Implicit Learning of Common Sense for Reasoning

Brendan Juba*
Harvard University
bjubal@alum.mit.edu

Abstract

We consider the problem of how enormous
databases of “common sense” knowledge can be
both learned and utilized in reasoning in a compu-
tationally efficient manner. We propose that this
is possible if the learning only occurs implicitly,
i.e., without generating an explicit representation.
We show that it is feasible to invoke such im-
plicitly learned knowledge in essentially all nat-
ural tractable reasoning problems. This implicit
learning also turns out to be provably robust to oc-
casional counterexamples, as appropriate for such
common sense knowledge.

1 Introduction

The means of acquisition and use of common sense knowl-
edge is a central question of Artificial Intelligence, starting
with McCarthy’s work [1959]. As a starting point, it is help-
ful to distinguish between common sense knowledge that is
learned from typical experiences, and knowledge that is (at
least in humans and many other animals) innate, specifically
the core knowledge described by Spelke and Kinzler [2007].
We will only seek to address the learned knowledge here.
Valiant [2006] has proposed that such knowledge can be for-
mally captured by a logical syntax with a semantics derived
from machine learning, PAC-Semantics. In particular, Valiant
observed that the number of rules that can be soundly learned
from a given data set is exponentially large in the amount of
data provided. This efficiency of the data requirements is en-
couraging given that existing KBs of common sense knowl-
edge such as CYC [Lenat, 1995] and Open Mind [Stork,
1999] contain millions of rules at present and continue to
grow. Here, we will seek to address a puzzle left untouched
by Valiant’s work, namely, how is it that a computationally
limited agent can so efficiently acquire and marshal such vast
stores of knowledge? We will argue that this is possible when
the learning occurs only implicitly, i.e., without producing ex-
plicit representations of the learned knowledge. We will show
specifically how this implicitly learned knowledge can be uti-
lized quite efficiently in standard reasoning problems. The

*Supported by ONR grant number N000141210358 and NSF
grant number CCF-0939370. This work was done while the author
was also affiliated with MIT.

(possibly exponential-size) KB itself will appear only in our
analysis of a combined system for learning and reasoning.

Technically, our contribution is that we exhibit com-
putationally efficient algorithms for reasoning under PAC-
Semantics using both explicitly given rules and rules that are
learned implicitly from partially obscured examples. As is
typical for such works, we can illustrate the task performed
by our algorithm with a story about an aviary. Suppose that
we know that the birds of the aviary fly unless they are pen-
guins, and that penguins eat fish. Now, suppose that we ob-
tain a feeding log, from which we can glean that most (but
perhaps not all) of the birds in the aviary seem not to eat fish.
From this information, we can infer that most of the birds in
the aviary can fly. Our algorithms, given the prior knowledge
and partial information of the feeding log as input, will draw
such a conclusion. In particular, they achieve this without
being told up front that “not eating fish” is the key property
that must be learned from the data; in an implicit sense, this
premise is automatically picked out from among the myriad
possible facts and rules that could be learned.

The conclusion that the birds of the aviary fly draws on
both the empirical (partial) information and reasoning from
our explicit, factual knowledge: on the one hand, our feeding
log did not mention anything about whether or not the birds
of the aviary could fly, and on the other hand, although our
knowledge is sufficient to conclude that the birds that don’t
eat fish can fly, it isn’t sufficient to conclude whether or not,
broadly speaking, the birds in the aviary can fly. The key defi-
nition of “witnessed evaluation” of the (common sense) facts
and rules is what makes this connection possible. It allows us
to guarantee that we learn facts such as that the birds don’t eat
fish when they can almost always be verified under the partial
information, and at the same time, it enables the learned facts
and rules to be easily integrated into derivations in standard
proof systems. The underlying definition is standard in proof
complexity, but this is the first work (to our knowledge) to use
it to guarantee learnability in a partial information context.

Our results show that essentially all natural tractable proof
systems considered in the literature (e.g., width-bounded and
treelike resolution) can also utilize knowledge that is implic-
itly learned from partial examples to produce PAC conclu-
sions, without losing the tractability of the systems. The
penalty for access to such implicit knowledge is essentially
independent of the size of the implicit KB. We also note that

the introduction of probability to cope with the imperfection
of learned rules does not harm the tractability of inference, in
contrast to some richer probability logics [Halpern, 1990].

It is perhaps more remarkable in from a learning theoretic
perspective that our approach does not require the rules to
be learned (or discovered) to be completely consistent with
the examples drawn from the (arbitrary) distribution. In the
usual learning context, this would be referred to as agnostic
learning, as introduced by Kearns et al. [1994]. It is essen-
tial to common sense reasoning that we can detect and uti-
lize such rules that may even possess some known counterex-
amples, such as “birds fly.” But, agnostic learning is noto-
riously hard—Kearns et al. noted that even agnostic learn-
ing of clauses (over an arbitrary distribution, in the standard
PAC-learning sense) would yield an efficient algorithm for
PAC-learning DNF (also over arbitrary distributions), which
remains the central open problem of computational learning
theory. Again, by declining to produce a hypothesis, we man-
age to circumvent a key barrier (to the state of the art, at least).

