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It Has Been Said That...

“For every belief comes either
through syllogism or from induction”

Aristotle, Organon (Prior Analytics I, §23)

Artificial Intelligence research today?
Syllogism xor Induction
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A. Why KRR Should Embrace Learning

Review of Standard KRR Problems
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Representation and Reasoning

e Propositions (p, g, ...). Connectives (A, -, ...).
Implications: ¢ = x. Equivalences: ¢ < x.

e Reasoning semantics through entailment .

e Proof procedures - to compute entailment.

e Given formulas in KB and an input O, deduce
whether a result R is entailed (KB U O ER).
 Given formulas in KB and an input O, abduce

an explanation E that entails O (KB U E = 0).
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Relational Representation and IQEs

e Predicates (p, g, ...). Variables (x, y, ...). Tokens
(t;). Connectives (A, -, ...), Quantifiers (¥, 3).

e From the class of implications / equivalences,
consider only those whose body comprises
independently quantified expressions (IQEs).

Ay3z [ num(y) Anum(z) A larger(z,y) A =div(y,z) ]

No tokens (they carry no meaning), small arity.

Vxs [ formula over IQEs < head_predicate(xs) ]
(see later: these restrictions support learnability)
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Non-Monotonic Reasoning

* Non-monotonicity typically viewed as
property of extending input O for fixed KB,
and having result R become “smaller”.

e Useful also when extending KB as a
prerequisite to elaboration tolerance.

* Will use logic-based argumentation for NMR.

Most (all?) major NMR logics have been
reformulated in terms of argumentation.
Compatible with human cognition [Kakas+ ’16].
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Formal Argumentation in Al

e Abstract Argumentation framework <Arg,Att>
Arg is a set of arguments (no internal structure)
Att is a binary relation on Arg (lifted on sets)

e Goal: Find S — Arg that defends all its attacks.
Several ways to make this precise [Dung ’95].

e Structured argumentation (e.g., ABA, ASPIC+):
argument is a classical proof from inputs and
KB rules. The overall reasoning is not classical.
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Activity: Logic-Based Arguments

treated implies will_survive. =g 3
fatal implies -will_survive. 3 & %
viral_meningitis implies meningitis. _g g_ ?B
bacterial_meningitis implies meningitis. 2 En:‘
bacterial_meningitis implies fatal. <] 8

fatal implies -treatable.
meningitis implies -fatal.
meningitis implies treatable.

fatal imoli il X {}, {viral_meningitis},
~tatal implies will_survive. {bacterial_meningitis},
true implies -meningitis. {bacterial_meningitis,treated}

What inference should
we draw on each input?
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Reasoning in Temporal Settings

e Frame Problem (commonsense law of inertia):
Properties persist unless caused to stop.
If you see a bird flying, it is flying a bit later.
Persistence rules are weaker than causal rules.

* Ramification Problem: Production of indirect
effects as a way to satisfy state constraints.
If you shoot a bird, it stops being able to fly.
Encode ramifications as causal rules (since
constraints could also qualify causal change).
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Reasoning in Temporal Settings

e Qualification Problem: Effects of actions are
blocked if they would violate state constraints.
¢ If you scare a dead bird, it does not fly away.

* This constraint does not produce ramifications.
» Encode constraints as preclusion / block rules.

e State Default Problem [Kakas+ ’08]: If a state
constraint is violated, the exception persists.
* If you see a flying penguin, it remains one.
* Persistence rules are stronger than constraints.
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Activity: Story Understanding

What inferences follow from this story?

Papa Joe woke up early at dawn, and went off to
the forest. He walked for hours, until the sight of a
turkey in the distance made him stop.

A bird on a tree nearby was cheerfully chirping
away, building its nest. He carefully aimed at the
turkey, and pulled the trigger of his shotgun.
Undisturbed, the bird nearby continued chirping.

Q1: What is the condition of the turkey?
(a) Alive and unharmed. (b) Dead. (c) Injured.
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A. Why KRR Should Embrace Learning

The Task of Knowledge Acquisition
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What if KB not Given but Learned?

learned KB training real world
—° 5

reasoning same

e Then, KB is Probably Approximately Correct:
* improbable the samples were unrepresentative
e future predictions will be approximately correct
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Program, Memorize, or Induce?

1101001 0
0101011 . n 0
o101 — f. 0,1 10,1) i—’ 1

¢ Concept Class C: bias, possible target concepts.
¢ Hypothesis Class H: all acceptable hypotheses.
e Complexity: examples/time/memory to learn.
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e Examples: Target Concept: Labels:

Typical Boolean Target Concepts

e Conjunction function: x; A x; A X,
1011101 the conjunction of X3, X5 X5 is 1
* Parity function: x, ® x; ® x; ® x,
0010101  the parity of X,, X5, X5, X4 is 0
e Decision list: (x,, 1), (x,,0), {x, 1), (default,0)
1010011 false: x, x, firsttrue:x, value:1
e Linear threshold (hyberplane, perceptron):
weights=(0.3, 0.1, 0.5, 0.2, 0.7, 0.9), threshold=1
0110100 110100 - weights = 0.6 < threshold
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Activity: Is Learning Even Possible?

o W
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Evaluation of Reasoning Process

¢ Evaluate reasoning process against given KB:
e improve completeness, insisting on full soundness
e okay since KB is considered the
* not okay when KB is only approximately correct

¢ Evaluate reasoning process when KB learned:
improve completeness, without compromising
soundness much more than what is necessary
soundness and completeness wrt an
(access only to its partial models during training)
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Real World, the KB, and Reasoning

traditional KRR | with learned KB

no access(!) partial models

@ globally correct | individual rules
thekB § (rules qualified) | approx. correct
V. against the KB | against real world

ﬁ.@ - 8 g

' reasoning | unsoundess =0 | unsoundness <<
B completeness ++ | completeness ++

—
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Is Chaining Trivially Beneficial?

e Yes, if rules in the KB are given / programmed.
Given:
Given:
Infer “visit a doctor” given “you have fever”?

e Prima facie no, if rules in the KB are learned.

Learning can render rule chaining superfluous
(cf. shortcuts, heuristics, fast thinking, hunch).
Learned:
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B. Introduction to PAC-Semantics

Semantics for Propositional Logic
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PAC-semantics for propositional logics

* Fixed, finite set of propositional variables:
[FOOD=SEED], [FOOD=GRUBS],
[FOOD=MOUSE], [FOOD=WORM],
[FOOD=FISH], ..., [FLIES], [SWIMS], [HAS_BILL],
[HAS_BEAK], [COLOR=BLACK], [COLOR=RED],
[COLOR=BROWN], [COLOR=WHITE],
[COLOR=GREEN], [COLOR=BLUE], ...

* Probability distribution D over Boolean
valuations for the propositional variables
* NOTE: generally not uniform, not independent
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Motivating example:
birds.com Analytics

birdsbco To determine:
°© Q

mTM
2
The data ’

for data source?”

“true... with high probability

Bird no. | Food _|
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PAC-semantics for propositional logics

* Probability distribution D over Boolean
valuations for the propositional variables

» Usually propositional variables capture
attributes of data entry, sensor values, etc.

