
Compatibility among Diversity

Foundations, lessons, and directions of semantic communication
(Invited Paper)

Brendan Juba

School of Engineering and Applied Sciences

Harvard University

Cambridge, MA 02138

Email: bjuba@alum.mit.edu

Abstract—We give an overview of a theory of semantic
communication proposed by Goldreich, Juba, and Sudan. The
theory is intended to capture the obstacles that arise when
a diverse population of independently designed devices must
communicate with one another. The aim of the theory is to provide
conceptual foundations for the design and evaluation of devices
that are compatible with such a diverse population. Conclusions
drawn from the theory (i) identify a kind of information-
sensing that is inherently necessary for compatibility whenever
the population is sufficiently diverse and (ii) identify tensions
between the richness of diversity and the computational cost of
coping with such diversity in a population. We will review how
these considerations are reflected in the formulation and design
of an example application, a self-patching packet network stack.
In particular, this application will illustrate the utility of explicit
consideration of various computational complexity measures in
addressing both (i) and (ii). We will also review work aimed at
identifying kinds of populations across which compatibility can
be achieved efficiently.

I. INTRODUCTION

Problems of incompatibility – colloquially, misunderstand-
ing – naturally arise in systems without a centrally coordi-
nated design. Incompatibility can arise in any large enough
system due to lack of coordination among its engineers: an
infamous example is the failure of the Mars Climate Orbiter
due to one team of engineers writing an application employing
imperial units of measurement that communicated with another
application, designed by a different team, that expected to
communicate in metric units [1]. As the amount of shared
context among these designers is diminished, the likelihood
of miscommunication among parts of the system naturally
increases; what is natural and simple in one context may
well seem strange to the designer of another artefact, serving
a different purpose, working at a different time. Within an
organization or, more broadly, within an engineering discipline,
these kinds of errors are usually controlled by centrally im-
posing standards, but standards-making bodies can only fully
anticipate domains of limited scope. The scope and richness of
ambitious projects may extend beyond the domains envisioned
by any one standards committee, across multiple domains. In
particular, “pervasive computing,” by definition, is intended to
enable rich applications that span diverse domains. Due to the
combination of diversity of requirements and domains, and
the decentralization of design in the networked applications

Preparation of this survey supported by ONR grant no. N000141210358

underpinning pervasive applications, it seems inevitable that
miscommunication will occur. The question is, how can we
manage such misunderstanding?

Capturing, let alone addressing, these problems of incom-
patibility requires a view of the system that extends beyond
the communications channel, in contrast to Shannon’s theory
of communication [2]. Actually, more accurately, the approach
to this problem that is naturally suggested by Shannon’s theory
– that we should attempt to learn the codebook used by our
partner – is far too hard to be of use. The indeterminacy of
translation as asserted by Quine [3, Chapter II], [4] means
that this problem cannot be solved in full generality (cf. also
[5, Section 2.3] for a more formal example). By contrast, if
we adopt more limited ambitions in terms of the effect of
our system on its operating environment, as advocated by
Goldreich, Juba, and Sudan [6], most natural communications
problems seem to be solvable. Fortunately, essentially every
natural problem can be cast as achieving some desired effect
or another on an operating environment, so this adoption of a
wider model comes at no cost to generality, only to the model’s
complexity. This widening of the model of communication
to incorporate a model of the operating environment is what
makes this a “semantic” communication model.1

In the present article, we will review the work on ad-
dressing compatibility problems under this semantic commu-
nication model. We will begin in Section II by describing
the model in more detail, and outlining the main theorems,
characterizing a kind of information-sensing that is necessary
and sufficient to achieve a given effect on the environment.
This characterization provides a useful guide to approaching
the formulation of communication problems, allowing us to
consider the information-sensing aspect separately from the
learning aspect that, by contrast, actually poses a formidable
obstacle to practical systems. Work on this latter problem is
discussed in Section III, summarizing the directions pursued

