
JOURNALOF SOFTWAREMAINTENANCEAND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. (2010)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.470

Developing measurement systems: an industrial case study

Miroslaw Staron1,∗,†, Wilhelm Meding2, Göran Karlsson2 and Christer Nilsson2

1IT University of Göteborg, SE-412 96 Göteborg, Sweden
2Ericsson SW Research, Ericsson, Sweden

SUMMARY

The process of measuring in software engineering has already been standardized in the ISO/IEC 15939
standard, where activities related to identifying, creating, and evaluating of measures are described. In
the process of measuring software entities, however, an organization usually needs to create custom
measurement systems, which are intended to collect, analyze, and present data for a specific purpose.
In this paper, we present a proven industrial process for developing measurement systems including the
artifacts and deliverables important for a successful deployment of measurement systems in industry. The
process has been elicited during a case study at Ericsson and is used in the organization for over 3 years
when the paper was written. The process is supported by a framework that simplifies the implementation
of the measurement systems and shortens the time from the initial idea to a working measurement system
by the factor of 5 compared with using a standard development process not tailored for measurement
systems. Copyright q 2010 John Wiley & Sons, Ltd.

Received 16 April 2008; Revised 25 February 2010; Accepted 17 March 2010

KEY WORDS: software metrics; software engineering; measurement

1. INTRODUCTION

Measuring in software engineering is as important as in any other engineering discipline. In addi-
tion to frameworks for establishing metric programs in software development organizations, like
the Goal-Question-Metric (GQM, [1]), there exist standards defining how measurement processes
should be defined and executed (ISO/IEC 15939, [2]) or what/how measures are to be defined
(ISO/IEC 25021, [3]). The standards define components of a successful metric program; further-
more, the new ISO/IEC 25000 series of standards contain metrics for quality assessment and
describe measurement methods for these metrics. In software development organizations, these
standards need to be operationalized—i.e., conforming procedures for metrics data collection,
analysis, and presentation need to be developed. The operationalization of these standards is an
important aspect for a wide adoption of measurement systems. Therefore, in this paper we address
the following research question:

Which activities and artifacts are involved in the process of building and deploying measure-
ment systems in industry?

The concept of a measurement system has been adopted from the existing standards on metrology
[4] where it is defined as a set of measuring instruments assembled in order to measure quantities
of specific kinds. In the case of software engineering, the quantities are dependent on the purpose
of measurement and the measured entities. An entity can be a project, process, product, team,

∗Correspondence to: Miroslaw Staron, IT University of Göteborg, SE-412 96 Göteborg, Sweden.
†E-mail: miroslaw.staron@ituniv.se

Copyright q 2010 John Wiley & Sons, Ltd.

M. STARON ET AL.

etc. and a quantity can be project length, number of activities in the process, lines-of-code of the
product, team size, etc. Since the set of base quantities in software engineering is not as well
defined as in other engineering disciplines (e.g., physics with the definition of such quantities as
length), our discipline strives to define standards for defining quantities. Although the ISO/IEC
25021 [3] standard defines a set of base and derived measures (DM) for such aspects as quality
measure elements, these metrics are still too abstract to be used for making decisions in large
corporations‡. The standard introduces the concept of ‘quality measure element’, which is the
basis for creating quality metrics, but is a quality metric per se. The consequence of the lack of
standardized measures is that organizations develop custom measurement systems and metrics to
satisfy specific information needs of stakeholders—not limited to quality metrics only.

In practice a successful§ measurement system is always developed with a stakeholder in mind;
examples of stakeholders are project managers, product managers, system owners, team leaders,
etc. Each stakeholder has own goals for measuring, which is reflected in the measurement systems
being tailor made for the stakeholders. In practice the main measurements—indicators—are specific
for the stakeholders. The data-measures, however, should be as generic as possible to allow
benchmarking and reuse of measures. These conflicting requirements are addressed in the ISO/IEC
15939 standard by defining three kinds of measures—base measures (BM): reusable measures
measuring attributes of empirical entities from the real world, DM: measures combining BM using
mathematical expressions, and indicators: derived and/or BM combined with the decision criteria
(specific for the stakeholder and his/her information need). The reusability decreases from BM to
indicators as the customizability increases.

In this paper we present a process of how to identify indicators, and base/DM in mature orga-
nizations adopting metric programs. After our evaluation at Ericsson, we found that using this
process leads to developing measurement systems up to 5 times faster than using the standard,
non-customized, software development process. The process starts with the identification of stake-
holders, which has been indicated as the most important aspect in the literature (e.g., [5]), and
by Ericsson’s managers. It finishes with the deployed and the evaluated measurement system for
that stakeholder. In addition to the process we also present a short evaluation of it at one of
the projects at Ericsson, our industrial partner. For the reasons of confidentiality agreement, we
cannot present a detailed study of measurement systems at Ericsson including the development
effort data, but we can show that the development of measurement systems requires no company-
external specialists’ knowledge and makes Ericsson independent from costly consultancy in soft-
ware metrics—a situation that is identified as an obstacle when adopting measurement programs in
industry.

The paper is structured as follows. Section 2 presents the most related work in the field.
Section 3 briefly characterizes the organization and its measurement practices (including historical
timeline of the metric programs in the organization). Section 4 presents the process of devel-
oping measurement system, details the activities and deliverables from the process. Section 5
presents an example use of the process when developing measurement systems at Ericsson,
including an example measurement system deployed at the company. Finally, Section 6 presents the
conclusions.

2. RELATED WORK

The process presented in this paper solves the same problem as GQM paradigm [1], which is used
to elicit the set of measurements that are to be collected in order to support decision processes in
organizations. The main difference is that in our process model, we focus on following the ISO/IEC
15939 standard and emphasize reuse of measures. We also, according to the standard, perceive

‡ISO/IEC 25000 series of standards is a ‘type 2 technical report’, which means that the report is still under
development or that there is a ‘future, but not immediate possibility of an agreement on an International Standard’
(from ISO/IEC 25021 p. iv–v).
§Successful=adopted, deployed, and used for a pre-defined period of time (e.g., during the whole project, for one
product).

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

different measures to have different roles and we put emphasis on finding procedures (automated
if possible) to collect and combine measures—concepts stressed in our previous work [6].