* D captures range of possible combinations of
values and their relative frequency

= Definition. [Valiant '00] A formula ¢(x,,...,x,)
is (1-g)-valid under D if Prple(xy,...,x,)] 2 1-€.
* & may or may not be small (cf. [Adams "75])
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PAC-semantics for propositional logics

= Definition. [Valiant '00] A formula ¢(x,,...,x,)
is (1-)-valid under D if Prp[@(xy,...,x,)] 2 1-€.
* &€ may or may not be small (cf. [Adams '75])

WHAT INFERENCES
PRESERVE (1-¢)-VALIDITY:

* Theorem. [Juba "13] Suppose h,,...,h,
are, respectively, 1-¢,, ..., 1-¢, —valid,
and {h,,....h }Fo (classical entailment).
Then ¢ is 1-(g,+...+g,)-valid.
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Classical entailment to PAC entailment:
the union bound

e Consider the events [-h,],...,[-h,]
e Union bound: the event
["hlv"'v“hk] = [-(h; A= Ahy)]
has total probability < &,+...+ g,
e Classical entailment: [h; A--- Ah,] € [¢]
e Therefore: Prple] 2Prplh; A== Ah]
21-(g+..tg) M
e Summary: all classical inferences preserved,
but each additional premise may incur a cost
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" Motivating example:
birds.com Analytics
birds.com™

~[FOOD=FISH] &
5
Seems =7/g-valid...

. ('*i/ /
“d

JUSTIFIED ON
WHAT GROUNDS??
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107 48 Seed
107 49 Grubs
107 50 Mouse
107 51
107 52
107 53 Fish
107 54 Mouse
107 55 Grubs

Mouse

Worm

e

Classical entailment to PAC entailment:
the union bound

e Consider the events [-h,],...,,[=h,]

D Probability
<&

Probability
< N

N g Probability
2 1-(g+..+ &)

Y
Union Bound: Total

probability < e, +..+ g, _—
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PAC-semantics does not mean
Probability Logic (e.g. Nilsson’86)

PAC-semantics

Logics of Probability
e Classical Boolean e Probability bounds in
object language object language
* Probability bounds in e Classical (Tarskian)
interpretation semantics
e Classical proof of a
formula guarantees
it holds with some
probability under D

e Classical proof of a
probability bound
on D that is true
with certainty
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B. Introduction to PAC-Semantics

Learning and Inductive Inference
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Knowledge acquisition from data:
birds.com Analytics

The “i.i.d. data” assumption

To determine:
(1-€)-valid for D?
(D is arbitrary)

birds.com™
L
- 2
The data ’ =~

Cono- [foos ]

48 Seed
49 Grubs
50
51
52
53
107 54
107 55 Grubs

Mouse -
Assume: Each entry (row)

is an “example,” drawn
independently from D

Mouse

Worm
Fish
Mouse

: 4
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e Assume: data consists of examples —
valuations of the propositional variables
drawn independently from common D (“i.i.d.”)
* Will enable us to draw conclusions about D

 Recall: if A,B,C,... are (mutually) independent,
then Pr[AABACA...] = Pr[A] Pr[B] Pr[C] ...

e Likewise, if random variables W,X)Y,... are
independent then E[WXY...] = E[W] E[X] E[Y]...
(and E[f(W)g(X)h(Y)...]I=E[f(W)]E[g(X)]E[h(Y)]...)
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Inference from i.i.d. examples

e Assume: data consists of examples —
valuations of the propositional variables
drawn independently from common D (“i.i.d.”)
* Will enable us to draw conclusions about D

e Suppose ¢ is not (1-g)-valid under D.

e Draw X = (X,(1,X,®,...,X (1),

X2 = (Xl(Z)IXZ(Z)l"'IXn(Z))I Data set of
) m “examples”
X(m)= (xl(m)’xz(m)’___’xn(m))
independently from D.

Inference from i.i.d. examples
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e Suppose ¢ is not (1-g)-valid under D.

e Draw X, X@) ., XM independently from D.

* Prlp(X), o(X12),..., and @(X(™)]

= Prlo(X®)]Pr{ep(X2))]...Pr{ep(X(M)]

* By hypothesis, each Prip(X1)] < 1-¢

e So, the probability that we fail to observe that
@ is false for some example XV is at most
(1-g)m< eem (...since for all x, 1+x < &%)

e Less than any given § if m21/,In 1/,
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Inference from i.i.d. examples

* So we have shown
Theorem. If ¢ is consistent with m 21/,In /4
examples drawn independently from D, then
with probability 1-6, ¢ is (1-g)-valid under D.
(“Probably Approximately Correct”)

* Only guaranteed to work if ¢ is actually always
true. What if ¢ is only (1-¢’)-valid under D, for
some g’ <¢e?

(e.g., only ’/g-valid, in the case of birds.com?)

Chernoff/Hoeffding bounds:
sample averages are good estimates
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o Let YW, Y@, Y(M be independent
random variables taking values in [0,1].
Let = E[(Y/,,)(YD+Y@+  +Ym)],

* Hoeffding bound: for any y >0,
Pr{(1/ )J(YW+Y@4 1Y) > ay] < @2V
Pri(/ J(YO+Y@+ +YiM) < poy] < e2my?

e Chernoff bound: for anyy >0,
Pr{(1/,)(YD+Y@4  +Y(M)) > (14y)u] < emHv*/3
Pr{(1/,)(YD+Y@u4  +Y(M) < (1-y)u] < e mHv?/2
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Inference using Chernoff/Hoeffding

e We draw X®), X . X(M independently from D

e For p =1/, ([o(X®)]+[@(X@)]+..+[o(XM)]),
how large must m be to conclude that with
probability 1-6, ¢ is (p+y)-valid under D?

e Use the Hoeffding bound: for anyy >0,
Pr{(1/ )(YW+Y@  +Y(M) > pay] < e2mv?
Pri(Y/ JYW+YR4+ +Y(M) < p-y] < e2mv?

TRY IT!
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Inference using Chernoff/Hoeffding

* We draw X1, X . XM jndependently from D

e For p =1/, ([e(X®)]+[@(X@)]+...+[(XM)]),
how large must m be to conclude that with
probability 1-6, ¢ is (p+y)-valid under D?

e Use the Hoeffding bound: for anyy >0,
Pr{(1/ )J(YW+Y@4 1Y) > ay] < @2V
Pr{(1/, ) (YD+Y@u4  +Y(M) < y] < e2mv?

* For m 21/, 2In?/, can check that e2mv < 5/,
take a union bound of upper and lower
bounds to conclude p is within xy of Prp[¢o(X)].
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Comparison: PAC-semantics versus
Inductive Logic Programming

PAC-semantics Inductive Logic
Programming
e Examples drawn from e Examples define
larger distribution D domain
D mostly unseen Closed-world
assumption
* Rules partially ¢ Rules fully capture
capture D domain
 Rules can be (a little) ¢ Rules must be faithful
inconsistent with to defining examples
examples

45 AAAI 2018 Tutorial: Integrating Learning into Reasoning Juba and Michael

Occam’s Razor [Blumer et al. '87]

 Theorem. Let H be a set of formulas that can be
specified using at most B bits. Suppose we draw
X, X@ ., Xm independently from D for
m 21/, ((B+1)In2 + In?/5). With probability 1-5,
Y (AXO)]+[A(XD)]+...+[A(X™)]) is within ty of
Prolh(X)] for every hin FH.