1This is in contrast to “semantics” as construed in a formal logic or
linguistics, which aims to assign a precise meaning to the symbols and form
of a syntactic expression; linguists would call what we study “pragmatics”
by way of contrast. In Weaver’s terms [7], our theory addresses bridging the
gap from level A, the communications channel, to level C, the effectiveness
of the communication, in a sense side-stepping level B, the “semantic” level,
corresponding to the notion from logic. We take this approach because, while
such a precise mapping could be useful, we know no grounds on which we
can take its existence for granted. Unless we know something more about the
structure of the system, we know of no “semantics” other than the pragmatic
level.



Environment

User Server

Fig. 1. The basic three entity system in the semantic communication model.
Arrows represent a two-way communication channel.

to date. We will illustrate how this work could inform the
development of a more concrete application in Section IV, as
we review the development of a self-patching packet network
stack. The approaches to learning pursued to date are still
works in progress, though, and we conclude by summarizing
some next steps for current and future work in Section V.

II. THE BASIC THEORY

A. Model of communication

Our model focuses on communication between a pair of
entities, as this suffices to capture the issues of miscommu-
nication that may arise.2 One entity, the user, represents the
portion of the system we wish to design to communicate
on our behalf, and the other, the server, represents another
portion of the system from which we seek assistance via
communication. For simplicity, we consider a synchronous
model of communication, proceeding in discrete rounds, in
which the entities are described by their strategies: (possibly
randomized) mappings that take the state of an entity and its
incoming messages to a new state and a new set of outgoing
messages on each of its communication channels. As alluded to
in the Introduction, for the sake of defining correctness in the
presence of miscommunication, we introduce a third formal
entity into this system that we call the environment, which
represents the rest of the system and/or the operating environ-
ment of the user and server (see Figure 1 for a diagram). We
assume that communication always has a purpose that can be
formulated in terms of the states of the environment; precisely,
we assume the existence of a referee predicate defined over
(sequences of) states of the environment that, together with the
environment, defines a goal of communication for the user.

For example, we might informally consider a goal in which
we wish to control robots that store and retrieve goods in
a warehouse. The environment might reasonably model the

2Settings with more entities may be treated, to some extent, by separately
considering the pairwise interactions [6, Section 7].

state of the warehouse, and the server strategy might be
taken to correspond to the software controlling one of the
robots. The communications channels joining the entities might
variously correspond to sensors or network links. The goal
might correspond to a family of instances which specify that
goods are to be moved from one location in the warehouse to
another, which is then the condition checked by the referee.
The user remotely controls the robot over the network to
achieve these ends in the system, and our objective as designers
would be to give a user strategy that accomplishes this.

More precisely, there are two main families of goals that
have been considered, that we refer to respectively as finite
and infinite goals. Finite goals, known elsewhere as “goals to
achieve,” are specified by a termination condition: the user
should terminate its execution when the environment is in
a satisfactory state. Correspondingly, the referee defining a
finite goal only examines a single state of the environment to
determine whether the goal is achieved. Such goals naturally
represent subgoals or elementary subroutines that we might
wish to carry out, and are studied by Juba [5, Chapters 2
and 5]. Infinite goals, by contrast, are defined in terms of an
entire, infinite execution of the environment in the three-entity
system. Such goals are suitable for reactive systems such as
network infrastructure or operating systems that are intended
to remain available in a single execution. We almost always
restrict our attention to infinite goals having the form of a
series of sessions, where each session could be viewed as an
instance of a finite goal; infinite goals allow richer possibilities
than a sequence of finite goals if we are willing to tolerate
the failure of a few (a bounded number) of the sessions. This
richer but somewhat more complex setting is the main focus
of Goldreich, Juba, and Sudan [6]. This collection of “multi-
session” infinite goals is only one natural kind of infinite goal,
though, and the work of Goldreich, Juba, and Sudan only hints
at the variety of further kinds of possible infinite goals.