The concept of a measurement system is not new in engineering. Measurement instruments are
one of the cornerstones of engineering. In this paper, we only consider computerized measure-
ment systems—i.e., software products used as measurement systems. The reason for this are: the
flexibility of such measurement systems, the fact that we work in the software field, and similarity
of the problems—e.g., concept of measurement errors, automation, etc. An example of a similar
measurement system is presented by Wisell et al. [7], where the concept of using multiple measure-
ment instruments to define a measurement system is also used. Although differing in domains of
applications, these measurement systems show that concepts that we adopt from the international
standards (like [4]) are successfully used in other engineering disciplines. Therefore, our process
of creating measurement systems can be applied when building these measurement systems.

Lowler and Kitchenham [8] present a generic way of modeling measures and building more
advanced measures from less complex ones. Their work is linked to the TychoMetric [9] tool. The
tool is a very powerful measurement system framework, which has many advanced features not
present in our framework (e.g., advanced ways of combining metrics). TychoMetric provides a
possibility of setting up advanced and distributed (over several computers) filters and queries for
multiple data sources as it is intended to cover all (or at least many) kinds of metrics and projects.
The configuration of a set-up of one measurement system is much more difficult than developing
a custom measurement system using simpler tools (which is usually appreciated by managers).
The plethora of features and the fact that we intended our framework to be simple, easy to use
and interpret rendered the TychoMetric tool too advanced for building measurement systems for
wide spread throughout our organization. A similar approach to the TychoMetric’s way of using
metrics was presented by Garcia et al. [10]. Despite their complexity, both the TychoMetric tool
and Garcia’s approach can be seen as alternatives in the context of advanced data presentation or
advanced statistical analysis over time.

Wade and Recardo [5] indicate a strong need for custom-made processes for the development of
measurement systems, which should assure that it is the ‘business management’ and not ‘software
management’ who owns and steer the development of measures and software collecting them.
In our paper, we present the process that addresses this issue by providing a customization of
a general process (minimizing the learning curve) by minimizing the number of activities and
adding guidelines that are specific for developing measurement systems and assuring that business
management needs are addressed by metrics and software for their collection/presentation.

Meyer [11, pp. 99–122] claims that the need for customized measurement systems for teams is
one of the most important aspects in the adoption of metrics at the lowest levels in the organization.
Meyer’s claims were also supported by the requirements that the customization of measurement
systems and the development of new ones should be simple and efficient in order to avoid unnec-
essary costs in development projects. In our research, we simplify the ways of developing Key
Performance Indicators exemplified by a 12-step model of Parmenter [12] in the domain of soft-
ware development projects. Parmenter’s process tackles a larger problem of creating indicators for
managing organizations and therefore requires a significant amount of effort to be used in software
projects. As per request of managers at Ericsson, we made sure that our process is compatible with
the 12-model. The manager’s requests were of key importance for the success of the measurement
program, which is also reported in, e.g., [13–18].

We also investigated metric tools used in software industry to compare the differences
between measurement instruments used in our research to measurement instruments used in other
disciplines—in particular we studied publications on

• Using video recordings in the process of measurements of fluids (hydrology), where the
problem of ‘digitalizing’ information from a physical world was discussed [19]. This problem
is often encountered in software development organizations when using resource metrics.

• Network load measurements for a specific protocol using a dedicated measurement system
(computer science), where we studied how a software measurement system is constructed and
integrated with general software [20].

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

M. STARON ET AL.

We deliberately chose the ISO/IEC 15939 (:2002 in the start of the study and :2007 when
the study concluded) in our work. It is not the only standard, but it is accepted and was best
suited for our purposes. A good comparison of other related measurement frameworks and models
was conducted by Chirinos et al. [21], who compared several frameworks and models [1, 22, 23].
Despite the recommendations from Chirinos et al. to use their measurement framework (MOSME),
the ISO/IEC standard was more applicable due to its wider adoption in industry. The use of
standardized view on measurement processes also provided the possibility for future benchmarking
with other organizations (e.g., as indicated in [24]). The standards are also based on the state-of-
the-art in measurement theory, which can be found in [25–28].

Agresti [15] presents a framework for defining meaningful metrics for IT organizations focusing
on 10 most important areas of metrics: problem, people, platforms, providers, process, product,
performance, progress, plans, and partners. Although the generality of these areas can only guide the
organizations to choose the right metrics, we see this work as an important input to our process—
in particular for organizations without clearly identified stakeholders. Agresti’s framework can
support these organizations in identifying the stakeholders and as such complements our work to
support full lifecycle of the products.

Umarji and Emurian [29] present another study related to the problem of defining metrics useful
for the organizations. They identify five aspects that directly influence the acceptance of a metric
program: ease of use, usefulness, control over the measurement program, attitude of the individual
to the metrics, and intention (which is an overarching concept for the previous four aspects). Their
results show that involving stakeholders in early stages of development of metrics significantly
increases the chances of success of the metric program. Similar conclusion is supported by the
studies of Jeffery and Berry [30] and Gopal et al. [31].

Kilpi [32] studied acceptance issues and the role of the software metric program at Nokia
showing that using metric programs in a mature organization like Nokia can save considerable
effort when fine-tuning software development processes. They describe a method: Nokiaway, which
is a Nokia adaptation of the GQM approach. One of the main differences to the standard GQM
approach is the need for using only pre-defined metrics in measurement systems, which might
be a risk for an adoption of a metric program (a bottom–up approach). The reason for this risk
is that the stakeholders (as mentioned in the studies above) might need customized metrics. Our
work addresses this shortcoming by presenting a process for developing metrics that as part of
measurement systems customized for particular stakeholders.

Niessink and van Vliet [33] stress the need for the metric programs to generate value. In
particular, they stress the need for a clear mapping from organizations needs to metric programs,
measurement systems, and metrics (a top–down approach). They also emphasize the importance
of coupling between the metrics and organizational actions—i.e., actions to be taken based on the
results of the metrics. Their conclusions are aligned with our intentions—to create a process for
developing measurement systems generating the value by involving the stakeholders and addressing
their needs. Since the stakeholders are persons who have the mandate and possibility to act upon
the values of metrics, we perceive the V-process presented in our paper as addressing the needs
identified by Niessink and van Vliet. The need for addressing of the needs of the company and this
top–down approach was identified even in an earlier study by De Panfilis et al. [34] or Redmond
and Ah-Chuen [35]. In the design of the V-process model, we were careful to take these experiences
into an account.