1.1 Relationship to other work

Given that the task we consider is fundamental and has a va-
riety of applications, other frameworks that can handle our
task have naturally been proposed—for example, Markov
Logic [Richardson and Domingos, 2006] is one well-known
framework based on graphical models, and Bayesian Logic
Programming [Kersting and De Raedt, 2008] is an approach
that has grown out of the Inductive Logic Programming (ILP)
community that can be used to achieve the tasks we con-
sider here. The main distinction between all of these ap-
proaches and our approach is that these other approaches all
aim to model the distribution of the data, which is generally
a much more demanding task — both in terms of the amount
of data and computation time required — than simply answer-
ing a query. Naturally, the upshot of these other works is
that they are much richer and more versatile, and there are
a variety of other tasks (e.g., density estimation, maximum
likelihood computations) and/or settings (e.g., infinite first-
order domains) that these frameworks can handle that we do
not. Our aim is instead to show how this more limited (but
still useful) task can be done much more efficiently, much
like how algorithms such as SVMs and boosting can succeed
at predicting attributes for concept classes of limited scope
without needing to model the distribution of the data.

In this respect, our work is similar to the Learning to Rea-
son framework of Khardon and Roth [1997], who showed
how an NP-hard reasoning task (deciding a logn-CNF
query), when coupled with a learning task beyond the reach
of the state of the art (learning DNF from random examples)
could result in an efficient overall system. The distinction be-
tween our work and Khardon and Roth’s is, broadly speaking,
that we re-introduce the theorem-proving aspect that Khardon
and Roth had explicitly sought to avoid. Briefly, these tech-
niques permit us to incorporate declaratively specified back-
ground knowledge and moreover, permit us to cope with
partial information in more general cases than Khardon and
Roth [1999], who could only handle constant width clauses.
As we noted earlier, we believe that reasoning is primarily
of interest in partial information settings (cf. it is somewhat

subtle to explain what the technical contribution of Khardon
and Roth [1997] achieves that is not achieved by a simple es-
timator). Another difference between our work and that of
Khardon and Roth, that also distinguishes our work from tra-
ditional ILP (e.g., [Muggleton and De Raedt, 1994]), is that as
mentioned above, we are able to utilize rules that hold with
less than perfect probability (akin to agnostic learning, but
easier to achieve here).

2 Definitions and preliminaries

2.1 PAC-Semantics

Inductive generalization (as opposed to deduction) inher-
ently entails the possibility of making mistakes. Thus, the
kind of rules produced by learning algorithms cannot hope
to be valid in the traditional (Tarskian) sense (for reasons
we describe momentarily), but intuitively they do capture
some useful quality. PAC-Semantics were introduced by
Valiant [2000] to capture in general this quality possessed
by the output of PAC-learning algorithms when formulated
in a logic. Precisely, suppose that we observe examples inde-
pendently drawn from a distribution over {0, 1}"; now, sup-
pose that our algorithm has found a rule f(z) for predicting
some target attribute x; from the other attributes. The for-
mula “z; = f(x)” may not be valid in the traditional sense,
as PAC-learning does not guarantee that the rule holds for ev-
ery possible binding, only that the rule f so produced agrees
with x; with probability 1 — e with respect to future exam-
ples drawn from the same distribution. That is, the formula is
instead “valid” in the following sense:

Definition 1 ((1 — ¢)-valid) Given a distribution D over
{0,1}", we say that a relation R is (1 — e)-valid if
Pryep[R(z)=1]>1—e.

Of course, we may consider (1 — €)-validity of relations R
that are not obtained by learning algorithms and in particular,
not of the form “z; = f(z).”

A number of well-known specific examples of common
sense reasoning were demonstrated to be captured by learned
rules by Valiant [1995] and Roth [1995], and Valiant [2006]
proposed learned knowledge in general to be suitable for
capturing certain kinds of common sense knowledge. The
non-monotonic examples discussed by Valiant and Roth arise
when we consider conditioning D on some relatively rare
event, such as encountering a penguin. Tolerance to coun-
terexamples from such rare but possible events is thus cru-
cial for capturing common sense reasoning. We won’t further
consider how or when to condition on such events here. In-
stead, we take some such distribution as given and attempt to
reason about typical examples from the distribution.

Valiant [2000] considered one rule of inference, chaining,
for formulas of the form ¢, = f(z) where f is a linear thresh-
old function: given a collection of literals such that the partial
assignment obtained from satisfying those literals guarantees
f evaluates to true, infer the literal ¢;. Valiant observed that
for such learned formulas, the conjunction of literals derived
from a sequence of applications of chaining is also (1 — ¢’)-
valid for some polynomially larger ¢'. It turns out that this
property of soundness under PAC-Semantics is not a spe-
cial feature of chaining: generally, it follows from the union

bound that any classically sound derivation is also sound un-
der PAC-Semantics in a similar sense.

Proposition 2 (Classical reasoning in PAC-Semantics)

Let)y, . .., vy be formulas such that each 1; is (1—¢;)-valid
under a common distribution D for some ¢; € [0, 1]. Suppose
that {11,..., %} = @ (in the classical sense). Then ¢ is
(1 — €)-valid under D for € =", €.

So, soundness under PAC-Semantics does not pose any
constraints on the rules of inference that we might con-
sider; the degree of validity of the conclusions merely ag-
gregates any imperfections in the various individual premises
involved. We also note that without further knowledge of D,
the loss of validity from the use of a union bound is optimal.