In this enriched communication model, we can formulate
our compatibility problems by supposing that there is more
than one possible server strategy. That is, we suppose that
there is a set of possible server strategies, and an actual server
strategy for our three-entity system is selected adversarially
from this set. We say that a given user strategy is compatible
with the set of server strategies for the given goal if, for every
server strategy from the set, the user strategy satisfies the
referee in the three-entity execution.

B. Sensing for a goal

The key theoretical notion, for finite goals in particular, is
a kind of (Boolean) feedback we call sensing (for a goal), that
is computed from the user’s local view of the system by a
sensing function. As the name suggests, sensing functions are
potentially capable of detecting success (or failure) of a goal,
but need not always detect it. In the case of finite goals, this
means that the sensing function can sometimes detect when
the referee is satisfied. For example, in the warehouse goal, if
our sensors don’t have a line-of-sight to the point of delivery
of the goods, then they may not detect that the package has
been carried to the proper location, and we generally deem
that acceptable. What we do require, for finite goals, is that
there is some further action the user can take (or some way
of going about achieving the goal) in the system that permits



us to obtain a success signal from the sensing function. For
example, this may be accomplished in the warehouse example
by removing the obstruction to our line-of-sight or arranging
for some other robot to signal to us that the package is
delivered. If there is some feasible, efficient user strategy that
always triggers the sensing function’s success signal with a
given server, then we say that the sensing function is viable
for the server and goal.

Of course, the intuition above presumes that when the
sensing function detects success, then this actually means
that (except for perhaps exceptionally rare circumstances) the
referee is satisfied and therefore the goal is achieved. We refer
to this property of the sensing function as safety. Precisely, we
consider safety as a property of a fixed goal and a given set
of servers—ideally, with all possible servers, but in general
possibly relying on some special property of the servers. We
note that in order for sensing functions to be useful to us, they
must have some form of these two properties: the always-
positive sensor is viable but unsafe, whereas the always-
negative sensor is safe but unviable.

Another, more subtle example of sensing can be found in
outsourcing computation, e.g., to a cloud, the goal originally
considered in the work of Juba and Sudan [8]. Here, sensing
is achieved by obtaining an interactive proof of the correctness
of the computation from the server: the soundness of the proof
immediately guarantees safety, and viability can be obtained
since an efficient user strategy can extract such an interactive
proof from the server (by requesting a series of computational
tasks from the server/cloud).

More concretely, suppose we have a user with limited
memory that wishes to utilize the vaster capabilities of a
cloud to solve a problem. Suppose that some small-space user
strategy could interface with the cloud, and that the problem
is complete for polynomial-time (e.g., linear programming or
circuit evaluation). Then, completeness for polynomial time
guarantees that there is a small-space reduction that obtains full
computation histories from solving instances of the original
problem. These computation histories may then be checked
space-efficiently by checking transitions in the history at
random, which only requires storing a pointer into the history
and a constant amount of information about the local state. By
checking enough random transitions, one obtains confidence
that the entire history is consistent, and then it is safe to
output the result indicated at the end of the history. Of course,
by composing the small-space reduction with the strategy for
interfacing with the cloud and this history-verification strategy,
one obtains a small-space user strategy for which these history
checks will all pass, i.e., yielding viability of the corresponding
sensing function (cf. [5, Section 5.5.2] for more).

We consider a slightly different, weaker notion of sensing
for infinite goals. Recalling that the class of infinite goals we
commonly consider, multi-session goals, can be viewed as an
infinite sequence of finite goals in which we are satisfied if we
fail in no more than a finite number of these sub-goals, it is
natural that the notion of sensing should likewise be weaker.
This weaker notion of safety essentially asserts that when a
sub-goal is failed, the sensing function should give a negative
indication not too much later (unless some corrective action
has been taken in the interim). The corresponding viability
notion demands that there is a user strategy such that after

some bounded “grace period,” the sensing function ceases to
produce negative indications. The key property of both of
these respective notions of sensing is that they suffice for
achievement of goals in their respective settings. This is the
subject of the main theorems on semantic communication, as
we review in the next section.