3. MEASUREMENT SYSTEMS AT THE STUDIED ORGANIZATION

The studied organization is one of the units of Ericsson. Ericsson is one of the leading global
telecommunication equipment providers. The studied organization is responsible for development
of network products for the telecommunication networks. The group that we work with focuses
on quality management, methods and tools supporting software development projects. Their daily
tasks include collecting, maintaining, and presenting quantitative data (measurements) on processes,

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

products, and projects in the organization. The organization consists of several hundred engineers.
In this section, we briefly present the way in which measurements were used in the past in the
organization and how measurement systems affect that situation.

3.1. Measurements in the past

The history of measuring at the studied organization started around 2002 when the need for quan-
titative data for decision support arose. Before that point, measures were used in the organizations
supervising the studied organization at the company level. In 2002, the awareness and the need
for controlled metric program came into existence. The discussions were continued for a number
of years, including prototypes and early pitfalls. During 2003, the organization built various kinds
of prototype metric programs including the presentations for decision makers, which results in
the development of common performance reporting in 2004. The awareness of measuring during
these years resulted in using different measures for same purposes and same measures for different
purposes in the organization. During 2005, an effort was undertaken to systematize the measures
and reduce the number of measures collected. In 2006, an effort was established to build a single
metric program for the organization to control and monitor projects, products, and resources in the
organization. Until now this effort has resulted in a partial implementation of this metric program.
The incremental improvement of this program is planned for the future. Based on the current
situation in the company, one could predict that the organization will require reactive measurement
systems to support changing metric programs. Over the years, the measures used changed, although
several are still valid (e.g., the In-Service-Performance (ISP)). It also shows that after improving
in aspects currently in focus (and measured), the organization starts to improve other aspects and
thus needs new measures.

In the starting days of measuring it was only a set of individuals who discussed the use of metrics
for decision support. Currently, software metrics are discussed at all levels in the organization and
the needs for using measures for decision support are growing continuously. These growing needs
require infrastructure where measures can be used (e.g., combined, summarized) by end users
(e.g., managers, system owners), in a considerably short notice. One of the requirements for the
case study presented in this paper was to address the increased needs for measurement systems.

The studied unit works mainly with quality-related measures. These measures are usually speci-
fied in quality assurance plans for each project, collected during projects and presented at the project
status meetings. The measures in quality assurance plans were collected in order to monitor project
and product quality. And, since the maturity of the organization grew over time, the measures
evolved. At the beginning (around 2002), there were around 20 different areas, containing between
70 and 100 measures. Some of the areas were intended to monitor whether a project adheres
to process descriptions (e.g., measuring different activities in the projects). The measures were
collected manually and then used in performance reports (which were created manually as well).
Nowadays, as the organization is much more mature, these measures are not necessary—processes
are followed and there is no need to spend resources on controlling that. Owing to this and similar
factors, currently the organization collected measures in seven areas, and the number of measures
decreased to approximately 20 metrics that monitor key aspects of projects. These measures are
updated daily and always show the current status of the project, the measurement systems are
available via web sites and there is no need for manual performance reporting on these measures.
As the competence in the company w.r.t. metrics collection and analysis is significantly higher than
before, the demands for measurement systems grows constantly and there is a need to make the
knowledge how to build measurement systems available to more persons than just a few individuals
(as it was at the beginning).

3.2. Current measurement systems

As part of our project, we performed an evaluation of the metric program at the studied organization
and its chances of being successful, according to the framework of Jeffery and Berry [30]. The
results showed that the metric program fulfills most of the requirements for being successful. The
uniform process of creating measurement systems is one of the important aspects of that. The current

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

M. STARON ET AL.

measurement processes in the organization are based on ISO/IEC 15939:2007 standard, which is
a normative specification for the processes used to define, collect, and analyze quantitative data in
software projects or organizations. The central role in the standard is played by the information
product, which is a set of one or more indicators with their associated interpretations that address
the information need [2]. The information need is an insight necessary for a stakeholder to manage
objectives, goals, risks, and problems observed in the measured objects [2]. These measured objects
can be entities, such as projects, organizations, software products, etc., characterized by a set of
attributes. We use the following definitions from ISO/IEC 15939:2007:

• BM—measure defined in terms of an attribute and the method for quantifying it. This definition
is based on the definition of base quantity from [4].

• DM—measure that is defined as a function of two or more values of BM. This definition is
based on the definition of derived quantity from [4].

• Indicator—measure that provides an estimate or evaluation of specified attributes derived from
a model with respect to defined information needs.

• Decision criteria—thresholds, targets, or patterns used to determine the need for action or
further investigation, or to describe the level of confidence in a given result.

• Information product—one or more indicators and their associated interpretations that address
an information need.

• Measurement method—logical sequence or operations, described generically, used in quanti-
fying an attribute with respect to a specified scale.

• Measurement function—algorithm or calculation performed to combine two or more BM.
• Attribute—property or characteristics of an entity that can be distinguished quantitatively or
qualitatively by human or automated means.

• Entity—object that is to be characterized by measuring its attributes.
• Measurement process—process for establishing, planning, performing, and evaluating
measurement within an overall project, enterprise, or organizational measurement structure.

• Measurement instrument—a procedure to assign a value to a BM.

The view on measures presented in ISO/IEC 15939 is consistent with other engineering disci-
plines, the standard states at many places that it is based on such standards as ISO/IEC 15288:2007
(Software and Systems engineering—Measurement Processes) [36], ISO/IEC 14598-1:1999 (Infor-
mation technology—Software product evaluation) [37], ISO/IEC 9126-x [38], ISO/IEC 25000
series of standards, or International vocabulary of basic and general terms in metrology (VIM) [4].
Conceptually, the elements (different kinds of measures) that are used in the measurement process
can be presented as in Figure 1.

One of the key factors for every measurement system is that it has to satisfy an information need
of a stakeholder–i.e., there needs to be a person/organization who/which is interested in the infor-
mation that the measurement system provides. Typical stakeholders are project managers, organiza-
tion managers, architects, product managers, customer representatives, and similar [14, 32, 39, 40].
The indicator is intended to provide quantitative information along with the interpretation, which
implies an existence of an analysis model that eases the interpretation. The analysis model is a set
of decision criteria used when assessing the value of an indicator—e.g., describing at which value
of the indicator we set a red flag signaling problems in the measured object. The DM (based on
the definition of the derived quantity) and BM (based on the definition of the base quantity) are
used to provide the information for calculating the value of the indicator.