We know: 1/ ([h(XD)]+[h(X@)]+...+[A(XI™)])

is within +y of Pry[h(X)] for any single h in

with probability 1-8/,+1.

* There are < 28*1strings of B bits, so there are
fewer than 281 h in ZH. We take a union bound.®
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(Simplified) Learning to reason using
Occam’s Razor [Khardon-Roth '97]

* Recall: Deciding if a 3-DNF (ORs of ANDs of at
most three literals) is valid is NP-complete.

« There are 2°0*) 3-DNFs.

» Theorem. Suppose we draw X1, X2 x(m)
independently from D for m = O(*/,2(n3+In%/;)).
Then with probability 1-6,

H ([h(XI)]+[A(X®)]+...+[A(XM)]) is within +y
of Prp[h(X)] for every 3-DNF h.

e In particular, if all h(X)=1, we guarantee

h'is at least (1-y)-valid with probability 1-6.
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Learning a chaining rule using
Elimination [Valiant '84]

* Suppose x, is defined by a conjunction, i.e.,
%< LALA-- ALl where [,L,...,[ are
literals.

* There are only 22" conjunctions of literals on
n propositional variables.

* Occam’s Razor: any rule x, < [LALA - AL
that is consistent with m = O(Y/,2(n+In/))
examples is (1-y)-valid with probability 1-6.

e We only need to find such a rule.
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Learning a chaining rule using
Elimination [Valiant '84]

 We only need to find x, & [ A LA A,
consistent with m = O(!/,2(n+In/5)) examples

e Elimination: for each ith example, if X, = 1,
then any literal [ with ((X®) = 0 cannot be
included in the rule. Delete it.

e The rule given by the conjunction of the
remaining literals must contain the actual
defining conjunction LA LA+ AL

e Therefore, we find a conjunction that is
consistent with all m examples, as needed.®
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Learning a chaining rule using
Elimination [Valiant '84]
* We find a (1-y)-valid rule using O(*/,2(n+In%/;))

examples by taking the conjunction of all
literals for which whenever [(X) = 0, X, = 0.

e As stated, the algorithm runs in time
0("/,2(n+In?/5)) so this is efficient.
Note: actually, O(*/,(n+In?/;)) examples will do
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B. Introduction to PAC-Semantics

Coping with Partial Information
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PAC Learning (with Complete Info)

O 010110
l}
nature

Given access to (exm,a)’s drawn during training,
w.h.p. and efficiently produce h s.t. on (exm’a’)
drawn during testing, h(exm’)=a’ w.p. at most &.

0 Wxo
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Learning and Prediction Scenarios

e Construct hypothesis to predict target x;.

1101100011011 learning
2011101001010 prediction

* What if we want to predict multiple x/s?
1101100011011 learning
2012127001070 prediction

¢ What if we want to learn autonomously?
1701120017077 learning
2017107001010 prediction

Complete the Missing Value

Marital Age Smoking | Drinking Blood Cholesterol | Exercising
Status 8 Habits Habits Pressure Level Habits
single 3 weekly | 130/90
married cigarettes .
parent 49 10 daily high
no jogging
32 drinking normal daily
divorced 2daily | 145/100
I? no
s exercise
single no ghtly
parent smoking 125/80 elevated
25 rarely normal 3 \f/\;:kly
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Structure in Missingness?

e Q: What is the number of your credit card?
The responder may not wish to share it.
What if the responder does not have one?

* Q: When was the last time you ate apples?
The responder may have a poor memory.

e Q: Where you ever convicted for murder?
The responder may not wish to answer...
... especially if the answer would be “yes”!
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Autodidactic Learning (PAC + Missing)

010110 /-~ \07?1 20 )
CATES
fle ’
nature o)

Given access to (obs,a)’s drawn during training,
w.h.p. and efficiently produce h s.t. on (obs’a’)
drawn during testing, h(obs’)=a’ w.p. at most &.

0 sqgo
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Reading Between the Lines

[Michael '09] e—
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Learning the Hidden Reality

* Need learning algorithms able to:
identify structure in the hidden example,
given access only to partial observations,
without knowing how masking works.

e Autodidactic learning [Michael '08,10]:
Suffices to learn rules consistent with obs.
e e.g, predictthat x;=0 in 20107711
W.h.p., these rules make accurate predictions.
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Evaluation of an Individual Rule

evaluate rule (X; v—X,) & X;

example observation inference  consistent accurate
0010110 0?10?70 1 Yes Yes
0100100 7107700 1 No No
0100100 7107707 ? Yes Abstain
0010110 0770177 1 Yes Yes
0100100 0770177 1 Yes No

Theorem: For each mask there is n s.t. each (1-n- €)-
consistent rule is (1-g)-accurate. The “discount” is tight.
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When to Abstain from Predictions

e Choosing to abstain would trivialize learning.
e Hypotheses are still Boolean functions...

¢ Abstain only if hypothesis not fully determined.
Assume hypothesisis h = x; A —x; A X,
If observation is x = 10?1101 then h(x) = ?
If observation is x = 10?1100 then h(x) =0

* Does missing info “kill” our ability to predict?
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Activity: Predict the Hidden Animal
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Autodidactic Learnability [Michael '08,10]

e Theorem: All classes of monotone and read-
once formulas that are PAC-learnable, are also
autodidactically learnable (arbitrary masking).

Learning algorithm:

* Ignore observations where the label is masked.
* During training map a0??170 to a0aala0.

* PAC-learn from resulting (complete) instances.

e Theorem: Parities and monotone term 1-
decision lists are not properly learnable.
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Causal Learnability [Michael "11]

( 010110 )

t \ 110111
\nature / )

A

‘? 101
101

63 Introspective Forecasting Loizos Michael (OUC)

B. Introduction to PAC-Semantics

Dealing with First-Order Expressions
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An Example of Learned Knowledge

* NL query :“members share something”
e logic form : member(t,), something(t,), share(t,t;)
* knowledge: (trained on “spyware” web pages)

file(x) & threshold(1.0) % pos:1852 neg:1831
v : scan(v,x) A rogue(v) weight(0.962710) % pos:16 neg:1
v : share(v,x) weight(1.627098) % pos:11 neg:1
v : have(x,v) A program(v)  weight(0.645691) % pos:19 neg:0
v : open(v,x) weight(1.593269) % pos:27 neg:2

e inference : file(t,)
e NL answer : “something is a file”  [Michael "13]
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How To Learn Relational Rules?

e Looking to learn a rule in the correct form:
* No tokens (they carry no meaning), small arity.
* Vxs [ formula over IQEs < head_predicate(xs) ]
e The formula belongs in a concept class that is
known to be PAC learnable (cf. [Valiant ’00]).
e Linear thresholds with propositional features.
» Recall: also learnable from partial observations.

Relational Scenes -» Propositional Examples -
Propositional Learning -> Relational Hypothesis
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Activity: Learn a Linear Threshold

e Initially assign weight 0.8 to every proposition.
e When a negative example is predicted true:
divide by 2 weights of true propositions.

