 1 4 2 4 4 4k

BBP
k k k





 
     

   
 . 

 The alternating base 4 case gives 

    

 



2 3 2

1 2 3 4 2 1 2 34

3 2 3 2

1 2 3 1 3 4

3 2

1 3 4

1
, 4, ( , , , ) ( 2 2 4 2 2 )arctan 1 2

8

(2 2 4 2 2 )arctan 1 2 ( 2 ) 2 ln( 2 1)

( 2 ) 2 ln( 2 1) .

ABBP x a a a a a x a x a x a x x
x

a x a x a x x a x a x a x x

a x a x a x x
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The only obvious nice x  value is 
1

2
x   which eliminates  x21arctan   .  This implies 

that 02 a  or we will eliminate our only   term.  When 
1

2
x    

 1 2 3 4 2 1 2 3 1 3 4 4

1 1
, 4, ( , , , ) 2 ( 2 2 )2arctan 2 ( 2 4 ) ln5 8 ln 2 .

42
ABBP a a a a a a a a a a a a

 
        

 

 

By row-reducing 

1 2 2 0 0

1 0 2 4 0

0 0 0 1 0

 
 


 
  

 

we have 

1 0 2 0 0

0 1 2 0 0

0 0 0 1 0

 
 


 
  

. 

Thus, we have the BBP-type formula 

0

1 1 2 2 1
, 4, (2, 2,1, 0)

4 4 1 4 2 4 32

k

k

ABBP
k k k






     
        

      
 . 

 It turns out that 1x   also produces BBP-type formulas.  This is because

3
arctan(1 2)

8


  and arctan(1 2)

8


  .  When 1x   we have 

    

 

1 2 3 4 1 2 3 1 3 4

1 3 4

1
1,4, ( , , , ) ( 2 2 ) ( 2 2 2 ) ln 2 2

8

( 2 2 2 ) ln 2 2 .

ABBP a a a a a a a a a a

a a a

       

   

. 
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Row-reducing 

2 0 2 2 0

2 0 2 2 0

 
 

  

 

yields 

1 0 1 0 0

0 0 0 1 0

 
 
 

. 

Therefore, we have 

 
0

1
1,4,(0,1,0,0) ( 1)

4 2 8

k

k

ABBP
k





  


  

which is the Leibniz formula, (4.2), in disguise, and 

(4.4)            
0

1 1 2
1,4,(1,0,1,0) ( 1)

4 1 4 3 4

k

k

ABBP
k k





 
    

  
 . 
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Chapter 5: Examining the Cases with a Base 6 

We found no nice BBP-type formulas with base 5.  In this chapter, we present 

results for base 6.  For the non-alternating version, 

   



4 2 5 4 3 2

1 2 3 4 5 6 2 4 1 2 3 4 5 66

5 4 2

1 2 4 56

5 4 2 5 4 3 2

1 2 4 5 1 2 3 4 5 6

1
,6, ( , , , , , ) ( ) 3 ( )3

18

1 2 1
( )2 3 arctan

12 3

2 1
( )2 3 arctan ( )2ln( 1)

3

(

BBP x a a a a a a a x a x a x a x a x a x a x a i
x

x
a x a x a x a x

x

x
a x a x a x a x a x a x a x a x a x a x

       

 
     

 

 
           

 





5 4 3 2

1 2 3 4 5 6

5 4 3 2 2

1 2 3 4 5 6

5 4 3 2 2

1 2 3 4 5 6

)2ln( 1)

( 2 2 ) ln( 1)

( 2 2 ) ln( 1) .

a x a x a x a x a x a x

a x a x a x a x a x a x x

a x a x a x a x a x a x x

     

       

       

 

The 






 

3

12
arctan

x
 term suggests 

1

2
x   since 

1
2 1

2
arctan 0

3

  
  

   
 
 
 

, or 1x   since 

 2 1 1 1
arctan arctan

63 3

   
    

  
.  The 







 

3

12
arctan

x
 term also evaluates when 1x   

since  
3

3arctan
3

1)1(2
arctan










 
.  