4. DEVELOPING MEASUREMENT SYSTEMS: PROCESS

In this section we present the process—the activities and the related deliverables/artifacts of the
process of building measurement systems. The actor who performs these activities is measurement
specialist—usually a quality manager—who has the basic knowledge of metrics.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

Attribute Attribute

Measurement
method

Measurement
method

Base

Measure

Base

Measure

Measurement
Function

Derived

Measure

Derived

Measure

(analysis)
Model

Indicator

Interpretation

Information

Product

Raw data Raw data

ISO/IEC
15939:2007
information
model

Stakeholder with Information
Need

Figure 1. Measurement system information model (from ISO/IEC 15939:2007).

4.1. Overview

The process, which is presented in Figure 2, can be iterative in the middle (as indicated by the
shaded area) in order to minimize the risks for misunderstandings between measurement specialists
and stakeholders. The horizontal lines in Figure 2 show dependency between activities, and using
the V-shape helps to visualize these dependencies in a more natural way. We use the parallel to
the V-model in order to help the organization to easily understand it.

The V-shape allows us also to show the progression from high abstraction levels to very detailed
specifications and then developing the measurement system in the bottom–up approach.

4.2. Activities

During the development of the measurement system, the actor needs to perform the following
activities. There are two roles involved in these activities: developer of the measurement system
(measurement specialist, quality manager) and stakeholder (who provides the developer with
information). The developer is involved in all activities, whereas the stakeholder is involved in the
activities 1–10 and 17–18.

1. Elicit information need from stakeholders: The stakeholders are the primary source of infor-
mation needs as it is they who are the ‘customers’ for measurement systems. The information
needs depend on the role of stakeholders, but the main characteristic is that the information
need must be a product of one or more measures.

(a) Questions to ask:

(i) What is it that you need to know to monitor <your project>? (the part in brackets
depends on the information need—here we use project as a ‘template’ example)

(ii) Why do you need to know it?

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

M. STARON ET AL.

Elicit information need
yolpeDredlohekats morf

Information product
Elicit interpretation

Define indicator

Define analysis model

Define derived measures

Define base measures

Define entities

Define attributes

Develop M.S. spec. Develop M.S. architecture

Identify information sources

Develop measurement instruments

Implement base measures

Implement derived measures

Implement and
evaluate indicators

Define measurement function

Define measurement method

Figure 2. Process for developing measurement systems.

2. Elicit interpretation: Once the information need is elicited, the stakeholder should be asked
how the information is interpreted, including actions that are taken upon specific interpre-
tation. The interpretation is to be used in the next step when ‘color-coding’ the decision
criteria for the indicator.

(a) Questions to ask:

(i) How do you act based on the information provided from indicators?

3. Define indicator: By the time the interpretation is found, several candidate indicators are
usually discussed. In this activity, the candidate indicators are assessed and the main indicator
(or a limited number of them) is found.

(a) Questions to ask:

(i) What is the most important indicator that would notify you when there are problems
with <your project>?

(ii) Which other indicators help you to monitor that <your project> is according to
your expectations/plan?

4. Define analysis model: After the indicator is found, the stakeholder is asked about the
thresholds on the interpretation of the indicator. The thresholds are used to assess whether
the indicator shows problems, shows potential problems, or shows that measured phenomena
are progressing according to expectations or plans. The analysis model contains also the
formula used to calculate the value of the indicator from derived and BM. The thresholds are
usually color-coded to help stakeholders quickly see whether the status is ‘red’ or ‘green’
and also for non-stakeholders when interpreting the information.

(a) Questions to ask:

(i) When can you say that the indicator shows problems with <your project>?
(ii) What are the values of the thresholds?

5. Define DM: After the indicators are found, define the DM, which are used in the formulas
in the analysis model. These DM are defined in this activity.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

(a) Questions to ask:

(i) Which measures are used in the formulas?

(b) Note: Not all indicators are calculated from DM (some can just be BM with associated
decision criteria). If this is the case, then this activity is not applicable.

6. Define measurement function: Each DM is calculated from one or more BM. In this activity,
the function used to calculate the DM is defined and documented.

(a) Questions to ask:

(i) Which BM are used to calculate DM?
(ii) How are the BM used to calculate DM (what is the formula)?

(b) Note: This activity is optional if no DM are found.

7. Define BM: The BM are coupled directly to DM. The underlying raw data (see activities
13–14) are usually very detailed and the BM are only an excerpt of the data (e.g., the raw
data can be per team member per project whereas the BM is supposed to be the average
value per project—i.e., data re-configuration is needed).

(a) Questions to ask:

(i) Which BM are needed?
(ii) Can these BM be reused?

8. Define measurement method: The most important part of the definition of the BM is how to
assign the values to BM (i.e., how to measure)—the measurement process. This measurement
process for a single BM is called measurement method. The measurement method is an
algorithm that assigns value of a particular attribute of a particular entity to the BM.

(a) Questions to ask:

(i) Is the measurement method correct?
(ii) Are all elements, which should be measured, measured?

9. Define entities: The entities that are measured need to be precisely defined since these are
the main sources of information. The granularity and availability of BM depend on the
definition of measured entities. Creating a domain model (similar to domain models known
from the Unified Process [41] or Software Product Lines [42] can be used).

(a) Questions to ask:

(i) What are the entities in the measured organization/product/process (depending on
the information need)?

(ii) What are the relationships between these entities?
(iii) How can the data for these entities be obtained?

(b) Artifact: Domain model with entities which is a part of the specification of the measure-
ment system

10. Define attributes: Each entity is characterized by its attributes and relationships. The purpose
of this activity is to identify the relevant attributes and the methods to measure them. An
attribute that cannot be measured should be replaced by an attribute that is easier to measure
(or several other attributes).

(a) Questions to ask:

(i) What are the most important attributes (of the entities) that are relevant for the
information need?

(ii) What are the most important relationships between entities that are important for
the information need?

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

M. STARON ET AL.

11. Develop measurement system specification: After the entities, attributes, and measure-
ments are identified, a specification of the measurement system is developed. The
specification is a model of all measurements, entities, and their attributes. The model
serves also as a documentation of measurements used and provided by the measurement
system.

(a) Artifact: measurement systems’ specification

12. Develop measurement system architecture: The specification of the measurement system is
a logical view of the measurement system. An implementation view of the measurement
system is the specification of its architecture (in the form of a model): components used,
e.g., files and databases.

(a) Artifact: measurement system architecture model.

13. Identify information sources: The measurement method is directly coupled to the information
sources. The information source determines how the measurement method is specified—it
can be a list of questions (if an information source is a person) or a description of the
structure of the database (if the database is the information source), or a procedure how to
access/parse the file (if it is a text file).