* When a positive example is predicted false:
multiply by 2 weights of true propositions.

e Hidden target concept: )
000110,011101, 101011, 001110, 110010,
011001, 111111, 101011, 001101, 011101.

e Computed hypothesis: (0.2, 0.1, 0.05, 0.8, 0.2)
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Examples from Relational Scenes

¢ Instead of Boolean learning examples, we get
relational scenes giving instances of relations:

file(t,), scan(t,t,), rogue(t,), -file(ts), ~open(ts,t,).

e For a head predicate (e.g., file(x)), consider all
IQEs that follow a schema (e.g., scan A rogue):
scan(x,x) A rogue(x), 3v : scan(x,x) A rogue(v),
v :scan(x,v) A rogue(x), 3v:scan(x,v) A rogue(v),
v :scan(v,x) A rogue(x),  3Av:scan(v,x) A rogue(v),
3u,v : scan(u,v) A rogue(v), Ju,v: scan(u,v) A rogue(u).
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Propositionalizaton of Learning

Full info. Small arity. Few tokens. scene ‘
P(1), P(2), ..., P(5),

P(lll)l e H2I3)I e P(SIS)I
P(1,1,1), .., P(3,5,4), ..., P(5,5,5),
P(1), P(2), ..., P(5).

10000000000010...00...010...000001

x=3 —P(x) with 9P(x,a,b), 3P(a,x), ...
x=5 +P(x) with 3P(a,x,b), 3P(a,x,b)AP(c,a), ...
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High-Level Tutorial Roadmap

A. Why KRR Should Embrace Learning
B. Introduction to PAC-Semantics

C. Integrating Deduction and Induction
D. Reasoning Non-Monotonically

E. Overall Summary and Conclusions
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C. Integrating Deduction and Induction

Interleaving Learning and Reasoning
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B Declarazion of Tuaer T Y

== (of RRR (rom Machine Learning)
e hold these truthe to be sely- evident:

= AAAI 2018 Tutorial: Integrating Learning into Reasoning

Reasoning = Fill-In Missing Values

Marital Age Smoking | Drinking Blood Cholesterol | Exercising

Status Habits Habits Pressure Level Habits
single 3 weekly [ 130/90
married cigarettes "
parent 49 10 daily high
no jogging
32 drinking normal daily

dail

divorced 145/100

Juba and Michael
\-w.fu‘.‘fim

| exercise
single no 125/30 slightly
parent smoking elevated
m
25 rarely normal it
3 weekly
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KB Performance Evaluation

e Example knowledge base:
(x5 and not x;) determines the value of x,
(not x, or not x,) determines the value of x;

example observation KB inference

KB evaluation

101011 121012 101011 "© disagreement

no “don’t know”

001001 0?1007 011001 disagreement

no “don’t know”

010101 09?2101 092101 " sagreement

“don’t know”

010001 110000 110001 disagreement

no “don’t know”

50% sound
75% complete
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Multiple Targets and Autonomy

* Predict multiple x;s and learn autonomously.
1701170017027 learning
2017107001010 prediction

e Options on how to tackle this task:
Learn hypotheses first, then apply in parallel.
Learn hypotheses first, then apply by chaining.
Simultaneously learn hypotheses and predict.

e Which of these approaches is appropriate?
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Basic Hypotheses / Predictors

* Given a specified attribute x; of the world,
and sufficient resources during training,

e produce a PAC predictor (=rule) P; for x;
e.g., X,=X;A-X; isa predictor for x,

e Predictor P; is “classical” and could potentially
abstain, when its body is not fully determined
predict incorrectly (cf. approximately correct)
but generally improve completeness of the DB
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Reasoning Process Semantics

eexm=(-1,0504,-7,9 ¢S
e obs=(-1,0 %04, *9)cS*

endogenous
and exogenous
qualification

Policy P determines how predi (hints of NMR?)

e'g'l P’ = <{P1/ Pz; P3}> ?‘19= <{P1/ P2}I {P3}>
“flat/parallel” policy o “chaining” of predictors
P(obs)=(-1,0,5,0,4, % 9) P(obs)=(-1,0,5,0,4, 3,9)
sound against exm unsound against exm

but incomplete but complete

78 AAAI 2018 Tutorial: Integrating Learning into Reasoning

Juba and Michael
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Activity: Chaining & Completeness

e Example knowledge base:
(noon time) < lunch time
(lunch time and Bob hungry) < Bob eats
e Statement:
“It was not noon time yet, but Bob was hungry.”

e Multi-layered application:
* Single-layered application:
e Chaining is better than any single-layered KB.
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Chaining is Provably Beneficial

Definition: Chaining collapses on S* against S if
» for every policy P with some performance
(soundness + completeness) on S* against S,

e there exists a flat policy P’ (not a reordering of
P, necessarily) with equally high performance.

Theorem: [Michael "14] There exist $* S such

that chaining does not collapse on $*against S.
Proof: Chaining can simulate non-monotonic
reasoning, which is beyond individual predictors.
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Analogy to Neural Networks

. Hidd
There are multilayered NNs ... <

that compute more complex Output
functions than those by any
NN without hidden layers.

Trivially, because of larger hypothesis space.

What if each neuron can compute any function?
What if neurons can abstain from predictions?
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Learn First, Then Predict (& Chain)

e Consider rules R; and R, obtained to make
highly accurate predictions on distribution D.

* On future examples from D, apply R; then R,.

* No! R, is applied on distribution R,oD ( #D ).
There are no guarantees on that distribution!

e Are there situations that justify this approach?
If information during learning is complete.
Could happen, but less realistic assumption.
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Analogy to Neural Networks

. Hidden
Cannot train each neuron Input

independently and then Output
assign neurons in layers.

Trivially, because the target to be learned by
each specific neuron is not directly observable.

What if one could train each neuron in isolation?
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Simultaneously Learn and Predict

Learn rules for all attributes during training.
Apply those rules to enhance the training set.
Repeat as necessary to get more KB “layers”.

* Theorem: [Mich
soundness or
KBs with bettg
(combined) tF

Proof: Train each r co' ’ listribution, until
its predictions are fu.. ~SPY ¥lbsequent training.
Doubly-exponential depeﬁn‘c‘ﬁﬁ!‘on reasoning depth.

~ AP does not reduce
x \ea/}) t may produce
' y . completeness
: Hassical) KB.
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An Experimental Impasse?

» Scene is an observation. e.g., 17100107710
* Goal: Predict what information holds in scene.

e Predictions useful exactly when information is
missing from scene. How to evaluate them?!

e Evaluate another task with known answers!
» Use standard approach to solve the task. (1)
* Make predictions, and give them as input.
» See whether task performance improves. (2)
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Guess the Missing Word [Michael+ ’08]

e Training T, & testing E, from news text corpus.
e Learn underlying text structure [Michael ’09].

e Using T, learn relational thresholds for 268
frequently-used words: price, market, stock, ...
* Train on T, and test on E, for each of 268 tasks.

e Using T, learn relational thresholds for 599
verbs: buy, ., charge,,, coerce . .4, -
e Use verb rules on T,to get T, /on E, to get E,.
* Train on T, and test on E; for each of 268 tasks.
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Experimental SLAP Results [Michael+’08]

s 7

_ ing word” task
+/ train on T, & test on £,

078

A: word/pos + verb
C: word/pos + prox.
=] D: use all instances

ew |- ; "\ | “missing word” task
trainon T, & teston E,

Feneastue on positive examples

x| B: word/pos + verb
W60 90 120 150 180 20 240 E: use all instances
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Multiple Iteration SLAP [skouteli+ ‘16]

» __ 100%
4] .
=7 LUCAS (LUng CAncer Simple set) corpus
©
=1
ED g 80% not recovered
a o [ recovered correctly
2 >
€ E 60% ' M recovered but incorrectly
=39 |
T2 bl
2 0% | B
_ wn -
e @ Ll
o S | -
&S 20% o —
2% -
g =
O 2 o
58 %1 5 10 15 20
g2

number of iterations (hypotheses are 2-layer NNs)
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Introspective Forecasting [Mmichael '15]

(; 010110 )

001011 \ 110111
ature I‘E t / )
+

92 101
101

89 Introspective Forecasting Loizos Michael (OUC)

(s

o

C. Integrating Deduction and Induction

Implicit Learning of Testable KBs
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A'problem requiring learning and
deduction: birds.com Analytics

The (statistical) query:
“true with high probability
for data source?”