 When 
1

2
x  , 

  

 

  

1 2 3 4 5 6 4 1 2 4 5
2

6 1 2 3 4 5 6

1 2 3 4 5 6

1 1 2
, 6, ( , , , , , ) 4 3( 4 ) 6 3 2 8 16 arctan

2 18 3

192 ln 2 3 2 16 8 16 128 ln3

3 2 8 8 16 64 ln 7 .

BBP a a a a a a a a a a a a

a a a a a a a

a a a a a a
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Row-reducing 

1 2 0 8 16 0 0

0 0 0 0 0 192 0

1 2 16 8 16 128 0

1 2 8 8 16 64 0

  
 
 
   
 

  

 

we get 

1 0 0 4 8 0 0

0 1 0 2 12 0 0

0 0 1 1 2 0 0

0 0 0 0 0 1 0

 
 


 
 
 
 

. 

Thus, 

0

1 1 4 2 1 1 4 3
, 6, (4, 2, 1, 1, 0, 0)

2 64 6 1 6 2 6 3 6 4 9

k

k

BBP
k k k k





     
            

        


 

and 

0

1 1 8 12 2 1 8 3
, 6, (8, 12, 2,0, 1, 0)

2 64 6 1 6 2 6 3 6 5 3

k

k

BBP
k k k k





     
          

        
 . 

 When 1x  , we need 0654321  aaaaaa for convergence.  Using this,  

  


1 2 3 4 5 6 1 2 4 5

1 2 3 4 5 6 1 2 3 4 5 6

1
1, 6, ( , , , , , ) (3 3 ) 3

36

( )6ln 2 ( 2 2 )3ln3 .

BBP a a a a a a a a a a

a a a a a a a a a a a a

   

           

 

Row-reducing 
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0211211

0111111

0111111

 

 yields 

1 0 0 0 1 1 0

0 1 0 1 0 1 0

0 0 1 0 0 1 0

 
 
 
  

. 

Thus, we have  

 
0

1 1 3
1, 6, (1, 0, 0, 0, 1, 0)

6 1 6 5 6k

BBP
k k





 
    

  
 , 

 
0

1 1 3
1, 6, (0,1, 0, 1, 0, 0)

6 2 6 4 18k

BBP
k k





 
    

  
 , 

and

 

 
0

1 1 1 1 3
1, 6, (1, 1, 1, 0, 0, 1)

6 1 6 2 6 3 6 6 18k

BBP
k k k k





 
       

    
 . 

The second of these is equivalent to the formula (4.3) for base 3. 

 In the alternating case, we have  

    

 

   

2 5 3

1 2 3 4 5 6 2 4 1 3 56

5 4 3 2

1 2 3 4 5

5 4 3 2 4 2 2

1 2 3 4 5 2 4 6

5 4 2

1 2 4 5 6

1
( , 6, ( , , , , , ) ( )2 3 ( )4arctan

12

( 3 2 3 )2arctan 3 2

( 3 2 3 )2arctan 3 2 ( )2ln 1

( 3 3 2 ) l

ABBP x a a a a a a a x a a x a x a x x
x

a x a x a x a x a x x

a x a x a x a x a x x a x a x a x

a x a x a x a x a

    

     

         

      

 

2

5 4 2 2

1 2 4 5 6

n 3 1

( 3 3 2 ) ln 3 1 .

x x

a x a x a x a x a x x
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We can use 
3

1
x  and 1x  in the argument )arctan(x .  We can also eliminate 

 x23arctan   when 
2

3
x .  When 1x , the terms  x23arctan   and  x23arctan   

evaluate since  
5

arctan 3 2
12


   and  arctan 3 2

12


  . 

 When 
3

1
x ,  

 

   

  

1 2 3 4 5 6 1 2 3 4 5

1 2 3 4 5 2 4 6

6 1 2 3 4 5

1 1
,6, ( , , , , , ) 9 12 27 9

123 3

5
3 6 9 9 2 3 arctan 3 9 12ln 2

3

162 ln3 3 9 18 3ln 7 .