14. Developmeasurement instruments: Once the information sources are identified and described,
the measurement instruments are developed. A measurement instrument is an algorithm that
computes how the measurement value is assigned to the BM. A measurement instrument
can be a user form in MS Excel or a webpage (if the information source is a person),
or a software program integrated with measurement system (if the information source is
a database). The measurement instrument implements the measurement method specified
earlier in the process.

(a) Deliverable: measurement instrument(s).

15. Implement BM: Once the measurement instrument for assigning the values to BM is in place,
the BM are implemented. The implementation is creating the place where the measurement
values are stored and how they are accessed.

(a) Deliverable: BM

16. Implement DM: When BM are in place, the DM can be implemented. The implementation
includes accessing BM, implementation of formulas, and methods for accessing DM.

(a) Deliverable: DM.

17. Implement and evaluate indicators: The indicators are to be developed and evaluated. The
development is similar to the development of base and DM. The evaluation, however, should
be done together with the stakeholder; the values of the indicators reflect the stakeholder’s
expectations. The stakeholders are individuals or groups of specialists whose perception of
the situation of 〈the project〉 (or other phenomena depending on the information need) is
reflected by the status of the indicator (e.g., low or high value, ‘red’ or ‘green’ color). This
can be done by using the historical data during the evaluation of indicators, or by having
an indicator in the ‘evaluation’ phase for a period of time when the values are recorded and
discussed with the stakeholder.

(a) Questions to ask:

(i) Are the thresholds correct?
(ii) Do the thresholds reflect the stakeholder’s perception of the situation in <the

project>?

(b) Deliverable: indicators.

18. Deploy information product: After the indicators are validated with the stakeholder, the
measurement system can be made accessible in the organization. The usual way to do that

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

would be to create an internal webpage where the values of the indicators are displayed and
explained. The color-coding helps in understanding whether an indicator indicates problems
(e.g., by being colored as red) or lack thereof (e.g., by being colored as green).

(a) Questions to ask:

(i) Where should the information be published?
(ii) How often should the published information be updated?

(b) Deliverable: measurement system (information product).

4.3. Artifacts and deliverables

One of the requirements for deliverables is that a non-metric-expert is able to understand and use
measures and indicators for his/her specific purposes (if needed). The main idea is that the process
should be very light-weight and should minimize the amount of ‘paperwork’ and documentation
to these artifacts that are going to be used even in the maintenance phase. In addition to the
deliverables from this process, there are two important artifacts that are important in the process
and for further maintenance of the measurement systems.

Deliverables

1. Information product: The main deliverable is the measurement system itself and in particular
the indicators. The indicators are labeled as information products since they provide the
information that satisfies the information needs of the stakeholder.

2. Indicators: Each of the developed indicators is also a deliverable that is intended to be reused
for different stakeholders. The indicators can be packages with or without the analysis models.

3. DM: The measurement systems should provide the possibility to reuse DM—e.g., by
importing values of derived measures from other measurement systems. This reuse is impor-
tant in order to provide a uniform and consistent way of measuring the same phenomena
across the company.

4. BM: Similar to DM.
5. Measurement instruments: The instruments used to collect measurements are also important

deliverables. The organization is supposed to standardize the ways in which these are specified
and through this standardization to develop uniform way of collecting measures.

Artifacts:

6. M.S. specification: The model of all measures provided by the measurement system and the
scales and units of the measures. The model is also important for later maintenance of the
measurement system.

7. M.S. architecture specification: The model of components and data sources in the measure-
ment system is important when problems occur. An important aspect of the measurement
system is that it provides accurate and up-to-date information. If a problem occurs, one needs
to be able to easily track the information flow in the measurement system (e.g., which files
are involved in calculating each particular indicator).

The dependencies between these two artifacts and the components of the measurement systems
are presented in Figure 3.

The important part of the figure is the distinction between the specifications (models) and the
realization of files, databases, and the measured entities. The deployed measurement system is
usually built using several files (depicted as files on an ellipse), which correspond directly to the
specifications (depicted on rectangles).

In the studied organization we use an in-house developed framework for building measurement
systems. The framework is built on top of MS Excel 2003 and is intended to provide the basic
structure of files and measurements. The framework is conceptually presented in [6].

The measurement systems are built on top of Microsoft Excel (MS Excel) in order to reuse the
tools that are already used to collect measures and data in the company. The measurement system
contains three main components, corresponding to elements in the measurement information model

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

M. STARON ET AL.

Specification of measures

Specification of files

Files

Measured entities

Models

Reality

Figure 3. Dependencies between specifications, files (components of the measurement
system) and the measured entities.

specified in the ISO/IEC 15939:2007 standard: indicators, DM, and BM. The dotted line around
these components is intended to show that these three components might exist in one or several
execution spaces—i.e., being separate MS Excel instances (any combination is allowed, e.g., BM
and DM in one file whereas Indicators in another one). In the case of using several instances, the
measures are imported when needed, e.g., BM are imported when needed for calculation of DM.
Values are assigned to BM using measurement instruments (MI).

4.4. Validation of measurement systems

Verification of a measurement system should be done using standard software testing methods (e.g.,
following such standards as ISO/IEC 14598-1:1999 [37]). The measurement systems, however,
also need to be validated in a specific way. Since measurement systems are based on software
metrics; these metrics need to be validated both theoretically and empirically. The theoretical
validation of metrics should be done using a theoretical validation framework—for example the
framework of Briand et al. [43], or Zuse [44]. In our work we use Briand’s framework since
it allows checking properties of metrics useful in our context, e.g., null value or additivity. As
DM and indicators are combinations of base and DM, these properties should be verified before
measures are combined.

The verification whether measures expose certain properties is only a partial validation of
software metrics. The more important part is the empirical validation, which is intended to check
whether a measure actually measures what it is expected to measure [45, 46]. Although extensive
experimentation is usually used to empirically validate the metrics, we advocate for a more
pragmatic approach:

1. Develop and deploy a measurement system.
2. For a period of time, validate the indicators and measures with the stakeholder: this vali-

dation is done by observing the values of the indicators together with the stakeholder and
ask the stakeholder to assess the same phenomena without using the measurement system
(stakeholder’s view).

3. After a period of time, if the stakeholder’s view is consistent with the indicators values, then
we can assume that the measures are empirically valid.