THE DATA ALONE DOESN'T
ANSWER THE QUERY

BIFGEBHEIM tegrating Learning into Reasoning Juba and Michael

Relevant knowledge
we aim to discover from the data

* Relevant property: the birds eat anything but fish—
EAT(GRUBS) V EAT(MOUSE) V EAT(SEED) V -+

* Usually satisfied by Data ¢/ -m

¢ Completing a Proof of Query... 107 Seed
107 49 Grubs
107 50 Mouse
107 51 Mouse
107 52 Worm
| 107 53 Fish |
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Relevant knowledge
we aim to discover from the data

¢ Relevant property: the birds eat anything but fish—
EAT(GRUBS) V EAT(MOUSE) V EAT(SEED) V
* Usually satisfied by Data ¢/ PN
» Completing a Proof of Query aid FLY

. v — N\

e The existence of such knowledge cencunvey -pencuin
establishes the query (FLY)
It isn’t important what

the actual property says!

="We are not told what property to search for...

~PENGUIN V EAT(FISH) -EAT(FISH)
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birds.com: Inferring Flying from Food?

* Data: 107 48 Seed

107 49 Grubs

e Query: FLY?

* Background knowledge:
PENGUIN V FLY
-~PENGUIN V EAT(FISH)

-EAT(FISH) V -EAT(GRUBS)
~EAT(FISH) V -EAT(MOUSE) foods are mutually exclusive...

~EATIFSH) V-EATl THE KNOWLEDGE ALONE ALSO
e DOESN'T ANSWER THE QUERY
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The Relevant Property completes a
Proof of the Query

Negated Query -FLY FLY
PENGUIN V FLY -PENGUIN
-PENGUIN V EAT(FISH) ~EAT(FISH)
N\

Background \

Knowledge | ~EAT(FISH) V EAT(SEED) V --+
EAT(FISH) V ~EAT(MOUSE)  ~EAT(FISH) V EAT(MOUSE) V EAT(SEED) V -+
_EAT(FISH)V ~EAT(GRUBS)  EAT(GRUBS)V EAT(MOUSE) V EAT(SEED) V -+

Relevant Property
9% AAAI 2018 Tutorial: Integrating Learning into Reasoning Juba and Michael

Approximate Query Answering with
Implicit Learning

Day | Birdno. [Food |

107 48 Seed
107 49 Grubs

e Data:

¢ Background knowledge: PENGUIN V FLY ~PENGUIN V EAT(FISH)
~EAT(FISH) V ~EAT(GRUBS) ..etc.,

Query: FLY? E
O

. ©
Verdict: Does there exist a relevant property

e.g., EAT(GRUBS) V EAT(MOUSE) V EAT(SEED) V-
o Usually satisfied by Data /\
« Completing Proof of QueryPENGUINVFLY  -PENGUIN

TO SAY WHAT-
PROPERTY

9% AAAI 2018 Tutorial: Integrating Learning m?oEﬁ“e%%’n'."n‘gV EAT(FISH) ), anm(fhlasew)




Proposed Algorithm
for Approximate Query Answering

Given a query ¢, background knowledge KB,
target €, and i.i.d. partial examples p9,..., pim)
* For each partial example p,

* If |, provable from KB| ;,
increment success (initially, 0)

o |f SUAESS/ > 1-e, ACCEPT, otherwise REJECT

:1ﬂ/ —O\/ B4
p: x=0, y=0 N, T TS
=1 7 Gy 7
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Proposed Algorithm
for Approximate Query Answering

Given a query ¢, background knowledge KB,
target €, and i.i.d. partial examples p9,..., pim)
* For each partial example p,

* If @], provable from KB| ;,
increment success (initially, 0)

o |f SUCCESS/ > 1-g, ACCEPT, otherwise REJECT

PARTIAL EVALUATION: PLUG INp") AND
RECURSIVELY REPLACE EACH LOCALLY
DETERMINED CONNECTIVE BY ITS VALUE.
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Algorithm on birds.com Problem

PENGUIN V FLY

birds.comwooo{?w
On most partial examples...

-PENGUIN V EAT(FISH)

T =i ~EAT(FISH) V ~EAT(GRUBS)

107 49 Grubs ~EAT(FISH) V -EAT(MOUSE)
107 50 Mouse . ~EAT(FISH) V -EAT(SEED)
107 51 M . ..etc...
louse
07 = Worm ... some background rule
L 53 Fish |\ simplifies to ~EAT(FISH)...
107 54 Mouse Y
—_—
.107 .55 ,Gmbs PENGUINVFLY  -PENGUIN

—_—
~PENGUIN V EAT(FISH) —NFISH

... completing

ACCEPT

99 AAAI 2018 Tutorial: Integrating Learnin|

a proof of the query

Approximate Queries: The theorem
[Juba "13]

Theorem. Our algorithm distinguishes:

I. The query is only satisfied by D w.p. < 1-e-y

Il. There exists a “(1-e+y)-testable” formula ¢
for which there exists a proof of the query
from ¢ and any background knowledge

w.p. 1-8, given Y/ .. In 1/5 partial examples
from M(D)
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Key Definition: Testable formulas

Relevant Properties we can detect [Juba "13]

* Definition. A formula ¢ is (1-€)-testable under
a distribution over partial examples M(D) if
PrM(D)[L,Ulp:l] >1-¢

PARTIAL EVALUATION: PLUG IN p AND
RECURSIVELY REPLACE EACH LOCALLY
DETERMINED CONNECTIVE BY ITS VALUE.
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Key Definition: Testable formulas

Relevant Properties we can detect [Juba "13]

e Definition. A formula ¢ is (1-€)-testable under
a distribution over partial examples M(D) if
Prvo)¢ | p=1] >1-e

birds.com™

Day _|Birdno. |Food |
U Seed  EAT(GRUBS) V EAT(MOUSE) V EAT(SEED) V ++-
7 49 Grubs
7 50 Mouse $ $ $

107 51 Mouse

107 52 Worm

107 53 Fish
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Key Definition: Testable formulas

Relevant Properties we can detect [Juba "13]

« Definition. A formula ¢ is (1-€)-testable under
a distribution over partial examples M(D) if
PrM(D)[w | D=1] 2> 1'8

e Require more than truth of Relevant Property

« Standard cases (clause/linear inequality
premises): actually no more demanding

Approximate Queries: The theorem
[Juba’13]
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Theorem. Our algorithm distinguishes:

I. The query is only satisfied by D w.p. < 1-g-y

Il. There exists a (1-e+y)-testable formula ¢
for which there exists a proof of the query
from ¢ and any background knowledge

w.p. 1-8, given ¥/ .. In 1/5 partial examples

from M(D)
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Proposed Algorithm
for Approximate Query Answering

Given a query ¢, background knowledge KB,
target €, and i.i.d. partial examples p9,..., pim)
e For each partial example p,

* If |, provable from KB| ;,
increment success (initially, 0)

o |f SUCCESS/ > 1-g, ACCEPT, otherwise REJECT

Detecting a Relevant Property...
Consider: Tractable Proof Systems
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* Bounded-width resolution
¢ Treelike, bounded clause space resolution

e.g.,

=FLY FLY
PENGUIN VFLY -PENGUIN
~PENGUIN V EAT(FISH) ~EAT(FISH)
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A'Key Property of the
Example Tractable Proof Systems

e Bounded-width resolution
 Treelike, bounded clause space resolution
=" Partial evaluation of proofs of these forms
yields proofs of the same form
(from a proof of a query ¢, we obtain
a proof of ¢|, of the same syntactic form)

Insight: The Testable Premises
Drop Out of the Proof!
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Premises of testable property
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Recall: Proposed Algorithm
Detects These Residual Proofs

Given a query ¢, background knowledge KB,
target €, and i.i.d. partial examples p9,..., pim)
* For each partial example p,

@], provable from KB|
increme o awl

o If SUCCESS/ > 1-g, ACCE

02

0)
herwise REJECT

Pros and cons of Implicit Learning

THE THEOREM THEREFORE
FOLLOWS IMMEDIATELY FROM
HOEFFDING'S INEQUALITY

109 AAAI 2018 Tutorial: Integrating Learning into Reasoning Juba and Michael

e Pro: utilizes rules with imperfect validity
» Usually intractable to learn explicitly
» Captures kinds of commonsense reasoning
(next part)
* Pro: reasoning time complexity independent
of size of implicit KB
 Actually, may reduce reasoning complexity
in some circumstances [Juba '15]
e Con: cannot report rules used to support
conclusion

110 AAAI 2018 Tutorial: Integrating Learning into Reasoning Juba and Michael

111 AAAI 2018 Tutorial: Integrating Learning into Reasoning Juba and Michael

High-Level Tutorial Roadmap

A.
B.
C.
D. Reasoning Non-Monotonically

E.
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D. Reasoning Non-Monotonically

Conditional Probability and NMR
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Nonmonotonicity in
learning to reason [Roth '95]

e We have seen: deciding queries by counting
the frequency with which they are provable
 Allows us to answer “hard” queries
* Draws on a potentially large KB of implicitly

learned knowledge as needed

e New twist: suppose we incorporate a
hypothesis by filtering out examples that do
not satisfy the hypothesis
* Produces desirable non-monotonic inferences,

appropriate for “commonsense reasoning”
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Nonmonotonicity in
learning to reason [Roth '95]

* Example: suppose we are reasoning about “birds” —
we filter the set of examples to only include bird = 1:

m_nz-mr.

S R N SN
B B R O O R
[ S S
o »r O O © r O
Sl o 1=l © =l o =l

© © »r B O O

1
* We find has_beak is (1-y)-valid, fly is (3/,-y)-valid, but
red and penguin are at most (2/,+y)-valid...

0
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Nonmonotonicity in
learning to reason [Roth '95]

* Example: Now suppose we consider specifically red
birds, filtering to only include bird Ared = 1:

[bid [y |hasbeak |red  [purple  [penguin |
/. | | | |
1 1 0

1 1 0 0

.| | | |

* Now has_beak and fly are (still) (1-y’)-valid, and
penguin is at most y’-valid (for some y’ > y)...
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Nonmonotonicity in
learning to reason [Roth "95]

* Example: now suppose we are considering penguins,
filtering to only include penguin=1:

m:-_m-m_

* We find has_beak is still (1-y’)-valid, but
fly and red are now at most y’-valid
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Nonmonotonicity in
learning to reason [Roth '95]

* Example: now considering specifically “penguins with
beaks,” we only include penguin A has_beak = 1:

m_lz-m_

* Again, we find fly and red are at most y’-valid —
not affected by has_beak
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Nonmonotonicity in
learning to reason [Roth "95]

* Example: if we instead consider “purple penguins,” we
only include examples with penguin Apurple = 1:

[bid [y  [hasbeak |red  [purple  [penguin |

* With no examples remaining, we cannot draw any
conclusions (except perhaps from a given KB)
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Nonmonotonicity and
conditional probability distributions

¢ A set of examples filtered to satisfy a formula
h has the conditional probability distribution
D|[h(X)=1] (we “condition on h”)

e So: as long as we consider (1-g)-validity for
some €>0 (e.g., € = 1/; could have sufficed),
conditioning may have a non-monotonic effect

* Note: this requires the use of non-negligibly
large €

Since: we must have enough examples in the
conditional distribution to support inferences
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Classical'issues in commonsense
reasoning, in PAC-semantics

¢ Qualification problem: taking >0 permits a
rule to fail for any number of unspecified and
unmodeled reasons. The commonsense rule
we implicitly use is never written out.
Elaboration tolerance: we can simply add a
new example to our set of examples, and the
next time we answer a query the count will be
slightly different. But the implicit KB does not
need to be “edited” in any way.
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Classical'issues in commonsense
reasoning, in PAC-semantics

¢ Ramification problem: any further
consequences r to a hypothesis h are included:
for any example x satisfying h, we are given
that x also satisfies r, so r will be highly valid in
D|[h(X)=1]. So, ris included in the implicit KB
of D|[h(X)=1] without further consideration.
E.g.: -fly is highly valid in D|[penguin(X)=1].
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Context in reasoning using
“preconditions” [Valiant '94,95,00]

* The condition h in D|[h(X)=1] is sometimes
called a “precondition”

e Valiant proposed: when answering a query,
a precondition capturing the current context
should be used to filter examples.

E.g., given by the units currently firing in the
“neuroidal” cognitive model [Valiant '94]

* Problem: may be too specific.
* How should we choose a precondition?
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D. Reasoning Non-Monotonically

Preconditions and Abduction
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Reasoning with preconditions
[Juba ’16]

* One possible formulation of reasoning with
preconditions:

“Does there exist a precondition h from a class
of representations H such that...
h supports the query ¢
h is common
h is consistent with the current context x?”
e If any precondition supports the query,
we will find one.
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Reasoning with preconditions:
formalization [Juba '16]

« Fix a class of Boolean representations %~
* Given query formula ¢; context assighment x*,
g, 6, LE(0,1); access to examples from D,

o Suppose that there exists a h*€_#/such that
h* supports @: Pryle(X)|h*(X)] = 1
h*is common: Pro[h*(X)] 2 1
h* is consistent with context x*: h*(x*) =1

* Find a h (ideally in # such that with prob. 1-5,
Prolo(X) [1(X)] 2 1€
Prplh(X)] 2 W' for some W’ (ideally close to p)
h(x*) =1
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The precondition task, in pictures...
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Reasoning with k-DNF preconditions

is possible (complete information)