ABBP a a a a a a a a a a a

a a a a a a a a

a a a a a a

 
     

 

 
        

 

     

 

Row-reducing  

1 3 6 9 9 0 0

0 1 0 3 0 9 0

0 0 0 0 0 1 0

1 1 3 9 18 0 0

  
 


 
 
 

  

 

gives 

1 0 0 0 3 0 0

0 1 0 3 0 0 0

0 0 1 3 3 0 0

0 0 0 0 0 1 0

 
 


 
 
 
 

. 

We have  
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0

1 1 9 3 1 3 3
, 6, (9, 0, 3, 0,1, 0)

27 6 1 6 3 6 5 23

k

k

ABBP
k k k





     
        

      
  

and  

0

1 1 3 3 1 3
, 6, (0, 3, 3,1, 0, 0)

27 6 2 6 3 6 4 23

k

k

ABBP
k k k





     
       

      
 . 

 When 
2

3
x , 

   

   
    

1 2 3 4 5 6 2 4 1 3 5

1 2 3 4 5

1 2 4 5 6 2 4 6 6

3 1 3
, 6, ( , , , , , ) 3 4 8 3 9 12 16 4 3 arctan

2 162 2

9 3 18 3 24 3 24 3 16 3 2arctan 2 3

27 18 24 48 64 ln13 9 12 16 4ln 7 384 ln 2 .

ABBP a a a a a a a a a a a

a a a a a

a a a a a a a a a


   

          
   

    

        

 

Row-reducing 

9 0 12 0 16 0 0

9 18 24 24 16 0 0

27 18 0 24 48 64 0

0 9 0 12 0 16 0

0 0 0 0 0 1 0

 
 

 
 
  
 

 
  

 

gives 

9 0 0 0 16 0 0

0 3 0 0 8 0 0

0 0 3 0 8 0 0

0 0 0 1 2 0 0

0 0 0 0 0 1 0

 
 


 
 
 

 
  

, 
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yielding 

 



































 















0

.
9

364

56

9

46

18

36

24

26

24

16

16

64

27
)0,9,18,24,24,16(,6,

2

3

k

k

kkkkk
ABBP



. 

Finally, when 1x  ,  

  

 

1 2 3 4 5 6 1 2 3 4 5

2 4 6 1 5

1
1, 6, ( , , , , , ) (6 2 3 3 2 3 6 )

36

( )6ln 2 ( )6 3 ln 2 3 .

ABBP a a a a a a a a a a a

a a a a a

    

     

 

Row-Reducing 

0 1 0 1 0 1 0

1 0 0 0 1 0 0

 
 

 
 

gives 

1 0 0 0 1 0 0

0 1 0 1 0 1 0

 
 

 
. 

Hence, this yields four BBP-type formulas,  

   
0

1
1,6,(0,0,1,0,0,0) 1

6 3 12

k

k

ABBP
k





  


 , 

which is Leibniz’s formula in disguise again, 

   
0

1 1
1,6,(1,0,0,0,1,0) 1

6 1 6 5 3

k

k

ABBP
k k





 
    

  
 , 
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0

1 1 3
1,6,(0,1,0,1,0,0) 1

6 2 6 4 9

k

k

ABBP
k k





 
    

  
 , 

and 

   
0

1 1 3
1,6,(0,1,0,1,0,0) 1

6 2 6 6 18

k

k

ABBP
k k





 
    

  
 . 

The third and last formulas are equivalent to formula (3.3) and formula (3.4) respectively. 
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Chapter 6: Examining Cases with Base 8 

 This chapter deals with BBP-type formulas with base 8.  There do not appear to be 

any “nice” formulas with base 7.  In the non-alternating case, 

  

 
 

 
 .12ln2)22(

12ln2)22(

21arctan2)2222(

21arctan2)2222(

)1ln(2)()arctan(4)(

)1ln(2)(

)1ln(2)(2)(

2)(
16

1
),,,,,,,(,8,

2

87

3

5

4

4

5

3

7

1

2

87

3

5

4

4

5

3

7

1

7

2

6

3

5

5

3

6

2

7

1

7

2

6

3

5

5

3

6

2

7

1

2

8

2

6

4

4

6

27

3

5

5

3

7

1

87

2

6

3

5

4

4

5

3

6

2

7

1

87

2

6

3

5

4

4

5

3

6

2

7

1

2

6

6

2

87

2

6

3

5

4

4

5

3

6

2

7

1287654321

















xxaxaxaxaxaxa

xxaxaxaxaxaxa

xxaxaxaxaxaxa

xxaxaxaxaxaxa

xaxaxaxaxxaxaxaxa

xaxaxaxaxaxaxaxa

xaxaxaxaxaxaxaxaxaxa

iaxaxaxaxaxaxaxa
x

aaaaaaaaxBBP





 