The above pragmatic approach is based on the following assumptions: (i) the stakeholder is an
expert in the area and has the ‘intuition’ about the same phenomena that the indicator presents, (ii)
the period of time contains both negative and positive values in the indicator. Although the period
of time when the measurement system is observed can be substituted by using historical data, we
strongly recommend using the data from on-going activities and current products. The reason is
that the stakeholder’s view is usually more up-to-date when considering situations in measured
on-going projects, products, etc. Empirical validation of metrics on historical data is usually biased
by the maturity effect.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

4.5. Factors important in implementing measurement systems

Since measurement systems are intended to support metric programs in organizations, the usual
factors important for metric program adoption are also considered crucial, for example management
commitment, dissemination, etc. [14, 32, 33, 39, 47–50].

In addition to these factors, we have identified the following as success factors specific to
building measurement systems in the studied organization:

1. Use of standards: the measurement systems should follow standards, e.g., ISO/IEC 15939,
and structure measures in uniform way.

2. The specifications and implementations of the measurement systems should be similar to
each other.

3. Reuse of measures: Measures defined in the measurement systems should be ‘packaged’ so
that they can be reused in other measurement systems. Otherwise, the cost of measuring
might get too large if the number of measures increases.

4. Information sources are known: When building a measurement system, the developer/design
should know whether the information can be obtained and how. If the desired information is
not obtained, a danger exist that the measurement system is going to be based on opinions
(which might be subjective) and not objective data.

5. Maintainability: the infrastructure (information sources, executable files, definitions of indi-
cators and measures) should be maintainable by other people in the organization than the
developer of the measurement system.

6. Simple, succinct, and unambiguous presentation: The indicators should present the infor-
mation in a very succinct way that is very easy to interpret. This means that the indicators
should contain no details about the underlying measurements; these should be provided at a
separate place (linked from the indicators presentation) and accessed only when needed.

7. Accurate and reliable information sources: The information collected by the measurement
systems has to be accurate—the instruments used to collect the data should be precise and do
not introduce measurement errors. The sources of information should also be reliable, which
means that information is up-to-date and not biased—for example ‘current’ project status has
to be measured at a specific time (e.g., at the moment when the indicator is presented) and
does not come from a month before the moment when the indicator is presented.

8. Clear responsibility assigned: The responsibility of the measurement system should be clearly
assigned. There should be a group or an individual responsible for development, deployment,
and maintenance of the measurement system. If this is not fulfilled, there is a danger that
the measurement system gets de-calibrated (does not measure accurately or measures are no
longer required as the phase in the project has changed).

The above are only the most important factors, although there are several minor issues that
should be taken into consideration when developing and deploying a measurement system. Most
of these issues, however, have already been captured by Jeffery and Berry in their evaluation
framework [30].

5. EXAMPLE USE OF THE MODEL

We exemplify the use of the model on an example measurement system for measuring ISP, which
was developed using the process presented in this paper. The summary of the specifications of the
measurement systems is presented in Table I. The table summarizes the results of activities from
‘Elicit information need from stakeholder’ to ‘Find attributes’ as presented in Section 4.

The specification of the measurement system contains the measures used in this measurement
system. It is presented in Figure 4.

The figure shows the graphical version of the specification of the measurement system for
the ISP. The important aspect of the figure is its layout that is similar to the ISO/IEC 15939:2007
information model. Such a layout makes it quite straightforward for the stakeholders to understand
the specification. In particular, the stakeholders can ‘learn’ the nomenclature of ISO/IEC 15939while

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

M. STARON ET AL.

Table I. Summary of the specification of the measurement system for monitoring
In-Service-Performance (ISP).

Stakeholder Product manager
Information need Are we fulfilling the X1 availability promise?
Indicator ISP: Unplanned downtime for all products
Analysis model Green: X1 to 100% availability

Yellow: X2 to X1 availability
Red: Below X2 availability

Derived measures PA: Product availability last month extrapolated for 1 year
(min/year)

Measurement function PA=sum(RA for all releases)/NR
Base measures Object: Release

RA: Release availability last month extrapolated for 1 year
(min/year]

Object: Product
NR: Number of releases [number]

Measurement method For RA:
1. Collect downtime logs from all nodes running the release for

the last month
2. Calculate average downtime for all nodes running the release
3. Count the number of minutes in last month
4. RA=number of minutes in last month−average downtime

for all nodes running the release

For NR:
1. Count the number of releases of software that are in operations

Base
measures

NR: Number of nodes in operation for each release [number]

Derived
measures

PA: Product availability [minutes/year]

PA = sum(RA for all releases)/NR

RA: Release availability [minutes/year]

Indicators Formula: ISP = average(PA for all products)
Decision criteria:
Green: X1 to 100% availability
Yellow: X2 to X1 availability
Red: below X2 availability

ISP

Figure 4. M.S. specification for the ISP measurement system.

developing measurement systems that lead to such bi-effects as easier reuse of base/DM (the stake-
holders can easily distinguish between base/DMand indicators) or easier customization of indicators
(the stakeholders have a clear viewofwhichmeasures are indicators andwhat their analysismodel is).

The studied organization has developed several releases of the software for the products, which
causes the organization to collect the information per each release for each product. In total the
organization monitors three products (Product A, Product B, and Product C); hence, there are

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

ISP Indicator

ISP = (PA_prodA + PA_prodB + PA_prodC)/3

PA_prodA: Derived Measure

PA = (RA_rel1 + RA_rel2 +
RA_rel3)/ NR

PA_prodB: Derived Measure PA_prodC: Derived Measure

RA_rel1:
Base Meas.

RA

RA_rel2:
Base Meas.

RA_rel3:
Base Meas.

RA_relB2:
Base Meas.

RA_relB3:
Base Meas.

RA_relC1:
Base Meas.

PA = (RA_rel1 + RA_rel2 +
RA_rel3)/ NR PA = (RA_rel1)/ NR

PA_prodA: Base Measure
NR

PA_prodA: Base Measure
NR

PA_prodA: Base Measure
NR

RA_relB1:
Base Meas.

RA RA RA RA RA RA

Figure 5. Instantiation of measurement system for ISP (M.S. architecture specification).

three instances of DM. Each product has a number of releases in operation (the releases that are
no-longer maintained, out-dated are excluded): Product A—three releases in operation; Product
B—three releases in operation; Product C—one release in operation. Therefore, the specification
is instantiated as presented in Figure 5.