Theorem. If there is a k-DNF h* such that

1. h*supports @: Prp[e(X)|h*(X)] = 1

2. h*is common: Pro[h*(X)] 2 n

3. h*is consistent with context x*: h*(x*) =1
then using m = O(*/, (nk+log'/5)) examples,
in time O(mnk) we can find a k-DNF h such that
with probability 1-6,

1. hsupports @: Prp[e(X)|h(X)] 2 1-€

2. his common: Prp[h(X)] 2 p

3. his consistent with context x*: h(x*) =1
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Finding a supporting k-DNF
precondition using Elimination

o Start with h as an OR over all terms of size k
e For each example x(,...,x(m
o If p(x) =0,
delete all terms T from h such that T(x) = 1
o If h(x*)=1, return h
e Else return FAIL (no supporting precondition)

Running time is still clearly O(mnk)
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Analysis pt 1: Prp[h(X)] 2 1, h(x*) =1

e We are given that some k-DNF h* has
1. h*supports @: Prple(X)|h*(X)] =1
2. h*is common: Pro[h*(X)] 2 1
3. h*is consistent with context x*: h*(x*) =1
e Initially, every term of h*isin h
e Terms of h* are never true when ¢(x)=0 by 1.
=-every term of h* remains in h
= h* implies h, so Prp[h(X)] 2 Prp[h*(X)] 2 p
and h(x*)=1 since h*(x*)=1 by 3.
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Analysis pt 2: Prp[e(X)|h(X)] 2 1-€

* Rewrite conditional probability:
Pro [[=@(X)IAA(X)] < €Pry [A(X)]
* We'll show: Prp [[=@(X)]Ah(X)] < ep
(< ePry[h(X)] by part 1)
e Consider any h’s.t. Prp[[=@(X)]Ah'(X)]>ep
* Since each X is drawn independently from D
Pry [no i has [~@(XW)]AR'(XWD)] < (1-gp)™
* Aterm of h’is deleted when ¢=0and h’ =1
* So, h’is only possibly output w.p. < (1-gp)™
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Analysis pt 2, cont’d:
Prole(X)|h(X)] 2 1-¢

* We'll show: Pry [[~¢(X)IAh(X)] < ep

e Consider any h’s.t. Pry [[=@(X)]Ah’(X)]>ep
* h’is only possibly output w.p. < (1-gu)™

o There are only 290 possible k-DNF h’

* Since 1-z< e, m = O(*/ . (n*+log/s)) ex’s
suffice to guarantee that each such h’
is only possible to output w.p. < &/20(%)

= w.p. >1-6, h has Prp[[-@(X)IAh(X)] < ep. B
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Reasoning with k-DNF preconditions
is possible (complete information)
Theorem. If there is a k-DNF h* such that

h* supports ¢@: Prp[p(X)[h*(X)] =1

h*is common: Prp[h*(X)] 2 p

h* is consistent with context x*: h*(x*) = 1
then using m = 0O(*/ (n*+log?/s)) examples,
in time O(mn*) we can find a k-DNF h such that
with probability 1-6,

h supports @: Prple(X) | h(X)] 2 1-€

h is common: Pry[h(X)] = 1

h is consistent with context x*: h(x*) =1
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Extension: Finding preconditions
tolerating €>0

* Given only that some h* achieves
h* supports @: Pry[e(X) |h*(X)] 2 1-¢
h* is common: Pro[h*(X)] 2 1
h* is consistent with context x*: h*(x*) = 1
Find an h such that for some other p’ & €/,
Prolo(X)|h*(X)] 2 1-¢’
Prplh(x)] 2 W for some W’ (ideally close to u)
h(x*)=1

e Extension of algorithm for k-DNF achieves
W=u, £’=0(nke) (only delete T making eum errors)
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Abductive reasoning:
making plausible guesses

e This formulation of precondition search is a
form of abductive reasoning

Given a conclusion c,
find a “plausible” h that implies/leads to/... ¢

Proposing a precondition supporting the query
» Two varieties of “plausibility” in common use
Syntactic: a small h from which ¢ follows

Bayesian: a h which has
large posterior probability when given ¢
ie., “Pr[h actual rule used|c true] > ...”
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Why might we want a new model?

e Existing models only tractable in simple cases
E.g. Horn rules (a/Ab/Ac=d ...no negations),
“nice” (conjugate) priors

e The choice of formulation, prior distribution,

etc. really matters
And, they are difficult to specify by hand
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New model: abductive reasoning
from random examples [Juba '16]

e Task: for a conclusion c, find a h such that
Plausibility: Pry[h(X)] 2 u (for some given p)
h almost entails c: Pry[c(X)| h(X)] 2 1-€

* Note: D now captures both the entailment
relation and the measure of “plausibility”

e Distinction from earlier precondition search:
no “context” assignment x*
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Example: identifying a subgoal

e Consider: blocks world. For t=1,2,...,T
Propositional state vars. (“fluents”)
ON,(A,B), ON, (A,TABLE), ON, (C,A), etc.
Actions also encoded by propositional vars.
PUT,(B,A), PUT,(C,TABLE), etc.
e Given many examples of interaction...
 Our goal c: ON(A,TABLE)AON<(B,A) AON.(C,B)
A perhaps plausibly good “subgoal” h:
[ON,,(B,A) APUT,(C,B)]V[PUT,, (B,A) APUT,
(C,B)]
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Formally: abductive reasoning
from random examples for a class JH

* Fix a class of Boolean representations %"
* Given Boolean formula ¢; €, §, u€(0,1);
independent examples x(1,... xim €D,

* Suppose that there exists a h*€ #/such that
Plausibility: Pro[h*(X)] 2 p
h* entails c: Prp[c(X)|h*(X)] = 1

o Find h (ideally in #{ such that with prob. 1-5,
Plausibility: Prp[h(X)] 2 W’ for some p’(u,n,€,8)
h almost entails c: Pry[c(X)|h(X)] 2 1-€
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Abducing k-DNFs is also possible
(complete information)
Theorem. If there is a k-DNF h* such that
Plausibility: Pro[h*(X)] 2 1
h* entails c: Prp[c(X)|h*(X)] = 1
then using m = O(*/, (n*+log?/;)) examples,
in time O(mnk) we can find a k-DNF h such that
with probability 1-6,
Plausibility: Pry[h(X)] 2 1
h almost entails c: Pry[c(X)|h(X)] 2 1-€
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Elimination Algorithm also solves
k-DNF abduction

e Start with h as an OR over all terms of size k
* For each example x(1),...,x(m)

If c(x) =0,

delete all terms T from h such that T(x) = 1

o ) .
JUST OMIT THE
FINAL TEST FOR

CONSISTENCY WITH

X* THE ANALYSIS IS
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ALMOST IDENTICAL. |~

Extension: Abductive Reasoning
tolerating €>0

 Given only that some h* achieves
Plausibility: Pro[h*(X)] 2 1
h* almost entails c: Prp[c(X)|h*(X)] 2 1-¢
Find an h such that for some other u’ & €/,
Plausibility: Pry[h(x)] = W’
h almost entails c: Pry[c(X) | h(X)] 2 1-€’
e Improved algorithm for k-DNF achieves
W=(1-y)u, €=0(nk2¢) [Zhang-Mathew-Juba’17]
Cf. only obtained €'=0(nke) for preconditions...
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But, what about abducing

conjunctions?? [Juba '16]

Theorem. Suppose that a polynomial-time algorithm
exists for learning abduction from random examples for
conjunctions with W’=C((1-y)u/n)¢ for some C, d.