Possible x -values are 
3

1
x  and 1x  from )arctan(x .  We can also eliminate 

)21arctan( x  if 
2

1
x .  The term )21arctan( x  also evaluates when x=1 since 

3
arctan(1 2)

8


  and arctan(1 2)

8


  . 

 When 
3

1
x , 

1 2 3 4 5 6 7 8 1 2 3 5 6 7

1 2 3 5 6 7

1 2 3 5 6 7

1 1 1
,8, ( , , , , , , , ) 3 3 3 3 27 9 3

83 3

3 3 3 3 2
3 3 9 27 27 arctan 1

2 2 2 2 3

3 3 3 3 2
3 3 9 27 27 arctan 1

2 2 2 2 3

3

BBP a a a a a a a a a a a a a a

a a a a a a

a a a a a a


   

        
   

   
             
   

   
            
   

 8 2 4 6 8 4 8

1 3 5 7 1 3 5 7

24 ln3 ( 6 9 108 )3ln 2 ( 9 ) ln5

3 4 6 3 4 6
( 3 9 27 ) ln ( 3 9 27 ) ln .

2 3 2 3

a a a a a a a

a a a a a a a a

     

    
               

   

. 
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Row-reducing 

3 3 3 3
3 3 0 9 27 27 0 0

2 2 2 2

3 3 3 3
3 3 0 9 27 27 0 0

2 2 2 2

0 0 0 0 0 0 0 1 0

0 1 0 6 0 9 0 108 0

0 0 0 1 0 0 0 9 0

1 0 3 0 9 0 27 0 0

1 0 3 0 9 0 27 0 0

 
   
 
 

   
 
 
 

  
 
 
 
   

 

gives 

1 0 0 0 0 0 27 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 9 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 3 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 

. 

Thus, we have the BBP-type formula 

0

1 1 27 9 3 1 9 3
,8,(27,0, 9,0,3,0, 1,0)

81 8 1 8 3 8 5 8 7 23

k

k

BBP
k k k k





     
          

       
 . 

This formula is equivalent to the formula in (4.1). 

When 
2

1
x , 
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.
2

1
1ln)842(

2

1
1ln)842(2ln645ln)168442(

3ln2)842(
2

1
arctan22)842(

)2arctan(2)88422(

2)4(
8

1
),,,,,,,(,8,

2

1

7531

75318875431

86427531

765321

6287654321















































aaaa

aaaaaaaaaaa

aaaaaaaa

aaaaaa

aaaaaaaaaaBBP 

. 

Row-reducing 



































008040201

0168044201

080402010

010000000

008040201

008840221

 

we get 































000000000

000110000

004201000

004000100

008000010

000400001

. 

This gives two BBP-type formulas, 












































0 68

1

58

1

48

2

18

4

16

1
)0,0,1,1,2,0,0,4(,8,

2

1

k

k

kkkk
BBP   

which is the original BBP formula (1.1), and 
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0

2
78

1

48

4

38

4

28

8

16

1
)0,1,0,0,4,4,8,0(,8,

2

1

k

k

kkkk
BBP  . 

 When 1x  ,  ),,,,,,,(,8,1 87654321 aaaaaaaaBBP  only converges if 

087654321  aaaaaaaa .  Using this, 

  

   

      .)22ln(222ln2

2ln232

)(
16

1
),,,,,,,(,8,1

75317531

8754317531

76532187654321







aaaaaaaa

aaaaaaaaaa

aaaaaaaaaaaaaaBBP





 

Row-reducing 

1 0 1 1 1 0 1 3 0

1 0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 0

1 1 1 1 1 1 1 1 0

  
 
 
 
  
 
 

 

yields 

1 3
1 0 0 0 0 1 0

2 2

0 1 0 2 0 1 0 4 0

1 3
0 0 1 1 0 0 0

2 2

0 0 0 0 0 0 0 0 0

 
  

 
 
 

  
 
  

. 