Subsequently, we will assume that our Boolean functions
will be given by formulas of propositional logic formed over
Boolean variables {x1,...,x,} by negation and the follow-
ing linear threshold connectives (which we will refer to as the
threshold basis for propositional formulas):

Definition 3 (Threshold connective) A threshold connec-
tive for a list of k formulas ¢+, . . . , ¢y, is given by a list of k+1
rational numbers, c1, . . ., c, b. The formula [Zle cid; > bl
is interpreted as follows: given a Boolean interpretation for
the k formulas, the connective is true if El $i=1Ci > b

Naturally, a threshold connective expresses a k-ary AND
connective by taking the ¢; = 1, and b = k, and expresses a
k-ary OR by taking c¢y,...,ci,b = 1. By using the thresh-
old connective as our basis, we will also be able to easily
demonstrate that our results apply to some numerical proof
systems such as cutting planes [Cook et al., 1987], which rea-
sons about systems of linear inequalities, and the polynomial
calculus [Clegg et al., 1996] a proof system for reasoning
about the common roots of systems of polynomial equations.

We note that Valiant actually defines PAC-Semantics for
first-order logic by considering D to be a distribution over
the values of atomic formulas. He focuses on formulas of
bounded arity over a polynomial size domain; then evaluating
such formulas from the (polynomial size) list of values of all
atomic formulas is tractable, and in such a case everything
we consider here about propositional logic essentially carries
over in the usual way, by considering each atomic formula to
be a propositional variable (and rewriting the quantifiers as
disjunctions or conjunctions over all bindings). As we don’t
have any insights particular to first-order logic to offer, we
will focus exclusively on the propositional case in this work.

Michael [2008] built systems based on PAC-Semantics
for addressing NLP tasks, providing some concrete demon-
strations of how to apply the theory. More specifically,
Michael and Valiant [2008] demonstrated that chaining with
rules obtained from PAC-learning algorithms improved the
accuracy of algorithms for predicting missing words while
Michael [2009] described an approach to textual entailment.

2.2 Partial observability

Our knowledge of a domain will be obtained from a collec-
tion of examples independently drawn from a distribution D
capturing our domain, and our main question of interest will
be deciding whether or not a formula is (1 — €)-valid in D.

But notice, in the story about the aviary in the introduction,
reasoning was only needed on account of the partial infor-
mation provided by the feeding log: if it had stated whether
or not the birds could fly as well, then we could have an-
swered this query more simply by a direct examination of the
data. Generally, answering queries in PAC-Semantics from
complete examples is trivial: Hoeffding’s inequality guaran-
tees that with high probability, the proportion of times that
the query formula evaluates to ‘true’ is a good estimate of the
degree of validity of the formula. Recall:

Theorem 4 (Hoeffding’s inequality) Ler X,,...,X,, be
ii.d. random variables taking values in [0,1]. Let X =
LS Xi. Then for every v,

Pr[X —E[X,] >] <e 2™

In such cases, reasoning per se is of no use. We were
interested in using common sense facts about our domain
that were learnable rules over D in reasoning, so our fo-
cus necessarily concerns situations involving both learning
and partial information, building on a theory developed by
Michael [2010].

Definition 5 (Partial examples) A partial example p is an
element of {0, 1, x}™. We say that a partial example p is con-
sistent with an example x € {0,1}" if whenever p; # *,
Pi = Zj.

Naturally, instead of examples directly from D, our knowl-
edge of D will be derived from a collection of partial exam-
ples drawn from a masking process over D:

Definition 6 (Masking process) A mask is a function m :
{0,1}™ — {0,1,}", with the property that for any = €
{0,1}", m(x) is consistent with x. A masking process M
is a mask-valued random variable (i.e., a random function).
We denote the distribution over partial examples obtained by
applying a masking process M to a distribution D over as-
signments by M (D).
Note that the definition of masking processes allows the hid-
ing of entries to depend on the underlying example from D.
Of course, when e.g., all attributes of our examples are hid-
den by the masking process, any nontrivial knowledge of our
domain is surely beyond “common sense.” We therefore start
by only considering some facts that can be easily empirically
verified, effectively by generalizing Valiant’s [2000] partial
information chaining rule. (Simple consequences of such em-
pirically grounded facts will also be included later.)

Definition 7 (Witnessed formulas) We define a formula to
be witnessed to evaluate to true or false in a partial example
by induction on its construction; we say that the formula is
witnessed iff it is witnessed to evaluate to either true or false.

o A variable is witnessed to be true or false iff it is respec-
tively true or false in the partial example.

e ¢ is witnessed to evaluate to true iff ¢ is witnessed to
evaluate to false; naturally, —¢ is witnessed to evaluate
to false iff ¢ is witnessed to evaluate to true.

o A formula with a threshold connective [c1¢1 + -+ +
ckPr > b] is witnessed to evaluate to true iff

Z ci + Z min{0,¢;} > b

i:¢; witnessed true i:¢; not witnessed

and it is witnessed to evaluate to false iff

X ar ¥

i:¢; witnessed true i:¢p; not witnessed

max{0,¢;} <b.

(i.e., iff the truth or falsehood, respectively, of the in-
equality is determined by the witnessed formulas, re-
gardless of what values are substituted for the non-
witnessed formulas.)

The formulas that are witnessed true with probability 1 — €
will be our easily verified rules: the recursive definition gives
a linear-time algorithm for computing the witnessed evalua-
tion. They will thus also be the common sense facts that we
will guarantee to be learnable. We stress that such formulas
may still be (witnessed, even) false with probability up to e.
This tolerance to a few counterexamples is essential for them
to capture interesting examples of common sense facts.