This model in Figure 5 shows that even for a simple measurement system, the number of files
and data points can grow rapidly. This means that automation plays a major role in the success
of adopting the metric program. In practice, each rectangle in Figure 5 is a separate file in this
example (although there is no requirement that it should be a separate file). Each file measuring
a release is identical in structure, but differs w.r.t. which object is measured. Finally, there is one
file with the indicator that satisfies the information need of the stakeholder.

Finally, the measurement system instantiated from these specifications, which is used at the
organization, is presented in Figure 6. The measurement system contains the total ISP indicator
(the first indicator from the top), and several more detailed indicators, which use the same analysis
model to present ISP indicators per product and per release. The values of the indicators (downtime)
have been hidden due to confidentiality of the data.

The measurement system updates the information from databases daily and updates the presented
information accordingly.

6. RECOMMENDATIONS FOR IMPLEMENTING ORGANIZATIONS

Based on the experiences of using the presented process for developing measurement systems at
Ericsson, we can provide the most important recommendations for other companies willing to
use metrics according to ISO/IEC standards: ISO/IEC 15939:2007, ISO/IEC 9126-x, ISO/IEC
25000, and ISO/IEC 14598-x. The recommendations are as follows:

1. Utilize top–down approach: start from the information need and not what can be measured.
One typical mistake is to start from ‘what can be measured’, which leads to wasting resources
for collecting data, which is not useful for making decisions.

2. Do not reason in terms of ‘what are the main metrics’, but in terms ‘what do we need to
know’; Start from ‘what we need to know’ and continuing toward what and how we can

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

M. STARON ET AL.

Figure 6. Measurement system for ISP: presentation of indicators.

measure to provide this information. This focuses the whole V-process on the goal at all
times, not discussing the importance of the metrics.

3. The developer of the measurement system should not bias the stakeholder’s opinion. The
stakeholder is the person who needs the information to make the decision—therefore, it
should be the stakeholder who decides how to interpret the information (the indicator).

4. Automate the processes of data collection, analysis, and presentation. It is of key importance
that the information is always up-to-date and that the stakeholder can trust that the updates
of the metrics data were correct. Manual collection of data should be allowed only in special
cases as the costs of regularly collecting the data in a manual way very often exceed the
benefits from the data itself. The manual data collection should be facilitated when new
metrics are evaluated or the metrics data are collected sporadically.

Although there exist more detailed experiences from our work on implementing the metric
programs, both we and our stakeholders perceive the above recommendations as the most important
ones.

7. CONCLUSIONS

Effective and efficient measurement processes in industry require well-defined measures, processes
for developing/using and maintaining measures and automation support. In this paper, we present a
process for developing measurement systems and its industrial instantiation. The process is intended
to operationalize the way in which organizations design, deploy, and use measurement systems.
In the studied organization, we have developed and deployed several measurement systems in the
manner exemplified in the paper.

The presented process can be used with several measurement system frameworks—e.g., the
TychoMetrics tool or a custom-made framework. The results from our initial evaluations show that

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

the process is efficient, produces the required documentation (but not too much documentation),
and results in good-quality measurement systems. We naturally assume that the engineers working
with the measurement systems have the required competence in working with software metrics
and the required knowledge of the company.

Our further work includes empirical evaluation of the process with experiments outside of the
company and the deployment of the process at our other industrial partners.

ACKNOWLEDGEMENTS

The project has been partially sponsored by the Swedish Strategic Research Foundation (www.
stratresearch.se) under the program Mobility in IT. It was also partially sponsored by Ericsson Software
Architecture Quality Center and Ericsson Software Research.

We would like to thank the involved managers and engineers at Ericsson for their support in this study.

REFERENCES

1. van Solingen R. The Goal/Question/Metric Approach: A Practical Handguide for Quality Improvement of
Software Development. McGraw-Hill: New York, 1999.

2. International Standard Organization and International Electrotechnical Commission. Software Engineering–
Software Measurement Process, ISO/IEC (ed.). ISO/IEC: Geneva, 2002.

3. International Standard Organization. ISO/IEC 25021: Software Engineering—Software product Quality
Requirements and Evaluation (SQuaRE)—Quality Measure Elements. International Standard Organization: Geneva,
Switzerland, 2005.

4. International Bureau of Weights and Measures. International Vocabulary of Basic and General Terms in
Metrology = Vocabulaire International des Termes Fondamentaux et Généraux de Métrologie (2nd edn).
International Organization for Standardization: Genève, Switzerland, 1993; 59.

5. Wade D, Recardo RJ. Corporate Performance Management: How to Build a Better Organization through
Measurement-driven Strategic Alignment. Improving Human Performance Series, Butterworth-Heinemann: Boston,
2001; xvi, 170.

6. Staron M, Meding W, Nilsson C. A framework for developing measurement systems and its industrial evaluation.
Information and Software Technology 2008; 51(4):721–737.

7. Wisell D, Stenvard P, Hansebacke A, Keskitalo N. Considerations when designing and using virtual instruments
as building blocks in flexible measurement system solutions. IEEE Instrumentation and Measurement Technology
Conference Proceedings, 2007. IMTC 2007. 2007; 1–5.

8. Lawler J, Kitchenham B. Measurement modeling technology. IEEE Software 2003; 20(3):68–75.
9. Predicate Logic. TychoMetrics, 2007. Available at: http://www.predicatelogic.com [30 June 2008].
10. Garcia F, Serrano MA, Cruz-Lemus JA, Ruiz F, Piattini M. Managing software process measurement: A meta-

model based approach. Information Sciences 2007; 177(2):2570–2586.
11. Harvard Business School. Harvard Business Review on Measuring Corporate Performance. Harvard Business

Review Paperback Series. Harvard Business School Press: Boston MA, 1998; 229.
12. Parmenter D. Key Performance Indicators: Developing, Implementing, and Using Winning KPIs. Wiley: Hoboken

NJ, 2007; xv, 236.
13. D’Ambrogio A, Iazeolla G, Pasini L. A method for the production of simulation models with application

to web interaction paradigms. Simulation Modelling Practice and Theory 2007; 15(5):605–620. Available at:
http://dx.doi.org/10.1016/j.simpat.2004.06.009.

14. Gopal A, Mukhopadhyay T, Krishnan MS. The impact of institutional forces on software metrics programs.
IEEE Transactions on Software Engineering 2005; 31(8):679–694.