Thus, we have the BBP-type formulas, 

(6.1)    ,  
8

)423(

88

2

38

3

28

8

18

3
)2,0,0,0,0,3,8,3(,8,1

0






















 



k kkkk
BBP
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(6.2)                    
8

)12(

78

1

18

1
)0,1,0,0,0,0,0,1(,8,1

0
















 



k kk
BBP , 

 
868

1

28

1
)0,0,1,0,0,0,1,0(,8,1

0
















 



k kk
BBP , 

(6.3)                 
8

)12(

58

1

38

1
)0,0,0,1,0,1,0,0(,8,1

0
















 



k kk
BBP , 

and 

(6.4)           
0

1 4 1 2 ( 2 2)
1,8,(1, 4,1,2,0,0,0,0)

8 1 8 2 8 3 8 4 8k

BBP
k k k k





 
      

    
 . 

  

For more elegant results, we can take three times (6.2) and subtract (6.1) to get 

 
0

8 3 3 2 7
1,8,(0,8, 3,0,0,0, 3, 2)

8 2 8 3 8 7 8 8 8k

BBP
k k k k





 
        

    
 . 

We can also take (6.1) and add four times (6.2) to get 

 
0

7 8 3 4 2 7 2
1,8,(7, 8,3,0,0,0, 4,2)

8 1 8 2 8 3 8 7 8 8 8k

BBP
k k k k k





 
        

     
 . 

Also, (6.3) minus (6.4) is 

 
0

1 4 2 1
1,8,( 1,4,0, 2, 1,0,0,0)

8 1 8 2 8 4 8 5 8k

BBP
k k k k





 
        

    
 . 

Lastly, we have two times (6.3) minus (6.4) which is 
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0

1 4 1 2 2 2
1,8,( 1,4,1, 2, 2,0,0,0)

8 1 8 2 8 3 8 4 8 5 8k

BBP
k k k k k





 
         

     
 . 

For the alternating case, we have eliminated the several pages of the integration.  

 ),,,,,,,(,8, 87654321 aaaaaaaaxABBP  involves the following arctangents  



















22

222
arctan

x
, 



















22

222
arctan

x
, 



















22

222
arctan

x
, 

and 



















22

222
arctan

x
. 

These arctangents evaluate if 1x   as follows 

2 2 2
arctan

162 2

    
  
  

, 

2 2 2 7
arctan

162 2

  
  
  

, 
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2 2 2 3
arctan

162 2

    
  
  

, 

and 

2 2 2 5
arctan

162 2

  
  
  

. 

Using this information we were able to simplify  ),,,,,,,(,8,1 87654321 aaaaaaaaABBP .  To 

eliminate the logarithms we row-reduced 

5 5
0 2 2 0 0 0 2 2 0 (1 2) 2 2 0

4 4

1 1 1 1 1 1
1 2 2 0 2 2 1 2 2 0

4 42 2 2 2

1 1 1 1 1 1
1 2 2 0 2 2 1 2 2 0

4 42 2 2 2

3 1 1 3
2 0 1 0 1 0 2 0 0

2 2 2 2

3 1 1 3
2 0 1 0 1 0 2 0 0

2 2 2 2

 
     

 
        

 
 

       
 
 
      
 
 
      
  

, 

which yields 

1 0 0 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

 
 


 
 
 
 
  

. 