A formal example of particular interest is a CNF formula.
A CNF is witnessed to evaluate to true in a partial example
precisely when every clause has some literal that is satisfied.
It is witnessed to evaluate to false precisely when there is
some clause in which every literal is falsified. If we think of
the clauses as encoding implications (e.g., Horn rules), then
they are witnessed true when either the head is true and un-
masked, or else when one of the body literals is false and un-
masked; the conjunction of these rules is witnessed true when
all of the individual rules are simultaneously witnessed true.
Witnessed satisfaction is also necessary for a useful CNF (for
resolution) to be guaranteed to be satisfied: When a clause is
not witnessed true in a partial example and does not contain
a complementary pair, in the absence of background knowl-
edge, there is always a consistent example that falsifies it. By
contrast, it is of course NP-complete to determine whether a
CNF can be satisfied when it is not witnessed false. The defi-
nition then only “gives up” cases where no single clause is set
to false, but nevertheless no consistent assignment across all
of the clauses exists. This concession is significant in some
richer proof systems that we consider later, such as k-DNF
resolution [Kraji¢ek, 2001].

Refining the motivating discussion somewhat, a witnessed
formula is one that can be evaluated in a very straightforward,
local manner. When the formula is not witnessed, we will
likewise be interested in the following “simplification” of the
formula obtained from an incomplete local evaluation:

Definition 8 (Restricted formula) Given a partial example
p and a formula ¢, the restriction of ¢ under p, denoted |,
is a formula recursively defined as follows:
o If ¢ is witnessed in p, then ¢|, is T (“true”) if ¢ is wit-
nessed true, and 1 (“false”) otherwise.
o If ¢ is a variable not set by p, ¢|, = ¢.
o If p = —w) and ¢ is not witnessed in p, then ¢|, =
~(¥1,)-
o If ¢ = [Zle cithi > b] and ¢ is not witnessed
in p, suppose that i,...,1p are witnessed in p
(and 1ppq1, ..., are not witnessed). Then ¢|, is

k
(> imes1 ci(ilp) = d] where d = b — Zi;¢i|p:‘r Ci-
For a restriction p and set of formulas F, we let F|, denote
the set {¢|, : ¢ € F'}.

Given unit cost arithmetic, restrictions are also easily com-
puted from their definition in linear time. In a CNF that is
not witnessed, the restriction simply deletes clauses that are
witnessed satisfied in the partial example, and deletes the fal-
sified literals from the remaining clauses.

2.3 Proof systems

The reasoning problems that we consider will be captured by
“proof systems.” Formally:

Definition 9 (Proof system) A proof system is given by a
sequence of relations {R;}3°, over formulas such that R;
is of arity-(i + 1) and whenever R;(1,, ..., vj,,) holds,
{¥j,,- . ¥, } = . Any formula ¢ satisfying Ry is said to
be an axiom of the proof system. A proof of a formula ¢ from
a set of hypotheses H in the proof system is given by a finite
sequence of triples consisting of
1. A formula vy,
2. A relation R; of the proof system or the set H
3. A subsequence of formulas 1;, , ..., with jo <k for
{ =1,...,i (ie., from the first components of earlier
triples in the sequence) such that R;(V;,, ..., 0, Vi)
holds, unless 1, € H.
for which ¢ is the first component of the final triple in the
sequence.

Needless to say it is generally expected that R; is somehow
efficiently computable, so that the proofs can be checked. We
don’t explicitly impose such a constraint on the formal object
for the sake of simplicity, but the reader should be aware that
these expectations will be fulfilled in all cases of interest.

We will be interested in the effect of the restriction (partial
evaluation) mapping applied to proofs—that is, the “projec-
tion” of a proof in the original logic down to a proof over the
smaller set of variables by the application of the restriction to
every step in the proof. Although it may be shown that this at
least preserves the (classical) semantic soundness of the steps,
this falls short of what we require: we need to know that the
rules of inference are preserved under restrictions. Since the
relations defining the proof system are arbitrary, though, this
property must be explicitly verified. Formally, then:

Definition 10 (Restriction-closed proof system) We will
say that a proof system over propositional formulas is
restriction closed if for every proof of the proof system and
every partial example p, for any (satisfactory) step of the
proof Ri(V1, ..., Yk, d), there is some j < k such that for

the subsequence 1, ..., Vi, Rj(Vilp, .-l lp) is
satisfied, and the formula T (“true”) is an axiom."

So, when a proof system is restriction-closed, given a
derivation of a formula ¢ from v, ... 1y, we can extract
a derivation of |, from 1 |,, ..., 4|, for any partial exam-
ple p such that the steps of the proof consist of formulas men-
tioning only the variables masked in p. This means that we
can extract a proof of a “special case” from a more general
proof by applying the restriction operator to every formula

IThis last condition is a technical condition that usually requires
a trivial modification of any proof system to accommodate. We can
usually do without this condition in actuality, but the details depend
on the proof system.

in the proof. An illustration of this transformation appears
in Figure 1 in the next section, where we describe how the
problem in the introduction is solved by our algorithm. It
turns out to be folklore in the proof complexity community
that almost every propositional proof system is restriction-
closed—Beame et al. [2004] defined “natural” special cases
of resolution to have this property, in particular.

We will be especially interested in special cases of the de-
cision problem for a logic given by a collection of “simple”
proofs—if the proofs are sufficiently restricted, it is possible
to give efficient algorithms to search for such proofs, and then
such a special case of the decision problem will be tractable,
in contrast to the general case. Formally, now:

Definition 11 (Automatizability problem) Fix a proof sys-
tem, and let S be a set of proofs in the proof system. The
automatizability problem for S is then the following promise
problem: given as input a formula ¢ and a set of hypotheses
H such that either there is a proof of p in S from H or else
H |~ o, decide which case holds.