C. The theorems: sensing and compatibility

Sensing naturally suggests a control-theoretic architecture
for a user strategy: the sensing function computes a feedback
signal that is fed into a separate controller strategy that
attempts to find a strategy that satisfies the sensing function.
Such architectures are quite natural and appear in many other
areas such as autonomic computing [9]. The main theorem
for finite goals essentially asserts that such a control-theoretic
architecture based on sensing functions is sufficient and more-
over can be assumed without loss of generality.

Theorem 1 (Theorem 2.25, [5] - informal statement): Fix
a finite goal of communication and a set of server strategies.
There is a user strategy that is compatible with the set of
server strategies for the goal if and only if there is a sensing
function for the goal that is safe for the set of servers and
viable with every server in the set.

The generic solution to controller problem used in the proof
of Theorem 1 is based on Levin’s enumeration technique [10]
and is not so efficient—we will return to this point in Sec-
tion III. The key feature is merely that it is a fixed overhead that
depends only on the server, not on the complexity of the goal
instance. Still, the positive direction of an essentially analogous
theorem for space-bounded computation [5, Theorem 5.22],
together with our sensing functions for polynomial-time com-
plete computation yield for example a construction of universal
small-space user strategies for outsourcing polynomial-time
complete computations.

More generally, we can generically define universal com-
patibility as follows: we say that a server is helpful for a goal
if there exists a (feasible) user strategy that is compatible with
it, i.e., achieves the goal with that server. Now consider the
set of all servers that are helpful for a goal: this is the most
diverse possible set of servers with which a user could be
compatible for the fixed goal. So, we say that a user strategy
compatible with this set is universal. Sensing functions like
the one we described for computing that are viable with every
helpful server and safe with every helpful server suffice, by
Theorem 1, for the construction of universally compatible user
strategies for a given goal.

The direction of Theorem 1 asserting that a suitable sensing
function always exists turns out to be useful for studying
what is necessary for compatibility. In particular, for the study
of universal compatibility, it enables the following significant
theorem:

Theorem 2 (Theorem 2.37, [5]): If a sensing function is
safe with the set of all helpful servers for a goal, then it is
actually safe with all servers.

Theorem 2, when combined with the characterization of
Theorem 1, establishes that our ability to achieve correctness
with a sufficiently diverse set of servers is intimately connected
to our ability to obtain reliable information about where our



goals stand. In the context of information-processing goals, this
requirement of reliable information in the face of potentially
adversarial behavior leads us to necessarily consider crypto-
graphic techniques in order to enable compatibility. For exam-
ple, the theorems immediately imply that the computational
problems that can be universally outsourced are precisely those
that possess a certain kind of interactive proof system [8]. We
will see a particularly concrete example of this invocation of
cryptography in Section IV, where security features originally
included in the optional IPsec extension to IP [11] turn out to
be exactly what we require to enable self-patching.

As for infinite goals, the positive direction of Theorem 1
– establishing that sensing suffices for the construction of a
compatible user strategy – still holds [6, Theorem 4.6, etc.] as
does the analogue of Theorem 2 [6, Theorem 4.26]. But, the
characterization of Theorem 1 does not hold in this setting.
Indeed, it turns out that there are infinite goals for which
there exist user strategies that are compatible with a diverse
collection of servers, even though the user strategy receives no
feedback on its progress in any meaningful sense [6, Section
4.3]. Naturally, this example relies heavily on the weakness of
our criteria for success in multi-session goals: the number of
failed sessions may be arbitrarily large as long as it is finite.
Sensing still remains useful in this setting at least as a means to
construct user strategies that guarantee bounds on the number
of failures [6, Theorem 4.17], and the analogue of Theorem 2
at least addresses the kind of sensing used in this application.