15. Agresti WW. Lightweight software metrics: The P10 framework. IT Professional 2006; 8(5):12–16.
16. Visser JK, Sluiter E. Performance measures for a telecommunications company. AFRICON 2007, 2007.
17. Mitani Y, Matsumura T, Barker M, Tsuruho H, Inoue K, Matsumoto K. Proposal of a complete life

cycle in-process measurement model based on evaluation of an in-process measurement experiment using a
standardized requirement definition process. First International Symposium on Empirical Software Engineering
and Measurement, ESEM 2007, 2007.

18. Staron M, Meding W. Ensuring reliability of information provided by measurement systems. Software Process
and Product Measurement. Springer: Berlin, 2009; 1–16.

19. Oberkampf WL, Trucano TG. Verification and validation in computational fluid dynamics. Progress in Aerospace
Sciences 2002; 38(3):209–272.

20. Feigin J, Pahlavan K. Measurement of characteristics of voice over IP in a wireless LAN environment. IEEE
International Workshop on Mobile Multimedia Communications, 1999.

21. Chirinos L, Losavio F, Boegh J. Characterizing a data model for software measurement. Journal of Systems and
Software 2005; 74(2):207–226.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

M. STARON ET AL.

22. Briand LC, Morasca S, Basili VR. An operational process for goal-driven definition of measures. IEEE Transactions
on Software Engineering 2002; 28(12):1106–1125.

23. Kitchenham B, Hughes RT, Linkman SC. Modeling software measurement data. IEEE Transactions on Software
Engineering 2001; 27(9):788–804.

24. Schalken JJP, van Vliet H. Measuring where it matters: Determining starting points for metrics collection. Journal
of Systems and Software 2008; 81(5):603–615. Available at: http://dx.doi.org/10.1016/j.jss.2007.07.041.

25. Yingxu W. The measurement theory for software engineering. Canadian Conference on Electrical and Computer
Engineering, IEEE CCECE 2003, 2003.

26. Fenton N. Software measurement: A necessary scientific basis. Transactions on Software Engineering 1994;
20(3):199–206.

27. Allen MJ, Yen WM. Introduction to Measurement Theory. Brooks/Cole: Monterey, CA, 1979.
28. Wans Y. The measurement theory for software engineering. IEEE Canadian Conference on Electrical and

Computer Engineering. IEEE: New York NY, 2003; 1321–1324.
29. Umarji M, Emurian H. Acceptance issues in metrics program implementation. Eleventh IEEE International

Symposium Software Metrics, 2005.
30. Jeffery R, Berry M. A framework for evaluation and prediction of metrics program success. First International

Software Metrics Symposium. IEEE Computer Society: Los Alamitos CA, 1993; 28–39.
31. Gopal A, Krishnan MS, Mukhopadhyay T, Goldenson DR. Measurement programs in software development:

Determinants of success. IEEE Transactions on Software Engineering 2002; 28(9):863–875.
32. Kilpi T. Implementing a software metrics program at Nokia. IEEE Software 2001; 18(6):72–77.
33. Niessink F, van Vliet H. Measurement program success factors revisited. Information and Software Technology

2001; 43(10):617–628.
34. De Panfilis S, Kitchenham B, Morfuni N. Experiences introducing a measurement program. Computer Standards

and Interfaces 1999; 21(2):165–166.
35. Redmond JA, Ah-Chuen R. Software metrics–A user’s perspective. Journal of Systems and Software 1990;

13(2):97–110.
36. International Standard Organization. Systems engineering—System life cycle processes, 15288:2002, 2002.
37. International Standard Organization. Information technology—Software product evaluation, 14598-1:1999, 1999.
38. International Standard Organization and International Electrotechnical Commission. I SO/I EC 9126—

Software engineering—Product Quality Part 1: Quality Model. International Standard Organization/International
Electrotechnical Commission: Geneva, 2001.

39. Umarji M, Emurian H. Acceptance Issues in Metrics Program Implementation, 2005.
40. Umarji M, Emurian H. Acceptance Issues in Metrics Program Implementation, 2005.
41. Rational. Rational unified process documentation, 2000. Available from: www.rational.com [25 January 2003].
42. Software Engineering Institute. Software product lines, 2006. Available at: http://www.sei.cmu.edu/productlines/

index.html [14 November 2006].
43. Briand LC, Morasca S, Basili VR. Property-based software engineering measurement. IEEE Transactions on

Software Engineering 1996; 22(1):68–87.
44. Zuse H. A Framework of Software Measurement. Walter de Gruyter: Berlin, New York NY, 1998; xxix, 755.
45. Fenton NE, Pfleeger SL. Software Metrics: A Rigorous and Practical Approach (2nd edn), vol. XII. International

Thomson Computer Press: London, 1996; 638.
46. Kitchenham B, Pfleeger SL, Fenton N. Towards a framework for software measurement validation. Transactions

on Software Engineering 1995; 21(12):929–944.
47. De Panfilis S, Kitchenham B, Morfuni N. Experiences introducing a measurement program. Information and

Software Technology 1997; 39(11):745–754.
48. Hall T, Fenton N. Implementing effective software metric programs. IEEE Software 1997; 14(2):55–65.
49. Brökcers A, Differding C, Threin G. The role of software process modelling in planning industrial measurement

programs. METRICS. IEEE: New York NY, 1996.
50. Grady RB, Slack TV. Key lessons in achieving widespread inspection use. IEEE Software 1994; 11(4):46–57.

AUTHORS’ BIOGRAPHIES

Miroslaw Staron is an Associate Professor of Software Engineering in the Department
of Applied IT at the University of Gothenburg, Sweden. He obtained his PhD in
Software Engineering in 2005 from Blekinge Institute of Technology. His research
interests are centered around industrial software engineering with emphasis on software
metrics, measurement processes and model driven software engineering. Dr. Staron has
been collaborating with Ericsson, Volvo Information Technology, Telelogic, Volvo Car
Corporation or recently RUAG Space.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

DEVELOPING MEASUREMENT SYSTEMS: AN INDUSTRIAL CASE STUDY

Wilhelm Meding MSc EE, has been working as Quality Manager for almost 10 years
at Ericsson and previously in similar positions at Volvo Buses and Volvo Cars. He has
been actively conducting research in the area of software metrics since August 2006 and
has published 12 papers so far. He is currently working as Measurement Program Leader
at Ericsson, and has also cooperation with other companies in the area of metrics.

Christer Nilsson MSc EE, has been working as Quality Manager at Ericsson since
2000. Before that he worked as process manager also in Ericsson, and as well as line
manager for almost 5 years. Christer was involved in establishing the measurement
program at Ericsson since 2003.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