A classic example of such an automatizability problem for
which efficient algorithms exist is for formulas of proposi-
tional logic that have resolution derivations of constant width
(first studied by Galil [1977]) using a simple dynamic pro-
gramming algorithm. Essentially the same dynamic pro-
gramming algorithm can be used to solve the automatizabil-
ity problem for bounded-width k-DNF resolution, a slightly
stronger proof system introduced by Kraji¢ek [2001]. In a
different strengthening, Clegg et al. [1996] showed that poly-
nomial calculus has an efficient algorithm when the polyno-
mials are all of degree bounded by some absolute constant d.
Another example (of incomparable strength) is that treelike
resolution proofs that can be derived while only remembering
a constant number of clauses (i.e., of constant “clause space”
[Esteban and Tordn, 2001]) can also be found in polynomial
time by a variant of Beame and Pitassi’s algorithm [1996]
(noted by Kullman [1999]). We also note that the special
case of the cutting planes proof system [Cook et al., 1987] in
which the coefficient vectors have bounded L;-norm and con-
stant sparsity is also suitable [Juba, 2012, Section 4.3]. Our
approach is sufficiently general to show that implicit learning
can be added to all of these special cases.

We will thus be interested in syntactic restrictions of
restriction-closed proof systems like those above. We wish to
know that (in contrast to the rules of the proof system) these
syntactic restrictions are likewise closed under restrictions in
the following sense:

Definition 12 (Restriction-closed set of proofs) A set of
proofs S is said to be restriction closed if whenever there is a
proof of a formula ¢ from a set of hypotheses H in S, there
is also a proof of ¢|, from the set of hypotheses H|, in S for
any partial example p.

It is not difficult to show that all of the syntactic special
cases of the proof systems that feature efficient algorithms
mentioned above are also restriction-closed sets of proofs
(and as hinted at previously, this seems to be folklore). The
full details for the systems we mentioned here are available
in a technical report [Juba, 2012].

Algorithm 1: DecidePAC

parameter: Algorithm A solving the automatizability
problem for the class of proofs S.

: Formula ¢, €, 6, € (0, 1), list of partial
examples p(M), ..., p(™) from M (D), list of
hypothesis formulas H

: Accept if there is a proof of ¢ in S from H
and formulas 1)1, 1o, . . . that are
simultaneously witnessed true with
probability at least 1 — € 4+« on M(D);
Reject if H = @ isnot (1 — e —)-valid
under D.

input

output

begin
FAILED <+ 0.
foreach partial example p) in the list do
if A((p p()5 H‘p(i)) rejects then
Increment FAILED.
if FAILED > |e-m| then
| return Reject

| return Accept

3 Inferences from incomplete data with
implicit learning

In a given sample of data, there are potentially exponentially
many possible different formulas that could be easily learned
from the data. Specifically, this “common sense knowledge”
consists of formulas which are easy to check for consistency
with the underlying distribution by testing them on a sample
of partial examples. More formally, these are formulas that
are witnessed to evaluate to true on the distribution over par-
tial examples with probability at least (1 — ¢). We will see
that it is possible to simulate access to all of these “common
sense facts” during reasoning; whenever some collection of
such “common sense facts” suffice to complete a proof of our
query, our algorithm will accept the query. Notice that this
may even include “facts” that may be witnessed false with
probability up to e. This is crucial if we are to draw an infer-
ence such as “birds fly” when our examples have a small but
non-negligible chance of being penguins (and thus for non-
monotonic effects to appear given such rare events).

We now state and prove the main theorem. It shows that
a variant of the automatizability problem, in which the algo-
rithm is given partial examples and expected to accept queries
based on proofs that invoke such “common sense knowl-
edge,” is essentially no harder than the original automatizabil-
ity problem as long as the proof system is restriction-closed.
The reduction is very simple and is given in Algorithm 1.

Theorem 13 (Implicit learning preserves tractability) Let
S be a restriction-closed set of proofs for a restriction-closed
proof system. Suppose that there is an algorithm for the au-
tomatizability problem for S running in time T (n, |¢|, |H|)
on input @ and H over n variables. Let D be a distribution
over examples, M be any masking process, and H be any
set of formulas. Then there is an algorithm that, on input
o, H, 6 and ¢, uses O(1/v?log1/8) examples, runs in time

can_fly

penguinv can_fly —penguin

—penguinV eats_fish —eats_fish

Figure 1: A resolution derivation of the example from the in-
troduction. The shaded portion is omitted from the restriction
of the proofs on the input examples (i.e., the log entries).

O(T(n, ||, |H|)$2 log 3), and such that given that either

e [H =] isnot (1 — € — v)-valid with respect to D or
e there exists a proof of ¢ from {11, ..., }UH in S such
that 11, . ..,y are simultaneously witnessed to evalu-
ate to true with probability 1 — € + ~ over M (D)
decides which case holds with probability 1 — .

Proof: Suppose we run Algorithm 1 onm = 27'172 In % exam-

ples drawn from M (D). Then, (noting that we need at most
log m bits of precision for | - m) the claimed running time
bound and sample complexity is immediate.

As for correctness, first note that by the soundness of the
proof system, whenever there is a proof of ¢|) from H|),
|, must evaluate to true in any interpretation of the re-
maining variables consistent with H| o) Thus, if H = ¢
is not (1 — € — +)-valid with respect to D, an interpretation
sampled from D must satisfy H and falsify ¢ with probabil-
ity at least € + ~y; for any partial example p derived from this
interpretation (i.e., sampled from M (D)), the original inter-
pretation is still consistent, and therefore H |, (%= |, for this
p. So in summary, we see that a p sampled from M (D) pro-
duces a formula ¢|, such that H|, }~ ¢|, with probability
at least € + -, and so the algorithm A rejects with probabil-
ity at least € + . It follows from Hoeffding’s inequality now
that for m as specified above, at least em of the runs of A re-
ject (and hence the algorithm rejects) with probability at least
1-46.