III. EFFICIENCY OF LEARNING

We noted that our proof of Theorem 1 uses a somewhat
unsatisfactory enumeration-based approach to the “controller
problem,” that is, to searching for a satisfactory user strategy.
Unfortunately, it turns out that this is inherent: solutions to the
controller problem that are sufficiently general for universally
compatible users (and sufficient to prove Theorem 1) must
inherently be slow. This is actually quite intuitive, as its
scope includes servers employing communications protocols
that use, e.g., “magic strings” to identify the protocol being
used. Specifically, we suppose that the protocol specifies that
the server ignores the user unless the user provides a specific
“magic string” prefixing its first message. Such a “magic
string” is essentially a password, and if the class of servers
contains servers using every such password, it necessarily will
take any given user strategy a long time before it tries at least
one of these passwords [6, Theorem 4.25] (or [5, Theorem
4.3] for finite goals). So, if the set of servers is rich enough
to include those demanding all possible such “magic strings,”
users compatible with all of them must experience substantial
overhead with some (actually, most) of them.

To clarify, we don’t believe that anyone should be par-
ticularly happy with strategies that perform as poorly as an
enumeration-based strategy. The point, rather, is that improving
on these kinds of strategies requires some kind of knowledge
of the server (and what it expects). Somehow, the set of servers
must be restricted so that not all of these password-protected
servers are within the scope we wish to address. Two distinct
approaches have been considered so far, as we review below.
As we will note in Section V, though, the main directions for
future work still concern this general problem.

A. Efficiency from similar “beliefs”

The first approach, suitable for the setting of finite goals,
appears in the work of Juba and Sudan [12]. They suppose
that a server is designed to work well with a certain kind of
population of users, reflected in a probability distribution over
user strategies. More precisely, fixing a goal and a distribution
over user strategies, we suppose that the server is designed
so that a large fraction of users under the distribution achieve
the goal quickly. Now, suppose that the user can sample from
a distribution over user strategies that is close (in statistical
distance) to the server’s “belief” about the user population
(the distribution used in the server’s design and evaluation).
In this case, it is possible to design a controller strategy for
the user based on sampling from the user’s distribution that
performs roughly as well at achieving the goal as a typical
user under the server’s beliefs—the overhead is given by some
modestly large constants and a penalty for the gap between the
user’s distribution and the server’s belief distribution. So, if the
server has actually been designed to work well with this user
population, our user strategy also works about as well.

B. Efficiency from simple strategies

The second approach, considered by Juba and Vem-
pala [13], assumes that the sensing function is viable with
very simple user strategies, and (in the multi-session goal
model) gives feedback essentially immediately. In such a case,
a controller strategy turns out to be precisely an algorithm
for on-line learning in the mistake-bound model (originally
introduced by Bārzdiņš and Freivalds [14] and developed
by Littlestone [15]). Here, the concept representation learned
by the algorithm corresponds to the class of user strategies
searched by the controller. This gives us a few positive
examples of efficient algorithms, but the problem here is that
very little is learnable in this model. So these controllers
must search for strategies that only compute, e.g., threshold
functions of their inputs. We will see another variant of this
general approach in the next section.

IV. EXAMPLE: SELF-PATCHING PACKET NETWORKS

We now consider a problem inspired by the transition from
IPv4 to IPv6, considered by Juba [5, Chapter 9]. Suppose that
our devices are communicating over a packet network which
is being upgraded so that the previous packet format is no
longer supported, and packets sent under this old format may
be dropped or incorrectly delivered. We would like to design
an encoding and decoding strategy for the network’s packets
that remains compatible with the new format, that is “forward-
compatible.” Naturally, the network is the “server” in this
example, and we would like to design an end-user stack that
is compatible with an entire set of different networks running
different protocols that could potentially be “the next version.”