Then there is a polynomial-time algorithm for PAC-
learning DNF.

& So what?

1. Central open problem in computational learning theory
raised in original paper by Valiant (1984)

2. Recent work by Daniely and Shalev-Shwartz (2016) shows
that algorithms for PAC-learning DNF would have other
surprising consequences.

In summary - an algorithm for our problem would constitute

an unlikely breakthrough.
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Extension to abduction with
partial examples

e Subtle: do we condition on...
h(X) true?
h(X) provable (under p)? fﬁirauy
hl,=1 (h “witnessed” on p)? | “=*
e Come see our poster
“Learning Abduction Under Partial
Observability” (Juba, Li, Miller)

Short version: condition on some term T of h
provable under p (i.e. T|  provable from KB| )

Can use Elimination; incorportates implicit KB
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Extent of commonsense reasoning
with PAC-semantics

—
COULD THIS CAPTURE ALL
COMMONSENSE REASONING?

e Unlikely! o

* So far, generally doesn’t capture o
“law of inertia,” naive theories, ...

* We still seem to require the use of a
non-monotonic logic as a foundation
¢ At minimum, for “law of inertia”

e Question: can simulations provide
examples for naive theories?
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D. Reasoning Non-Monotonically

Learning with Non-Monotonic Logics
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Why Abandon Equivalences?

r,: penguin = ~flying, r,: bird = flying, r; > r,
Formula: (u v bird) A =penguin < flying

» Good on “full” scenes. Still abstains on {-p, -b}.
¢ Infers too little... Does not infer f on {b}. Bad!

crib=ar,;-b=a Formula: true < a
¢ Infers too much... a by case analysis on { }. Bad!

e NP-hard reasoning. Still not 1 rule/atom. Bad!

e Thus: logic-based arguments with preferences.

149 AAAI 2018 Tutorial: Integrating Learning into Reasoning Juba and Michael

Naive use of preconditions is
problematic

e OQur reasoning with preconditions is too
credulous

* Example: consider the query fly for x* with
penguin(x*)=1... then h* = bird
* |Is reasonably common (Pry[bird] moderate)
* Is consistent with x* (bird(x*)=1)
» Supports the query (Pr[fly|bird] high)

* So, we will return a precondition such as
h = bird supporting fly
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Activity: Find the Arguments

This animal has Feathers, lives in Antarctica, and
looks Funny. Question: Does it have Wings?
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How to Learn Arguments?

¢ Rules with different heads in each argument,
therefore, one has to deal with partial
observability, which then requires SLAP.
« Sufficient to get consistency in predictions.

e Some relational expressivity comes for “free”.

» Each rule has an IQE body that is efficiently
testable for satisfaction on observations.

e Following linear thresholds and decision lists.
* Online, efficient, dealing with priorities, etc.
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Never-Ending Rule Discovery wicnsei i

1. Get observation obs, and reason with active
rules to get an enhanced observation obs*.

2. Find a literal x that is observed in obs but not
inferred by active rules triggered in obs*. Add
body = x, for random body satisfied by obs*.

3. Increase / decrease weight of rules triggered
in obs* that concur with [ oppose obs.

4. Newly active rules are weaker than existing.
5. Newly inactive rules, have no preferences.
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What Does it End Up Learning?

e Hide some attributes from states drawn from:
{-bird, -penguin, -plane, -flying} w.p. 5/16
{-bird, -penguin, -plane, flying} w.p. 5/16
{-bird, -penguin, plane, flying} w.p. 2/16
{ bird, penguin, -plane, -flying} w.p. 1/16
{ bird, -penguin, -plane, flying} w.p. 3/16

* “Intended” learned rules with head (-)flying:
penguin = -flying, bird = flying, plane = flying

e But also “picks up”: plane = -penguin (mutually

exclusive), -bird = -penguin (contrapositive),
penguin = bird, =flying = -bird (explaining away).
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Demo of NERD’s Online Behavior

rule(7, [bird}, flying, 1.1, {1985, 666. 536489 457

Initial evidence happens to activate r,.
Later counterexamples deactivate it.

In the meantime, evidence activates r;.
Thus, support becomes stronger for r,.
Even though counterexamples remain.
Rules will react to environment change.
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Probably Approximately Correct?

e Equivalences are PAC learnable, but suffer
from Goldilocks effect: infer too much / little.

* Are logic-based arguments PAC learnable?

+ Learn with unknown atoms. Learn priorities.

— Nested if-then-else’s unlearnable from scenes.
+ Non-adversarial environments. Equiv # Args.

— Learning requires reasoning, restricts depth.

+ Psychological evidence on bounded reasoning.
+ On edge of learnable. EVL-‘I,-',', DE—Ire,
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Machine Coaching [Michael ’17]

e Integrate user-provided rules while learning.
* Like online learning, but instead of providing
the correct label, “question” part of the
argument that leads to the wrong prediction.
» Possible to give PAC-semantics to the process!

* Theorem: Arguments (ASPIC+ type: grounded
semantics, axiomatic premises, defeasible
rules, rebutting attacks, last link preferences)
are PAC learnable via machine coaching alone.
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High-Level Tutorial Roadmap

C.
D.

E. Overall Summary and Conclusions
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E. Overall Summary and Conclusions

Recap and Open Problems
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Semantics for Learned Knowledge

e PAC-semantics is a suitable choice:
models the world as a probability distribution
treats knowledge as high-probability properties

e Offers simple solutions to classic KR problems:
non-monotonicity from conditioning of rules
exogenous qualification from validity defect
elaboration tolerance through implicit learning
ramifications incorporated in “implicit KB”
natural formulation of abductive inference
explicit solutions through argument learning
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KRR and Learning Integration

e Traditional view of reasoning and learning as

independent processes must be abandoned.

e When combined under PAC-semantics they:
soundly achieve greater completeness
circumvent computational barriers in learning
enable fast and compact access to “implicit KB”
may sometimes reduce reasoning complexity

¢ Also, seamlessly supports user intervention

during learning through machine coaching.
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Open Problems with KRR Flavor

e What kind of first-order expressions can we
learn from partial examples in reasoning?
IQEs via propositionalization. Classical barriers
(e.g., Haussler) apply to integrated problem?
e What kind of first-order integrated learning
and reasoning is possible?
May want first-order expressions to refer to a
limited domain. Seems closely related to
selection of “preconditions” (see point in next
slide) but for limiting the domain of quantifiers.
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Open Problems with KRR Flavor

e When, and how broadly, is the complexity of
reasoning reduced in the integrated problem?
More natural condition than in [Juba '15]?
More broadly: which fragments are tractable?
e Incorporating naive theories into the model?

E.g., treat naive simulations as populating data
set for implicit KB — how well does this work?

* Preconditions for commonsense reasoning?

Perhaps select an “unchallenged” precondition;
suggests argument semantics for precondition.

162 AAAI 2018 Tutorial: Integrating Learning into Reasoning Juba and Michael




28

E. Overall Summary and Conclusions
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