So, suppose instead that there is a proof in S of ¢ from
H and some formulas 1, ...,y that are all witnessed to
evaluate to true with probability at least 1 —e+-y over M (D).
Then, with probability 1 — e +y, ¥1],, ..., ¥x|, = T. Then,
since S is a restriction closed set, if we replace each assertion
of some 1; with an invocation of Ry for the axiom T, then
by applying the restriction p to every formula in the proof,
one can obtain a proof of ¢|, from H|, alone. Therefore,
as A solves the automatizability problem for S, we see that
for each p drawn from M (D), A(yp|,, H|,) must accept with
probability at least (1 — € 4), and Hoeffding’s inequality
again gives that the probability that more than em of the runs
reject is at most & for this choice of m. W

An illustration. We now describe how Algorithm 1 solves
the aviary problem described in the introduction. Suppose
that in 99% of the log entries, the bird is observed to eat
something other than fish; the literal expressing that a bird

in question doesn’t eat fish is then witnessed true in a 99%
fraction of the examples. This fact, together with our prior
knowledge that the penguins eat fish and that all of the birds
that aren’t penguins can fly, is sufficient to complete a simple
treelike resolution derivation of the conclusion that the bird
in question can fly (the underlying proof appears in Figure 1).
We now consider the partial examples obtained from the log
entries: in 99% of these partial examples, the literal express-
ing that the bird eats fish is (known to be) false. Under the
restrictions corresponding to such log entries, one obtains a
resolution derivation that only invokes the restrictions of the
background knowledge clauses as premises, as illustrated in
Figure 1. If we run Algorithm 1 with a query correspond-
ing to the literal “can fly,” given as input the log examples,
the background knowledge clauses, and ¢ = .05, then since
a proof is found in more than 95% of the examples, the al-
gorithm accepts, concluding that (most of) the birds can fly.
Theorem 13 in turn guarantees that the statistical conclusions
drawn by the algorithm accurately reflect the underlying com-
position of the aviary if there are sufficiently many examples.

The necessity of computationally feasible witnessing.
Although our choice of witnessed formulas as the “common
sense knowledge” that should be learned may seem like an
ad hoc choice, we note that it is merely a “base case” for
the learning—that is, it follows from our requirements on the
algorithms in each case that any other knowledge that fol-
lows from a simple derivation over these witnessed formu-
las must also be discoverable by the algorithm. Thus, for
each choice of proof system, there are (potentially) differ-
ent collections of formulas that the algorithm is expected to
be capable of discovering. We note that in any case, we re-
quire some collection of formulas for which (1 — €)-validity
is computationally feasible to verify: the specification of the
problem requires that if we invoke our (efficient) algorithm
on a query corresponding to some “‘common sense fact,” the
algorithm must verify that it is (1 — €)-valid (which may
be strengthened to verification on individual partial exam-
ples [Juba, 2012, Appendix B]). Witnessed evaluation is at
least a natural class of formulas for which this test is possible
(and easy), whereas many other natural classes, notably the
class of formulas whose restrictions are tautologies as consid-
ered by Michael [2010], may be computationally infeasible to
test, and thus inappropriate for our purposes.

4 Directions for future work

A possible direction for future work raised directly by this
work involves the development of algorithms for reasoning
in PAC-Semantics directly, that is, not obtained by applying
Theorem 13 to algorithms for the automatizability problems
under the classical (worst-case) semantics of the proof sys-
tems. We will elaborate on some possible starting points next.

4.1 Incorporating explicit learning

One approach concerns modern algorithms for deciding sat-
isfiability; a well-known result due to Beame et al. [2004]
establishes that these algorithms effectively perform a search

for resolution proofs of unsatisfiability (or, satisfying assign-
ments), and work by Atserias et al. [2011] shows that these
algorithms (when they make certain choices at random) are
effective for deciding bounded-width resolution.

The overall architecture of these modern “SAT-solvers”
largely follows that of Zhang et al. [2001], and is based on
improvements to DPLL [Davis and Putnam, 1960; Davis et
al., 1962] explored earlier in several other works [Marques-
Silva and Sakallah, 1999; Bayardo Jr. and Schrag, 1997;
Gomes et al., 1997]. Roughly speaking, the algorithm makes
an arbitrary assignment to an unassigned variable, and then
examines what other variables must be set in order to sat-
isfy the formula; when a contradiction is entailed by the al-
gorithm’s decision, a new clause is added to the formula (en-
tailed by the existing clauses) and the search continues on a
different setting of the variables. A few simple rules are used
for the task of exploring the consequences of a partial set-
ting of the variables—notably, for example, unit propagation:
whenever all of the literals in a clause are set to false except
for one (unset) variable, that final remaining literal must be
set to true if the assignment is to satisfy the formula.

One possibility for improving the power of such algorithms
for reasoning under PAC-Semantics using examples is that
one might wish to use an explicit learning algorithm such as
WINNOW [Littlestone, 1988] to learn additional (approxi-
mately valid) rules for extending partial examples. If we
are using these algorithms to find resolution refutations, then
when a refutation was produced by such a modified archi-
tecture, it would establish that the input formula is only sat-
isfied with some low probability (depending on the error of
the learned rules that were actually invoked during the algo-
rithm’s run).