This problem could be relevant to pervasive computing
since, if we are going to endow most of the everyday objects
and infrastructure around us with a network connection, we
can’t expect the owners to have much hope of managing
manual “upgrades” of the software used by all of them.
(This is not a question of “incentives”—it may easily be sim-
ply infeasible.) Furthermore, allowing the devices to receive
patches distributed over the network exposes a vulnerability of



terrifying proportions in this everyday infrastructure. But then,
what will happen when the current network protocol is phased
out? Although the most recent transition has been handled by
running IPv4 and IPv6 in a “dual-stack” configuration, this
does not seem like a solution that will scale in the long term,
as it means that the complexity of our network infrastructure
must strictly increase over time. Furthermore, it leaves any
legacy IPv4 devices incapable of communicating with future
IPv6-only devices. Given the stable of bad alternatives avail-
able, the “forward-compatibility” approach presents itself as a
potentially hopeful direction. In any case, this problem also
turns out to serve as a concrete illustration of how the theory
described in the previous sections impacts and may usefully
inform our approaches to solving compatibility problems.

The problem that immediately arises is that the specifica-
tion for the IP layer provides no feedback: When a packet is
sent, the protocol never provides a packet-level confirmation.
Likewise, when a candidate decoding of an incoming packet is
returned to the end-user, no confirmation of whether or not the
decoding was performed correctly is ever expected. Supposing
we treat the sending and decoding of individual packets as a
goal that we would like to reliably achieve, Theorem 1 tells
us that we can’t take a specification like that of IP alone since
there is no way to provide sensing. If we redefine the IP layer
to (somehow) receive these two kinds of feedback, then since
these comprise the full functionality we require from IP, we
know the compatibility problem can be solved: we can at least
design an enumeration-based controller, though of course its
efficiency is still lacking. Still, we focus on how to provide the
necessary kind of feedback within the context of a higher-level
protocol or application, in which the contents of the packets
are not completely arbitrary (as opposed to obtaining some
feedback from beyond the network, which would be another
possibility).

A natural choice of such context to consider is the TCP
protocol: in most cases where IP is used, TCP is running on
top of IP, and moreover, TCP provides feedback for sending
by design. That is, we will assume that two end-users are using
(our own modified version of) TCP in order that at least one
of the users may learn the new packet format. Then, by using
a variant of the acknowledgement scheme already present in
TCP, our modified version of TCP could verify successful
sending of our packets if we only knew how to decode packets
at the IP layer. We thus reduce the number of obstacles to
correctness to just one, verifying decoding.

The difficulty with decoding is reminiscent of the prob-
lem with studying compatibility using Shannon’s model: a
packet is simply a string, and if the mappings from packets
to their payloads is completely arbitrary, then the problem
is impossible. The key to solving this problem is that we
wouldn’t realistically expect these mappings to be completely
arbitrary. Complexity theory now presents one way forward:
We will formulate the problem more carefully, restricting our
attention to simple encoders that use a bounded amount of
memory and compute encodings in a single pass—real packet
encodings naturally tend to be sufficiently simple that they can
be computed within such limited resources. We will likewise
consider only “next versions” of the packet format for which
short “patch” programs, computable in similar requirements,
convert packets in the old format to packets in the new format.

That is, instead of seeking a “universal” packet network stack,
we will only seek a “self-patching” stack that continues to
work so long as the patches are sufficiently simple.

We can now finally solve the verification problem: a mere
hash function tag (e.g., as proposed by Gilbert, MacWilliams,
and Sloane [16]) is provably secure as a signature scheme
against such simple functions. It is safe because we can drive
down the probability of collisions low enough so that for every
possible message, state of the encoder, and incorrect candidate
patch, an incorrect message with a correct hash under the
randomly chosen function is only produced with exponentially
small probability. The length of the tag required is linear
in the sum of the representation lengths of the messages,
states, and patches. (Notice that we do crucially rely on the
bounds on the latter two complexities that we introduced in
our reformulation.) We note that essentially such a message
authentication feature is actually already optionally provided
as part of IPsec [11]; we merely require that the users use
such a feature (specifically sharing, e.g., the hash function
as a key). Together with the previously mentioned variant of
the acknowledgement scheme already present in TCP, we can
thus obtain the feedback necessary to ensure correctness and
thereby complete a basic self-patching network stack.