This leads to the following BBP-type formulas 
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0

1
1,8,(0,0,0,1,0,0,0,0) ( 1)

8 4 16

k

k

ABBP
k





 
   

 
 , 

 
0

1 1 4 2 2
1,8,(1,0,0,0,0,0,1,0) ( 1)

8 1 8 7 8

k

k

ABBP
k k





 
    

  
 , 

 
0

1 1 2
1,8,(0,1,0,0,0,1,0,0) ( 1)

8 2 8 6 8

k

k

ABBP
k k





 
    

  
 , 

and 

 
0

1 1 4 2 2
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The first formula is equivalent to Leibniz’s formula, (4.2), and the third formula is 

equivalent to (4.4). 
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Chapter 7: Conclusions 

 In this project, I focused on BBP-type formulas for scaled values of  .  It might be 

interesting to carry out this algorithm for other constants, such as arctangents, logarithms, 

and zero.  The constant zero relates the null space of the system of linear equations.  Except 

for an example in the alternating base 4 case and base 8 cases, our method only utilized a 

single arctangent term.  Since there are many formulas for combinations of arctangents, 

like 

24
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2

1
arctan2




















. 

A more sophisticated approach would take this into account. 

 BBP-type formulas can be extended to the formulas of the form   
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where s is an integer.  This form leads to BBP-type formulas for constants such as 
2 , as in 

the following example, 

2
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, 

from [3, p. 8 formula 19].  Our algorithm handles only cases where 1s .  Future work 

could explore this area. 

 From [7, p. 737], we have the equation 
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  . 

The above formula allows for the individual hex or binary digits of   to be calculated.  It is 

over 40% faster than formula (1.1).  It would be of interest to search for a faster equation or 

of BBP-type formulas that are combinations of different bases with different x -values. 

 Another limitation to our algorithm is that as we increase the base, we complicate 

the integration.  Base 8 is the highest case that our algorithm can handle without too much 

complexity.  Base 12 appears to have BBP-type formulas; it would have been nice to take a 

closer look at it. 

 Our algorithm is useful as it is a combination of elementary concepts.  We simply 

used Theorem 1 and 2, along with row-reducing matrices of systems linear equations to 

eliminate non-  constants.  Also, using integration provided a useful tool in discovering 

“nice” x-values.  Although our algorithm for searching for BBP-type formulas does not work 

well for higher bases, it does work well for verifying most cases previously discovered of 

degree one. 
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Appendix 1: Table Summarizing Bases 2, 3, 4, 5, 6, and 8 

The following table summarizes the results of BBP-type formulas discovered in 

chapters 4, 5, and 6. 

Table 3- BBP-type formulas discovered 
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We will refer to each formula by its number corresponding to the first column. 

Formulas 1, 7, 18, and 25 are equivalent to the power series of 








3

1
tan . 

Formulas 2, 8, 11, 21, 30, and 33 are equivalent to Leibniz’s Formula, (4.2). 

 

Formulas 3 and 16 are equivalent. 

Formulas 5 and 23 are equivalent. 

Formulas 6 and 24 are equivalent. 

Formulas 10, 13, and 14 can be found in [3, p. 7 formula 16 and p. 16 formulas 58 & 59 

respectively]. 

 

Formulas 12 and 35 are equivalent. 

Formulas 26 and 27 can be found in [11, formulas 2 & 3 respectively]. 

Formulas 3, 4, 5, 6, 9, 12, 15, 17, 19, 20, 22, 28, 29, 31, 32, 34, and 36 are possibly new BBP-

type formulas as we did not see them in the literature.  They are also marked with an * in 

the above table.  If two formulas are equivalent, only the formula from with a smaller base 

is considered new. 
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Appendix 2: Mathematica’s Output for the Non-Alternating Base 6 

 This is the actual Mathematica output for integrating the non-alternating base 6 

case.  The restrictions on x  can be disregarded since we are concerned with 1x  and 

when 1x  we add the necessary constraints.  Also, ,,,,, edcba and f  are equivalent to 

,,,,, 54321 aaaaa  and 6a  respectively.  For simplification, expressions were expanded and 

constants were factored.  Logarithms were also expanded, i.e. 62 Log 1f x     is 

equivalent to 
6

62 ln( 1 )a x   , which was expanded to 

 2 2

62 ln 1 ln( 1) ln( 1) ln( 1)a x x x x x x          . 

This often affected the system of linear equations and added a degree of freedom.  Similar 

simplification was used once an x –value was plugged in. 

 In the base 8 case, partial fractions were used to convert the integral into four 

integrals.  The four integrals were integrated separately and their results were summed 

together.   
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