Given such a modification, one must then ask: does it ac-
tually improve the power of such algorithms? Work by Pi-
patsrisawat and Darwiche [2011] (related to the above work)
has shown that with appropriate (nondeterministic) guidance
in the algorithm’s decisions, such algorithms do actually find
general (i.e., DAG-like) resolution proofs in a polynomial
number of iterations. Yet, it is still not known whether or
not a feasible decision strategy can match this. Nevertheless,
their work (together with the work of Atserias et al.) provides
a potential starting point for such an analysis.

A suggestion for empirical work

Another obvious direction for future work is the development
and tuning of real systems for inference in PAC-Semantics.
While the algorithms we have presented here illustrate that
such inference can be theoretically rather efficient and are
evocative of how one might approach the design of a real-
world algorithm, the fact is that (1) any off-the-shelf SAT
solver can be easily modified to serve this purpose and (2)
SAT solvers have been highly optimized by years of effort.
It would be far easier and more sensible for a group with
an existing SAT solver implementation to simply make the
following modification, and see what the results are: along
the lines of Algorithm 1, for a sample of partial examples
{pM, ..., p{"™}, the algorithm loops overi = 1,...,m, tak-
ing the unmasked variables in p(*) as decisions and checks for
satisfiability with respect to the remaining variables. Count-

ing the fraction of the partial examples that can be extended
to satisfying assignments then gives a bound on the validity of
the input formula. Crucially, in this approach, learned clauses
are shared across examples. Given that there is a common
resolution proof across instances (cf. the connection between
SAT solvers and resolution [Beame et al., 2004]) we would
expect this sharing to lead to a faster running time than sim-
ply running the SAT solver as a black box on the formulas
obtained by “plugging in” the partial examples (although that
is another approach).

4.2 Exploiting limited kinds of masking processes

Another direction for possibly making more sophisticated use
of the examples in reasoning under PAC-Semantics involves
restricting the masking processes. In the pursuit of reasoning
algorithms, it might be helpful to consider restrictions that
allow some possibility of “extrapolating” from the values of
variables seen on one example to the values of hidden vari-
ables in other examples, which is not possible in general since
the masking process is allowed to “see” the example before
choosing which entries to mask. (Relatedly, work by Bonet
et al. [2004] shows, under cryptographic assumptions, that
when some attributes are always masked, the automatizabil-
ity problem for systems such as bounded-depth Frege can’t
be solved efficiently for some distributions.) If the masks
were chosen independently of the underlying examples and
occasionally revealed every attribute, this might enable such
guessing to be useful. Some preliminary results in this di-
rection have been obtained when the learning problem is re-
stricted (to learning a system of parity constraints over a uni-
form distribution) and the masking process decides whether
to mask each attribute by tossing a biased coin: the automa-
tizability problem for general resolution can then be decided
in quasipolynomial time [Juba, 2013].

4.3 Query-driven explicit learning

A final question is whether or not it might be possible to ex-
tend Algorithm 1 to produce an explicit proof from an explicit
set of formulas that are satisfied with high probability from
e.g., algorithms for finding treelike resolution proofs even
when the CNF we need is not 1-valid. (It is generally easy
to find (1 — €)-valid premises when 1-valid premises exist
by simply testing for consistency with the partial examples,
given bounded concealment in the sense of Michael [2010].)
Although this is a somewhat ambitious goal, if one takes Al-
gorithm 1 as a starting point, the problem is of a similar form
to one considered by Dvir et al. [2012]—there, they consid-
ered learning decision trees from restrictions of the target tree.
The main catch here is that in contrast to their setting, we are
not guaranteed that we find restrictions of the same underly-
ing proof, even when one is assumed to exist.

Acknowledgements

This work was heavily influenced by conversations with
Leslie Valiant. I thank the anonymous reviewers for their con-
structive comments.

References

[Atserias et al., 2011] Albert Atserias, Johannes Klaus Fichte, and
Marc Thurley. Clause-learning algorithms with many restarts and
bounded-width resolution. JAIR, 40:353-373, 2011.

[Bayardo Jr. and Schrag, 1997] Roberto J. Bayardo Jr. and
Robert C. Schrag. Using CSP look-back techniques to solve
real-world SAT instances. In Proc. 14th AAAI, pages 203-208,
1997.

[Beame and Pitassi, 1996] Paul Beame and Toniann Pitassi. Sim-
plified and improved resolution lower bounds. In Proc. 37th
FOCS, pages 274-282, 1996.

[Beame et al., 2004] Paul Beame, Henry Kautz, and Ashish Sab-
harwal. Towards understanding and harnessing the potential of
clause learning. JAIR, 22:319-351, 2004.

[Bonet ef al., 2004] Maria Luisa Bonet, Carlos Domingo, Ri-
card Gavald4, Alexis Maciel, and Toniann Pitassi. Non-
automatizability of bounded-depth Frege proofs. Comput. Com-
plex., 13:47-68, 2004.

[Clegg et al., 1996] Matthew Clegg, Jeff Edmonds, and Russell Im-
pagliazzo. Using the Grobner basis algorithm to find proofs of
unsatisfiability. In Proc. 28th STOC, pages 174183, 1996.

[Cook et al., 1987] W. Cook, C. R. Coullard, and G. Turdn. On the
complexity of cutting-plane proofs. Discrete Applied Mathemat-
ics, 18(1):25-38, 1987.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam. A
computing procedure for quantification theory. JACM, 7(3):201—
215, 1960.

[Davis er al., 1962] Martin Davis, George Logemann, and Don-
ald W. Loveland. A machine program for theorem-proving.
CACM, 5(7):394-397, 1962.