Moreover, the search for an encoding function is now
over these short patches instead of over the entire algorithm.
When the patches are short but the overall algorithm is long,
this approach potentially yields much less overhead. This is
a different example of how the efficiency may be improved
by assuming that the user strategy has a simple form, cf.
Section III-B. We also briefly note that there are learning
algorithms in this case – where, due to the unreliability of
the network, even packets using the correct encoding may
sometimes be dropped – that perform much better than our
enumeration-based strategies. Namely, the controller’s search
for a patch may now be cast as a nonstochastic multi-armed
bandit problem, and the algorithm of Auer et al. [17] for
example would suffer far less overhead than a naı̈ve enumer-
ation. Any further improvement of the efficiency of such self-
patching is an open question.

RECAP. Our search for a packet network stack that would
feature “forwards-compatibility” with a diverse collection of
candidates was largely guided by the need to obtain feedback,
as outlined by Theorem 1. It motivated us to make two crucial
assumptions: first, that a protocol like TCP would be running
on top of the packet network layer so that sending would be
verifiable; and second, that the encoding and patching were
performed by functions that were “simple” in a complexity-
theoretic sense so that decoding of a packet would be verifiable
using essentially a feature for message authentication already
present in IPsec. This latter assumption also opened the door
to a reduction of the overhead for the search for a user strategy,
as short patch programs can be searched relatively efficiently
(notice, only relatively few “passwords” can be encoded in a
short program).

V. CURRENT AND FUTURE DIRECTIONS

We now conclude by describing the current and future
directions for work in this semantic communication model.
Despite the work described in Section III, it is still premature



to expect acceptable performance out of the algorithms we
have described, and thus extensive empirical work based
on the solutions we’ve proposed is almost surely likewise
premature.3 Thus, most of the current directions concern means
for enabling systems that will be efficient while still retaining
nontrivial flexibility.

A. On-line learning approach

In Section III-B, we noted that the drawback of the on-
line learning approach of Juba and Vempala [13] was that
only extremely simple functions can be learned in the on-line
mistake-bound learning model. That is because the success/fail
feedback provided by the sensing functions is rather impover-
ished. However, it seems likely that in a real-world scenario,
richer kinds of sensing should be available, e.g., not just “right”
or “wrong,” but “off by x.” Juba and Vempala note at least one
such example where somewhat richer feedback leads to an
exponential improvement in performance [13, Example 17].
Likewise, in the case of the self-patching network stack, we
might wish to allow the controller algorithm to choose some
packets to send, which might be useful in enabling a kind
of “query” learning. Of course, to be truly meaningful, all of
these approaches would require fixing a real-world problem
and seeing what kind of sense data is not only sufficient, but
also feasible to collect.

B. Beliefs approach

The main obstacle to the approach described in Sec-
tion III-A that was not dealt with in the work of Juba and
Sudan [12] is that while the approach assumes that the server
is designed to efficiently serve a large population of user
strategies that can be efficiently sampled, we actually do not
know how to design servers that perform well with respect
to natural, sampleable families of algorithms for nontrivial
goals. Although in light of this lacuna it may seem like this
approach merely begs the question, we note that the presence
of a distribution over the user strategies leads to a problem that
is quite different from the “worst-case” compatibility problems
that we had originally set out to address. In fact, it seems
like this remaining “average-case” performance optimization
problem is roughly similar to some problems being addressed
by work elsewhere, for example, on self-optimizing systems in
autonomic computing [9]. We are therefore hopeful that this
approach is not so far from realization after all.