[Dvir er al., 2012] Zeev Dvir, Anup Rao, Avi Wigderson, and Amir
Yehudayoff. Restriction access. In Proc. 3rd ITCS, 2012.

[Esteban and Toran, 2001] Juan Luis Esteban and Jacobo Toran.
Space bounds for resolution. Inf. Comp., 171(1):84-97, 2001.

[Galil, 1977] Zvi Galil. On resolution with clauses of bounded size.
SIAM J. Comput., 6:444-459, 1977.

[Gomes et al., 1997] Carla P. Gomes, Bart Selman, and Nuno
Crato. Heavy-tailed distributions in combinatorial search. In
Proc. 3rd Int’l Conf. on Principles and Practice of Constraint
Programming (CP97), volume 1330 of LNCS, pages 121-135.
Springer, 1997.

[Halpern, 1990] Joseph Y. Halpern. An analysis of first-order logics
of probability. Artif. Intel., 46:311-350, 1990.

[Juba, 2012] Brendan Juba. Learning implicitly in reasoning in
PAC-semantics. arXiv:1209.0056v1 [cs.Al], 2012.

[Juba, 2013] Brendan Juba. PAC quasi-automatizability of resolu-
tion over restricted distributions. arXiv:1304.4633 [cs.DS], 2013.

[Kearns er al., 1994] Michael J. Kearns, Robert E. Schapire, and
Linda M. Sellie. Towards efficient agnostic learning. Machine
Learning, 17(2-3):115-141, 1994.

[Kersting and De Raedt, 2008] Kristian Kersting and Luc De
Raedt. Basic principles of learning bayesian logic programs. In
Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen
Muggleton, editors, Probabilistic Inductive Logic Programming:
Theory and Applications, volume 4911 of LNCS, pages 189-221.
Springer, 2008.

[Khardon and Roth, 1997] Roni Khardon and Dan Roth. Learning
to reason. J. ACM, 44(5):697-725, 1997.

[Khardon and Roth, 1999] Roni Khardon and Dan Roth. Learning
to reason with a restricted view. Machine Learning, 35:95-116,
1999.

[Kraji¢ek, 2001] Jan Kraji¢ek. On the weak pigeonhole principle.
Fundamenta Mathematicae, 170:123-140, 2001.

[Kullmann, 1999] Oliver Kullmann. Investigating a general hierar-
chy of polynomially decidable classes of CNF’s based on short
tree-like resolution proofs. Technical Report TR99-041, ECCC,
1999.

[Lenat, 1995] Douglas B. Lenat. CYC: a large-scale investment in
knowledge infrastructure. CACM, 38(11):33-38, 1995.

[Littlestone, 1988] Nick Littlestone. Learning quickly when irrele-
vant attributes abound: A new linear-threshold algorithm. Mach.
Learn., 2(4):285-318, 1988.

[Marques-Silva and Sakallah, 1999] Jodo P. Marques-Silva and
Karem A. Sakallah. GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput., 48(5):506-521, 1999.

[McCarthy, 1959] John McCarthy. Programs with common sense.
In Teddington Conf. on the Mechanization of Thought Pro-
cesses, pages 756-791, 1959. Available at http://www-
formal.stanford.edu/jmc/mcc59.html.

[Michael and Valiant, 2008] Loizos Michael and Leslie G. Valiant.
A first experimental demonstration of massive knowledge infu-
sion. In Proc. 11th KR, pages 378-389, 2008.

[Michael, 2008] Loizos Michael. Autodidactic Learning and Rea-
soning. PhD thesis, Harvard University, 2008.

[Michael, 2009] Loizos Michael. Reading between the lines. In
Proc. 21st IJCAI, pages 1525-1530, 2009.

[Michael, 2010] Loizos Michael. Partial observability and learn-
ability. Artif. Intel., 174(11):639-669, 2010.

[Muggleton and De Raedt, 1994] Stephen Muggleton and Luc De
Raedt. Inductive logic programming: Theory and methods. J.
Logic Programming, 19:629-679, 1994,

[Pipatsrisawat and Darwiche, 2011] Knot Pipatsrisawat and Adnan
Darwiche. On the power of clause-learning SAT solvers as reso-
lution engines. Artif. Intel., 175:512-525, 2011.

[Richardson and Domingos, 2006] Matthew Richardson and Pedro
Domingos. Markov logic networks. Mach. Learn., 62:107-136,
2006.

[Roth, 1995] Dan Roth. Learning to reason: the non-monotonic
case. In Proc. 14th IJCAI, volume 2, pages 11781184, 1995.

[Spelke and Kinzler, 2007] Elizabeth S. Spelke and Katherine D.
Kinzler. Core knowledge. Developmental Science, 10(1):89-96,
2007.

[Stork, 1999] David G. Stork. The open mind initiative. IEEE Ex-
pert Systems and Their Applications, 14(3):16-20, 1999.

[Valiant, 1995] Leslie G. Valiant. Rationality. In Proc. 8th COLT,
pages 3—14, 1995.

[Valiant, 2000] Leslie G. Valiant.
117:231-253, 2000.

[Valiant, 2006] Leslie G. Valiant. Knowledge infusion. In Proc.
AAAI’06, pages 1546-1551, 2006.

[Zhang et al., 2001] Lintao Zhang, Conor F. Madigan, Matthew W.
Moskewicz, and Sharad Malik. Efficient conflict driven learning
in a Boolean satisfiability solver. In Proc. IEEE/ACM Int’l Conf.
on Computer Aided Design (ICCAD’01), pages 279-285, 2001.

Robust logics. Artif. Intel.,