C. Knowledge-based approach

Yet another natural approach to the controller’s problem is
to use existing AI techniques for planning for control. Using
such planning techniques requires first learning the server’s
behavior somehow, and therefore moreover, requires that the
server’s behavior is somehow learnable (e.g., obeys simple, ob-
servable time-invariant relations). Valiant’s PAC semantics [18]

3We also have not attempted to evaluate the performance of self-patching
networks partially on account of the performance and suitability of the scheme
seeming to depend crucially on the choice of patch encoding, which is separate
issue entirely from those we have considered so far.

provides a (logical) semantics suitable for the purposes of
integrating learned rules into classical AI-style reasoning ap-
proaches. Remarkably, it turns out that due to how the learned
rules are used in reasoning, we might be able to lift the usual
representation restrictions imposed on learning [19] which
pose the main barrier to, e.g., the on-line learning approach
above. The only potential barrier to such an approach is then
the speed of algorithms for planning, but such problems at
least have been the focus of much research over the years,
and are actually tractable in practice in some cases.

REFERENCES

[1] A. G. Stephenson, L. S. LaPiana, D. R. Mulville, P. J. Rutledge, F. H.
Bauer, D. Folta, G. A. Dukeman, R. Sackheim, and P. Norvig, “Mars
climate orbiter mishap investigation board phase I report,” NASA press
release, 1999.

[2] C. E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[3] W. van Orman Quine, Word and Object. Cambridge: MIT Press, 1960.

[4] ——, “Ontological relativity,” in Ontological Relativity and Other

Essays. New York: Columbia University Press, 1969.

[5] B. Juba, Universal Semantic Communication. Berlin: Springer, 2011.

[6] O. Goldreich, B. Juba, and M. Sudan, “A theory of goal-oriented
communication,” J. ACM, vol. 59, no. 2, pp. 8:1–8:65, 2012.

[7] W. Weaver, “Some recent contributions to the mathematical theory of
communication,” in The Mathematical Theory of Communication, C. E.
Shannon and W. Weaver, Eds. University of Illinois Press, 1949.

[8] B. Juba and M. Sudan, “Universal semantic communication I,” in Proc.

40th STOC, 2008, pp. 123–132.

[9] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing—degrees, models, and applications,” ACM Computing Sur-

veys, vol. 40, no. 3, pp. 7:1–7:28, 2008.

[10] L. A. Levin, “Universal search problems,” Probl. Inform. Transm.,
vol. 9, pp. 265–266, 1973.

[11] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301 (Proposed Standard), Internet Engineering Task Force,
December 2005. [Online]. Available: http://www.ietf.org/rfc/rfc4301.txt

[12] B. Juba and M. Sudan, “Efficient semantic communication via compat-
ible beliefs,” in Proc. 2nd Innovations in Computer Science, 2011, pp.
22–31.

[13] B. Juba and S. Vempala, “Semantic communication for simple goals is
equivalent to on-line learning,” in Proc. 22nd ALT, ser. LNAI. Springer,
2011, vol. 6925, pp. 277–291.

[14] J. Bārzdiņš and R. Freivalds, “On the prediction of general recursive
functions,” Soviet Math. Dokl., vol. 13, pp. 1224–1228, 1972.

[15] N. Littlestone, “Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm,” Mach. Learn., vol. 2, no. 4, pp. 285–
318, 1988.

[16] E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane, “Codes which
detect deception,” Bell Sys. Tech. J., vol. 53, pp. 405–424, 1974.

[17] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1,
pp. 48–77, 2003.

[18] L. G. Valiant, “Robust logics,” Artificial Intelligence, vol. 117, pp. 231–
253, 2000.

[19] B. Juba, “Learning implicitly in reasoning in PAC-semantics,”
arXiv:1209.0056v1 [cs.AI], 2012.


